
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013 1285

BilRC: An Execution Triggered Coarse Grained
Reconfigurable Architecture

Oguzhan Atak and Abdullah Atalar, Fellow, IEEE

Abstract— We present Bilkent reconfigurable computer
(BilRC), a new coarse-grained reconfigurable architecture
(CGRA) employing an execution-triggering mechanism. A control
data flow graph language is presented for mapping the appli-
cations to BilRC. The flexibility of the architecture and the
computation model are validated by mapping several real-world
applications. The same language is also used to map applications
to a 90-nm field-programmable gate array (FPGA), giving exactly
the same cycle count performance. It is found that BilRC reduces
the configuration size about 33 times. It is synthesized with 90-nm
technology, and typical applications mapped on BilRC run about
2.5 times faster than those on FPGA. It is found that the cycle
counts of the applications for a commercial very long instruction
word digital signal processor processor are 1.9 to 15 times higher
than that of BilRC. It is also found that BilRC can run the inverse
discrete cosine transform algorithm almost 3 times faster than
the closest CGRA in terms of cycle count. Although the area
required for BilRC processing elements is larger than that of
existing CGRAs, this is mainly due to the segmented interconnect
architecture of BilRC, which is crucial for supporting a broad
range of applications.

Index Terms— Coarse-grained reconfigurable architectures
(CGRA), discrete cosine transform (DCT), fast Fourier transform
(FFT), reconfigurable computing, turbo decoder, Viterbi decoder.

I. INTRODUCTION

TO COMPLY with the performance requirements of
emerging applications and evolving communication

standards, various architecture alternatives are available.
Field-programmable gate arrays (FPGAs) lack run-time
programmability, but they compete with their large number
of logic resources. To maximize the device utilization, FPGA
designers partition the available resources among several
sub-applications in such a manner that each application
works at the chosen clock frequency and complies with
the throughput requirement. The design phases of FPGAs
and application-specific integrated circuits (ASICs) are quite
similar except that ASICs lack post-silicon flexibility.

Unable to exploit the space dimension, digital signal proces-
sors (DSPs) fail to provide the performance requirement of
many applications due to the limited parallelism that a sequen-
tial architecture can provide. This limitation is not due to the

Manuscript received June 28, 2011; revised April 24, 2012; accepted
June 12, 2012. Date of publication July 31, 2012; date of current version
June 21, 2013.

The authors are with the Department of Electrical and Elec-
tronics Engineering, Bilkent University, Ankara 06800, Turkey (e-mail:
atak@ee.bilkent.edu.tr; aatalar@bilkent.edu.tr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2012.2207748

area cost of logic resources, but to lack of a computation model
to exploit such a large number of logic resources. Commercial
DSP vendors produce their DSPs with several accelerators.
The disadvantage of such an approach is its inability to adapt
to emerging applications and evolving standards.

Application-specific instruction-set processors (ASIP)
provide high performance with dedicated instructions having
very deep pipelines. An ASIP [1] with a 15-pipeline stage is
presented for various Turbo and convolutional code standards.
A multiASIP [2] architecture is presented for exploiting
different parallelism levels in the Turbo decoding algorithm.
In a previous work, we presented ASIPs having dedicated
instructions and a memory architecture for speeding up
fast Fourier transform (FFT) [3]. The basic limitation of
the ASIP approach is its weak programmability, which
makes it inflexible for emerging standards. For instance,
aforementioned ASIPs do not support Turbo codes with more
than eight states [2] and 16 states [1].

Coarse-grained reconfigurable architectures (CGRAs) have
been proposed to provide a better performance/flexibility
balance than the alternatives discussed above. Hartenstein [4]
compared several CGRAs according to their interconnection
networks, data path granularities, and application mapping
methodologies. In a recent survey paper, De Sutter et al. [5]
classified several CGRAs according to computation models
while discussing the relative advantages and disadvantages.
Compton et al. [6] discussed reconfigurable architectures
containing heterogeneous computation elements, such as CPU
and FPGA, and compared several fine- and coarse-grained
architectures with partial and dynamic configuration capa-
bility. According to the terminologies in the literature [4]–[6],
RA, including FPGAs, can be classified according to the
configuration in three distinct models as single-time config-
urable, statically reconfigurable, and dynamically reconfig-
urable. Statically reconfigurable RAs are configured at loop
boundaries, whereas dynamic RAs can be configured at almost
each clock cycle. The basic disadvantage of statically recon-
figurable RAs is that if the loop to be mapped is larger than
the array size, it may be impossible to map. However, the
degree of parallelism inside the loop body can be decreased
to fit the application to CGRA. This is the same approach
that designers use for mapping applications to an FPGA. In
dynamically reconfigurable RAs, the power consumption can
be high due to fetching and decoding of the configuration at
every clock cycle; however, techniques have been proposed [7]
to reduce power consumption due to dynamic configuration.
The interconnect topology of RAs can be either 1-D, such

1063-8210/$31.00 © 2012 IEEE

1286 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

as PipeRench [8] and RAPID [9], [10] or 2-D, such as
ADRES [11]–[15], MorphoSys [16], MORA [17], [18], and
conventional FPGAs.

RAs can have a point-to-point (p2p) interconnect structure
as in ADRES, MORA, MorphoSys, and PipeRench or a
segmented interconnect structure as in KressArray, RAPID,
and conventional FPGAs. p2p interconnect has the advantage
of deterministic timing performance. The clock frequency of
the RA does not depend on the application mapped while the
fan-out of the processing elements (PEs) is limited. Limited
p2p interconnect may increase the initiation interval [13] and
cause performance degradation. For the segmented intercon-
nect method, the output of a PE can be routed to any PE, while
the timing performance depends on the application mapped.

The execution control mechanism of RAs can be either
of a statically scheduled type, such as MorphoSys and
ADRES, where the control flow is converted to data flow code
during compilation, or a dynamically scheduled type, such as
KressArray, which uses tokens for execution control.

In this paper, we present Bilkent reconfigurable computer
(BilRC),1 a statically reconfigurable CGRA with a 2-D
segmented interconnect architecture utilizing dynamic
scheduling with execution triggering. Our contributions can
be summarized as follows.

1) An execution triggered computation model is presented,
and the suitability of the model is validated with several
real world applications. For this model, a language for
reconfigurable computing (LRC), is developed.

2) A new CGRA employing segmented interconnect archi-
tecture with three types of PEs and its configuration
architecture is designed in 90-nm CMOS technology.
The CGRA is verified up to the layout level.

3) Full tool flow, including a compiler for LRC, a cycle
accurate SystemC simulator, and a placement & routing
tool for mapping applications to BilRC is developed.

4) The applications modeled in LRC are converted to HDL
with our LRC-HDL converter and then mapped onto
an FPGA and to BilRC on a cycle-by-cycle equivalent
basis. Then, a comparison of precise configuration size
and timing is done.

II. BILRC ARCHITECTURE

BilRC has three types of PEs: arithmetic logic unit (ALU),
memory (MEM), and multiplier (MUL). Similar to some
commercial FPGA architectures, such as Stratix2 and Virtex3

PEs of the same type are placed in the same column as shown
in Fig. 1. The architecture repeats itself every nine columns
and the number of rows can be increased without changing
the distribution of PEs. This PE distribution is obtained by
considering several benchmark algorithms from signal and
image processing and telecommunication applications. The
PEs’ distribution can be adjusted for better utilization for
the targeted applications. For example, the Turbo decoder
algorithm does not require any multiplier, but needs a large

1BilRC: Bilkent reconfigurable computer.
2Available at http://www.altera.com.
3Available at http://www.xilinx.com.

Fig. 1. Columnwise allocation of PEs in BilRC.

amount of memory. On the other hand, filtering applications
require many multipliers, but not much memory. For the
same reason, commercial FPGAs have different families for
logic-intensive and signal processing-intensive applications.

A. Interconnect Architecture

PEs are connected to four neighboring PEs [3] by commu-
nication channels. Channels at the periphery of the chip can
be used for communicating with the external world. If the
number of ports in a communication channel is Np , the total
number of ports a PE has is 4Np . The interconnect architecture
is the same for all PE types. Fig. 2(a) illustrates the signal
routing inside a PE for Np = 3. There are three inputs and
three outputs on each side. The output signals are connected
to corresponding input ports of the neighbor PEs. The input
and output signals are all 17 bits wide. 16 bits are used as
data bits and the remaining execute enable (EE) bit is used as
the control signal.

