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It is obvious that

�� � ��������
�
�����

�

�

���

������ ����������� � ��� ���������

�

(A.4)

and

�� �

���

���

����� ��� �� ���������� ���������

��
���

�
�

�

�

���

����� ��������������� ���������

�

� (A.5)

Using �� defined in (A.4) and �� defined in (A.5), we can obtain
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Inserting (A.2)–(A.6) into (A.1) yields
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Thus, (23) also holds true for � � � � �. The proof is completed.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers and the
Associate Editor for their valuable comments and suggestions, which
have greatly improved the quality of this paper.

REFERENCES

[1] E. J. Kelly, “An adaptive detection algorithm,” IEEE Trans. Aerosp.
Electron. Syst., vol. 22, no. 1, pp. 115–127, Mar. 1986.

[2] F. C. Robey, D. R. Fuhrmann, E. J. Kelly, and R. Nitzberg, “A CFAR
adaptive matched filter detector,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 28, no. 1, pp. 208–216, Jan. 1992.

[3] E. Conte, M. Lops, and G. Ricci, “Asymptotically optimum radar de-
tection in compound-Gaussian clutter,” IEEE Trans. Aerosp. Electron.
Syst., vol. 31, no. 2, pp. 617–625, Apr. 1995.

[4] N. B. Pulsone and R. S. Raghavan, “Analysis of an adaptive CFAR
detector in non-Gaussian interference,” IEEE Trans. Aerosp. Electron.
Syst., vol. 35, no. 3, pp. 903–916, Jul. 1999.

[5] G. A. Fabrizio, A. Farina, and M. D. Turley, “Spatial adaptive subspace
detection in OTH radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 39,
no. 4, pp. 1407–1428, Oct. 2003.

[6] L. L. Scharf and B. Friedlander, “Matched subspace detectors,” IEEE
Trans. Signal Process., vol. 42, no. 8, pp. 2146–2157, Aug. 1994.

[7] S. Kraut, L. L. Scharf, and L. T. McWhorter, “Adaptive subspace detec-
tors,” IEEE Trans. Signal Process., vol. 49, no. 1, pp. 1–16, Jan. 2001.

[8] S. Kraut, L. L. Scharf, and R. W. Butler, “The adaptive coherent
estimator: A uniformly most-powerful-invariant adaptive detection
statistic,” IEEE Trans. Signal Process., vol. 53, no. 2, pp. 427–438,
Feb. 2005.

[9] S. Kraut and L. L. Scharf, “UMP invariance of the multi-rank adap-
tive coherence estimator,” in Proc. 37th Asilomar Conf. Signals Syst.
Comput., Pacific Grove, CA, Nov. 2003, pp. 1863–1867.

[10] J. Liu, Z.-J. Zhang, Y. Yang, and H. Liu, “A CFAR adaptive subspace
detector for first-order or second-order Gaussian signals based on a
single observation,” IEEE Trans. Signal Process., vol. 59, no. 11, pp.
5126–5140, Nov. 2011.

[11] Y. Jin and B. Friedlander, “A CFAR adaptive subspace detector for
second-order Gaussian signals,” IEEE Trans. Signal Process., vol. 53,
no. 3, pp. 871–884, Mar. 2005.

[12] C. D. Richmond, “Performance of the adaptive sidelobes blanker de-
tection algorithm in homogeneous environments,” IEEE Trans. Signal
Process., vol. 48, no. 5, pp. 1235–1247, May 2000.

[13] C. D. Richmond, “Performance of a class of adaptive detection
algorithm in nonhomogeneous environments,” IEEE Trans. Signal
Process., vol. 48, no. 5, pp. 1248–1262, May 2000.

[14] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Prod-
ucts, 7th ed. New York: Academic, 2007.

[15] E. J. Kelly, “Finite-Sum Expression for Signal Detection Probabilities,”
Lincoln Lab., MIT, Tech. Rep. No. 566, 1981.

[16] H. L. Krall and O. Frink, “A new class of orthogonal polynomials:
The bessel polynomials,” Trans. Amer. Math. Soc., vol. 65, no. 1, pp.
100–115, Jan. 1949.

[17] M. M. Ali and M. Obaidullah, “Distribution of linear combination of
exponential variates,” Commun. Stat. Theor. Methods, vol. 11, no. 13,
pp. 1453–1463, 1982.

[18] F. D. Colavecchia, G. Gasaneo, and J. E. Miraglia, “Numerical
evaluation of Appell’s � hypergeometric function,” Comput. Phys.
Commun., vol. 138, no. 1, pp. 29–43, Jul. 2001.

[19] F. D. Colavecchia and G. Gasaneo, “F1: A code to compute Appell’s
� hypergeometric function,” Comput. Phys. Commun., vol. 157, no.
1, pp. 32–38, Feb. 2004.

