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Abstract—In this paper, mean acquisition time (MAT) analysis
of fixed-step serial search (FSSS) algorithms is presented. First,
it is shown that the MAT of an FSSS algorithm can be obtained
from that of a conventional serial search (CSS) algorithm after
a certain mapping of the uncertainty region. Then, a generic
formula for the MAT of FSSS algorithms is derived, which
is valid for both dense and sparse channel environments. In
addition, MAT formulas for high signal-to-noise ratio scenarios,
for large uncertainty regions, and for dense channels are obtained
as special cases of the generic solution. Finally, simulation results
are presented to verify the analysis and to investigate the factors
that affect the optimal step size for FSSS algorithms.

Index Terms—Acquisition, mean acquisition time (MAT), con-
ventional serial search (CSS), fixed-step serial search (FSSS).

I. INTRODUCTION

A SPREAD spectrum receiver first needs to perform
sequence synchronization before data demodulation can

commence. This sequence synchronization is performed by a
coarse sequence alignment stage, called acquisition, followed
by a fine alignment stage, called tracking [1]. The main
task of an acquisition algorithm is to coarsely determine the
correct sequence phase of an incoming signal with respect to
a local reference (template) signal at the receiver. In order
to determine the correct phase, the receiver needs to test a
number of possible sequence phases, which are also called
cells. The cells for which the template signal and the incoming
signal have the same phase are called in-phase cells. Due to
multipath propagation, there can be multiple in-phase cells
in a system, in which case the acquisition process can stop
whenever one of the in-phase cells is detected.

Acquisition algorithms can be broadly classified into serial
and parallel schemes. In a parallel acquisition algorithm,
multiple sequence phases are tested simultaneously, whereas
a serial acquisition algorithm tests one cell at a time. The
selection between parallel and serial schemes mainly depends
on performance and cost trade-offs. The main focus of this
work is on serial search acquisition algorithms, which offer
low cost solutions to the acquisition problem.

A common criterion for performance of acquisition algo-
rithms is the mean acquisition time (MAT), which defines the
average time until acquisition is achieved [2]. In order to min-
imize the MAT, both the search algorithm, which determines
the order in which the possible phases are searched, and the
decision rule, which determines whether a given cell is an in-
phase cell, should be optimized. In order to minimize the MAT
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for a given decision rule, various serial search algorithms can
be considered. The conventional serial search (CSS) algorithm
searches the possible cells consecutively until acquisition is
achieved [2]. On the other hand, other techniques such as
fixed-step serial search (FSSS) and bit reversal algorithms test
the cells in specific non-consecutive orders [3], [4], [5].

In the presence of a single in-phase cell in the uncertainty
region, which is defined as the index set corresponding to
all possible phases of the incoming signal, the order of the
search is not important, and the serial search algorithms have
the same MAT. The MAT formula for the case of a single
in-phase cell is derived in [2]. In the presence of multiple
in-phase cells, the search algorithm becomes an important
factor in determining the MAT. In [3], it is shown that the
FSSS and the bit-reversal algorithms outperform the CSS
algorithm in the absence of noise in the system. The MAT
of the CSS algorithm for multiple in-phase cells is derived
in [6] by assuming that the search always starts at an out-
of-phase cell. For an uncertainty region with identical and
consecutive in-phase cells, an optimization theory framework
is established in [5] and [7] to obtain upper and lower bounds
on MATs of serial search algorithms, and to show that the
FSSS algorithm achieves a near-optimal MAT. In [8], MAT
formulas for various serial search algorithms are provided,
but the analysis implicitly assumes that the first in-phase cell
position is fixed for all cases, which can result in different
MATs from those for practical scenarios, as stated in [5].
Finally, [9] proposes energy combining from multiple cells in
order to increase acquisition performance of ultra-wideband
(UWB) systems.