PEs contain processing cores (PC) located in the middle.
Port route boxes (PRB) at the sides are used for signal routing.
PCs of ALUs and MULs have two outputs and the PC of
MEM has only one output. The second output of a PC is
utilized for various purposes, such as the execution control
for loop instructions, the carry output of additions, the most
significant part of multiplication, the maximum value of index
calculation, and the conditional execution control. PC outputs
are routed to all PRBs. Therefore, any PRB can be used to
route PC output in the desired direction. All input signals are
routed to all PRBs and to the PC as shown in Fig. 2(a). The
PC selects its operands from the input signals by using internal
multiplexers. Fig. 2 shows the internal structure of PRB. The
route multiplexer is used to select signals coming from all
input directions and from the PC. The pipeline multiplexer is
used to optionally delay the output of the route multiplexer for
one clock cycle. BilRC is configured statically, hence both the
interconnects and the instructions programmed in PCs remain
unchanged during the run.

Fig. 3 shows an example mapping. PE1 is the source PE
and PE4 is the destination PE, while PE2 and PE3 are used
for signal routing. The total delay, TCRIT, between the register
in PE1 and the register in PE4 is given as

TCRIT = nTHOP + TPE (1)

ATAK AND ATALAR: BilRC: EXECUTION TRIGGERED CGRA 1287

Fig. 2. PE architecture. (a) Input/output signal connections. (b) Schematic diagram of PRB.

Fig. 3. Example of routing between two PEs.

where n = 2 is the number of hops, THOP is the time delay
to traverse one PE, and TP E is the time delay within a PE.

B. PC Architectures

1) MEM: Fig. 4 shows the architecture of the PC of MEM.
PC has a data bus which is formed from all input data signals
and an EE bus which is formed from all input EE signals.
SRAM block in PC is a 1024 × 16 dual port RAM (ten
address bits, 16 data bits). op1_addr set by the configuration
register (CR) determines which one of the 12 inputs is the read
address. Similarly, op2_addr chooses one of the inputs as the
write address. The most significant six bits are compared with
MEMID stored in the CR. If they are equal, then read and/or
write operations are performed. opr3_addr selects the data to
be written from one of the input ports.

2) ALU: Fig. 5 shows the architecture of ALU. Similar to
MEM, ALU has two buses for input data and EE signals. The
operands to the instructions are selected from the data bus by
using the multiplexers M3, M4, M5, M6. ALU has an 8 × 16
register file for storing constant data operands. For example,
an ALU with the instruction, ADD(A, 100) reads the variable
A from an input port, and the constant 100 is stored in the
register file during configuration. The output of the register
file is connected to the data bus so that the instruction can
select its operand from the register file. The execution of the
instruction is controlled from the EE bus. The CR has a field

Fig. 4. PC schematic of MEM.

Fig. 5. PC schematic of ALU.

to select the input EE signal from the EE bus. PC executes
the instruction when the selected signal is enabled.

3) MUL: The PC of MUL is similar to that of ALU.
The difference is the instructions supported in the two types
of PEs. Multiplication and shift instructions are performed
in this PE. The MUL instruction performs the multiplication
operation on two operands. The operands can be from the

1288 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

TABLE I

CONFIGURATION DATA STRUCTURE

Conf. item
Number

of
words

Meaning

PID 1 PID

N 1 Number of words in the
configuration packet

CR 3 PC CR

RCR 5 It is used to configure
multiplexers in the PRBs

output
initialization

register
1

Loads the register for
output initialization

Register file or
memory content

configuration
variable

The register file of ALU
or MEM or the SRAM of

the MEM is initialized

inputs (variable operands) or from the register file (constant
operands). The result of the multiplication is a 32-bit number
that appears on two output ports. Alternatively, the result of
the multiplication can be shifted to the right in order to fit the
result to a single output port by using the MUL_SHR (multiply
and shift to the right) instruction. This instruction executes in
two clock cycles: the multiplication is performed in the first
clock cycle and the shifting is performed in the second clock
cycle. The rest of the instructions for all PEs are executed in
a single clock cycle.

C. Configuration Architecture

PEs are configured by configuration packets, which are
composed of 16-bit configuration words. Table I lists the
data structure of the configuration packet. Each PE has a
16-bit-wide configuration input and a configuration output.
These signals are connected in a chain structure as shown
in Fig. 1. The first word of the configuration packet is the
processing element ID (PID). A PE receiving the configuration
packet uses it if the PID matches its own ID. The second
word in the packet is the length of the configuration packet.
The fields of the CR are illustrated in Table II for ALU.
The CR of MEM does not require the fields opr4_addr,
EE_addr, Init_Addr, Init_type, and Init_Enable, and the CR
of MUL does not contain the opr4_addr field, since none of
the instructions require four operands. CR is 48 bits long for
all PC types; the unused bit positions are reserved for future
use. It must be noted that the bit width of the CR and route
CR depends on Np . The number of words for the fields given
in the table is for Np = 4.

III. EXECUTION-TRIGGERED COMPUTATION MODEL

Writing an application in a high-level language, such as
C and then mapping it on the CGRA fabric is the ultimate
goal for all CGRA devices. To get the best performance
from the CGRA fabric, a middle-level language (assembly-like
language) that has enough control on PEs and provides
abstractions is necessary. The designers thus do not deal with
unnecessary details, such as the location of the instructions
in the 2-D architecture and the configuration of route multi-
plexers for signal routing. Although there are compilers for

TABLE II

ALU CR

Conf. field
Number
of bits Meaning

opr1_addr 5 Operand 1 address
opr2_addr 5 Operand 2 address
opr3_addr 5 Operand 3 address
opr4_addr 5 Operand 4 address
EE_addr 5 EE input address

Init_addr 4 Initialization input
address

op_code 8
Selects the instruction to

be executed

Init_Enable 1
Determines whether the
PC has an initialization

or not

Init_Type 1
Determines the type of

the initialization

some CGRAs, which directly map applications written in a
high-level language, such as C to the CGRA, the designers
still need to understand the architecture of the CGRA in
order to fine tune applications written in C-code for the best
performance [5].

The architecture of BilRC is suitable for direct mapping of
control data flow graphs (CDFG). A CDFG is the represen-
tation of an application in which operations are scheduled to
the nodes (PEs) and dependencies are defined. We developed
a LRC for the efficient representation of CDFGs. Generating
LRC code from a high-level language is outside the scope of
this paper. Existing tools, such as IMPACT [14] can be used to
generate a CDFG in the form of an intermediate representation
called LCode. IMPACT reads a sequential code, draws a
data flow graph and generates a representation defining the
instructions that are executed in parallel. Such a representation
can then be converted to an LRC code.

A. Properties of LRC

1) LRC is a Spatial Language: Unlike sequential languages,
the order of instructions in LRC is not important. LRC instruc-
tions have execution control inputs that trigger the execution.
LRC can be considered as a graph drawing language in which
the instructions represent the nodes and the data, and control
operands represent the connections between the nodes.

2) LRC is a Single Assignment Language: During mapping
to the PEs, each LRC instruction is assigned to a single PE.
Therefore, the output of the PEs must be uniquely named.
A variable can be assigned to multiple values indirectly in
LRC by using the self-multiplexer instruction, SMUX.

3) LRC is Cycle Accurate: Even before mapping to the
architecture, cycle-accurate simulations are possible to obtain
timing diagrams of the application. Each instruction in LRC,
except MUL_SHR, is executed in a single clock cycle.

4) LRC has an Execution-Triggering Mechanism: LRC
instructions have explicit control signal(s), which trigger the
execution of instruction assigned to the node. Instructions that
are triggered from the same control signal execute concur-
rently, hence parallelism is explicit in LRC.

ATAK AND ATALAR: BilRC: EXECUTION TRIGGERED CGRA 1289

B. Advantages of Execution Triggered Computation Model
The execution-triggered computation model can be

compared to the data flow computation model [19]. The
basic similarity is that both models build a data flow graph
such that nodes are instructions and the arcs between the
nodes are operands. The basic difference is that the data flow
computation model uses tagged tokens to trigger execution;
a node executes when all its operands (inputs) have a token
and the tags match. Basically, tokens are used to synchronize
operands, and tags are used to synchronize different loop
iterations. In LRC, an instruction is executed when its EE
signal is active. Application of the data flow computation
model to CGRAs has the following problems: first, tagged
tokens require a large number of bits; this in turn increase the
interconnect area. For example, the Manchester machine [19]
uses 54 bits for tagged tokens. Second, a queue is required
to store tagged tokens, which increases the area of PE.
Third, a matching circuit is required for comparing tags, both
increasing PE area and decreasing performance. For example,
an instruction with three operands requires two pairwise tag
comparisons to be made. Execution-triggered computation
uses a single bit as EE, hence it is both area efficient and fast.

