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Threshold Rebalanced Portfolio Approach
Sait Tunc, Mehmet Ali Donmez, and Suleyman Serdar Kozat, Senior Member, IEEE

Abstract—We study how to invest optimally in a financial
market having a finite number of assets from a signal processing
perspective. Specifically, we investigate how an investor should
distribute capital over these assets and when he/she should real-
locate the distribution of the funds over these assets to maximize
the expected cumulative wealth over any investment period.
In particular, we introduce a portfolio selection algorithm that
maximizes the expected cumulative wealth in i.i.d. two-asset
discrete-time markets where the market levies proportional trans-
action costs in buying and selling stocks. We achieve this using
“threshold rebalanced portfolios”, where trading occurs only if
the portfolio breaches certain thresholds. Under the assumption
that the relative price sequences have log-normal distribution
from the Black-Scholes model, we evaluate the expected wealth
under proportional transaction costs and find the threshold rebal-
anced portfolio that achieves the maximal expected cumulative
wealth over any investment period. Our derivations can be readily
extended to markets having more than two stocks, where these
extensions are provided in the paper. As predicted from our
derivations, we significantly improve the achieved wealth with
respect to the portfolio selection algorithms from the literature on
historical data sets under both mild and heavy transaction costs.

Index Terms—Continuous distribution, discrete-time market,
portfolio management, threshold rebalancing, transaction cost.

I. INTRODUCTION

R ECENTLY financial applications attracted a significant
interest from the signal processing community since the

recent global crises demonstrated the importance of sound fi-
nancial modeling and reliable data processing [1], [2]. Financial
markets produce vast amount of temporal data ranging from
stock prices to interest rates making them ideal mediums to
apply signal processing methods. Furthermore, due to the inte-
gration of high performance, low-latency computing recourses
and financial data collection infrastructures, a wide range of
signal processing algorithms could be readily leveraged with
full potential in financial stock markets. This paper specifically
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focuses on the portfolio selection problem, which is one the
most important financial applications and has already attracted
substantial interest from the signal processing community
[3]–[8].
In particular, we study investment in a financial market

having a finite number of assets. We concentrate on how an
investor should distribute capital over these assets and when
he/she should reallocate the distribution of the funds over those
assets in time to maximize the overall cumulative wealth. In
financial terms, distributing ones capital over various assets is
known as the portfolio management problem and reallocation
of this distribution by buying and selling stocks is referred
as the rebalancing of the given portfolio [9]. Due to obvious
reasons, the portfolio management problem has been inves-
tigated in various different fields from financial engineering
[10], machine learning to information theory [11], with a
significant room for improvement as the recent financial crises
demonstrated. To this end, we investigate the portfolio man-
agement problem in discrete-time markets when the market
levies proportional transaction costs in trading while buying
and selling stocks, which accurately models a wide range of
real life markets [9], [10]. In discrete time markets, we have
a finite number of assets and the reallocation of wealth (or
rebalancing of the capital) over these assets is only allowed
at discrete investment periods, where the investment period is
arbitrary, e.g., each second, minute, or day [11], [12]. Under
this framework, we introduce algorithms that achieve the
maximal expected cumulative wealth under proportional trans-
action costs in i.i.d. discrete-time markets extensively studied
in the financial literature [9], [10]. We further illustrate that
our algorithms significantly improve the achieved wealth over
the well-known algorithms in the literature on historical data
sets under realistic transaction costs, as anticipated from our
derivations. The precise problem description including the
market and transaction cost models are provided in Section III.
Determination of the optimum portfolio and the best portfolio

rebalancing strategy that maximize wealth in discrete-time mar-
kets with no transaction fees is heavily investigated in informa-
tion theory [11], [12], machine learning [13]–[15] and signal
processing [16]–[19] fields. Assuming that the portfolio rebal-
ancings, i.e., adjustments by buying and selling stocks, require
no transaction fees and with some further mild assumptions on
the stock prices, the portfolio that achieves the maximum ex-
pected wealth is shown to be a constant rebalanced portfolio
(CRP) [12], [20]. A CRP is a portfolio strategy where the dis-
tribution of funds over the stocks are reallocated to a prede-
termined structure, also known as the target portfolio, at the
start of each investment period. CRPs constitute a subclass of
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a more general portfolio rebalancing class, the calendar rebal-
ancing portfolios, where the portfolio vector is rebalanced to
a target vector on a periodic basis [9]. Numerous studies are
carried out to asymptotically achieve the performance of the
best CRP tuned to the individual sequence of stock prices al-
beit either with different performance bounds or different per-
formance results on historical data sets [12], [13], [15]. CRPs
under transaction costs are further investigated in [21], where
a sequential algorithm using a weighting similar to that intro-
duced in [20], is also shown to be competitive under trans-
action costs, i.e., asymptotically achieving the performance of
the best CRP under transaction costs. However, we emphasize
that maintaining a CRP requires potentially significant trading
due to possible rebalancings at each investment period [16]. As
shown in [16], even the performance of the best CRP is severely
affected by moderate transaction fees rendering CRPs ineffec-
tive in real life stock markets. Hence, it may not be enough
to try to achieve the performance of the best CRP if the cost
of rebalancing outweighs that which could be gained from re-
balancing at every investment period. Clearly, one can poten-
tially obtain significant gain in wealth by including unavoidable
transactions fees in the market model and perform reallocation
accordingly.
In these lines, the optimal portfolio selection problem under