The main purpose of this work is to provide a generic
closed-form MAT expression for the FSSS algorithm. As
studied in [5], the FSSS algorithm has a near-optimal MAT
in certain scenarios; hence, it is important to have a closed-
form MAT expression of that scheme for system and algorithm
design purposes. Unlike previous studies, the current work
considers a generic framework, in which the in-phase cells do
not have to be identically distributed or consecutive (i.e., the
multipath channel can be dense or sparse with any power delay
profile), the serial search can start from any cell including the
in-phase cells, and the averaging over various values of the
first in-phase cell position is performed in order to obtain
realistic MATs. In order to provide such a generic MAT
expression, it is first shown that averaging over the various
positions of the first in-phase cell corresponds to a mapping of
the FSSS MAT calculation problem into a CSS MAT calcula-
tion problem for a modified uncertainty region. Then, generic
MAT formulas are obtained and simple approximations are
presented for special cases (Section III). Simulation results
are presented in order to verify the theoretical analysis and
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to investigate the optimal step size of the FSSS algorithm for
various systems parameters (Section IV). Finally, concluding
remarks are made (Section V), and implications of the study
regarding the derivation of generic MAT expressions for any
serial search algorithm are discussed.

II. SYSTEM MODEL AND SERIAL SEARCH TECHNIQUES

Let N and L represent the total number of cells in the un-
certainty region and the number of in-phase cells, respectively.
The set of indices for the uncertainty region can be expressed
as

U = {1, 2, . . . , N} . (1)

Similarly, the indices for the in-phase cells are given by

L̃ =
{
l̃1, l̃2, . . . , l̃L

}
, (2)

where l̃i ∈ {1, 2, . . . , N} represents the index for the ith in-
phase cell, for i = 1, 2, . . . , L. Note that the in-phase cells
do not have to be adjacent in this formulation; therefore, the
analysis considers both sparse and dense channels.

For a given multipath channel profile, l̃1 can take any value
in U with equal probability, assuming that there is no prior
information about the phase delay of the incoming signal.

For an uncertainty region as in (1), a serial search algorithm
tests one cell at a given time. If the signal is detected in an
in-phase cell, the acquisition state is reached and the search
stops. Otherwise, the next cell is tested and that procedure
continues until the acquisition state is reached. Whenever an
out-of-phase cell is declared as an in-phase cell due to noise,
which is called a false alarm (FA), additional verification tests
are performed. If the cell is in fact an out-of-phase cell, it is
assumed that the verification stage uncovers that. However, the
verification process causes an additional time delay, which is
called the penalty time for an FA. Then, the search continues
with the next cell. It is assumed that each out-of-phase cell
has the same FA probability for a given system [2], [6].

The testing order of a serial search is determined by the
search strategy. For example, the CSS algorithm searches for
an in-phase cell by starting from the first index and searching
all the cells sequentially until acquisition. On the other hand,
an FSSS algorithm with a step size of M , denoted by FSSS-
M , searches the cells in the following order:

S = {1, 1 ⊕ M, 1 ⊕ 2M, . . . , 1 ⊕ (N − 1)M} , (3)

where x⊕y represents a modulo-N addition defined as x⊕y =
x+y−kN for some unique integer k such that x+y−kN ∈
U . Note that M and N should be relatively prime to ensure
that all the cells in the uncertainty region U can be tested by
the FSSS-M algorithm [5]. Also note that FSSS-M algorithm
reduces to the CSS algorithm for M = 1.

III. MAT ANALYSIS

A. Relation between CSS and FSSS Algorithms

In order to obtain a closed-form expression for the MAT of
FSSS algorithms, the following proposition will be used.