The execution-triggered computation model can
be compared to the computation models of existing
CGRAs. MorphoSys [16] uses a RISC processor for the
control-intensive part of the application. The reconfigurable
cell array is intended for the data-parallel and regular parts of
the application. There is no memory unit in the array; instead,
a frame buffer is used to provide data to the array. The RISC
processor performs loop initiation and context broadcast to the
array. Each reconfigurable cell runs the broadcast instructions
sequentially. This model has many disadvantages. First, an
application cannot be always partitioned into control-intensive
and data-intensive parts, and even if it is partitioned, the
inter-communication between the array and RISC creates
a performance bottleneck. Second, the lack of memory
units in the array limits the applications that can be run on
the array. Third, since loop initiation is controlled by the
RISC processor, the array can be used only for innermost
loops. ADRES [14] uses a similar computation model with
some enhancements, the RISC processor is replaced with
a very long instruction word (VLIW) processor. ADRES
is a template CGRA. Different memory hierarchies can be
constructed by using the ADRES core. For example, two
levels of data caches can be attached to ADRES [15], or
a multiported scratch pad memory can be attached [20],
[21]. There is no array of data memories in the ADRES
core. The VLIW processor is responsible for loop initiation
and the control-intensive part of the application. Lack of
parallel data memory units in the ADRES core limits the
performance of the applications mapped on ADRES. In
a recent work on ADRES [20], a four-ported scratchpad
memory was attached to the ADRES core for applications
requiring parallel memory accesses. In ADRES, the loops are
initiated from the VLIW processor. Hence, only a single loop
can run at a time. ADRES has a mature tool suite, which
can map applications written in C-language directly to the
architecture. Obviously, this is a major advantage. The VLIW

processor in the ADRES can also be used for the parts of the
applications which require low parallelism.

MORA [18] is intended for multimedia processing. The
reconfigurable cells are DSP-style sequential execution proces-
sors, which have internal 256-byte data memory for partial
results and a small instruction memory for dynamic configu-
ration of the cells. The reconfigurable cells communicate with
an asynchronous handshaking mechanism. MORA assembly
language and the underlying reconfigurable cells are opti-
mized for streaming multimedia applications. The computa-
tion model is unable to adapt to complex signal processing
and telecommunications applications. RAPID [10] is a 1-D
array of computation resources, which are connected by a
configurable segmented interconnect. RAPID is programmed
with RAPID-C programming language. During compilation,
the application is partitioned into static and dynamic config-
urations. The dynamic control signals are used to schedule
operations to the computation resources. A sequencer is used
to provide dynamic control signals to the array. The centralized
sequencer approach to dynamically change the functionality
requires a large amount of control signals, and for some
applications the required number of signals would not be
manageable. Therefore, RAPID is applicable to highly regular
algorithms with repetitive parts.

LRC is efficient from a number of perspectives. First,
LRC has flexible and efficient loop instructions. Therefore, no
external RISC or VLIW processor is required for loop initia-
tion. An arbitrary number of loops can be run in parallel. The
applications targeted for LRC are not limited to the innermost
loops. Second, LRC has memory instructions to flexibly model
the memory requirements of the applications. For example,
the Turbo decoding algorithm requires 13 memory units. The
access mechanism to the memories is efficiently modeled. The
extrinsic information memory in the Turbo decoder is accessed
by four loop indices. LRC has also flexible instructions to
build larger-sized memory units. ADRES, MorphoSys, and
MORA have no such memory models in the array. Third, the
execution control of LRC is distributed. Hence, there is no
need for an external centralized controller to generate control
signals, as is required in RAPID. The instruction set in LRC is
flexible enough to generate complex addressing schemes, and
no external address generators are required. While LRC is not
biased to streaming applications, they can be modeled easily.

In a CDFG, every node represents a computation, and
connections represent the operands. An example CDFG and
timing diagram is shown in Fig. 6. The node ADD performs
an addition operation on its two operands Op1_Data and
Op2_Data when its third operand, Op3_EE, is activated. Below
is the corresponding LRC line

[Res, 0] = ADD (Op1, Op2) < −[Op3].
In LRC, the outputs are represented between the brackets

on the left of the equal sign. A node can have two outputs;
for this example only the first output, Res, is utilized. A “0”
in place of an output means that it is unused. Res is a 17-bit
signal that is composed of 16-bit data, Res_Data, and a one-bit
EE signal, Res_EE. The name of the function is provided
after the equal sign. The operands of the function are given

1290 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

Fig. 6. Example CDFG and timing diagram.

between the parentheses. The control signal that triggers the
execution is provided between the brackets on the right of
the “<–” characters. As can be seen from the timing diagram,
the instruction is executed when its EE input is active. The
execution of an instruction takes one clock cycle; therefore,
the Res_EE signal is active one clock cycle after Op3_EE.

C. Loop Instructions

Efficient handling of loops is critical for the performance
of most applications. LRC has flexible and efficient loop
instructions. By using multiple LRC loop instructions, nested,
sequential, and parallel loop topologies can be modeled.

A typical FOR loop in LRC is given as follows:

[i, i_Exit] = FOR_SMALLER(StartVal, EndVal, Incr)

< −[LoopStart, Next].
This FOR loop is similar to that in C-language

for(i = StartVal; i < EndVal; i = i + Incr) loop body.

The FOR_SMALLER instruction works as follows.

1) When the LoopStart signal is enabled for one clock
cycle, the data portion of the output, i_DATA, is loaded
with StartVal_DATA, and the control part of the output
i_EE is enabled in the next clock cycle.

2) When the Next signal is enabled for one clock cycle,
i_DATA is loaded with i_DATA+Incr_DATA and i_EE
is enabled if i_DATA+Incr_DATA is smaller than
EndVal; otherwise, i_Exit_EE is enabled.

The parameters StartVal, EndVal, and Incr can be variables or
constants.

Fig. 7 shows an example CDFG having three nodes.
The LRC syntax of the instructions assigned to the nodes
is shown at the right of the nodes. All operands of
FOR_SMALLER are constant in this example. When mapped
to PEs, constant operands are initialized to the register file
during configuration. ADD and SHL (SHift Left) instruc-
tions are triggered from i_EE. Hence, their outputs k and
m are activated at the same clock cycles as illustrated in
Fig. 8. The Next input of the FOR_SMALLER instruc-
tion is connected to the k_EE output of the ADD instruc-
tion. Therefore, FOR_SMALLER generates an i value for
every two clock cycles. When i exceeds the boundary,
FOR_SMALLER activates the i_Exit signal. The trig-
gering of instructions is illustrated in Fig. 8 with dotted
lines. SFOR_SMALLER is a self-triggering FOR instruction

Fig. 7. CDFG and LRC example for FOR_SMALLER.

Fig. 8. Timing diagram of FOR_SMALLER.

given as

[i, i_Exit] = SFOR_SMALLER(StartVal, EndVal, Incr, IID)

< −[LoopStart].
The SFOR_SMALLER instruction does not require a Next

input; but instead it requires a fourth constant operand, inter
iteration dependency (IID). SFOR_SMALLER waits for the
IDD cycles to generate the next loop index after generating
the current loop index. This instruction triggers itself and can
generate an index for every clock cycle when IID is 0. LRC
has support for loops whose index variables are descending;
these instructions are FOR_BIGGER and SFOR_BIGGER.
The aforementioned for loop instructions can be used as a
while loop by setting the Incr operand to 0. By doing so,
it always generates an index value. This is equivalent to an
infinite while loop. The exit from this while loop can be coded
externally by conditionally activating the next input.

D. Modeling Memory in LRC

In LRC, every MEM instruction corresponds to a
1024-entry, 16-bit, two-ported memory. The syntax for MEM
instruction is given below

[Out] = MEM(MemID, ReadAddr, InitFileName,

WriteAddr, WriteIN).