transactions costs is extensively investigated for continuous-
timemarkets [22]–[25], where growth optimal policies that keep
the portfolio in closed compact sets by trading only when the
portfolio hits the compact set-boundaries are introduced. The re-
sults for the continuous markets cannot be straightforwardly ex-
tended to the discrete-time markets, where continuous trading is
not allowed. However, it has been shown in [26] that under cer-
tain mild assumptions on the sequence of stock prices, similar
no trade zone portfolios achieve the optimal growth rate even for
discrete-time markets under proportional transaction costs. For
markets having two stocks, i.e., two-asset stock markets, these
no trade zone portfolios correspond to threshold portfolios, i.e.,
the no trade zone is defined by thresholds around the target port-
folio. As an example, for a market with two stocks, the portfolio
is represented by a vector , , assuming
only long positions [9], where is the ratio of the capital in-
vested in the first stock. For this market, the no rebalancing re-
gion around a target portfolio , , is given
by a threshold , , such that the corre-
sponding portfolio at any investment period is rebalanced to a
desired vector if the ratio of the wealth in the first stock breaches
the interval . In particular, unlike a calendar rebal-
ancing portfolio, e.g., a CRP, a threshold rebalanced portfolio
(TRP) rebalances by buying and selling stocks only when the
portfolio breaches the preset boundaries, or “thresholds,” and
otherwise does not perform any rebalancing. Intuitively, by lim-
iting the number of rebalancings due to these non rebalancing
regions, threshold portfolios are able to avoid hefty transac-
tions costs associated with excessive trading unlike calendar
portfolios. Although TRPs are shown to be optimal in i.i.d.
discrete-time two-asset markets (under certain technical condi-
tions) [26], finding the TRP that maximizes the expected growth
of wealth under proportional transaction costs is not solved, ex-
cept for basic scenarios [26], to the best of our knowledge.

In this paper, we first evaluate the expected wealth achieved
by a TRP over any finite investment period given any target
portfolio and threshold for two-asset discrete-time stock mar-
kets subject to proportional transaction fees. We emphasize that
we study the two-asset market for notational simplicity and our
derivations can be readily extended to markets havingmore than
two assets as provided in the paper where needed. We con-
sider i.i.d. discrete-time markets represented by the sequence
of price relatives (defined as the ratio of the opening price to
the closing price of stocks), where the sequence of price rela-
tives follow log-normal distributions. Note that the log-normal
distribution is the assumed statistical model for price relative
vectors in the well-known Black-Scholes model [9], [10] and
this distribution is shown to accurately model real life stock
prices by many empirical studies [9]. Under this setup, we pro-
vide an iterative relation that efficiently and recursively calcu-
lates the expected wealth over any period in any i.i.d. discrete
time market. This iterative relation is evaluated using a cer-
tain multivariate Gaussian integral for the log-normal distribu-
tion. We then provide a randomized algorithm to calculate the
given integral and obtain the expected growth. This expected
growth is then optimized by a brute force method to yield the
optimal target portfolio and threshold to maximize the expected
wealth over any investment period. We also illustrate the perfor-
mance of our algorithm under different scenarios demonstrating
its effectiveness.
Portfolio management is studied with transaction costs in [27]

on the horse race setting, which is a special discrete-time market
where only one of the assets pays off and the others pay nothing
on each period. This basic framework is then extended to gen-
eral stock markets in [26], where threshold portfolios are shown
to be growth optimal for two-asset markets. However, no algo-
rithm, except for a special sampled Brownian market, is pro-
vided to find the optimal target portfolio or threshold in [26].
To achieve the performance of the best TRP, a sequential al-
gorithm is introduced in [28] that is shown to asymptotically
achieve the performance of the best TRP tuned to the under-
lying sequence of price relatives. This algorithm uses a similar
weighting introduced in [20] to construct the universal port-
folio. We emphasize that the universal investment strategies,
e.g., [28], which are inspired by universal source coding ideas,
based on Bayesian type weighting, are heavily utilized to con-
struct sequential investment strategies [4], [6], [12], [14]–[19].
Although these methods are shown to “asymptotically” achieve
the performance of the best portfolio in the competition class
of portfolios, their non-asymptotic performance is acceptable
only if a sufficient number of candidate algorithms in the com-
petition class is overly successful [16] to circumvent the loss
due to Bayesian type averaging. Since these algorithms are usu-
ally designed in a min-max (or universal) framework and hedge
against (or should even work for) the worst case sequence, their
average (or generic) performance may substantially suffer [13],
[29], [30]. In our simulations, we show that our introduced algo-
rithm readily outperforms a wide class of universal algorithms
on the historical data sets, including [28]. Note that to reduce
the negative effect of the transaction costs in discrete time mar-
kets, semiconstant rebalanced portfolio (SCRP) strategies have
also been proposed and studied in [13], [16], [21]. Different than
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a CRP and similar to the TRPs, an SCRP rebalances the port-
folio only at the determined periods instead of rebalancing at the
start of each period. Since for an SCRP algorithm rebalancing
occurs less frequently than a CRP, using an SCRP strategy may
improve the performance over CRPs when transaction fees are
present. However, no formulation exists to find the optimal re-
balancing times for SCRPs to maximize the cumulative wealth.
Although there exist universal methods [14], [16] that achieve
asymptotically the performance of the best SCRP tuned to the
underlying sequence of price relatives, these methods suffer in
realistic markets since they are tuned to the worst case scenario
[16] as demonstrated in the Simulations section.
We begin with the detailed description of the market and