Proposition 1: Let L̃ = {l̃1, l̃2, . . . , l̃L} denote the positions
of the in-phase cells in an uncertainty region of N cells. For

Fig. 1. The FSSS-2 algorithm for N = 3. For three different starting cells,
three different search orders are obtained. Overall, the algorithm corresponds
to the CSS algorithm when the cells are re-organized since the new cell
structures are circularly shifted versions of each other.

this scenario, the MAT of an FSSS-M algorithm is equal to
that of a CSS algorithm for a scenario in which the in-phase
cell positions are given by

L = {lj ∈ {1, 2, . . . , N} | l̃j = 1 ⊕ (lj − 1)M, j = 1, . . . , L} .
(4)

Proof: An intuitive explanation of the proposition is pro-
vided in Fig. 1. In the following, a mathematical proof is
developed.

The MAT of the FSSS-M algorithm for a given set of in-
phase cell indices L̃ is expressed as

MAT =
1
N

N∑
i=1

E{T | ci, L̃r,S} , (5)

where E{T | ci, L̃r,S} represents the MAT for the serial
search algorithm represented by S in (3) when the cells,
denoted by c = [c1 c2 · · · cN ], are investigated starting from
the ith one, i.e., ci

.= [ci · · · cN c1 · · · ci−1] (c.f. Fig. 1),
and the relative positions of the in-phase cells are specified
by L̃r = {1, l̃2,1, . . . , l̃L,1} with l̃j,1 = l̃j ⊕ (1 − l̃1) for
j = 1, 2, . . . , L. Since the index i is uniformly distributed in
{1, . . . , N}, the overall MAT is calculated by the averaging
operation in (5).

Since the FSSS-M algorithm searches the cells in steps of
M cells according to S, (5) becomes

MAT =
1
N

N∑
i=1

E{T | c̃i,Lr,U} , (6)

where c̃i
.= [ci ci⊕M ci⊕2M · · · ci⊕(N−1)M ] for i =

1, 2, . . . , N (c.f. Fig. 1), U = {1, 2, . . . , N}, and Lr =
{1, l2,1, . . . , lL,1} with lj,1 = lj ⊕ (1 − l1) and l̃j = 1 ⊕
(lj − 1)M for j = 1, 2, . . . , L. In other words, searching the
cells in ci according to S for a given in-phase cell profile
L̃r is the same as searching the cells in c̃i sequentially, i.e.,
according to U , for the in-phase cell profile Lr.

Finally, it can be shown that c̃1, c̃2, . . . , c̃N are all distinct
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Fig. 2. Flow graph diagram for an uncertainty region of N cells, where
{1, l2, . . . , lL} represent the indices of the in-phase cells.

and circularly shifted versions of each other.1 Therefore, (6)
corresponds to the MAT of a CSS algorithm for Lr and the cell
order specified by [c1 c1⊕M c1⊕2M · · · c1⊕(N−1)M ] without
loss of generality. In other words, (6) can be expressed as

MAT =
1
N

N∑
i=1

E{T | l1 = i,Lr,U} , (7)

and lj is given by the relation l̃j = 1 ⊕ (lj − 1)M for j =
1, 2, . . . , L, which completes the proof. �

Proposition 1 implies that the MAT of the FSSS-M algo-
rithm can be calculated in two steps. First, the positions of
the in-phase cells are mapped into a new set according to
(4). Then, the MAT of a CSS algorithm is calculated for the
new in-phase cell positions, which is equal to the MAT of the
FSSS-M algorithm for the original in-phase cell positions.
Therefore, obtaining a generic formula for the MAT of FSSS
algorithms is equivalent to obtaining a formula for the MAT
of a CSS algorithm for a given set L = {l1, l2, . . . , lL} of
in-phase cell positions.

B. Generic MAT Formulas

In order to calculate the MAT of a CSS algorithm, the flow
graph approach can be employed [2], [6]. Unlike previous
studies, the formulation in this paper considers arbitrary po-
sitions for the in-phase cells specified by L = {l1, l2, . . . , lL}
(Fig. 2), instead of assuming adjacent in-phase cells [5], [6].
In other words, the derivations in this section are valid not
only for dense channels but also for sparse channels.