The MEM instruction takes five operands. MemID is used
to create larger memories as discussed earlier. The ten least
significant bits of ReadAddr_Data are connected to the read
address port of the memory. When ReadAddr_EE is active, the
data in the memory location addressed by ReadAddr_Data is

ATAK AND ATALAR: BilRC: EXECUTION TRIGGERED CGRA 1291

put on Out_DATA in the following clock cycle and Out_EE is
activated. The InitFileName parameter is used for initializing
the memory. The write operation is similar to reading. When
WriteAddr_EE is active, the data in WriteIN_Data is written
to the memory location addressed by WriteAddr_Data. Below
is an example for forming a 2048-word memory

1 : [Out1] = MEM(0, ReadAddr, File0,

WriteAddr, WriteData)

2 : [Out2] = MEM(1, ReadAddr, File1,

WriteAddr, WriteData)

3 : [Out] = SMUX(Out1, Out2).

The first memory has MemID = 0. This memory responds to
both read and write addresses if they are between 0 and 1023;
similarly, the second memory responds only to the addresses
between 1024 and 2047. Therefore, the signals Out1_EE and
Out2_EE cannot both be active in the same clock cycle. The
SMUX instruction in the third line multiplexes the operand
with the active EE signal. Due to the SMUX instruction,
one clock cycle is lost. The SMUX instruction can take four
operands. Therefore, up to 4n memories can be merged with
n clock cycles of latency.

E. Conditional Execution Instructions

LRC has novel conditional execution control instructions.
Below is a conditional assignment statement in C language

if(A > B) {result = C;} else {result = D;}.
Its corresponding LRC code is given as

[c_result, result] = BIGGER(A, B, C, D) < −[Opr].
BIGGER executes only if its EE input, Opr_EE, is active.
result is assigned to operand C if A is bigger than B; otherwise
it is assigned to D. c_result is activated only if A is bigger than
B. Since c_result is activated only if the condition is satisfied,
the execution control can be passed to a group of instructions
that is connected to this variable. The example C code below
contains not only assignments, but also instructions in the if
and else bodies

if(A > B) {result = C + 1;} else {result = D − 1;}.
This C-code can be converted to an LRC code by using three
LRC instructions

1 : [Cp1, 0] = ADD(C, 1) < −[C]
2 : [Dm1, 0] = SUB(D, 1) < −[D]
3 : [0, result] = BIGGER(A, B, Cp1, Dm1) < −[Opr].

The first line evaluates C+1, the second line evaluates
D-1, and in the third line, result is conditionally assigned
to Cp1 or Dm1 depending on the comparison A > B .
Conditional instructions supported in BilRC are as follows:
SMALLER, SMALLER_EQ (smaller or equal), BIGGER,
BIGGER_EQ (bigger or equal), EQUAL and NOT_EQUAL.
By using these instructions, all conditional codes can be
efficiently implemented in LRC. ADRES [12] uses a similar

predicated execution technique. In LRC, two branches are
merged by using a single instruction. In predicated execution, a
comparison is made first to determine the predicate, and then
the predicate is used in the instruction. In LRC, the results
of two or more instructions cannot be assigned to the same
variable since these instructions are the nodes in the CDFG.
Therefore, the comparison instructions in LRC are used to
merge two branches of instructions. Similar merge blocks are
used in data flow machines [19] as well.

F. Initialization Before Loops

1 : min = 32767;
2 : for(i = 0; i < 255; i + +){
3 : A = mem[i];
4 : if(A < min)min = A;
5 : }.

In the C-code above, the variable min is assigned twice,
before the loop and inside the loop. Such initializations before
loops are frequently encountered in applications with recurrent
dependencies. Multiple assignment to a variable is forbidden in
LRC as discussed in Section III-A2. An initialization technique
has been devised for LRC instructions, which removes the
need for an additional SMUX instruction.

The corresponding LRC code is given below

1 : [i, iExit] = SFORSMALLER(0, 256, 1, 0)

< −[LoopStart]
2 : [A, 0] = MEM(0, i, filerand.txt, WriteAddr, WriteData)

3 : [min(32767), 0] = MIN(min, 0, A, 0)<−[A, LoopStart].
MIN finds the minimum of its first and third operands.4

The EE input of the MIN instruction is A_EE. The second
control signal between the brackets to the right of the “<−”
characters, LoopStart, is used as the initialization enable.
When this signal is active, the Data part of the first output
is initialized. The parentheses after the output signal min
represent the initialization value.

G. Delay Elements in LRC

CDFG representation of algorithms requires many delay
elements. These delay elements are similar to the pipeline
registers of pipelined processors. A value calculated in a
pipeline stage is propagated through the pipeline registers so
that further pipeline stages use the corresponding data

1 : for(i = 0; i < 256; i + +){
2 : A = mem[i];
3 : B = abs(A);
4 : C = B >> 1;
5 : if(C > 2047)R = 2047;
6 : elseR = C;
7 : res_mem[i] = R;
8 : }.

4The second and fourth operands of MIN are used for the index of minimum
calculation.

1292 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

In the C-code above, the data at location i is read from a
memory A, its absolute value is calculated at B, shifted to the
right by 1 at C and finally saturated and saved to the memory
at location i. Below is the corresponding LRC code:

1 : [i, iExit] = SFORSMALLER(0, 256, 1, 0)

< −[LoopStart]
2 : [A, 0] = MEM(0, i, filerand.txt, 0, 0)

3 : [B, 0] = ABS(A) < −[A]
4 : [C, 0] = SHR(B, 0, 1) < −[B]
5 : [0, R] = BIGGER(C, 2047, 2047, C) < −[C]
6 : [mem2, 0] = MEM(0, 0, 0, i(4), R).

Although, the LRC instructions are written here in the same
order as in the C-code, this is not necessary. The order of
instructions in LRC is not important. The IID operand of
the SFOR_SMALLER instruction is set to 0. Therefore, an
index value, i, is generated from 0 to 255 at every clock
cycle. After six clock cycles, all the instructions are active at
each clock cycle until the loop boundary is reached. Since the
instructions are pipelined, the MEM instruction above cannot
use i as the write address, but its four-clock-cycle delayed
version. The number of pipeline delays is coded in LRC by
providing it between the parentheses following the variable.
The requirement to specify delay value explicitly in LRC
for pipelined designs makes code development a bit difficult.
However, the difficulty is comparable to that of designing with
HDL or assembly languages.

IV. TOOLS AND SIMULATION ENVIRONMENT

Fig. 9 illustrates the simulation and development environ-
ment. The four key components are the following.

1) LRC Compiler: Takes the code written in LRC and
generates a pipelined netlist. The net has the following infor-
mations: input connection, output connection, the number of
pipeline stages between the input and the output.

2) BilRC Simulator: Performs cycle-accurate simulation of
LRC code. The BilRC simulator is written in System C.5 The
pipelined netlist is used as the input to the BilRC simulator.
PCs are interconnected according to the nets. If a net in the
netlist file has delay elements, then these delay elements are
inserted between PCs. The results of a simulation can be
observed in three ways: from the SystemC console window,
the value change dump (VCD) file, or the BilRC log files.
Every PC output has been registered to SystemC’s built-in
function sc_trace; thus by using a VCD viewer all PC output
signals can be observed in a timing diagram.

3) Placement & Routing Tool: This tool maps the nodes
of CDFGs into a 2-D architecture, and finds a path for
every net. Unlike FPGAs’, the interconnection network of
BilRC is pipelined. The BilRC place & route tool finds the
location of the delay elements during the placement phase. The
placement algorithm uses the simulated annealing technique
with a cooling schedule adopted from [22]. The total number
of delay elements that can be mapped to a node is 4Np .

5Available at http://www.systemc.org/home/.

Fig. 9. Simulation and implementation environment.

For every output of a PC, a pipelined interconnect is formed.
When placing the delay elements, contiguous delay elements
are not assigned to the same node. Such movements in the
simulated annealing algorithm are forbidden. A counter is
assigned for every node, which counts the number of delay
elements assigned to the node. The counter values are used
as a cost in the algorithm. Therefore, delay elements are
forced to spread around the nodes. The placement algorithm
uses the shortest path tree algorithm for interconnect cost
calculation. The algorithm used for routing is similar to that
of the negotiation based router [23].

