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Abstract—In this work, we propose a novel method to in-
crease the quality factor of extensional mode micromechanical 
resonators. The proposed resonator topology is suitable for 
integration in a silicon-based process to fabricate microme-
chanical filters and oscillators. It is a half-wavelength-long strip 
excited longitudinally by electrostatic forces, and it is isolated 
from the substrate by alternating with bars of a quarter wave-
length long. This structure causes a large impedance mismatch 
between the resonator and the substrate and hence reduces 
the anchor loss considerably. The performance of the resonator 
is determined by finite element simulations. We introduce an 
equivalent electrical circuit to predict the performance of the 
resonator. The electrical model gives results consistent with 
the finite element simulations. The proposed resonator is ex-
pected to have a very small anchor loss resulting in a very 
high Q.

I. Introduction

Micromechanical filters have been fabricated by 
integrated circuit compatible techniques [1], which 

showed their potential to replace off-chip surface acoustic 
wave or crystal filter counterparts. To have high frequency 
selectivity, the resonators of the filter should have high 
quality factors on the order of 10,000 [2] to be used in ra-
dio frequency applications. The energy dissipation mecha-
nisms that determine the quality factor in micromachined 
structures are air damping, anchor loss, thermoelastic dis-
sipation, surface loss, and internal (material) dissipation 
[3]. Bulk mode extensional resonators have reached very 
high quality factors [4]. Their stiffness, in the order of 106 
N/m, enables such resonators to store a high amount of 
energy. With this characteristic, in contrast to the flexural 
resonators, bulk extensional resonators can achieve very 
high Q values with the same amount of air damping per 
cycle [1], [5].

At high frequencies, the main loss mechanism that de-
termines the Q value in extensional mode resonators is 
the anchor loss [6]. Several designs have been implemented 
to eliminate the anchor loss in micromachined structures. 
Resonators have been anchored to the substrate at their 
nodal points [1], [7] to reduce the energy coupled to the 
substrate. Techniques based on impedance mismatch have 

been used in several designs. Newell suggested using Bragg 
reflectors composed of different material types [8]. Wang 
et al. have implemented material mismatched disk resona-
tors [9]. Impedance mismatch between the polysilicon and 
the diamond reduced anchor loss considerably, and a Q 
value of 11 555 was obtained at 1.5 GHz. The reflection 
property of the quarter-wavelength beams was used to re-
duce support loss in [10]. In another work, thinner beams 
were used to attach bulk micromachined resonators to the 
substrate [11].

In this paper, we introduce a new isolation mechanism 
to eliminate anchor loss. We use quarter-wavelength long 
strips with alternating low and high impedances to trans-
form the impedance of the substrate to a very small value. 
Hence, the anchor of the resonator is connected to a very 
low impedance, and very little energy coupling occurs. Be-
cause the impedance of a strip is proportional to the cross-
sectional area of the strip, we use alternating width strips 
with the same thickness to decouple the resonator from 
the substrate. No other material type is required, and the 
fabrication process is relatively simple. In what follows, 
we will explain a reflection mechanism in mechanical bars. 
Based on this mechanism, we will introduce a novel meth-
od to connect the resonator to the substrate to reduce 
the anchor loss. An electrical equivalent circuit will be 
presented to predict the behavior of the resonator without 
finite element simulations. Finally, simulation results will 
be presented showing the performance of the resonator.

II. Analogous Electrical Circuit

Let us first investigate the acoustic wave propagation in 
a thin rod. There may be several modes present in a thin 
rod depending on the frequency of excitation. In rectangu-
lar rods, the zeroth-order longitudinal mode propagation 
is nondispersive [12]. Higher and dispersive modes are ex-
cited above a certain frequency. Below this frequency, all 
dispersive modes are evanescent. If the length of the rod, 
L, is much greater than its width, W, and its thickness, T 
(T < W), the closest higher order plate mode resonance 
occurs at f f L Wo1

2= 1 ( / )+  [12] where fo is the fre-
quency at which L equals λ/2. If L/W is sufficiently large, 
f1 is far away. In this work, we assume an operation below 
f1 and approximate 3-D waves in the rod with 1-D zeroth 
order longitudinal (extensional) waves. Finite element 
simulations (ANSYS, Inc., Canonsburg, PA; see Fig. 1) of 
rods with modest L/W ratios show that the waves in the 
rods are not strictly longitudinal. Nevertheless, the ap-
proximation gets better as the L/W ratio is made higher.
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Nondispersive wave propagation in these mechanical 
rods are analogous to wave propagation in electrical trans-
mission lines.1 Counterparts of force and particle velocity 
in the mechanical domain are voltage and current in the 
electrical domain, respectively. Hence, the characteristic 
impedance (Z) of a transmission line is the analog of the 
mechanical characteristic impedance of a rod. Z of a rod 
for the zeroth-order nondispersive mode can be written as 
a frequency independent parameter [13]