Let H0(z) represent the transfer function (“path gain”)
from an out-of-phase cell to the next cell, which is given

1Note that this is not true in general for other search algorithms than the
FSSS. For example, for the search algorithm specified by S̃ = {1, 3, 4, 2},
c̃1, c̃2, c̃3 and c̃4 are given, respectively, by [c1 c3 c4 c2], [c2 c4 c1 c3],
[c3 c1 c2 c4] and [c4 c2 c3 c1], which are not circularly shifted versions of
each other.

by H0(z) = (1 − PFA)zτ + PFAzτ+τc, where PFA is the
FA probability, z represents the unit delay operator, and τc

denotes the penalty time [2]. Similarly, the transfer functions
from the ith in-phase cell to the acquisition state, and to the
next cell, are given, respectively, by Hi(z) = PDiz

τ and
Mi(z) = (1 − PDi)zτ , where PDi represents the probability
of detection for the ith in-phase cell, for i = 1, 2, . . . , L (Fig.
2).

The MAT for a CSS algorithm can be calculated from
MAT = 1

N

∑N
j=1

[
dT̃j(z)

dz

] ∣∣
z=1

, where T̃j(z) denotes the
transfer function from cell j to the acquisition state [2]. For
a given set of in-phase cell indices, L = {l1, l2, . . . , lL}, with
l1 = 1 without loss of generality, it can be shown, after some
manipulation, that the MAT can be calculated as

MAT =
1
N

L+1∑
i=1

li∑
j=li−1+1

[
dTi,j(z)

dz

] ∣∣∣∣
z=1

, (8)

where l0
.= 0 and lL+1

.= N are defined for simplicity of the
expressions, and

Ti,j(z) = [H0(z)]li−j

[
Gi(z) +

Ni(z)G1(z)
1 − N1(z)

]
, (9)

with

Gi(z) =
L∑

m=i

Hm(z) [H0(z)]lm−li−m+i
m−1∏
n=i

Mn(z) , (10)

Ni(z) = [H0(z)]N−li−L+i
L∏

n=i

Mn(z) . (11)

Then, a generic expression for the MAT can be obtained
from (8)-(10) as

MAT =
(N − lL + 1)Γ
N(1 − A1,L)

+
1
N

L∑
x=2

(lx − lx−1) [(lx − lx−1 − 1)β(x) + θ(x)] , (12)

where Ai,j
.=
∏j

n=i(1 − PDn) for i ≤ j and Ai,j
.= 1 for

i > j,

Γ
.
= τ

L−1∑
i=0

A1,i + τp

L∑
i=1

(
li − i +

N − lL
2

)
PDiA1,i−1

+ τp(N − L)A1,L , (13)

β(x)
.
=

τp

2

(
Ax,L +

L∑
i=x

PDiAx,i−1

)
, (14)

θ(x)
.
=

L∑
i=x

fi,x(0, 0)PDiAx,i−1 +
Ax,L

1 − A1,L

×
[
A1,L [(N − L)τp + Lτ ] +

L∑
i=1

fi,x(L, N − L)PDiA1,i−1

]
,

(15)

with fi,x(a, b) .= (i − x + 1 + a)τ + (li − lx − i + x + b)τp,
and τp

.= τ + PFAτc.

Note that (12)-(15) provide closed-form expressions for
the MAT calculation of any channel profile specified by
L = {l1, l2, . . . , lL}.
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C. Special Cases

In the case of a dense multipath channel specified by L =
{1, 2, . . . , L}. the MAT in (12)-(15) can be simplified as

MAT =
(N − L + 1)Γ
N(1 − A1,L)

+
1
N

L∑
x=2

[
Ax,Lθ1(x)
1 − A1,L

+ θ2(x)
]

