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SUMMARY

Aims: This study investigates the expression patterns of BCL2 (B-cell CLL/lymphoma2)

family of proteins and the extent of vascular smooth muscle cell (VSMC) apoptosis in tho-

racic aortic aneurysms (TAA), type-A aortic dissections (TAD), and nondilated ascending

aortic samples. Methods: Aortic wall specimens were obtained from patients undergoing

surgical repair for TAA (n = 24), TAD (n = 20), and normal aortic tissues from organ donors

(n = 6). The expression pattern of BCL2, BCL2L1 (BCL2-like1), BAK1 (BCL2-antagonist/

killer1), and BAX (BCL2-associated X protein) proteins was investigated by immunohisto-

chemistry. Furthermore, colocalization of alpha smooth muscle actin (ACTA2) and caspase3

(CASP3) in aortic VSMCs was analyzed by double-immunofluorescence staining. Onset of

DNA fragmentation was measured by TUNEL assay. Results: Apoptotic index was signifi-

cantly increased in both TAD group (31.3 ± 17.2, P < 0.001) and TAA group (21.1 ± 12.7,

P = 0.001) relative to control aortas (2.0 ± 1.2). Anti-CASP3 and ACTA2 double-immuno-

staining confirmed apoptosis in VSMCs in TAA and TAD groups but not in controls. Proa-

poptotic BAX expression was significantly elevated in VSMCs of TAA patients, compared

with that of controls (OR = 20; P = 0.02; 95% CI, 16–250). In contrast, antiapoptotic

BCL2L1 expression was higher in controls compared with that of TAA group (OR = 11.2;

P = 0.049; 95% CI, 1.0–123.9). Furthermore, BAX/BCL2 ratio was significantly increased

in both TAA (1.2 ± 0.7, P < 0.001) and TAD (0.6 ± 0.4, P = 0.05) groups relative to controls

(0.2 ± 0.1, P < 0.001). Conclusions: Apoptotic VSMC depletion in human TAA/TAD is

associated with disturbance of the balance between proapoptotic and antiapoptotic mem-

bers of the BCL2 family proteins, which may have a role in the pathogenesis of vascular

remodelling in aortic disease. In light of the future studies, targeting apoptotic pathways in

TAA and TAD pathogenesis may provide therapeutic benefits to patients by slowing down

the progression and even possibly preventing the TAD.

Introduction

Apoptosis, as introduced by Kerr et al. [1], is a process of nonin-

flammatory cell death with distinctive morphological and bio-

chemical features. It is crucial for normal development of several

systems including the cardiovascular system. Vascular smooth

muscle cell (VSMC) death by apoptosis has increasingly been rec-

ognized in normal physiological circumstances such as closure of

ductus arteriosus and in several human vascular pathologies [2,

3]. It has been demonstrated that medial VSMC density decreases

in human abdominal aortic aneurysm (AAA) tissues associated

with evidence of chronic, low-level VSMC death, fragmentation

of elastin, and matrix degradation [4–6]. However, neuroectoder-

mal origin of VSMCs located in ascending aorta differs from

abdominal aortic counterparts. VSMC depletion may also be

involved in ascending aortic aneurysm formation, initiation of dis-

section, propagation, and rupture. Indeed, He et al. [7] had previ-

ously documented increased amount of apoptotic VSMCs by

terminal transferase deoxyuridine triphosphate nick-end labeling

(TUNEL) in the media of both thoracic aortic aneurysms (TAA)

and Stanford type-A dissections (TAD).

Extensive studies regarding the molecular mechanisms of apop-

tosis made it clear that proteins belonging to the BCL2 (B-cell

CLL/lymphoma 2) family have a critical role in regulating mito-

chondrion-mediated apoptosis. BCL2 family of proteins consists of

both proapoptotic and antiapoptotic members that are involved in

the regulation of apoptosis by forming homo/heterodimers on the

outer mitochondrion membrane [8]. The relative concentrations
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of these proteins determine the survival or death of a cell by con-

trolling the release of mitochondrial apoptogenic factors, cyto-

chrome c, and apoptosis-inducing factors, which activate the

downstream phases, including the activation of the caspases [9].

The ratio of antiapoptotic BCL2 family proteins (BCL2 and

BCL2L1 [BCL2-like 1]) to proapoptotic members (BAX [BCL2-

associated X protein], BID [BH3 interacting domain death ago-

nist], BIK [BCL2-interacting killer; apoptosis-inducing], and

BAK1 [BCL2-antagonist/killer 1]) has been shown to have a criti-

cal role in whether apoptotic cell death is initiated or the cell con-

tinues to survive [10].