Optimal Stochastic Parameter Design for
Estimation Problems

Hamza Soganci, Sinan Gezici, and Orhan Arikan

Abstract—In this study, the aim is to perform optimal stochastic param-
eter design in order to minimize the cost of a given estimator. Optimal prob-
ability distributions of signals corresponding to different parameters are
obtained in the presence and absence of an average power constraint. It is
shown that the optimal parameter design results in either a deterministic
signal or a randomization between two different signal levels. In addition,
sufficient conditions are obtained to specify the cases in which improve-
ments over the deterministic parameter design can or cannot be achieved
via the stochastic parameter design. Numerical examples are presented in
order to provide illustrations of theoretical results.

Index Terms—Bayes risk, randomization, stochastic parameter design.

I. INTRODUCTION

In parametric estimation problems, an unknown parameter is esti-
mated based on observations, the probability distribution of which is
known as a function of the unknown parameter [1], [2]. In the presence
of prior information about the parameter, Bayesian estimators, such as
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Fig. 1. System model. Device A transmits a stochastic signal � for each value
of parameter ���, and Device B estimates ��� based on the noise corrupted version
of � . One interpretation is to consider the dashed box as a measurement device,
in which case n denotes the measurement noise.

the minimum mean-squared error (MMSE) estimator and the minimum
mean-absolute error (MMAE) estimator, are commonly employed [1].
On the other hand, in the absence of prior information about the pa-
rameter, the minimum variance unbiased estimator (MVUE), if it ex-
ists, or the maximum likelihood estimator (MLE) can be used [2]. In
these conventional formulations of the parameter estimation problem,
the aim is to obtain an optimal estimator that minimizes a certain cost
function, such as the mean-squared error. In this study, we consider
a different formulation in which the aim is to minimize the cost of a
given estimator by performing stochastic parameter design under cer-
tain constraints. Motivations for this seemingly counterintuitive formu-
lation will be provided in the next section.

Recently, various studies have employed signal randomization in
order to improve the performance of detection and estimation systems
(e.g., [3]–[7]). For example, an additive noise component that is
randomized between two signal values can increase the detection
probability of certain detectors under a false alarm constraint [3], [4].
Also, for power constrained communications systems, transmitting
stochastic signals that are randomized among at most three different
signal values can provide reductions in the average probability of error
compared to the conventional case in which deterministic signal values
are transmitted for each symbol [5]. In [6], it is shown that performance
of some suboptimal estimators can be enhanced via additive “noise”
that is injected into the observations before the estimation process. It
is observed that this noise component can be a constant signal or a
randomization between two signal values.

Motivatedbytheinvestigationofsignal randomizationinrecentworks
[3]–[7], we consider the concept of stochastic parameter design for es-
timation problems in this study. Specifically, we try to answer the fol-
lowing question: If a fixed estimator is used at the receiver, what should
be the optimal distribution of the signal sent from the transmitter for
each possible parameter value? Referring to Fig. 1, the aim is to design
the optimal stochastic signal ���� for each ��� in order to minimize the cost
(specifically, the Bayes risk) of a given estimator, which performs esti-
mation based on the noise corrupted version of ���� , that is, ������. Since
there can exist power limits for transmitted signals in practice, this de-
sign problem needs to be solved under certain constraints.

As a specific example, consider a scenario in which the receiver em-
ploys the sample mean estimator to estimate a parameter � based on a
number of independent and identically distributed (i.i.d.) observations.
Theaimis tofind theoptimal randomvariable foreachparametervalueat
the transmitter in order to minimize the Bayes risk of the sample mean
estimator at the receiver. For instance, we would like to determine if
sending i.i.d. Gaussian or Laplacian random variables with mean � and
variance 1 results in a lower Bayes risk. Or, more generally, among all
continuous and discrete random variables, we would like to determine
the one that minimizes the Bayes risk of the sample mean estimator.

In this study, after providing some motivations (Section II), we
formulate this optimal stochastic parameter design problem, and
prove that the optimal ���� can be represented by either a deterministic
signal value or a randomization between two different signal values
(Section III). In addition, a convex relaxation of the optimal parameter
design problem (resulting in linearly constrained linear programming)

is presented (Section III), and sufficient conditions under which
stochastic parameter design can or cannot provide improvements over
the deterministic parameter design are obtained (Section IV). Also,
numerical examples are presented to investigate the theoretical results
(Section V).