	 Z A
E
c

A E= = r,	 (1)

where A = WT is the cross-sectional area of the rod, E is 
the Young’s modulus, ρ is the density of the rod, and c is 
the phase velocity of the extensional mode with 
 c E= /r . Z has the unit of kilograms per second. Fig. 2 
illustrates an infinitely long rod connected to another rod 
of the same thickness but of a smaller width. A1 and A2 
represent the respective cross-sectional areas of the rods. 
When an extensional mode stress wave is incident from 
the first rod to the second rod, the stress wave is reflected 
with a reflection coefficient of R and is transmitted to the 
second region with a transmission coefficient of T:

	 R
Z Z
Z Z
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where Z1 and Z2 represent the respective mechanical char-
acteristic impedances of the rods. It is clear from this 
equation that Z1/Z2  =  A1/A2 must be made as away 
as possible from 1 to minimize the transmitted power. 
A transient analysis was done to examine the validity of 
(2) using the finite element package. Fig. 3 shows the re-
flection coefficient of stress waves along the axis of the 
rod from finite element simulations in comparison to that 
from (2) for various A1/A2 values. We can see that the 
first order approximation of (1) is valid in a wide range 
0.02 < Z1/Z2 < 50.

The rods are typically connected to a substrate at one 
end to form a resonator. If the substrate is sufficiently 
large, any energy coupled to the substrate can be consid-
ered to be lost. Hence, the substrate connection can be 
modeled as a resistance in the analogous electrical circuit. 
To complete the picture, we need to express the value of 
this resistance in the mechanical domain.

Suppose that the attachment point vibrates in response 
to uniform axial stress of σx at the clamped end. The cor-
responding force at the attachment is σxA. To calculate 
the displacement of the attachment, Hao et al. [14], [15] 
model the support as an infinite elastic medium. For a 
circular2 cross section of area A, the displacement of the 
attachment point is given by [14]
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Fig. 1. Finite element simulations showing the standing waves in rods of 
different L/W ratios.

Fig. 2. Incident, reflected (R) and transmitted (T) stress waves at a 
discontinuity in an acoustic bar of uniform thickness, T.

Fig. 3. Calculated (solid line) and simulated (dots) reflection coefficient 
of stress wave as a function of area ratio.

1	Because the electrical transmission lines are nondispersive, it is not 
possible to represent dispersive acoustic modes with a transmission line 
analogy.

2	A rectangular cross section with the same area should give the same 
results as long as the cross-sectional dimensions are much smaller than 
the wavelength. However, this statement is inconsistent with the results 
in [14]. Comparison of 3-D FEM simulations with circular and rectan-
gular cross sections showed that the results are within 2% of each other, 
rather than the 2π ratio existing between (37) and (46) of [14].
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where ν is the Poisson ratio of the rod material and w 
is the angular excitation frequency. F(γ) is given by the 
imaginary part of an integral [14]:
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with k z= 12 - .

At this point we can define the equivalent resistance, 
R, representing the energy lost into the substrate. Its val-
ue can be found by dividing the force, σxA, by the particle 
velocity, ωux:

	 R
c

F
Kct=

2
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1
=
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2
2p r

g g w p
r l ,	 (7)

where

	 K
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The unit for R is kilograms per second, and it is consistent 
with the unit of Z. It is clear that R can be made large by 
choosing a high stiffness, low-density material. We note 
that the quantities Z/A and R/λ2 are dependent only on 
the material constants. Values of K, Z/A, and R/λ2 for 
several materials are listed in Table I.