4) HDL Generator: Converts LRC code to HDL code.
Since LRC is a language to model CDFGs, it is easy to
generate the HDL code from it. For each instruction in LRC,
there is a pre-designed VHDL code. The HDL generator
connects the instructions according to the connections in the
LRC code. The unused inputs and outputs of instructions
are optimized during HDL generation. The quality of the
generated HDL code is very close to that of manual coded
HDL. The generated HDL code can then be used as an
input to other synthesis tools, such as the Xilinx ISE. The
generated HDL code was used to map applications to an FPGA
in order to compare the results with LRC code mapped to
BilRC.

V. EXAMPLE APPLICATIONS FOR BILRC

In order to validate the flexibility and efficiency of the
proposed computation model, several standard algorithms
selected from Texas Instruments benchmarks [24] are mapped
to BilRC. We also mapped Viterbi and Turbo decoder channel
decoding algorithms and multirate and multichannel FIR
filters. For all cases, it is assumed that the input data are
initialized into the memories and the outputs are directly
provided to the device outputs. Due to space restrictions, only
some of the algorithms will be discussed. In Section V-A, use
of the loop exit signal to trigger the rest of the code is demon-
strated. In the second example, a matrix transposition and
pipelining of horizontal and vertical phases of the 2-D-inverse
discrete cosine transform (IDCT) are shown. The last example
shows use of the SMUX instruction to access shared
resources.

ATAK AND ATALAR: BilRC: EXECUTION TRIGGERED CGRA 1293

A. Maximum Value of an Array

The input array of size 128 is stored in eight sub-arrays with
a size of 16 each. The algorithm first finds the maximum values
of the eight sub-arrays by sequentially processing each data
read from the memories, and then the maximum value from
among these eight values are computed. Fig. 10 illustrates the
CDFG of the algorithm.

The LoopStart signal triggers the SFOR_SMALLER
instruction. The loop generates an index value for every clock
cycle, starting from 0 and ending at 15. i is used as an index
to read data from eight memories in parallel. Then, eight
MAX instructions find the maximum values corresponding to
each sub-array. The instruction corresponding to the eighth
sub-array is shown below

[m8(−32768)] = MAX(m8, 0, d8, 0) < −[d8, LoopStart(1)].
Here, the variable m8 is both output and input. At every clock
cycle, m8 is compared to d8 and the larger one assigned to
m8. The LoopStart(1) signal (1 in parentheses indicates a one
cycle delay) is used to initialize m8 to −32 768. It should be
noted that if an instruction’s output is also input to itself, the
output variable is connected to the input bus inside the PC.
This is shown in Fig. 5, where PC_OUT_1 is connected to the
input data bus.

When the FOR loop reaches the boundary, i_Exit_EE is
activated for one clock cycle, one-cycle-delayed version of
i_Exit_EE is used to trigger the execution of four MAX
instructions.

The dotted lines in the figure represent the control signals,
and the solid lines represent signals with both control and
data parts. The instructions in the MAX-tree are executed
only once. The depth of the memory blocks in BilRC is
1024, whereas the maxval algorithm uses only 16 entries.
This under-utilization of memory can be avoided by using the
register files instead of memories. ALU PEs have eight-entry
register files, two ALU PEs can be used to build a 16-entry
register file.

B. 2-D-IDCT Algorithm

We used a fixed point model of the algorithm [24]. The
algorithm is composed of three parts: horizontal pass, trans-
position, and vertical pass. In the horizontal pass, the rows of
the 8 × 8 matrix are read and the eight-point 1-D IDCT of
the row is computed. Since there are eight rows in the matrix,
this operation is repeated 8 times. The transposition phase of
the algorithm transposes the resulting matrix obtained from
the horizontal pass. In the final phase, the matrix is read again
row-wise and the 1-D IDCT of each row is computed. The
challenging part of the algorithm is the transposition phase.

Fig. 11 illustrates the CDFG and LRC of the algorithm.
This algorithm computes 2-D-IDCT of 100 frames, where a
frame is composed of 64 words. The code assumes that the
input data is stored in eight arrays. While the input arrays
are being filled, the IDCT computation can run concurrently.
Hence, the time to get data to the memory can be hidden.
The two SFOR_SMALLER instructions at the beginning of
the code are used for frame counting and horizontal line

Fig. 10. LRC code and CDFG of maximum value of an array.

Fig. 11. LRC code and CDFG of 2-D-IDCT algorithm.

counting, respectively. The SHR_OR instruction computes the
address, which is used to read data from the eight memory
locations. MUX (multiplex) instructions in the code are used
for transposition. The MUX instruction has five operands: the
first operand is used as the selection input, and the remaining
four operands are to be multiplexed. In order to multiplex
eight operands, three multiplexers are used. The variables

1294 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

[f0, f1, …, f7] are the results of the horizontal IDCT. These
variables are used as the input operands of the multiplexers.
f0 is connected to the input of the multiplexer directly, whereas
f1 is delayed one clock cycle; hence f1(1) and f2 are delayed
two cycles. The horizontal results are queued in a pipeline
for the first register, reg0. For the second register, reg1, sel10,
and sel3, which are selection operands of the multiplexers,
are delayed, so that the second horizontal results are queued.
The transposition operation is performed by using 24 MUX
instructions and 31 delay elements.

The IID parameter of the SFOR_SMALLER instruction
for horizontal line counting is set to 0. Therefore, an index
is generated every clock cycle, and computation of eight
horizontal IDCTs takes eight clock cycles. The computation
of the vertical IDCTs takes eight clock cycles as well. The
computations of horizontal and vertical IDCTs are pipelined.
Thus, a 2-D-IDCT is computed in nine clock cycles on the
average (one clock cycle is lost in loop instructions). The
computation of 100 frames takes only 930 clock cycles.

C. UMTS Turbo Decoder

Turbo codes [25] are widely used in telecommunications
standards as in UMTS [26] for forward error correction.

A Turbo decoder requires an iterative decoding algorithm
in which two soft-in-soft-output (SISO) decoders exchange
information. The first SISO corresponds to the convolutional
encoder that encodes the data in the normal order, and the
second one corresponds to the encoder that encodes the data
in an interleaved order. The operations performed in these two
decoders are the same. Therefore, only a single decoder, which
serves as both the first SISO and the second SISO sequentially,
is implemented in LRC. Inside a SISO decoder, a forward
recursion is performed first. At each step, the probabilities of
states are stored in memories and then a backward recursion is
performed. During the backward recursion, the probabilities of
states computed in forward recursion and the current backward
state probabilities are used to compute a new likelihood ratio
for the symbol to be decoded [27].

Fig. 12 illustrates the CDFG and LRC of a Turbo decoder.
The first loop instruction (I1) is used to count the iterations,
which start from 0 and end at 9. The second loop (I2) counts
SISOs. When SISO is 0, the instructions inside the loop body
correspond to the first SISO in the algorithm. When it is
1, it behaves as the second SISO. The third loop (I3), k
is used for forward recursion, and the loop (I4), m is used
for backward recursion. The forward recursion and backward
recursion instructions read the input data from the same
memory. Hence, k and m are multiplexed with the SMUX
instruction. k and m cannot be active at the same time, since
the loop for m starts after the loop for k exits. The input
likelihoods are stored in three arrays, syst, par1, and par2
corresponding to the systematic, the parity of first encoder,
and the parity of second encoder, respectively. extr is for the
extrinsic information memory. The first SISO uses par1 as
the parity likelihood, and the second SISO uses par2. The
EQUAL instruction (I12) corresponding to par selects either
par1 or par2 depending on the value of SISO. The arrays for

Fig. 12. LRC code and CDFG of UMTS turbo decoder.

syst and extr must be accessed in the normal order for the
first SISO and in the interleaved order for the second SISO.
The read address of the memory, inter_index, is set to k_m(2)
when SISO is 0 and interleaver when SISO is 1 by using an
EQUAL instruction (I9), where interleaver is the interleaved
address that is read from a memory.

VI. RESULTS

A. Physical Implementation

We utilized Cadence RTL Compiler for logical synthesis
and Cadence Encounter for layout generation. Faraday library6

for 90-nm UMC CMOS process technology was used for
standard cells. Behavioral and gate-level simulations were
performed on Cadence NC-VHDL and NC-Verilog. The steps
taken in physical implementation were similar to standard
ASIC implementation steps. Since BilRC has a program-
mable segmented-interconnect architecture, it is not possible
to directly synthesize the top-level BilRC HDL code. The
Cadence synthesis tool can find and optimize the critical path.
Since the configuration for BilRC is unknown to the tool,
it can not determine the critical path. Therefore, PEs are
synthesized individually by applying two timing constraints.
The combinational path delay constraint (THOP) is applied in
order to determine the time delay to traverse a PE. The clock
constraint is applied in order to determine the path between
any PE input and the register output of the PC. The plain
clock constraint is used to determine the longest delay path

6Available at http://www.faraday-tech.com/index.html.