,

(16)

where

Γ = τ

L−1∑
i=0

A1,i +
τp

2
(N − L)(1 + A1,L) ,

θ1(x) .= τp(N − L) + τ(L − x + 1)(1 − A1,L) + τ

L−1∑
i=0

A1,i ,

θ2(x) .= τ

L∑
i=x

(i − x + 1)PDiAx,i−1 . (17)

It is observed that this MAT formula is not exactly equal to
that in [6] for dense multipath channels, since the derivation in
that study assumes that the CSS can start only from the out-of-
phase cells. Hence, the formulation in (16)-(17) removes that
constraint to provide a more generic expression. Also note
that the MAT formula in (16)-(17) reduces to that in [2] for a
single path channel, i.e., for L = 1.

Secondly, consider a scenario with PDi = 1 for i =
1, 2, . . . , L, i.e., the in-phase cells can always be detected
correctly. In fact, this scenario can approximate high signal-
to-noise ratio (SNR) situations for in-phase cell outputs. Then,
the following MAT formula can be obtained from (12)-(15)
as

MAT =
(N − lL + 1)

N

[
τ +

τp

2
(N − lL)

]

+
1
N

L∑
x=2

(lx − lx−1)
[
(lx − lx−1 − 1)

τp

2
+ τ
]

, (18)

which reduces to τ + 0.5τp(N −L)(N −L + 1)/N for dense
channels.

Finally, for N � L and li − li−1 � N , i = 1, 2, . . . , L, the
MAT can approximated by

MAT ≈ τp

1 − A1,L

[
NA1,L +

L∑
i=1

(
li − i +

N − lL
2

)
PDiA1,i−1

]
,

(19)

which reduces to the MAT expression in [6] for dense channels
(c.f. eqn. (4) in [6]). Note that the MAT formula in (19)
provides an approximate result when the total number of cells,
N , is considerably larger than the number of in-phase cells and
the maximum distance between the in-phase cells.

IV. SIMULATION RESULTS

In this section, simulation results are presented in order to
verify the theoretical analysis in the previous section. For the
simulation scenario, the cell outputs are modeled as

yi =

{
αi + ni , i ∈ L̃
ni , otherwise

, (20)

where α = [α1 α2 · · ·αL] represent the signal components in
the in-phase cell outputs, and ni is the noise in the ith cell
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Fig. 3. Exact and approximate theoretical results and simulations results
versus SNR for various numbers of cells in the uncertainty region.

output. In the simulations, ni’s are modeled as independent
and identically distributed zero mean Gaussian random vari-
ables with variance σ2. Then, in the acquisition process, the
absolute value of yi is compared to a threshold δ in order to
determine if the cell is an in-phase cell or not. In other words,
the cell is declared as an in-phase cell if |yi| > δ, and as an
out-of-phase cell otherwise. In order to have a systematic way
of setting the threshold, the threshold is set to provide a desired
FA probability PFA. Specifically, the threshold is determined
from δ = σ Q−1 (0.5PFA), where Q−1(x) is the inverse of
the Q-function specified as Q(x) = 1√

2π

∫∞
x

e−t2/2dt. In the
simulations, PFA = 0.1 is used to determine the threshold for
a given noise level. For MAT calculations, it is assumed that
testing of each cell takes one time unit (i.e., τ = 1), and each
FA results in an additional 4 time units (i.e., τc = 4).

Note that the derivations in the previous section do not
assume any probability distribution of the cell outputs or any
specific cell testing technique. Therefore, the previous settings
are selected only to provide an example scenario.