The objective of this study was to elucidate the role of BCL2

family of proteins in aortic VSMC apoptosis in TAD and TAA

patients. Thus, we investigated the relevance of apoptosis together

with the expression patterns of the different BCL2 family of pro-

teins and caspase 3 (CASP3, apoptosis-related cysteine peptidase)

using immunolabeling in successive sections of aorta from TAD/

TAA patients and controls. Our results may provide useful insights

into the differential involvement of the BCL2 family of proteins

and CASP3 in human TAA and TAD.

Methods

Aneurysmal, Dissected, and Normal Aortic
Tissues

The Research Ethics Committee of the Ankara University School

of Medicine approved the study protocol on February 19, 2007

(107-2808), and all subjects gave written informed consent to par-

ticipate in the study. Between May 2007 and March 2011, full-

thickness ascending aortic wall specimens, which were collected

from greater curvature of distal aortic root neighboring to antero-

lateral portion of sinotubular junction, were obtained from

patients undergoing surgical repair of TAA (n = 24), or TAD

(n = 20), and compared with normal aortic tissues from organ

donors (n = 6). Type-A aortic dissection (TAD) was defined as any

dissection that involved the ascending aorta and/or aortic arch.

Particular care was taken to obtain both layers of the dissected

aortic wall in the TAD group. The baseline characteristics of the

patients participating in the study are summarized in Table 1.

Patients were not enrolled in the study if any one of the following

exclusion criteria were met: (1) the diagnosis of Marfan syndrome

(based on the revised criteria of De Paepe [11]), Ehlers-Danlos

syndrome, Loeys-Dietz syndrome, aneurysm-osteoarthritis syn-

drome, and familial TAA and/or dissections (caused by mutations

in the alpha smooth muscle actin [ACTA2] or MYH11 gene); (2)

presence of unicuspid or bicuspid aortic valve; (3) aortitis in any

form or evidence for endocarditis; (4) history of cocaine abuse;

and (5) iatrogenic aortic dissection or any TAD that does not

involve the ascending aorta 10 mm above the sinotubular junc-

tion. Tissue samples collected at the time of operation were placed

immediately into 10% neutral buffered formalin solutions, pro-

cessed, and embedded in paraffin. Thickness measurements of

tunica media and adventitia were performed in ACTA2-stained

coverslips using LSM 510 software (Carl Zeiss, Jena, Germany)

coupled to an Axiovert 100 M microscope (Carl Zeiss) with a 109

objective. The measurements considered for each vessel were the

mean values of the three measurements.

Immunohistochemistry

Five-micrometer deparaffinized sections were incubated for

30 min in 0.3% hydrogen peroxide in methanol to quench

endogenous peroxidase activity. Slides were washed in phosphate

buffered saline (PBS) for 10 min, three times, and incubated with

blocking serum (normal goat serum 1.5%, bovine serum albumin

2%, Triton X-100 0.1%) for one hour at room temperature. Pri-

mary antibodies against BCL2, BCL2L1, BAX, BAK1 (1 lg/mL;

Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA; Catalog

numbers; BAX: sc-526 [rabbit]; BAK1: sc-832 [rabbit]; BCL2: sc-

492 [rabbit]; BCL2L1: sc-8392 [mouse]) were applied in succes-

sive paraffin sections and kept at 4°C for overnight, followed by

streptavidin-HRP (DakoCytomation, Glostrup, Denmark; P0397)

for 15 min at room temperature. After 10 min of PBS wash, color

developments were achieved by incubation with Liquid DAB+

(DakoCytomation). The slides were then counterstained with

hematoxylin (H&E) and mounted using Faramount Aqueous

Mounting Medium (DakoCytomation). For negative controls, we

omitted primary antibodies. To analyze immunoreactivity, the

number of immunopositive cells in sections was semiquantita-

tively scored [12]. The scoring is as follows: 0, not present; 1, light;

2, moderate; 3, high.