ATAK AND ATALAR: BilRC: EXECUTION TRIGGERED CGRA 1295

between two registers. Since the input of PE is not registered,
this condition is specified to the tool with input switch [28].
Table III shows the timing results achieved at +25 °C.

Table IV shows the silicon area for PEs. The area of a PE
contains both the area of the PC and the area of the PRBs.
The area of the PRBs is about 0.03 mm2. 42% of the PE area
is used for PRBs in ALU and MUL and 25% for MEM. PEs
were first synthesized with the Cadence RTL compiler and
then placed and routed with the Cadence Encounter tool. The
last row in Table IV shows the percentage utilization of the
rectangular area of the layout. The heights of PEs are chosen to
be the same value: 300 µm. However, the widths are variable.
Since PEs can be connected by abutment to neighboring PEs,
no further area is required for interconnections. The area value
for MEM contains both the area of the logic cells and the area
of SRAM.

B. Comparison to TI C64+ DSP

Table V depicts the cycle count performance of all algo-
rithms mapped to BilRC. The area results and the utilization
of the PEs are shown in Table VI. The achieved clock
frequencies for the applications are listed in Table VII. When
mapping applications to BilRC, the minimum rectangular area
containing a sufficient number of PEs is selected. Table V
shows the cycle count performance of the applications mapped
on BilRC and a TI C64+ 8 issue VLIW processor. BilRC
always outperforms TI C64+ DSP. The improvements are
due to adjustable parallelism in BilRC, whereas in TI C64+
the maximum number of instructions that can be executed
in a single clock cycle is limited. For example, the UMTS
Turbo decoder and 2-D-IDCT implementations on BilRC have
average instruction per cycle (IPC) values of about 30 and
128, respectively [3]. For TIs eight-issue VLIW processor, the
maximum IPC is eight.

Further improvements are possible. For example, the perfor-
mance of the maxval and dotprod algorithms can be doubled
by storing the arrays in 16 memory blocks and processing
accordingly. The performances for the TI C64+ implementa-
tions are obtained by coding these algorithms in the assembly
language. Obtaining these performances is quite difficult
and requires considerable expertise in the specific assembly
language for the targeted VLIW processor. Tables VI and
VII show the area and timing results for BilRC. Although,
TMS320C64 has a faster clock of 1000 MHz, BilRC provides
better throughput results (except for the maxval and dotprod
algorithms). The TMS320C64’s processor core area is reported
to be 2 mm2 [15], while the whole chip area, including
two level caches and peripherals, is 20 mm2. As is clear
from Table VIII, all of the applications mapped on BilRC
requires an area of less than 20 mm2 (except the FIR Complex
algorithm). If the primary concern in regard to implementing
an application is the area, the parallelism degree can be
decreased to fit the given area. For example, the area of
the FIR Complex can be reduced to a quarter of the value
indicated by performing complex multiplication operations in
the algorithm sequentially. BilRC, and its computation model,
allow the designer to balance the area and performance.

TABLE III

TIMING PERFORMANCE OF PES

Timing constraint ALU MUL MEM
THOP(ns) 0.188 0.188 0.188
TP E (ns) 1.47 1.43 1.00

TABLE IV

AREAS OF PEs WITH 90-nm UMC PROCESS

ALU MUL MEM
No. of cells 9823 9322 4525
Height (µ) 300 300 300
Width (µ) 240 240 400

Area (mm2) 0.072 0.072 0.12
Layout utilization 87 85 87

TABLE V

CYCLE COUNT PERFORMANCE OF BENCHMARKS

Application Notes
BilRC
cycle
count

TI C64+
cycle
count

Ratio

2-D-IDCT 100 frames [24] 931 9262 9.95
maxval Array size [24] 128 22 42 1.91

dotprod Dot product, arrays
size 256 [24] 41 79 1.93

maxidx
Index of maximum,
array size 128 [24]

22 82 3.73

FIR 32-tap FIR filter, data
size 256 [24]

266 2065 8.07

vecsum Vector addition, size
256 [24]

36 106 2.94

FIR
complex

16-tap complex FIR
filter, data size

256 [24]
266 4112 15.5

16-state
viterbi

Information of size
100

513 NA NA

8-state
turbo

Section V-C 8590 NA NA

FFT Radix-2, 1024 point 10 351 NA NA
Multirate

FIR
Rate 2, 16-tap FIR

filter
1032 NA NA

Multichannel
FIR

2 channel 16-tap FIR
filter

2057 NA NA

C. Comparison to Xilinx Virtex-4 FPGA

One of the main advantages of CGRA as compared to
FPGAs is the reduction in the configuration size. This reduc-
tion allows CGRA to be configured at run time. For a compar-
ison of configuration size, Xilinx Virtex4 FPGA is used. This
FPGA is partitioned into four rows. Inside a row, 16 config-
urable logic blocks (CLB) form a column. Similarly, there
are four BRAMs and eight DSP48 blocks in a column. The
resources forming a column are configured together. Table IX
shows the number of frames required to configure different
column types [29]. A configuration frame is composed of
1312 bits. For CLB and DSP48 (the multiplier block), the
configuration stream configures both the functionality of
the blocks in the column and the interconnection network. The
configuration stream for BRAM initialization and interconnect
is separately provided [29].

To make a fair configuration size comparison, only the
required number of configuration columns should be taken
into account. This is done by using the Xilinx PlanAhead tool,
which allows all resources (CLB, DSP48, BRAM) to be placed

1296 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

TABLE VI

COMPARISON OF CONFIGURATION SIZES OF BILRC AND XILINX VIRTEX4

BilRC Xilinx Virtex4
FPGA/BilRC

conf. ratio

Application

No. of
PEs

(ALU,
MUL,
MEM)

Rows-
columns

Area
(mm2)

Util-
ization

(%)

Conf.
bits

Columns
(CLB,
DSP,

BRAM)

Conf.
bits

Utilization (%)
(SLICEM,

SLICEL, DSP,
LUT, BRAM)

idct 114, 38,
8 16-14 17.7 71 39552 32, 4, 4 1138 816 91, 89, 100,

58, 50 28.8

maxval 17, 0, 8 8-4 2.5 78 6016 6, 0, 2 225 664
71, 71, NA,

71, 100 37.5

dotprod
32, 16,

16
16-5 6.5 80 14336 16, 4, 4 676 992 58, 57, 25,

40, 100
47.2

maxidx 17, 0, 8 8-4 2.5 78 5760 6, 0, 2 225 664 70, 70, NA,
70, 100

39.2

FIR 33, 32, 1 8-16 9.98 52 22528 16, 4, 4 676 992 92, 92, 100,
28, 7 30.1

vecsum 10, 0, 24 24-3 6.3 47 12672 6, 0,6 330 624 39, 39, NA,
25, 100 26.1

FIR Complex
128, 128,

2
32-16 39.9 50 90112 40, 8, 8 1584 896 96, 96, 100,

41, 7
17.6

16-state Viterbi 76, 3, 3 11-11 9.7 68 22096 15, 1, 1 486 752 94,
93, 0, 93, 75

22

UMTS turbo 107, 0,
13

14-11 11.7 78 27904 24, 0, 4 797 696 85, 84, NA,
83, 82

28.6

FFT 25, 9, 5 5-9 3.67 87 8016 8, 2, 2 338 496 86,85, 25,
49, 63 42.2

multirate FIR 17, 16, 1 8-7 4.4 61 9856 10, 2, 2 396 224 98, 98, 100,
23, 13

40.2

multichannel FIR (18, 16,
2)

8-7 4.4 61 9856 12, 2, 2 396 224 86, 86, 100,
24, 23

46.1

Arithmetic mean 68 80, 81, 69,
60, 50

33.8

and routed within a partition block (PBlock). When drawing
a PBlock, the height must be at a row boundary since the
resources in a column are configured together. The width of
the PBlock, on the other hand, must be selected so that enough
resources exist in the PBlock.