the TRPs in Section II. We then calculate the expected wealth
using a TRP in an i.i.d. two-asset discrete-time market under
proportional transaction costs over any investment period in
Section III. We first provide an iterative relation to recursively
calculate the expected wealth growth. The terms in the itera-
tive algorithm are calculated using a certain form ofmultivariate
Gaussian integrals. We provide a randomized algorithm to cal-
culate these integrals in Section III-C. The paper is then con-
cluded with the simulations of the iterative relation and the op-
timization of the expected wealth growth with respect to the
TRP parameters using the maximum likelihood (ML) estimator
in Section IV.

II. PROBLEM DESCRIPTION

In this paper, all vectors are column vectors and represented
by lower-case bold letters. Consider a market with stocks and
let represent the sequence of price relative vectors
in this market, where with

for such that represents
the ratio of the closing price of the th stock for the th trading
period to that from the th trading period. At each invest-
ment period, say period , represents the vector of portfo-
lios such that is the fraction of money invested on the th
stock.We allow only long-trading such that and

. After the price relative vector is revealed, we
earn at the period . Assuming we started investing
using 1 dollars, at the end of periods, the wealth growth in a
market with no transaction costs is given by

(1)

If we use a CRP [11], then we earn at the end of
periods ignoring the transaction costs. This method is called

“constant rebalancing” since at the start of each investment pe-
riod , the portfolio vector is
adjusted, or rebalanced, to a predetermined constant portfolio
vector, say, where . As an ex-
ample, at the start of each investment period , since we invested
using at the investment period and observed ,
the current portfolio vector, say ,

should be adjusted back to . If we assume a symmetric pro-
portional transaction cost with cost ratio , , for
both selling and buying, then we need to spend approximately

dollars for rebalancing. Note
that if the transaction costs are not symmetric, the analysis fol-
lows by assuming by [21], where and
are the proportional transaction costs in selling and buying, re-
spectively. Since a CRP should be rebalanced back to its ini-
tial value at the start of each investment period, a transaction
fee proportional to the wealth growth up to the current period,
i.e., , is required for each period . Hence, constantly rebal-
ancing at each time may be unappealing for large .
To avoid such frequent rebalancing, we use TRPs, where we

denote a TRP with a target vector and a threshold (with
certain abuse of notation) as “TRP with ”. For a sequence

of price relatives vectors with
, a TRP with rebalances the portfolio to at the first

time satisfying

(2)

for any , thresholds , and does not rebalance
otherwise, i.e., while the portfolio vector stays in the no rebal-
ancing region. Starting from the first period of a no rebalancing
region, i.e., where the portfolio is rebalanced to the target port-
folio , say for this example, the wealth gained during
any no rebalancing region is given by

(3)

where , is the portfolio at the
period and is the length no rebalancing region defined
as

(4)

A TRP pays a transaction fee when the portfolio vector leaves
the predefined no rebalancing region, i.e., goes out of the no re-
balancing region , and rebalanced back to its target portfolio
vector . Since the TRP may avoid constant rebalancing, it may
avoid excessive transaction fees while securing the portfolio to
stay close to the target portfolio , when we have heavy trans-
action costs in the market.
For notational clarity, in the remaining of the paper, we as-

sume that the number of stocks in the market is equal to 2, i.e.,
. Note that our results can be readily extended to the case

when . We provide the necessary modifications to extend
our derivations to the case . Then, the threshold rebal-
anced portfolios are described as follows.
Given a TRP with target portfolio with
and a threshold , the no rebalancing region of a TRP with
is represented by . Given a TRPwith

, we only rebalance if the portfolio leaves this region, which
can be found using only the first entry of the portfolio (since
there are two stocks), i.e., if . In this
case, we rebalance to . Fig. 1 represents a sample TRP
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Fig. 1. A sample scenario for threshold rebalanced portfolios.