III. Mechanical Quality Factor of Suspended 
Resonators

A. Quarter-Wavelength Resonator

First, let us consider a quarter-wavelength long, L = c/
(4f) = λ/4, resonator connected to a substrate at one end 
as shown in Fig. 4. The analogous electrical circuit is de-
picted in the same figure. The resonator and its substrate 
connection are modeled by an electrical transmission line 

and a resistor, respectively. To get a high quality factor, 
the condition R ≫ Z0 is imposed. The electrostatic exci-
tation force of the mechanical resonator is represented by 
a voltage source in the electrical equivalent. To determine 
the quality factor of this circuit, the impedance seen by 
the voltage source is written from the transmission line 
equation [16] as

	 Z Z
R jZ f f
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where f is the operation frequency and f0 is the frequency 
at which the transmission line is a quarter wavelength. If 
f is close to f0, tan(πf/2f0) ≈ 2f0/(π(f0 − f)) and it is very 
large. Using this approximation and ignoring the real part 
of the denominator, (9) becomes
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At 3-dB frequencies (f1 and f2), the real part of Zin will be 
equal to the absolute value of the imaginary part:
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The quality factor, Q0, is the center frequency divided by 
the 3-dB bandwidth:

	
Q
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(12)
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TABLE I. Values of Constants for Different Materials. 

Material K Z/A (kg/m2/s) R/λ2 (kg/m2/s)

Silicon Oxide 0.112 1.24 · 107 1.77 · 106

Silicon 0.101 1.86 · 107 2.41 · 106

Polysilicon 0.107 1.92 · 107 2.62 · 106

Silicon Nitride 0.106 2.78 · 107 3.75 · 106

Polydiamond 0.118 6.20 · 107 9.33 · 106

Fig. 4. A λ/4 mechanical resonator with a cross-sectional area of A0 and 
its electrical equivalent circuit.



Hence, the quality factor of the mechanical resonator due 
to anchor loss can be deduced by combining (1), (7), and 
(12):

	 Q K
A0

2

0
=

l
.	 (13)

It is clear that a high value of λ2/A0 will result in a better 
quality factor. The resonator should have as small cross 
section as possible.

B. Half-Wavelength Resonator

In this case, L = c/(2f) = λ/2. The quality factor of the 
resonator from the electrical circuit can be deduced using 
a derivation similar to that given above:

	 Q
Z
R

=
2

1p
.	 (14)

From (1) and (7) we find

	 Q
K
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In this case, A1/λ2 must be large to have a high quality 
factor resonator. However, this requirement contradicts 
with the requirement that the length of the resonator 
should be much longer than its width to guarantee zeroth-
mode operation. We conclude that a half-wavelength rod 
connected to a substrate directly does not result in a high 
Q resonator.

C. Half-Wavelength Resonator Supported with a  
Quarter-Wavelength Bar

A half-wavelength resonator is connected to the sub-
strate through a quarter-wavelength bar with A1 > A0 as 
illustrated in Fig. 5. The electrical equivalent circuit can 
be analyzed to determine the quality factor. The imped-
ance, Zin1, seen by the voltage source is
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The imaginary part in the denominator can be ignored 
when f is near f0, because Z1 ≫ Zin0. Substituting (10) in 
(16) and using tan(πf/f0) ≈ π(f − f0)/f0  we find
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Equating the real part to the imaginary part to find the 
3-dB frequencies
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Hence, Q of this circuit is given by
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Using (1) and (7) we find

	 Q K
A
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with r = A1/A0. Clearly, the quality factor improves with 
(1 + 2r). Making the area ratio r as large as possible will 
result in a high Q resonator.

D. Half-Wavelength Resonator Supported with 3 Quarter-
Wavelength Sections

We can add 2 more quarter-wavelength sections to im-
prove the quality factor even more as shown in Fig. 6. The 
half-wavelength resonator is connected to the substrate 
through 3 quarter-wavelength sections. From the electrical 
circuit of this combination we find
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Using (1) and (7), we find
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This equation shows that the area ratio between neigh-
boring elements must be large to generate a high-quality 
system. For the special case of r = A1/A0 = A3/A2 with 
A0 = A2, we find

	 Q K
A

r r r2

2

0

2 3= (1 2 )
l

+ + + .	 (23)

With a modest area ratio of r = 5, the improvement in 
the quality factor is 281. Harmonic analysis was done in 
the FEM simulator to observe the amount of stress at the 
clamped region. The stress at the anchor point is mini-

451tas et al.: reducing anchor loss in micromechanical extensional mode resonators

Fig. 5. A λ/2 resonator supported with a λ/4 bar and its electrical 
equivalent circuit.



mized by successful operation of the quarter-wavelength 
sections.