HDL code generated from the LRC-HDL converter is used
as the input to the Xilinx ISE tool. When mapping the
applications to the FPGA, the locations of the PBlocks are
manually selected to increase the utilization of resources to
reduce configuration size. When mapping the applications to
BilRC, a minimum-sized rectangle, starting from the top-left
PE, is formed containing sufficient resources (ALU, MEM,
MUL). The BilRC placement and routing tool places PEs in
the selected rectangle. Only the interconnect resources within
the selected rectangle area are used for signal routing. The tool
is forced to use only three ports per PE side (Np = 3), and
all applications are routed without congestion. Although three
ports are enough for the selected applications, all performance
results (configuration size, area, and timing) are given for
Np = 4, leaving extra flexibility for more complex applica-
tions. The results are summarized in Table VI. For example,
the FFT algorithm requires 39 PEs arranged in nine rows
and five columns with an utilization ratio of 87% and it can
be configured with just 8016 bits.7 To implement the same
algorithm, Virtex4 requires eight CLBs, two DSP, and two
BRAM columns configured with 338 496 bits. Utilizations

7This number includes the configuration bits for unused PEs.

of various logic resources are shown in the ninth column
of the table. The last column lists the improvements in the
configuration size varying from 17.6× to 47.2×.

CGRAs are expected to provide better timing performance
as compared to FPGAs. The arithmetic units of a CGRA
are pre-placed and routed, whereas in an FPGA, these units
are formed from look-up-tables (LUTs). The critical path
for an instruction in a CGRA is formed from gates that
are, in general, faster than LUTs. In [30] the gap between
FPGA and ASIC implementations is measured, it is found
that ASICs are on the average three times faster than FPGA
implementations. This value is found by allowing the use of
the hard blocks (multiplier and memory) during algorithm
mapping to an FPGA. Since CGRAs cannot be faster than
ASICs, a well-designed CGRA is at best three times faster
than an FPGA. Table VII shows the critical path delays of
BilRC and Xilinx Virtex4 implemented with the same 90-nm
CMOS technology. The second column shows the worst case
hop count between a source PE and a destination PE. The
critical path of PEs is taken as 1.47 ns, which is the worst
performance among PEs. Improvements in the range of 1.53×
and 3.6× are obtained.

D. Comparison to Other CGRAs

The 2-D-IDCT algorithm has been implemented on many
CGRAs. The results are shown in Table VIII. In terms of
cycle count, BilRC is 3.2 times faster than the fastest CGRA,
ADRES [15]. In terms of throughput, BilRC is 2.2 times

ATAK AND ATALAR: BilRC: EXECUTION TRIGGERED CGRA 1297

TABLE VII

CRITICAL PATH COMPARISON OF BILRC AND FPGA

Application
No.
of

hops

BilRC
clock

(MHz)

Virtex4
clock

(MHz)
Speedup

idct 5 415 147 2.82

maxval 4 450 251 1.79

dotprod 4 450 125 3.6

maxidx 4 450 244 1.84

FIR 3 492 174 2.82

vecsum 4 450 247 1.82

FIR Complex 4 450 145 3.1

16-state Viterbi 5 415 204 2.03

8-state turbo 6 385 251 1.53

FFT 3 492 147 3.34

Multirate FIR 3 492 152 3.23

Multichannel FIR 3 492 167 2.94

Arithmetic mean 2.57

TABLE VIII

AREA, TIMING, AND CYCLE COUNT RESULTS FOR THE

2-D-IDCT ALGORITHM

CGRA
No.
of

PEs

Area
(mm2)

Granu-
larity

Average
cycle
ount

Clock
freq.

(MHz)

Throughput
(million

IDCT/sec)

BilRC 152 11.90 16-bit 9.3 415 44.6

ADRES 64 4 32-bit 30 600 20

MORA 22 1.749 8-bit 108 1000 10.2

MorphoSys 64 11.11 16-bit 37 NA NA

TABLE IX

CONFIGURATION FRAMES FOR FPGA RESOURCES

Column type CLB BRAM
interconnect

BRAM
content

DSP48

No. of
frames

22 20 64 21

faster than ADRES. The maximum clock frequency of BilRC
for IDCT algorithm is found to be 415 MHz. ADRES and
MORA work at a constant frequency of 600 and 1000 MHz,
respectively. The timing result of MorphoSys is not available
for 90-nm technology, and its area result is scaled to 90 nm in
the table. The lower operating frequency of BilRC is due to its
segmented interconnect network. BilRC uses a larger silicon
area for implementing the IDCT algorithm, mainly due to its
flexible segmented interconnect architecture which is crucial
for the high performance implementation of a broad range of
applications. The area result for MorphoSys includes the area
for a small RISC processor and some other peripherals. It was
reported that more than 80% of the whole chip area was used
for the reconfigurable arrays [31]. The area result for ADRES
includes the area of the VLIW processor as well.

BilRC does not require an external processor for loop
control or execution control; however, an external processor
can be attached to BilRC for the execution of sequential code
for initializations and parameter loading.

The ADRES processor is a mature CGRA. ADRES has the
significant advantage of mapping full applications from the C
language, a property that BilRC does not yet have.

TABLE X

IPC AND SD COMPARISON

FFT IDCT
IPC SD IPC SD

BilRC 17.8 54% 128 85%
ADRES [11] 23.3 37% 31(V), 42(H) 45%(V), 47%(H)
ADRES [32] 10.4 65% NA NA
ADRES [33] 12.4 78% 13.3 83%

In BilRC, PEs are statically configured, whereas the
reported CGRAs rely on dynamic reconfiguration. In general,
dynamically reconfigurable CGRAs are expected to provide
better PE utilization. However, due to its execution-triggered
computation model and flexible interconnect architecture,
BilRC provides better or comparable PE utilization. For
example, BilRC requires 152 PEs for the IDCT algorithm with
an average IPC of about 128 [3]. Therefore, the scheduling
density (SD) is about 85%, whereas ADRES [11] has SD of
45% for the vertical phase of IDCT (V) and 66% for the
horizontal phase of IDCT (H). Table X compares BilRC with
three ADRES implementations.

VII. CONCLUSION

We have presented BilRC and its LRC language, capable
of implementing state-of-the-art algorithms with very good
performance in speed, area utilization, and configuration size.
BilRC contains three different kinds of PEs. Using 90-nm
technology, 14 16-bit PEs can fit into 1 mm2 of silicon. The
total number of PEs is equal to the number of instructions in
LRC code. The FFT algorithm can be implemented with just
39 instructions.

The reduction in configuration size is possible mainly for
two reasons. First, 17-bit signals were routed together in
BilRC, whereas in an FPGA each bit was individually routed.
Second, the functionality of a PE was selected with an eight-bit
opcode, whereas in an FPGA functionality was programmed
by filling in several LUTs. The configuration size, area, and
timing performance can be further improved by optimizing the
interconnect architecture.

BilRC can be used as an accelerator attached to a DSP
processor for applications requiring high computation power.
Due to the run-time configurability of BilRC, several applica-
tions can be run in a time-multiplexed manner. BilRC may also
be used as an alternative to FPGAs, especially for applications
having word level granularity. Almost all telecommunications
and signal processing algorithms have word-level granularity.
The main advantages of BilRC as compared to FPGAs are
run-time configurability due to reduced configuration size,
reduced compilation time, and faster frequency of operation.

REFERENCES

[1] T. Vogt and N. Wehn, “A reconfigurable ASIP for convolutional and
turbo decoding in an SDR environment,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 16, no. 10, pp. 1309–1320, Oct. 2008.

[2] O. Muller, A. Baghdadi, and M. Jezequel, “From parallelism levels to
a multi-ASIP architecture for turbo decoding,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 17, no. 1, pp. 92–102, Jan. 2009.

1298 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 7, JULY 2013

[3] O. Atak and A. Atalar, “An efficient computation model for coarse
grained reconfigurable architectures and its applications to a reconfig-
urable computer,” in Proc. 21st IEEE Int. Conf. Appl.-Specific Syst. Arch.
Process., Jul. 2010, pp. 289–292.

[4] R. Hartenstein, “A decade of reconfigurable computing: A visionary
retrospective,” in Proc. Eur. Design, Autom. Test Conf., 2001, pp.
642–649.

[5] B. De Sutter, P. Raghavan, and A. Lambrechts, “Coarse-grained reconfig-
urable array architectures,” in Handbook of Signal Processing Systems,
S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala, Eds.
New York: Springer-Verlag, 2010, pp. 449–484.