in a discrete-time two-asset market and when the portfolio is
rebalanced back to its initial value if it leaves the no rebalancing
interval.
Before our derivations, we emphasize that the performance

of a TRP is clearly effected by the threshold and the target port-
folio. As an example, choosing a small threshold , i.e., a low
threshold, may cause frequent rebalancing, hence one can ex-
pect to pay more transaction fees as a result. However, choosing
a small forces the TRP to stay close to the target portfolio .
Choosing a larger threshold , i.e., a high threshold, avoids fre-
quent rebalancing and degrades the excessive transaction fees.
Nevertheless, the portfolio may drift to risky values that are dis-
tant from the target portfolio with a large threshold. Further-
more, we emphasize that the proportional transaction cost is
a key component in choosing the threshold . Under mild sto-
chastic assumptions it has been shown in [12], [20] that in an
i.i.d. market with no transaction costs, CRPs achieve the max-
imum expected wealth. Therefore in an i.i.d. market with no
transaction costs, i.e., , the maximum expected wealth is
achieved with a zero threshold, i.e., and a target port-
folio , where and

represent the price relatives of a two-asset market [20]. On the
other hand, in a market with relatively high transaction costs,
choosing a high threshold, i.e., a large , eliminates the unap-
pealing effect of transaction costs. For instance, for the extreme
case where the transaction cost is infinite, i.e., , the best
TRP should either have or to ensure that no
rebalancing occurs.
In this paper, we assume that the price relative vectors have

a log-normal distribution following the well-known Black-
Scholes model [9]. This distribution, which is extensively
used in the financial literature, is shown to accurately model
empirical price relative vectors [31]. Hence, we assume that

has an i.i.d. log-normal distribution
with mean and standard deviation ,
respectively, i.e., . Here, we first optimize
the wealth achieved by a TRP for the discrete-time market,
where the distributions of the price relatives are known. We
then incorporate ML estimators in the algorithmic framework
in the Simulations section since the corresponding parameters
of the distributions of the price relatives are unknown in real
life markets.

Fig. 2. No-crossing intervals of threshold rebalanced portfolios.

III. THRESHOLD REBALANCED PORTFOLIOS

In this section, we analyze the TRPs in a discrete-time market
with proportional transaction costs as defined in Section II. We
first introduce an iterative relation, as a theorem, to recursively
evaluate the expected achieved wealth of a TRP over any in-
vestment period. The terms in this iterative equation are calcu-
lated using a certain form of multivariate Gaussian integrals.We
provide a randomized algorithm to calculate these integrals. We
then use the given iterative equation to find the optimal and
that maximize the expected wealth over any investment period.

A. An Iterative Relation to Calculate the Expected Wealth

In this section, we introduce an iterative equation to eval-
uate the expected cumulative wealth of a TRP with
over any period , i.e., . Note that we use the no-

tation for the expected cumulative wealth of a TRP
with , for notational simplicity, while one can also use

to stress dependence on . As seen in Fig. 2,
for a TRP with , any investment scenario can be de-
composed as the union of consecutive no-crossing blocks such
that each rebalancing instant, to the initial , signifies the end of
a block. Hence, based on this observation, the expected gain of
a TRP between consecutive crossings, i.e. the gain during the
no-rebalancing regions, is directly proportional to the overall
wealth growth. Therefore, in the next we first calculate the con-
ditional expected gain of a TRP over no rebalancing regions and
then introduce the iterative relation based on these derivations.
For a TRPwith , we call a no rebalancing region of

length as “period with no-crossing” such that the TRP with
the initial and target portfolio stays in the
interval for consecutive investment periods and crosses

one of the thresholds at the th period. We next calculate the
expected gain of a TRP over any no-crossing period as follows.
The wealth growth of a TRP with for a period
with no-crossing can be written as1

(5)

without the transaction cost that arises at the last period. To find
the total achieved wealth for a period with no-crossing, we
need to subtract the transaction fees from (5). If portfolio

1This is the special case of (3) for .
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crosses the threshold at the investment period , then we
need to rebalance it back to , i.e., and pay

(6)

where represents the symmetrical commission cost, to rebal-
ance two stocks, i.e., to , and

to . Hence, the net overall gain for a pe-
riod with no-crossing becomes

(7)

where and for

hitting and and for
hitting. Thus, the conditional expected gain of a TRP con-

ditioned on that the portfolio stays in a no rebalancing region
until the last period of the region can be found by calculating
the expected value of (7). As a remark, we note that since the
crossing time, i.e., ’s in Fig. 2, constitutes a stopping time with
respect to the sequence of price relatives [32], one might con-
sider to use the Wald’s Equation [33] to calculate the expected
wealth growth in (7). Although the expected crossing time of a
log-normal process given the upper and the lower thresholds can
be readily derived, (7) can not be reduced to an expected sum of
random variables deeming application of the Wald’s Equation
infeasible. We next introduce an iterative relation to find the ex-
pected wealth growth of a TRP with for period ,

, by using the expected gains of no-crossing periods as
shown in Fig. 2.
In order to calculate the expected wealth iteratively,

let us first define the variable , which is the expected cumu-
lative gain of all possible portfolios that hit any of the thresholds
first time at the th period, i.e.,

(8)

where denotes the set of all possible portfolios with initial
portfolio and that stay in the no rebalancing region for
consecutive periods and hits one of the or boundary
at the th period, i.e.,

(9)