First, the exact and approximate MAT expressions in Sec-
tion III are compared against the simulation results for a signal
with 3 in-phase cells specified by α = [1 − 0.9 0.75] and
L̃ = {1, 2, 3}. The curves in Fig. 3 illustrate the MATs for an
FSSS-1 (i.e., CSS) algorithm for N = 10 and N = 50 cells
in the uncertainty region. It is observed that the theoretical
results obtained from (12)-(15) for the generic case and
from (16)-(17) for dense channels match perfectly with the
simulation results. On the other hand, the MAT expression in
(18) gets accurate for high SNRs (labeled as ‘Theoretical -
Full Detection’ in Fig. 3), since the detection probabilities
converge to 1 as the SNR increases, which is defined as
SNR = 10 log

(
1

σ2

∑L
i=1 |αi|2

)
. Finally, the asymptotic result

in (19) for large number of cells in the uncertainty region, N ,
is observed to be quite accurate even for small N values.

Next, the effects of the step size M on the MAT are
investigated for N = 101 cells in the uncertainty region. A
Nakagami-fading channel with 4 paths is considered, where
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Fig. 4. MAT versus SNR for various step sizes and for a dense channel.
Theoretical results and the simulations are in close agreement.
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Fig. 5. MAT versus SNR for various step sizes and for a sparse channel.
Theoretical results and the simulations are in close agreement.

the amplitude of path i is distributed as a Nakagami-m random
variable with parameter Ωi. The average power of each path
is modeled as exponentially decaying with its arrival time;
i.e., Ωi ∝ exp{−iλ} with λ = 0.5 for i = 1, 2, 3, 4, and
m = 3 is employed. Fig. 4 illustrates the MATs obtained
from the simulations and from (12)-(15) for various step sizes
when L̃ = {1, 2, 3, 4} (averages over 100 channel realizations
are considered). Note that the theoretical results are plotted
via the solid lines and the geometric shapes representing the
simulation results overlap perfectly with the theoretical lines.
Note that M = 4 provides the lowest MATs, which is in
accordance with the common intuition that the optimal step
size should be equal to the number of in-phase cells [8].
However, this is not true in all cases, as investigated below.

Fig. 5 considers the same parameter setting as in the pre-
vious case except that the delay differences between consec-
utive paths are modeled according to an exponential random
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Fig. 6. MAT versus SNR for various step sizes and for a dense channel.

variable with a mean value of 10 cells (each delay value is
rounded up to the next integer cell index). In other words, the
channel is not assumed to be dense in this scenario. Similar to
the previous case, a good agreement between theoretical and
simulation results are observed. However, the optimal step size
is not 4 anymore, which shows that the optimal step size is not
necessarily given by the number of in-phase cells for sparse
channels.

Finally, the MATs are plotted versus SNR for various
step sizes when the system is specified by N = 101,
L̃ = {1, 2, 3, 4, 5, 6} and α = [1 −0.9 0.75 −0.25 −0.1 0.05].
From Fig. 6, it is observed that the optimal step size varies
with SNR. For example, at SNR = 15 dB, M = 3 has a lower
MAT than the others, whereas at SNR = 20 dB, M = 4 is
the one with the lowest MAT. Therefore, it is concluded that
the optimal step size depends on both the channel profile and
the SNR.

V. CONCLUSIONS AND EXTENSIONS

Generic closed-form expressions for MATs of FSSS al-
gorithms have been derived. First, it has been shown that
the MAT of an FSSS algorithm is equal to that of a CSS
algorithm when the in-phase cells are mapped according to
the step size of the FSSS. Then, a generic MAT formula has
been derived based on the flow graph approach. In addition,
simple MAT expressions have been obtained for special cases.
Finally, the simulations results have been presented to verify
the theoretical analysis and to investigate the relation between
system parameters and the MAT.

Note that the MAT formula in (6) is valid for any serial
search algorithm when c̃i’s are obtained according to that
algorithm. In general, c̃i’s are not circularly shifted versions
of each other for algorithms other than the FSSS. Therefore,
the MATs for such algorithms cannot simply be obtained
from that of a CSS algorithm. However, it is straightforward
to obtain E{T | c̃i,Lr,U} similarly to the MAT derivations
in Section III for each c̃i and to obtain the MAT from
the generic expression in (6), which, however, results in an
implicit expression.
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