E. Half-Wavelength Resonator Supported with an Odd 
Number of Quarter-Wavelength Sections

We can generalize the formula of (23) to n pair of reso-
nators as follows:

	 Q K
A

r r r rn
n n= (1 ... 2 )

2

0

2 2 2 2 1l
+ + + + +- - .	 (24)

F. Odd-Overtone Resonances

The structures above resonate also at an odd multiple 
of the fundamental frequency. The corresponding quality 
factor at those frequencies can be determined easily from 
the electrical equivalent circuit. If the overtone resonance 
is at (2m + 1) multiple, the quality factors of electrical 
equivalent circuits as given by (12), (19), and (21) predict 
a quality factor improvement of (2m + 1). However, the 

anchor loss represented by R is proportional to λ2, and 
hence R decreases by the factor (2m + 1)2 at these odd-
overtones. We conclude that in all the structures above 
the quality factor at the (2m + 1)th resonance is reduced 
by a factor of 1/(2m + 1). So, using overtone resonances 
is not advantageous. For example, the resonator of Fig. 5 
(3λ/4 long) is better than a uniform 3-quarter-wavelength 
(third-overtone) resonator.

IV. Simulation Results

We have verified the validity of (13), (20), and (23) by 
a finite element simulator. We used COMSOL (COMSOL, 
Inc., Burlington, MA)because it can handle a propagation 
into a semi-infinite medium very well. Perfectly matched 
layers (PML), which are constructed by complex coordi-
nate transformation, have been implemented to find an-
chor loss [17]. In the FEM package, PML domains are 
available for several analysis types. We worked with reso-
nators with circular cross sections rather than rectangular 
to get axially symmetric structures for a better accuracy. 
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Fig. 6. A half-wave resonator supported with 3 quarter-wave sections and its equivalent circuit. 

Fig. 7. Deformed and undeformed shapes of the λ/2 resonator supported by a λ/4 section as found from FEM. Lower figure is the displacement 
amplitude along the axis of the bars. 



We applied a uniform force parallel to the axis of the reso-
nator at the free end to simulate the typical electrostatic 
excitation. Fig. 7 illustrates the deformed and undeformed 
shapes of a  λ/2-long 250-MHz resonator supported by a 
λ/4 section. The same figure also has a plot of the dis-
placement amplitude along the resonator. Fig. 8 contains 
similar figures for the same resonator supported by 3 quar-
ter-wave sections. Clearly, the displacement amplitude at 
the anchor gets smaller with more support sections.

We performed frequency response analysis to extract 
the quality factor. Fig. 9 is a comparison of Q values due 
to anchor loss, as obtained from the analytical expressions 
and the finite element simulation results. The quality fac-
tor of a silicon quarter-wave resonator at 250 MHz is plot-
ted in the lower curve. For the half-wavelength resonator 
supported by a quarter-wavelength bar we chose r = 4. 
Eq. (20) is plotted along with finite element simulation 
results in the middle of Fig. 9. In the same figure, a half-
wavelength resonator with 3 quarter-wave support rods 
is also shown. We chose A0  =  A2, A1/A0  =  6.25, and 
A1 = A3 (r = 6.25). Differences between the curves and 
FEM results can be attributed to the errors in simulations 
and deviations from the transmission line approximations 
as λ2/A0 ratio decreases.

The proposed resonant structures can be fabricated us-
ing a variety of available micromachining processes includ-
ing [1] and [7]. A typical silicon half-wavelength resonator 
at 250 MHz should be 16-μm long and several microns 
wide.

V. Conclusions

A new method has been proposed to reduce anchor 
losses in micromachined structures. The method is supe-
rior to other isolation methods in terms of ease in the 
fabrication processes. An electrical equivalent circuit is 
introduced with a resistance modeling the anchor loss. 
Equations predicting the quality factors of extensional 
resonator with different support structures are derived. 
The formulas are optimistic because they include only the 
anchor loss. The FEM simulation results are consistent 
with the predictions. The proposed resonator structure is 
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Fig. 8. Deformed and undeformed shapes of the λ/2 resonator supported by 3 λ/4 sections as found from FEM. Lower figure is the displacement 
amplitude along the axis of the bars. 

Fig. 9. A comparison of finite element simulation results with the ana-
lytical formula: Q of silicon resonators for varying λ2/A0 ratios. Q0 of a 
quarter-wave resonator (lower curve), Q1 of half-wave resonator with one 
λ/4 support with r = 4 (middle curve), and Q2 of half-wave resonator 
with 3 λ/4 supports with r = 6.25 (upper curve). E = 150 GPa, ρ = 2330 
kg/m3, and ν = 0.3 have been used for the silicon material properties.



a promising high-Q building block in RF micromechanical 
filters and oscillators.
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