Here, is defined as the set of all possible threshold re-
balanced portfolios with initial and target portfolio and a no
rebalancing interval . Similarly we define the vari-

able , which is the expected growth of all possible portfo-
lios of length with no threshold crossings, i.e.,

(10)

where denotes the set of portfolios with initial portfolio
and that stay in the no rebalancing region for consecutive pe-
riods, i.e.,2

(11)

Given the variables and , we next introduce
a theorem that iteratively calculates the expected wealth
growth of a TRP over any period . Hence, to calculate the
expected achieved wealth, it is sufficient to calculate ,

, threshold crossing probabilities and
, which are explicitly evaluated in the next

section.
Theorem 3.1: The expected wealth growth of a TRP

, i.e., , over any i.i.d. sequence of price relative
vectors , satisfies

(12)
where we define , in (8), in (10), in (9)
and in (11).
We emphasize that by Theorem 3.1, we can recursively calcu-

late the expected growth of any TRP over any i.i.d. discrete-time
market under proportional transaction costs. Theorem 3.1 holds
for i.i.d. markets having either or provided that
the corresponding terms in (12) can be calculated.

Proof: By using the law of total expectation [34],
can be written as

(13)

where is defined as the set of all possible TRPs with
the initial and target portfolio and threshold . To obtain (12),
we consider all possible portfolios as a union of disjoint
sets: (1) the portfolios, which cross one of the thresholds the first
time at the 1st period; (2) the portfolios, which cross one of the
thresholds the first time at the 2nd period; and continuing in this
manner, (3) the portfolios, which cross one of the thresholds the
first time at the th period; and finally (4) the portfolios, which
do not cross the thresholds for consecutive periods. Clearly
these market portfolio sets are disjoint and their union provides
all possible portfolio paths. Hence (13) can also be written as

(14)

where . To continue with our
derivations,we define as thewealth growth from the period

to the period , i.e., . Assume that in the period
, the portfolio crosses one of the thresholds and a rebalancing
occurs. In that case, regardless of the portfolios before the pe-
riod , the portfolio is rebalanced back to its initial value in the
th period, i.e., to . Since the price relative vectors

2This is the special case of the definition in (4) for .
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are independent over time, we can conclude that the portfo-
lios before the period are independent from the portfolios
after the period , i.e., and every portfolio for

are independent from theportfolios for
. Hence, the investment periodwhere

the portfolio path crosses one of the thresholds, i.e., , divides the
whole investment block intouncorrelatedblocks in termsofprice
relative vectors and portfolios. Thus, thewealth growth acquired
up to the period , , is uncorrelated to the wealth growth
acquired after that period, i.e., . Hence, if we assume
that a threshold crossing occurs at the period , then we have

(15)

Applying (15) to (14), we get

(16)

Since the integral in (16) can be decomposed into two disjoint
integrals, (14) yields

(17)

We next write (17) as a recursive equation.
To accomplish this, we first note that
(i) is defined as the expected gain of TRPs with length

, which crosses one of the thresholds the first time at the
-th period and it follows that

(18)

where we write instead of .

(ii) Then, as the second term, is defined as the expected
gain of TRPs of length , which does not cross one of the
thresholds for consecutive periods. This yields

(19)

where (19) follows similar to (18).
(iii) Finally, observe that the second integral in (17) is the ex-

pected wealth growth of a TRP of length , i.e.,

(20)

where by the definition of the
set .

Hence, if we apply (18), (19) and (20) to (17), we can write
(12) as

(21)

hence the proof concludes.
Theorem 3.1 provides a recursion to iteratively calculate the

expected wealth growth , when and are ex-
plicitly calculated for a TRP with . Hence, if we can
obtain and for any , then (12) yields
a simple iteration that provides the expected wealth growth for
any period . We next give the explicit definitions of the events

and in order to calculate the conditional ex-
pectations and . Following these definitions, we cal-
culate and to evaluate the expected
wealth growth , iteratively from Theorem 3.1 and find
the optimal TRP, i.e., optimal and , by using a brute force
search.
In the next section, we provide the explicit definitions for

and , and define the conditions for staying
in the no rebalancing region or hitting one of the boundaries to
find the corresponding probabilities of these events.

B. Explicit Calculations of and

In this section, we first define the conditions for the market
portfolios to cross the corresponding thresholds and calculate
the probabilities for the events and . We
then calculate the conditional expectations and as
certain multivariate Gaussian integrals. The explicit calculation
of multivariate Gaussian integrals are given in Section III-C.
To get the explicit definitions of the events and

, we note that we have two different boundary hitting
scenarios for a TRP, i.e., starting from the initial portfolio , the
portfolio can hit or . From , the portfolio crosses
boundary if

(22)
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where is the first time the crossing happens without ever hit-
ting any of the boundaries before. Since for all
, (22) happens if

(23)

which is equivalent to , where

, and . Since
’s have log-normal distributions, i.e., ,
and are log-normal, too [34]. Furthermore, to cal-

culate the required probabilities, we have

(24)

, where (24) follows since is inde-
pendent of for . Hence ’s form aMarkov chain
such that
. Following the similar, steps we also obtain that

. We point out
that by extending the definitions and , one can obtain

for the case . Furthermore, taking the
logarithm of both sides of (23) we have

, where and .