II. MOTIVATION

In conventional estimation problems, the aim is to design an optimal
estimator for a given distribution of the observations. However, motiva-
tions can also be provided for the stochastic parameter design problem
investigated in this study. For example, consider the design of a generic
device (Device A in Fig. 1) which needs to output a certain parameter.
This output is to be measured by a measurement device (the dashed box
in Fig. 1) that employs a certain estimation algorithm for determining
the parameter (e.g., averages various measurements). Then, the aim is
to design a stochastic signal ���� for each ��� so that the accuracy (i.e., es-
timation performance) of the given measurement device is optimized.
In other words, considering a certain type of a measurement device,
the estimation performance of the overall system is to be optimized
by designing stochastic signals for different parameters. Such a system
model, in which estimation is performed based on measurements ob-
tained by a number of measurement devices, is considered also in [8].
However, a different problem is considered in that study, and the op-
timal linear estimator is obtained in the presence of cost-constrained
measurements. It should also be mentioned that most measurement de-
vices are designed under a certain measurement noise assumption, such
as Gaussian. They are typically nonadaptive devices, hence, in the pres-
ence of noise that deviates from the assumed noise distribution, their
performance may degrade significantly. To improve the performance,
the measurement device can be replaced with a more capable one; how-
ever, such a replacement may be very costly in some cases. To avoid
the replacement cost and associated complications, the proposed sto-
chastic parameter design approach can be used, which designs optimal
signals for each parameter so that the performance of the suboptimal
measurement device can be improved.

As another motivation of the setup in Fig. 1, a wireless sensor net-
work [9], in which a parameter value (such as temperature or pressure)
is sent from one device to another, can be considered. When the trans-
mitter (Device A) knows the probability distribution of the channel
noise,� (which can be obtained via feedback), it can perform stochastic
parameter design in order to optimize the performance of the estimator
at the receiver (Device B). If the probability distribution of � is un-
known, then the results can be considered to provide a theoretical upper
bound on the estimation performance. It is important to note that the ad-
ditive noise is used to model all the operations/effects between Device
A and Device B in Fig. 1. For example, signal values can be quantized,
and encoded symbols can be sent via a specific digital communica-
tions method in some cases. Then, the additive noise model in Fig. 1
can be considered to provide an abstraction for all the blocks between
Device A and Device B, such as quantizer, encoder/decoder, modu-
lator/demodulator, and additive noise channel, as discussed in [11]. It
should also be noted that noise � in Fig. 1 is modeled to have generic
probability distributions, not necessarily Gaussian, in the theoretical
investigations in this study.

III. STOCHASTIC PARAMETER DESIGN

Consider a parameter estimation scenario as in Fig. 1, where the aim
is to send the information about parameter ��� from Device A to Device B
over an additive noise channel. For that purpose, Device A can transmit
a (random) function of ���, say ���� , to Device B. Then, the received signal
(observation) at Device B is expressed as

� � ���� � � (1)
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where � denotes the channel noise, which has a probability density
function (PDF) represented by �����. It is assumed that Device B em-
ploys a fixed estimator specified by ������� in order to estimate ���. In ad-
dition, the prior distribution of ��� is denoted by ������, and the parameter
space in which ��� resides is represented by �.

In this study, the problem is to find the optimal probability distribu-
tion of ���� for each ��� � � in order to minimize the Bayes risk of a given
estimator. It should be noted that, in conventional estimation problems,
the aim is to design the optimal estimator for a given probability distri-
bution of the observation [2]. However, we consider a different problem
in which the aim is to optimize the information carrying parameters in
order to optimize the performance of a given estimator. Another impor-
tant point is that unlike conventional estimation problems, ���� in (1) is
modeled as a random variable for each value of ���; that is, a stochastic
parameter design approach is considered in this study.

A. Unconstrained Optimization

First, no constraints are considered in the selection of ���� . Then, the
optimal stochastic parameter design problem can be formulated as

�����
�

� ��� � �� � ���	
�
�� �������

������� (2)

where ��� � ��� � �� denotes the set of PDFs for ���� for all possible
values of parameter ���, and ������� is the Bayes risk of the estimator. In
order to obtain a more explicit formulation of the problem, the Bayes
risk can be expressed as

������� �

�

������ � �������� ��� ������������� (3)

where ������� denotes the PDF of �, which is indexed by ���,
and �
�������� ���� represents a cost function [2]. For example,
�
�������� ���� � �������� � ����� corresponds to the squared-error cost
function, for which ������� becomes the mean-squared error (MSE). In
this study, a generic cost function �
�������� ���� is considered in all the
derivations.