In Situ End-Labeling of DNA Fragments (TUNEL)

DNA fragmentation was detected in situ with a DNTT (terminal

deoxynucleotidyl transferase)-mediated fluorescein-dUTP labeling

kit (Roche Diagnostics, Mannheim, Germany) in the parallel sec-

tions according to manufacturer’s instructions. To detect all

nuclei, we used 7-aminoactinomycin D (7-AAD; Sigma, St Louis,

MO, USA). For each aortic sample, at least 10 grid fields per

section within the VSMC layer were examined with an excitation

wavelength of 450–500 nm and detection wavelength of

515–565 nm. As negative control, the slides were incubated in the

absence of DNTT. For positive controls, the samples were first trea-

ted with DNase I for 10 min at 20°C to induce DNA strand breaks

prior to labeling procedures and then incubated with 50 lL of

TUNEL reaction mixture. Two observers (K.C.A. and G.C.D.) who

were unaware of the subjects’ clinical profiles interpreted images

independently and evaluated apoptotic indexes. Apoptotic index

was calculated using the following formula: 100 9 (number of

TUNEL-positive cell nuclei per field/total number of cell nuclei

per field). The interobserver correlation was 2.26, whereas the

intraclass correlation, obtained by a single observer who inter-

preted two images obtained at least 1 week apart from a single

subject, was 0.94.

Immunofluorescent Analysis

We applied ACTA2 (produced in mouse 1:100 dilution; Sigma-

Aldrich Corp., St. Louis, Mo, USA) and anti-CASP3 antibody (pro-

duced in rabbit 1:100 dilution; Cell Signaling Technology, Inc.,

Danvers, MA, USA) after paraffin sections were incubated with

the above blocking serum. Both antibodies were diluted in PBS,

and incubations were applied at 37°C in a humidified chamber for

90 min. Cy5 goat anti-mouse IgG (Zymed Laboratories Inc., San

Francisco, CA, USA) and Cy3 goat anti-mouse/anti-rabbit IgG
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(Zymed Laboratories Inc.) were used as secondary antibodies,

respectively. Nuclei were stained with Sytox green (1 lg/mL) in

1:1 dilution of PBS/glycerol-mounting medium. Immunofluores-

cent labeling results were examined on a Zeiss LSM 510 Meta con-

focal laser scanning microscope (Carl Zeiss) using 488-nm argon

ion, 543- and 633-nm helium neon lasers; 409 Plan-Apo oil and

1009 Plan-Apo oil objectives. Single optical images were scanned

with 1600 9 1600 frame size and <1.2 lm optical thicknesses.

Length and area measurements and gray scale–based threshold

(>50 was considered positive staining) tools in the LSM-510 soft-

ware (version 3.2) were used to semiautomatically calculate the

area. The detection parameters, such as laser intensity, amplifier

offset and gain, and pinhole diameter, were fixed and kept at the

same values for all specimens.

Statistical Analysis

Continuous variables (age, systolic blood pressure, diastolic

blood pressure, aortic diameter, apoptosis index, and BAX/

BCL2 ratio) were given as mean ± standard deviation or med-

ian (interquartile range: IQR) and were compared by using

Kruskal–Wallis analysis. Pairwise comparisons were made by a

method that has been previously defined [13] when Kruskal–

Wallis analysis revealed that a significant difference exists. We

compared ordinal variables (BCL2, BAK1, BCL2L1 and BAX)

using ordinal logistic regression with proportional odds model.

In this analysis, odds of having higher categories of the ordi-

nal variables were compared with that of having lower cate-

gories. Other categorical variables were compared by chi-

square test. These analyses were performed using SPSS® Sta-

tistics 18.0 (SPSS Inc, Chicago, IL, USA). ACTA2 and CASP3

areas were compared by nonparametric analysis of covariance

with adjusting for age. This analysis is performed in R soft-

ware [14], and “sm.ancova” function is used under “sm”

library [15]. We performed Benjamini–Hochberg procedure

using “p.adjust” function to control the Type I error after

pairwise comparisons [16]. A P value of 0.05 was considered

significant.

Results

Clinical Characteristics and Assessment of Aortic
Disease in TAA and TAD Patients

Table 1 summarizes the clinical characteristics of the study cohort.

Mean age for the aneurysm and dissection groups was signifi-

cantly greater than control group. Range of maximum ascending

aortic diameter in TAD and TAA patients assessed by computer-

ized tomography, magnetic resonance imaging, or transeso-

phageal echocardiography was between 36 and 70 mm

(56.8 ± 8.5 mm) and 54 and 65 mm (58.6 ± 2.7 mm), respec-

tively. Aortic diameter in control patients was between 27 and

32 mm (29.5 ± 1.8 mm). All samples in TAA group were free

from intraluminal thrombus.