The partial sums of ’s are defined as
for notational simplicity. Since , ’s are
Gaussian, i.e., , where and

, their sums, ’s, are Gaussian too. Furthermore note
that,

.
Similarly with an initial value , market portfolio crosses

boundary if

(25)

where is the first crossing time without ever hitting any of the
boundaries before. Again, since for all , (25)
happens if

(26)

which can be written of the form . Equation

(26) yields , where
.

Hence, we can explicitly describe the event that the market
threshold portfolio does not hit any of the thresholds

for consecutive periods, , as the intersection of the
events as

(27)

Similarly, the event of themarket threshold portfolio
hitting any of the thresholds first time at the -th period,
, can be defined as the intersections of the events

(28)

yielding the explicit definitions of the events in (28)
and in (27). The definitions of and
can be readily extended for the case by using the updated
definitions of .
Since we have the quantitative definitions of the events
and , we can express the expected overall gain of

portfolios with no hitting over -period, , as

(29)

The expectation can be
expressed in an integral form as

(30)

by the definition of conditional expectation. To extend this for
the case , the double integral in the definition of (30)
is replaced by an -dimensional integral over updated random
variables . Combining (30) and (29) yields

(31)
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by Bayes’ theorem that . If we write the
explicit definition of given in (27), then we obtain

(32)

where (32) follows by the definitions of and
, i.e., and

. If we rearrange the

inequalities in (32) to put the product terms together, which
does not affect the direction of the inequality since all terms are
positive, then we obtain

(33)

which follows from the definition of where . The
first probability in (33) can be calculated as

(34)

which follows since and
and we have and

. The corresponding terms in (33) are
written as a multi variable integral calculated in Section III-C.
Following similar steps, we can obtain the expected overall

gain as

(35)

The conditional expectation can also be ex-
pressed in an integral form as

(36)

which follows from the definition of conditional expectation.
Combining (35) and (36) yields

(37)

where (37) follows from the Bayes’ theorem. Note that the def-
inition of in (37) can be extended for the case
by replacing the double integral with an -dimensional inte-
gral over the updated random variables . If we
replace the event with its explicit definition in (28),
then we get

(38)
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where , ,
and . We next calculate the

first integral in (38) and the second integral follows similarly.
By the definitions of and , we have

and

, hence the first integral in (38) can be written as

(39)

If we gather the product terms in (39) into the same fraction,
then we obtain

(40)

(41)

which follows from the definition of where . Fol-
lowing similar steps that yields (41), we can calculate (38) as

(42)

where the probability can
be obtained via (34). Hence to calculate and

, we need to calculate the probability

in
(33) and (42).
Following from the definition of , we have

(43)

, where (43) follows since is inde-
pendent of for . Then, ’s form a Markov chain such
that and . Hence,
we can write the probability

(44)

where (44) follows by the chain rule and ’s form a Markov
chain. We can express the conditional probabilities in (44),
which are of the form , as

(45)

where (45) follows from the independence of and ’s
for or the independence of and

. If we replace (45) with the conditional probabil-
ities in (44) and use , then we
obtain

(46)
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Fig. 3. A randomized QMC algorithm proposed in [36] to compute MVN probabilities for hyper-rectangular regions.

where (46) follows since ’s are Gaussian, ,
i.e., is the normal distribution. Hence in order to iteratively
calculate the expected wealth growth of a TRP, we need to cal-
culate the multivariate Gaussian integral given in (46), which is
investigated in the next section.

C. Multivariate Gaussian Integrals

In order to complete calculation of the iterative equation
in (12), we next evaluate the definite multivariate Gaussian
integral given in (46) on the multidimensional
space. We emphasize that the corresponding multivariate
integral cannot be calculated using common diagonalizing
methods [35]. Although, in (46), the coefficient matrix of the
multivariate integral is symmetric positive-definite, common
diagonalizing methods cannot be directly applied since the
integral bounds after a straightforward change of variables
depend on . However, (46) can be represented as certain error
functions of Gaussian distributions.
We note that the multivariate Gaussian integral given in (46)

is the “non-central multivariate normal integral” or non-central
MVN integral [36] and general MVN integrals are in the form
[36]

(47)

where is a symmetric, positive definite covariance matrix.
In our case, (46) is a non-central MVN integral which can be
written in the form (47), where and the inverse of the
covariance matrix is given by

. . .
. . .