If ���� were modeled as a deterministic quantity for each value
of ���, ������� in (3) could be expressed in terms of the PDF of � as
���� � ����� (see (1)). However, we consider a stochastic parameter
design framework and model ���� as a stochastic variable for each
���. Then, assuming that the noise and ���� are independent, ������� is
calculated as �� ������� � ����. Therefore, (3) becomes

������� �

�

������ �� ��� � �������� ��� ����� ����������� (4)

Defining an auxiliary function ������� as

�������
�
� � �������� ��� ����� ����� (5)

the relation in (4) can be stated as

������� �

�

������� ���������������� (6)

where each expectation operation is over the PDF of ���� for a given
value of ���. From (6), it is observed that ������� can be minimized if, for
each ���, the PDF of ���� assigns all the probability to the minimizer of
���� .1 Namely, the solution of the optimization problem in (2) can be
expressed as

�
���
�

��� � 	��� �
��	
��� �� �

��	
��� � ���	
�

�

������� (7)

1If there are multiple minimizers, any (combination) of them can be chosen
for the optimal solution.

for all ��� � �. Therefore, it is concluded that the optimal stochastic
parameter design results in optimal PDFs that have single point
masses. Hence, deterministic parameter design is optimal and no sto-
chastic modeling is needed when there are no constraints in the design
problem. However, in practice, the values of ���� cannot be chosen
without any constraints (such as an average power constraint), and it
will be shown in the next section that the stochastic parameter design
can result in performance improvements in the presence of constraints
on the moments of ���� . Another important observation from (7) is that
the solution does not require the knowledge of the prior distribution
������, since the optimal solution is obtained for each ��� separately.

B. Constrained Optimization

In practical scenarios, the parameter design cannot be performed
without any limitations. For example, in the absence of a power con-
straint, it would be possible to reduce the Bayes risk arbitrarily by trans-
mitting signals with very high powers compared to the noise power.

In this section, a common design constraint in the form of an av-
erage power constraint is considered in the stochastic parameter design
problem. Although a specific constraint type is used in the following,
it will be discussed that other types of constraints can also be incorpo-
rated into the theoretical analysis.

Consider an average power constraint in the form of

� ������
� � 
��� (8)

for ��� � �, where ������ is the Euclidean norm of vector ���� , and 
���

denotes the average power constraint for ���. It is noted from (8) that a
generic model is considered for the constraint 
��� , which can depend
on the value of ��� in general. For the special case in which the average
power constraint is the same for all parameters, 
��� � 
 for ��� � � can
be employed.

From (6) and (8), the optimal stochastic parameter design problem
can be stated as

	
�
�� �������

�

�����������������������

subject to � ������
� � 
���� ���� � � (9)

where ������� is as defined in (5). The investigation of the constrained
optimization problem in (9) reveals that the problem can be solved sep-
arately for each ��� as follows:

	
�
�

� ������������ subject to � ������
� � 
��� (10)

for ��� � �. In other words, the optimal PDF of ���� can be obtained
separately for each ���. Therefore, the result does not depend on the prior
distribution ������, and the solution can be obtained in the absence of
prior information.

Optimization problems in the form of (10) have been investigated
in different studies in the literature [3], [5], [10]. Specifically, [3] and
[10] aim to obtain the optimal additive “noise” PDF that maximizes the
detection probability under a constraint on the false-alarm probability,
and [5] investigates optimal signal PDFs in a power constrained binary
communications systems. Based on similar arguments to those in [3],
[5], [10], the following result can be obtained.

Proposition 1: Suppose ���� is a continuous function and each com-
ponent of ���� resides in a finite closed interval. Then, an optimal solution
to (10) can be expressed in the following form:

�
���
�

��� � ����	�� � �����
� � ��� �����	��� ������� (11)

for ���� � 
�� ��.
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Proof: Consider the set of all ������������ ������
�� pairs and the set

of all �����������������������
��� pairs, and denote them as � and � , re-

spectively. Namely, � � ����� ��� � �� � ����������, �� � ������
�� ������

and � � ����� ��� � �� � ���������������� � ��������
��� ��� �.

As discussed in [3] and [5], the convex hull of � can be shown to be
equal to � . Then, based on Carathéodory’s theorem [12], it is con-
cluded that any point in � can be obtained as a convex combination of
at most three points in � . Also, since an optimal PDF should achieve
the minimum value, it must correspond to the boundary of � , which
results in a convex combination of at most two points in � . (The as-
sumptions in the proposition imply that � is a closed set; therefore, it
contains its boundary [5].) Hence, an optimal solution can be expressed
as in (11) [13].

Proposition 1 states that the optimal solution can be achieved by
randomization between at most two different values for each ���. Based
on this result, the optimal stochastic parameter design problem in (10)
is expressed as

���
� �� ��

	���������������	�
�	����������������

subject to 	�����������
�	�
�	������������

��
���� 	���� ��� 

 (12)

for ��� � �. Compared to (10), the formulation in (12) provides a sig-
nificant simplification as it requires optimization over a finite number
of variables instead of over all possible PDFs. Since generic cost func-
tions and noise distributions are considered in the theoretical analysis,
���� in (5) is quite generic and the optimization problem in (12) can be
nonconvex in general. Therefore, global optimization techniques such
as particle swarm optimization (PSO) and differential evolution (DE)
can be employed to obtain the solution [14], [15].