[6] K. Compton and S. Hauck, “Reconfigurable computing: A survey of
systems and software,” ACM Comput. Surv., vol. 34, no. 2, pp. 171–210,
2002.

[7] Y. Kim and R. Mahapatra, “Dynamic context compression for low-power
coarse-grained reconfigurable architecture,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 18, no. 1, pp. 15–28, Jan. 2010.

[8] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R.
Taylor, “PipeRench: A reconfigurable architecture and compiler,” IEEE
Comput., vol. 33, no. 4, pp. 70–77, Apr. 2000.

[9] C. Ebeling, C. Fisher, G. Xing, M. Shen, and H. Liu, “Implementing an
OFDM receiver on the RaPiD reconfigurable architecture,” IEEE Trans.
Comput., vol. 53, no. 11, pp. 1436–1448, Nov. 2004.

[10] C. Ebeling, D. Cronquist, and P. Franklin, “RaPiD - reconfigurable
pipelined datapath,” in Field-Programmable Logic Smart Applications,
New Paradigms and Compilers (Lecture Notes in Computer Science),
R. Hartenstein and M. Glesner, Eds. Berlin, Germany: Springer-Verlag,
1996.

[11] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling,” IEE Proc. Comput. Digital
Tech., vol. 150, no. 5, pp. 255–61, Sep. 2003.

[12] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins,
“ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix,” in Field Programmable Logic
and Application (Lecture Notes in Computer Science), vol. 2778,
P. Y. K. Cheung and G. Constantinides, Eds. Berlin, Germany:
Springer-Verlag, 2003, pp. 61–70.

[13] B. Mei, A. Lambrechts, J.-Y. Mignolet, D. Verkest, and R. Lauwereins,
“Architecture exploration for a reconfigurable architecture template,”
IEEE Design Test Comput., vol. 22, no. 2, pp. 90–101, Mar.–Apr. 2005.

[14] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev, “Architec-
tural exploration of the ADRES coarse-grained reconfigurable array,”
in Reconfigurable Computing: Architectures, Tools and Applications
(Lecture Notes in Computer Science), P. Diniz, E. Marques, K. Bertels,
M. Fernandes, and J. Cardoso, Eds. Berlin, Germany: Springer-Verlag,
2007.

[15] M. Berekovic, A. Kanstein, B. Mei, and B. De Sutter, “Mapping of
nomadic multimedia applications on the ADRES reconfigurable array
processor,” Microprocess. Microsyst., vol. 33, no. 4, pp. 290–294, Jun.
2009.

[16] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and
E. C. Filho, “MorphoSys: An integrated reconfigurable system for
data-parallel and computation-intensive applications,” IEEE Trans.
Comput., vol. 49, no. 5, pp. 465–481, May 2000.

[17] M. Lanuzza, S. Perri, P. Corsonello, and M. Margala, “Energy effi-
cient coarse-grain reconfigurable array for accelerating digital signal
processing,” in Integrated Circuit and System Design. Power and
Timing Modeling, Optimization and Simulation (Lecture Notes in
Computer Science), L. Svensson and J. Monteiro, Eds. Berlin, Germany:
Springer-Verlag, 2009.

[18] W. Vanderbauwhede, M. Margala, S. Chalamalasetti, and S. Purohit,
“Programming model and low-level language for a coarse-grained
reconfigurable multimedia processor,” in Proc. Int. Conf. Eng. Reconfig.
Syst. Algorithms, Las Vegas, NV, Jul. 2009, pp. 1–7.

[19] A. H. Veen, “Dataflow machine architecture,” ACM Comput. Surv.,
vol. 18, pp. 365–396, Dec. 1986.

[20] C. Jang, J. Kim, J. Lee, H.-S. Kim, D.-H. Yoo, S. Kim, H.-S.
Kim, and S. Ryu, “An instruction-scheduling-aware data partitioning
technique for coarse-grained reconfigurable architectures,” in Proc.
SIGPLAN/SIGBED Conf. Lang., Compil. Tools Embedded Syst., 2011,
pp. 151–160.

[21] B. De Sutter, O. Allam, P. Raghavan, R. Vandebriel, H. Cappelle,
T. V. Aa, and B. Mei, “An efficient memory organization for high-ILP
inner modem baseband SDR processors,” J. Signal Process. Syst.,
vol. 61, no. 2, pp. 157–179, Nov. 2010.

[22] V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for fpga research,” in Field-Programmable Logic and Applica-
tions (Lecture Notes in Computer Science), W. Luk, P. Cheung, and
M. Glesner, Eds. Berlin, Germany: Springer-Verlag, 1997.

[23] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based
performance-driven router for FPGAs,” in Proc. 3rd Int. ACM Symp.
Field-Program. Gate Arrays, 1995, pp. 111–117.

[24] Texas Instruments Inc. (2010, Jan.). TMS320C674x Low Power DSPs,
Dallas, TX [Online]. Available: http://focus.ti.com/en/download/dsp/
c64plusbmarksasmfiles.zip

[25] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes. 1,” in Proc. Int.
Conf. Commun., Geneva, Switzerland, 1993, pp. 1064–1070.

[26] European Telecommunications Standards Institute, Universal Mobile
Telecommunications System (UMTS): Multiplexing and Channel Coding
(FDD), TS Standard 125.212, 2000.

[27] M. C. Valenti and J. Sun, “The UMTS turbo code and an efficient
decoder implementation suitable for software-defined radios,” Int. J.
Wireless Inf. Netw., vol. 8, no. 4, pp. 203–215, 2001.

[28] Synopsys Timing Constraints and Optimization User Guide Version
C-2009.06. (2009, Jun.) [Online]. Available: http://acms.ucsd.edu/_files/
tcoug.pdf

[29] C. Carmichael and C. W. Tseng. Correcting Single-Event Upsets
in Virtex-4 Platform FPGA Configuration Memory. (2011, Apr.)
[Online]. Available: http://www.xilinx.com/support/documentation/
application_notes/xapp1088.pdf

[30] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2,
pp. 203–215, Feb. 2007.

[31] M.-H. Lee, H. Singh, G. Lu, N. Bagherzadeh, F. J. Kurdahi, E. M.
Filho, and V. C. Alves, “Design and implementation of the MorphoSys
reconfigurable computing processor,” J. VLSI Signal Process., vol. 24,
nos. 2–3, pp. 147–164, Mar. 2000.

[32] B. Bougard, B. De Sutter, S. Rabou, D. Novo, O. Allam, S. Dupont,
and L. Van der Perre, “A coarse-grained array based baseband processor
for 100 Mb/s+ software defined radio,” in Proc. Conf. Design, Autom.
Test Eur., 2008, pp. 716–721.

[33] B. De Sutter, P. Coene, T. Vander Aa, and B. Mei,
“Placement-and-routing-based register allocation for coarse-grained
reconfigurable arrays,” in Proc. ACM SIGPLAN-SIGBED Conf. Lang.,
Compil., Tools Embedded Syst., 2008, pp. 151–160.

Oguzhan Atak received the B.S. degree from
Eskisehir Osmangazi University, Eskisehir, Turkey,
in 2002, and the M.S. degree from Bilkent Univer-
sity, Ankara, Turkey, in 2006, both in electrical engi-
neering, where he is currently pursuing the Ph.D.
degree in electrical engineering.

He was a Visiting Researcher with RWTH,
Aachen, Germany, in 2005. His current research
interests include application-specific instruction set
processors, field programmable gate arrays, and
coarse-grained reconfigurable architectures.

Abdullah Atalar (M’88–SM’90–F’07) received the
B.S. degree from Middle East Technical University,
Ankara, Turkey, in 1974, and the M.S. and Ph.D.
degrees from Stanford University, Stanford, CA, in
1976 and 1978, respectively, all in electrical engi-
neering.

He was with Hewlett Packard Laboratory, Palo
Alto, CA, in 1979. From 1980 to 1986, he was
an Assistant Professor with Middle East Technical
University. In 1986, he joined Bilkent University,
Ankara, as the Chairman of the Electrical and Elec-

tronics Engineering Department and was involved in the founding of the
Department, where he is currently a Professor. In 1995, he was a Visiting
Professor with Stanford University. From 1996 to 2010, he was the Provost
of Bilkent University. He is currently the Rector with the same university.
His current research interests include micromachined devices and microwave
electronics.

Dr. Atalar was a recipient of the Science Award of TUBITAK in 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