. . .

which is a symmetric positive definite matrix with , the
lower bound vector is of the form, ,

...

and the upper bound vector is given by, ,

...

where terms in the lower and the upper bounds follow
from the non-central property of (46). We emphasize that the
MVN integral in (47) cannot be calculated in a closed form
[36] and most of the results on this integral correspond to ei-
ther special cases or coarse approximations [36], [37]. Hence, in
this paper, we use the randomized Quasi-Monte Carlo (QMC)
algorithm, provided in Fig. 3 [36] for completeness, to com-
pute MVN probabilities over hyper rectangular regions. Here,
the algorithm uses a periodization and randomized QMC rule
[38], where the output error estimate in Fig. 3 is the usual
Monte Carlo standard error based on samples of the randomly
shifted QMC rule, and scaled by the confidence factor . We
observe in our simulations that the algorithm in Fig. 3 produce
satisfactory results on the historical data [16]. We emphasize
that different algorithms can be used instead of the QMC algo-
rithm to calculate the multivariable integrals in (46), however,
the derivations still hold.
Before providing the simulations results, the ML estimators

(MLEs) for the mean and variance of the log-normal distribu-
tion using the sequence of price relative vectors will be shortly
stated here to make the setup more clear, while most readers are
familiar with them. We note that these estimators are sequen-
tially used in the Simulations section to evaluate the optimal
TRPs. Since the investor observes the sequence of price rela-
tives sequentially, he or she needs to estimate and at each
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Fig. 4. Performance of various portfolio investment algorithms on a Log-nor-
mally simulated two-stock market under different mean parameters and a hefty
transaction cost .

investment period to find the maximizing and . Without loss
of generality we provide the MLE for , where the MLE
for directly follows. The ML estimators for yield

and ,

where . Note that theML estimators are con-
sistent [39], i.e., they converge to the true values as the size of
the data set goes to infinity, i.e., [34].

IV. SIMULATIONS

In this section, we illustrate the performance our algorithm
under different scenarios. We first use TRPs over simulated data
of two stocks, where each stock is generated from a log-normal
distribution. We then continue to test the performance over the
historical “Ford—MEI Corporation” stock pair chosen for its
volatility [13] from the New York Stock Exchange. As the final
set of experiments, we use our algorithm over the historical data
set from [11] and illustrate the average performance. In all these
trials, we compare the performance of our algorithm with port-
folio selection strategies from [11], [16], [28].
In the first example, each stock is generated from a

log-normal distribution such that
and , where the mean and variance
values are arbitrarily selected. We observe that the results
do not depend on a particular choice of model parameters
as long as they resemble real life markets. We simulate the
performance over 1100 investment periods. Since the mean
and variance parameters are not known by the investor, we use
the ML estimators of the log-normal price relatives, which are
then used to determine the target portfolio and the threshold
value . We start by calculating the ML estimators using the
initial 200 samples and find the target portfolio
and the threshold that maximize the expected wealth growth
by a brute-force search. Then, we use the corresponding
and during the following 200 samples. Along similar
lines, we calculate and use the optimal TRP for a total of 900
days, where and are estimated over every window of 200
samples and used in the following window of 200 samples.
We choose a window of size 200 samples to get reliable
estimates for the means and variances based on the size of
the overall data. In Fig. 7, Fig. 8 and Fig. 9, we show the
performances of: this sequential TRP algorithm “TRP”, the
Cover’s universal portfolio selection algorithm [11] “Cover”,
the Iyengar’s universal portfolio algorithm [28] “Iyengar”,
a semiconstant rebalanced portfolio (SCRP) algorithm [16]

Fig. 5. Performance of various portfolio investment algorithms on a Log-nor-
mally simulated two-stock market under different mean parameters and a mod-
erate transaction cost .

Fig. 6. Performance of various portfolio investment algorithms on a Log-nor-
mally simulated two-stock market under different mean parameters and no
transaction cost .

“SCRP”, where the parameters are chosen as suggested in [16]
and buy-and-hold strategies “Buy&Hold” in which the investor
invests all of his/her capital on one of the two stocks and holds
it during the entire investment period. Note that since we have

where and represent
the rate of returns of the first and second assets over the entire
investment period, respectively, showing that the TRP outper-
forms both of the given buy-and-hold algorithms implies that it
also outperforms all possible buy-and-hold portfolio selection
algorithms. As seen in Fig. 7, Fig. 8 and Fig. 9, the TRP with
the parameters sequentially calculated using the ML estimators
is the best rebalancing strategy among the others as expected
from our derivations. In Fig. 7, Fig. 8 and Fig. 9, we present
results for a hefty transaction cost , a mild transaction
cost and no transaction cost , respectively, where
is the fraction paid in commission for each transaction, i.e.,

is a 1% commission. We observe that the performance
of the TRP algorithm is better than the other algorithms for
these transaction costs. However, the relative gain is larger for
the large transaction cost since the TRP approach, with the
optimal parameters chosen as in this paper, can hedge more
effectively against the transaction costs.
In the second example, we performed a set of simulations

where each stock is generated from a log-normal distribution
such that and with
a fixed variance parameter, , as the mean increases
from 0 to . We keep the difference of the means of the
two stocks constant, i.e., , to keep the ratio
of the two stocks constant on average and as a result, keeping
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Fig. 7. Performance of various portfolio investment algorithms on a Log-nor-
mally simulated two-stock market under a hefty transaction cost .

Fig. 8. Performance of various portfolio investment algorithms on a Log-nor-
mally simulated two-stock market under a moderate transaction cost .