Remark 1: Although the average power constraint in (8) is consid-
ered in obtaining the preceding results, the other types of constraints in
the form of ����������� � 
����� for � � 
� � � � � 
� can also be incor-
porated. Specifically, assuming continuous �� , the form of the optimal
PDF in Proposition 1 becomes ����

�
��� � �

���
	��������� �������, with

	����� � � for � � 
� � � � � 
� and �

���
	����� � 
, which can be proven

by updating the definitions of sets � and � accordingly in the proof
of Proposition 1.

As an alternative approach, a convex relaxation technique can be
employed to obtain an approximate solution of (10) in polynomial
time [5], [16]. To that aim, it is assumed that �� can be expressed as
�� ��� � �

���
����� � ��������, where �� � � for � � 
� � � � � 
�,

�

���
�� � 
, and �������� � � � � ������ are known possible values for ���� .

Then, by defining��� � ��� 	 	 	 �� 
	 , ����� � �������������� 	 	 	 ����������� �
	

and � � ����������
� 	 	 	 ������� ��
	 , the convex version of (10) can be

obtained as

���





���
	 ������� subject to ���	 � � 
���� ���

	
� � 
� ��� 
 � (13)

where � and � denote the vectors of ones and zeros, respectively, and
��� 
 � means that each element of ��� is greater than or equal to zero.
It is noted that (13) presents a linearly constrained linear optimization
problem; hence, it can be solved efficiently in polynomial time [16].
In general, the solution of (13) provides an approximate solution, and
the approximation accuracy can be improved by using a large value of

�.

IV. OPTIMALITY CONDITIONS

The deterministic parameter design can be considered as a special
case of the stochastic parameter design when ���� in (10) is modeled as a
deterministic quantity for each ���. Namely, the deterministic parameter
design problem can be formulated as

���
�

���������� subject to ������
� � 
��� (14)

for ��� � � (cf. (10)). Let ������� denote the minimizer of the op-
timization problem in (14). Then, the minimum Bayes risk
achieved by the optimal deterministic parameter design is given
by ���������� �

	
������������

���

��� ����� (see (6)). Similarly, let �
�������� �

	
������ ��������

���
�

��������� represent the minimum Bayes risk
achieved by the optimal stochastic parameter design, where ����

�
de-

notes the optimal solution for ���. In order for the stochastic parameter
design to improve over the deterministic parameter design, �
��������
should be strictly smaller than ����������. Otherwise, it is concluded
that the deterministic parameter design cannot be improved via the
stochastic approach; that is, �
�������� � ����������. In the following
proposition, sufficient conditions presented for the latter.

Proposition 2: The deterministic parameter design cannot be im-
proved via the stochastic approach if at least one of the following is
satisfied for each ���:

1) ���� is a convex function;
2) the solution of the unconstrained problem (see (7)) satisfies the

constraint; i.e., ����
��� �� � 
��� .
Proof: If the second condition is satisfied, that is, if ����
��� �� �


��� , then the solution of (14) coincides with that of the unconstrained
problem in Section III-A; namely, ����

���
� �

��

��� . Therefore, the solution

of the optimal stochastic parameter design problem in (10) becomes
����
�

��� � ��� � �
���

���
�. Hence, the deterministic design is optimal in

such a scenario, and the stochastic approach is not needed.
In order to investigate the first condition, it is observed that, for

any ���� , ��������
�� � ���������

� is satisfied due to Jensen’s inequality
since norm is a convex function. Therefore, due to the constraint
��������

�� � 
��� in (10), ���������
� � 
��� must hold for any feasible

PDF of ���� . Let ������� be defined as �����
�
� �������. As the minimizer

of (14), ����
���

, achieves the minimum ���������� among all ���� that satisfy
������

� � 
��� , ���������
� � �������

� � 
��� implies that ������������� �
����������� � ������

���

���
� is satisfied. When ���� is a convex function as

specified in the proposition, ������������� � ������������� � ������
���

���
�

is obtained from Jensen’s inequality and from the previous relation.
Therefore, for convex ���� , ������������� can never be smaller than the
minimum value of (14), ������

���

���
�, for any PDF of ���� that satisfies the

average power constraint. Hence, the minimum value of (10) cannot
be smaller than ������

���

���
�, meaning that it is always equal to ������

���

���
�

(since (10) covers (14) as a special case).
All in all, when at least one of the conditions in the propo-

sition are satisfied for all ���, the deterministic and the stochastic
approaches achieve the same minimum values for all parameters;
that is, ������

���

���
� � ��������

���
�

������ ����. Therefore, ���������� �

	
������������

���

���
����� and �
�������� �

	
������ ��������

���
�

���������

become equal.
In order to present an example application of Proposition 2, consider

a scenario in which a scalar parameter � is to be estimated in the pres-
ence of zero-mean additive noise n. The average power constraint is
in the generic form of ��������

�� � 
� for all �, and the estimator is
specified by ����� � �. In addition, the cost function is modeled as
�������� �
 � ������� ���. In this scenario, ���� in (5) can be calculated
as

����� �

�

��

��� �������� ����

�

�

��

�� 	 �� ���������� � ��� ��� 	������ (15)

where ������ denotes the variance of the noise. From (15), it is noted
that ���� is a convex function for any value of �. Therefore, the first condi-
tion in Proposition 2 is satisfied for all �, meaning that the performance
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of the deterministic parameter design cannot be improved via the sto-
chastic approach.2 Hence, the optimal solution can be obtained from
(14), which yields

����
�

� ������
�� � ��

	�� � �
��

For example, if �� � ��, then ����� � � for all �.
In the following proposition, sufficient conditions are presented to

specify cases in which the stochastic parameter design provides im-
provements over the deterministic one.

Proposition 3: The stochastic parameter design achieves a smaller
Bayes risk than the deterministic one if there exists ��� � � for which
����	�
 is second-order continuously differentiable around �

���
���

and a
real vector � can be found such that

�
�
�
���
��� �

������	�
���� � � (16)

and

���� � �� �
���
���

�������

�������	�
����
(17)

where ����
���

is the solution of (14),�����	�
���� denotes the gradient

of ����	�
 at � � �
���
���

, and ���� is the Hessian of ����	�
 at � � �
���
���

.
Proof: In order to prove that a reduced Bayes risk can be

achieved via the stochastic parameter design, consider a specific
value of ��� for which the conditions in the proposition are satisfied.
Also consider two values ������ and ������ around �

���
��� , which can be

expressed as ������ � �
���
��� 
 ���� for � � �, 2. Then, ����	������
 can be

approximated as ����	������
 � ����	�
���
���



 ����� ����� 
�������� �������� for � � �,
2, where ����� � �����	�
���� is the gradient and ���� is the Hessian

of ����	�
 at � � �
���
���

[17]. Similarly, ��������� can be expressed as
��������� � �������� �� 
 ������ �

���
��� 
 ������� for � � �, 2. In order to

prove that employing �� 	�
 � 	
	� � ������
 
 	� � 	

	� � ������

results in a lower risk than ����	�

���
���


, which is the one achieved by the
deterministic parameter design (see (14)), it is sufficient to show that

	����	������
 
 	�� 	
����	������
 � ���� �
���
���

	��������� 
 	�� 	
��������� � �
���
���

� � ���� (18)

are satisfied for certain choice of parameters (see (10)). After inserting
the expressions for ����	������
 and ��������� around ������� into (18), it can
be obtained that

	�������������
	��	
�������������
� 		����
	��	
����

� �������

	�������
	��	
�������
�		����
	��	
����

�
�
���
��� ��� (19)

Let ���� � �� and ���� � ��. Then, (19) can be manipulated to obtain

�
�
����� 
 
	�� �����
 � � ��� ���� 
 
 �

�
�
���
��� � � (20)

with 

�
� ����	����
�


��� 	����
� 

. If the first inequality in (20) is multiplied

by
�� � 


�� �� 

, which is always negative due to the condition (16) in the

proposition, (20) becomes

	�������
 �� �
���
���

	�� �����


 
 �

�
�
���
��� � �

and

���� 
 
 �
�
�
���
��� � �� (21)

2It can be shown that � is convex for all � also for the absolute error cost
function; i.e., �������� �� � ������� ��.

Since 
 can take any real value by adjusting 	 � ��� �� and infinites-
imally small � and � values, it is guaranteed that both inequalities in

(21) can be satisfied if 	�������

�� � 


�� �� 

is larger than ����, which

corresponds to (17).
Remark 2: For the conditions in (16) and (17) to be satisfied,

����	�
 must be concave at � � �
���
���

(i.e.,���� must be negative-definite)

since ���� is always nonnegative and
�� � 


�� �	 ��
� 

is negative

due to (16).
Proposition 3 provides a simple approach, based on the first and

second order derivatives of ���� , to determine if the stochastic param-
eter design can provide improvements over the deterministic one. If
the conditions are satisfied, the improvements are guaranteed and the
optimization problem in (12) or (13) can be solved to obtain the optimal
solution. However, since the conditions are sufficient but not necessary,
there can also exist certain scenarios in which improvements are ob-
served although the conditions are not satisfied. Examples for various
scenarios are provided in the next section.