Fig. 9. Performance of various portfolio investment algorithms on a Log-nor-
mally simulated two-stock market under no transaction cost .

the optimal portfolio unchanged. In Fig. 4, Fig. 5 and Fig. 6, we
plot the wealth growth of: the sequential TRP algorithm with
the optimal parameters sequentially calculated, the Cover’s uni-
versal portfolio, the Iyengar’s universal portfolio, the SCRP al-
gorithm with the suggested parameters in [16] and the two buy
and hold portfolios. We present results for a hefty transaction
cost , a mild transaction cost and no trans-
action cost , respectively. As seen from the figures, the
proposed TRP algorithm significantly outperforms other algo-
rithms and better handle the transaction costs. As expected, for
the case of small mean, i.e., where the expected gain from the
stocks is close to 0, the algorithms with no rebalancing perform
slightly better. However, as the mean parameter increases, the
proposed TRP readily outperforms the other algorithms. Note
that the TRP algorithm can better handle the transaction costs
and retain its dominant performance.

Fig. 10. Performance of various portfolio investment algorithms on
Ford—MEI Corporation pair under a hefty transaction cost .

Fig. 11. Performance of various portfolio investment algorithms on
Ford—MEI Corporation pair under a moderate transaction cost .

Fig. 12. Performance of various portfolio investment algorithms on
Ford—MEI Corporation pair under no transaction cost .

As the next example, we apply our algorithm to historical
data from [11] from the New York Stock Exchange col-
lected over a 22-year period. We first apply algorithms on
the “Ford—MEI Corporation” pair, which are chosen because
of their volatility [13]. In Fig. 10, Fig. 11 and Fig. 12, we
plot the wealth growth of: the sequential TRP algorithm with
the optimal parameters sequentially calculated, the Cover’s
universal portfolio, the Iyengar’s universal portfolio and the
SCRP algorithm with the suggested parameters in [16]. We
use the ML estimators to choose the optimal TRP as in the first
set of experiments, however, since the historical data contains
5651 days we use a window of size 1000 days. Hence, the per-
formance results are shown over 4651 days. As seen from the
figures, the proposed TRP algorithm significantly outperforms
other algorithms for this data set. Similar to the simulated data
case, we investigate the performance of the TRP algorithm
under different transaction costs, i.e., a hefty transaction cost
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Fig. 13. Average performance of various portfolio investment algorithms on
independent stock pairs under a hefty transaction cost .

Fig. 14. Average performance of various portfolio investment algorithms on
independent stock pairs under a moderate transaction cost .

Fig. 15. Average performance of various portfolio investment algorithms on
independent stock pairs under no transaction cost .

in Fig. 10, a moderate transaction cost in
Fig. 11 and no transaction cost in Fig. 12. Comparing the
results from the Fig. 10, Fig. 11 and Fig. 12, we conclude that
the TRP with the optimal sequential parameter selection can
better handle the transaction costs when the stocks are volatile
for this experiment.
Finally, to remove any bias on a particular stock pair, we show

the average performance of the TRP algorithm over randomly
selected stock pairs from the historical data set from [11]. The
total set includes 34 different stocks, where the Iroquois stock is
removed due to its peculiar behavior. We first randomly select
pairs of stocks and invest using: the sequential TRP algorithm
with the sequential ML estimators, the Cover’s universal port-
folio algorithm, the Iyengar’s universal portfolio algorithm and
the SCRP algorithm. The sequential selection of the optimal
TRP parameters are performed similar to the previous case, i.e.,
we use ML estimators on an investment block of 1000 days and
use the calculated optimal TRP in the next block of 1000 days.

For each stock pair, we simulate the performance of the algo-
rithms over 4651 days. In Fig. 13, Fig. 14 and Fig. 15 we present
the wealth achieved by these algorithms, where the results are
averaged over 10 independent trials. We present the achieved
wealth over random sets of stock pairs under a hefty transac-
tion cost in Fig. 13, a moderate transaction cost

in Fig. 14 and no transaction cost in Fig. 15. As
seen from the figures, the TRP algorithm readily outperforms
the other strategies under different transaction costs on this his-
torical data set.

V. CONCLUSION

In this paper, we studied an important financial application,
the portfolio selection problem, from a signal processing per-
spective.We investigated the portfolio selection problem in i.i.d.
discrete time markets having a finite number of assets, when the
market levies proportional transaction fees for both buying and
selling stocks. We introduced algorithms based on threshold re-
balanced portfolios that achieve the maximal growth rate when
the sequence of price relatives have the log-normal distribu-
tion from the well-known Black-Scholes model [9]. Under this
setup, we provide an iterative relation that efficiently and recur-
sively calculates the expected wealth in any i.i.d. market over
any investment period. The terms in this recursion are evalu-
ated by a certain multivariate Gaussian integral. We then use a
randomized algorithm to calculate the given integral and obtain
the expected growth. This expected growth is then optimized by
a brute force method to yield the optimal target portfolio and the
threshold to maximize the expected wealth over any investment
period. As predicted from our derivations, we significantly im-
prove the achieved wealth over portfolio selection algorithms
from the literature on the historical data set from [11].
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