V. NUMERICAL RESULTS AND CONCLUSIONS

In order to present examples of the theoretical results in the previous
sections, consider an estimation problem in which a scalar parameter �
is estimated based on observation y that is modeled as � � ��
�, with
n denoting the additive noise component. (Although a scalar problem
is considered for convenience, vector parameter estimation problems
can be treated in a similar fashion (per component) when the noise
components are independent and the cost function is additive [2].) The
noise n is modeled by a Gaussian mixture distribution, specified as
��	�
 �




��� �� ��� � ���� 


��
 

�	
�
����
, where the parameters

are chosen in such a way to generate a zero-mean noise component.
In addition, the estimator is given by ��	�
 � �, and the cost func-
tion is selected as the uniform cost function, which is expressed as
����	�
� �� � � if ���	�
 � �� � � and ����	�
� �� � � otherwise.
Based on this model, �� in (5) can be obtained as

��	�
�




���

�� �
���
��
�

��

�

��
����
�

��
(22)

where �	�
 � ��
��

�
�

��� � �

�
�� denotes the �-function. Re-

garding the constraint in (8), �	�������
 � �� is considered for each �.
For the numerical examples, parameter � is modeled to lie between

�10 and 10; that is, the parameter space is specified as � � ����� ���.
Also, �� can take values in the interval [�10, 10] under the average
power constraint, �	�����
 � ��. In addition, the parameters of the
Gaussian mixture noise n are selected as �� � ����, �� � ����,
�
 � ����, �� � ����, �� � ����, �� � ����, �� � ����,
�� � ��� , �
 � �����, �� � ��! ��, �� � ��!�, �� � !��,
and �� � ���� ��. With this selection of the parameters, the noise be-
comes a zero-mean random variable so that ��	�
 � � can be regarded
as a practical estimator.3 Finally, � � � is considered for the uniform
cost function described in the previous paragraph.

In Fig. 2, the conditional risks (i.e., �	��	����

 in (6)) are plotted
versus ��� for various parameter design approaches. For the optimal sto-
chastic parameter design, both the exact solution obtained from (12)
and the convex relaxation solutions obtained from (13) are plotted.
In the convex relaxation approach, the set of possible values for ����
are selected between �10 and 10 with an increment of D (in short,

3Although this is not an optimal estimator, it can be used in practice due to
its simplicity compared to the optimal estimator, which would have high com-
plexity due to the multimodal noise structure.
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Fig. 2. Conditional risk versus � for various parameter design approaches.

Fig. 3. � ��� in (22) for various values of �.

��� � � � ��), and the results for � � ���� and � � ��� are illus-
trated in the figure. The results for the optimal deterministic param-
eter design are calculated from (14). In addition, the results obtained
from the unconstrained problem (see (7)) and those obtained by using
�� �	
 � ��	��
 (labeled as “Conventional”) are shown in the figure
to provide performance benchmarks. It is observed that the optimal sto-
chastic parameter design achieves the minimum conditional risks for
all � values in the presence of the average power constraint. It provides
performance improvements over the deterministic parameter design for
certain range of parameter values, e.g., for � � ���. In addition, both
the stochastic and the deterministic design approaches achieve the same
conditional risks as the unconstrained solution for some � values, which
is due to the fact that the unconstrained solutions satisfy the average
power constraint for those values of �. Furthermore, the convex relax-
ation approaches (which provide low complexity solutions) perform
very closely to the exact solutions of the optimal stochastic parameter
design problem for small values of D.

In order to provide further explanations of the results in Fig. 2, Fig. 3
illustrates ���	
 in (22) for � � ��, � � �, and � � �. As expected
from the expression in (22), each function in the figure is a shifted ver-
sion of the others. Also, this figure can be used to determine when the
unconstrained solution coincides with the solutions of the optimal sto-
chastic and the optimal deterministic parameter designs. For example,
for � � ��, the global minimum of ���	
 is achieved at�1.223, which

TABLE I
OPTIMAL STOCHASTIC SOLUTION � ��� � � ��� � � � � �� �

� ���� � � �, OPTIMAL DETERMINISTIC SOLUTION � , AND

UNCONSTRAINED SOLUTION �

already satisfies the constraint. Therefore, all the three approaches yield
the same conditional risk for that parameter (see Fig. 2). On the other
hand, for � � �, the global minimum is at 8.777; hence, the conditional
risk obtained from the unconstrained problem in (7) cannot be achieved
by the constrained approaches. Specifically, the optimal deterministic
approach in (14) chooses the minimum value in the interval [�5, 5],
which results in the optimal signal value of ����

�
� ����. On the other

hand, the solution of the optimal stochastic parameter design problem
in (12) results in a randomization between 8.741 and 0.809 with prob-
abilities of 0.321 and 0.679, respectively, and achieves a lower condi-
tional risk than the deterministic approach (see Fig. 2). In Table I, the
optimal solutions for the optimal stochastic, the optimal deterministic
and the unconstrained parameter design approaches are presented for
various values of �. Fig. 3 can also be used to explain the oscillatory
behavior of the convex relaxation solutions in Fig. 2. Since the convex
relaxation approach considers possible �� values as ��� � � � �� and
since ���	
 shifts with �, the signal values obtained from the convex op-
timization problem in (13) move around the optimal values of the exact
solution periodically. Finally, the conditions in Proposition 3 are evalu-
ated for different � values, and it is observed that they provide sufficient
but not necessary conditions for specifying improvements via the sto-
chastic parameter design over the deterministic one. For example, the
calculations show that the conditions in Proposition 3 are satisfied for
� � 
������������� and � � 
������ ������, and improvements are
observed in Fig. 2 for those values of �.

Future work involves the investigation of the stochastic parameter
design problem in the presence of partial knowledge of the noise dis-
tribution. The robustness of the stochastic parameter design will be an-
alyzed, and various design approaches will be considered.
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On the Proper Forms of BIC for Model Order Selection

Petre Stoica and Prabhu Babu

Abstract—The Bayesian Information Criterion (BIC) is often presented
in a form that is only valid in large samples and under a certain condition on
the rate at which the Fisher Information Matrix (FIM) increases with the
sample length. This form has been improperly used previously in situations
in which the conditions mentioned above do not hold. In this correspon-
dence, we describe the proper forms of BIC in several practically relevant
cases that do not satisfy the above assumptions. In particular, we present a
new form of BIC for high signal-to-noise ratio (SNR) cases. The conclusion
of this study is that BIC remains one of the most successful existing rules
for model order selection, if properly used.

Index Terms—BIC, model order selection, polynomial trend model.

I. INTRODUCTION AND THE PROBLEM FORMULATION

BIC is applicable to a general class of models that are essentially
only required to satisfy the regularity conditions under which the max-
imum-likelihood estimation (MLE) method is asymptotically statisti-
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cally efficient. However in what follows we focus on a linear-regression
model, which is sufficient to illustrate the main points we want to make.
Therefore, consider the model:

��� � ������ � ���� (1)

where ��� � ��� is the data vector (with � being the number of data
samples), �� � ������� is the regression matrix (which is given),
���� � ������� is an unknown parameter vector, and ���� � ���

is a noise term; we assume that ���� is normally distributed with zero
mean and covariance matrix equal to ��

���� , where ��
� is unknown as

well. The integer subindex � in (1) indicates the order (or dimension)
of the model, and it is also unknown. Let �� denote the hypothesis
that the data satisfy (1). In many cases, but not always, the hypotheses
��������� � � � are nested (i.e.,�� is a sub-block of���, for � 	 ��).

Given the data vector ���, the problem associated with (1) is to estimate
�� ���� and ��

�. Under ��, the MLEs of ���� and ��
� are well known to

be:

����� � �
�
���

��

�
�
���� (2)

���
� � ���� ���������

�
� (3)

Hereafter we assume that the inverse matrix in (2) exists for � �
��� 	�
 (where 	� is a given upper bound on the values of � that are
deemed to be of interest). In view of (2), (3) the “only” problem left
is the estimation of �, which is the main topic of the following sec-
tions.

II. BIC: THE BASIC FORM

Let ����� � �������� denote the probability density function (pdf) of the
data under ��, where the vector ���� comprises all the parameters of the
model. For example, in the case of (1),

���� � ����� � �
�
�

�

(4)


��

����� � �������� �
�������� ��� � ���

��
��
��

���
(5)

Furthermore, let ������ ���� be the prior pdf of the parameter vector.
Then

����� � �������������� ���� � ������ ���� ���� (6)

and therefore

����� � �������������� ��������� � ����� ���� (7)

Assuming that the hypotheses ���� are equi-probable, maximizing
����� ���� with respect to � yields the maximum a-posteriori (MAP)
estimate of �, i.e.,


�� �
�
�������	

���� � ���� (8)

This estimate of� is well known (see, e.g., [1], [2] and references there)
to have the desirable property of maximizing the total probability of
correct detection, that is

��

�
�

������������ ��� ���
 (9)

However in general there is hardly any agreement as to how the prior
pdf ������ ���� should be chosen and, even when a qualified choice of
this pdf is possible, the evaluation of the integral in (7) may well be
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