Table 1 Characteristics of study subjects

Controls (n = 6) TAA (n = 24) TAD (n = 20) P value*

Age (yr)

Mean ± SD 37 ± 7.2 62.4 ± 6.9 54.4 ± 10.6 <0.0001

Median (IQR) 35.5 (30.5; 44.25) 62 (56.25; 68) 7.5 (48.75; 62.75)

Male sex, n (%) 5 (83.3) 17 (70.8) 14 (70) 0.8

History of hypertension, n (%) 0 (0) 17 (70.8) 15 (75) 0.002

History of smoking, n (%) 3 (50) 14 (58.3) 12 (60) 0.9

COPD, n (%) 0 (0) 7 (29.2) 6 (30) 0.3

Diabetes mellitus, n (%) 0 (0) 9 (37.5) 6 (30) 0.20

Maximal aortic diameter (mm)

Mean ± SD 29.5 ± 1.8 58.6 ± 2.7 56.8 ± 8.5 <0.0001

Median (IQR) 29.5 (27.75; 31.25) 58 (56.25; 60.75) 58 (53.5; 61.75)

Aortic regurgitant volume � 60 (mL/beat) 0 (0) 14 (58.3) 9 (45) 0.04

SBP (mmHg)

Mean ± SD 111.6 ± 11.6 144.5 ± 23.0 147.2 ± 17.5 0.004

Median (IQR) 110 (100; 122.5) 150 (130; 160) 150 (132.5; 160)

DBP (mmHg)

Mean ± SD 78.3 ± 5.1 86.8 ± 11.4 89 ± 9.6 0.07

Median (IQR) 80 (70.75; 81.25) 90 (80; 95) 90 (81.25; 95)

Medications

Lipid-lowering medication, n (%) 0 (0) 13 (54.2) 9 (45) 0.057

ACE inhibitors/ARB, n (%) 0 (0) 14 (58.3) 14 (70) 0.01

Beta-blockers, n (%) 0 (0) 11 (45.8) 15 (75) 0.004

Calcium antagonists, n (%) 0 (0) 8 (33.3) 4 (20) 0.2

TAA, thoracic aortic aneurysm; TAD, thoracic aortic dissection; COPD, chronic obstructive pulmonary disease; SBP, systolic blood pressure; DBP, dia-

stolic blood pressure; IQR, interquartile range; ACE, angiotensin converting enzyme; ARB, angiotensin receptor blocker. *P values were calculated by

pairwise comparisons after Kruskal–Wallis test for continuous variables and chi-square test for categorical variables.
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None of the groups demonstrated evidence of aortitis

observed in H&E staining. Aortic tunica media were signifi-

cantly thinner in TAA (421 ± 29 lm; 95% CI, 408–433) and

TAD (556 ± 32 lm; 95% CI, 541–571) compared with that of

control subjects (1369 ± 24 lm; 95% CI, 1343–1394; P < 0.001)

as shown in Figure 1(A). Moreover, VSMC area through ACTA2

within aortic tunica media was significantly reduced in TAA

(0.077 ± 0.008 mm2) and TAD (0.074 ± 0.007 mm2) compared

with that of control subjects (0.185 ± 0.011 mm2) as shown in

Figure 1(B). Thinning of the arterial wall, elastic fiber fragmen-

tation along with disrupted architecture, and VSMC depletion

were common in TAA and TAD groups according to confocal

microscopic examination (Figure 1A,B). In the control group,

VSMCs were arranged obliquely interconnected with the elastic

laminae.

Altered Expression of BCL2 Family of Proteins

For a better understanding of molecular mechanisms of increased

VSMC apoptosis in aneurysm degeneration and dissection, the

expression pattern of different BCL2 family of proteins (BCL2,

BCL2L1, BAX, and BAK1) was investigated by immunohisto-

chemistry in aortic sections (Figure 2). The intensity of these pro-

teins was semiquantitatively scored [12] (Table 2). Furthermore,

to assess the involvement of relevant protein expression, existence

of positive immunoreactivity was evaluated. Proapoptotic BAX

expression was significantly elevated in VSMCs of TAA patients,

compared with that of controls (OR = 20; P = 0.02; 95% CI,

16–250). In contrast, antiapoptotic BCL2L1 expression was greater

in controls compared with that of TAA group (OR = 11.2;

P = 0.049; 95% CI, 1.0–123.9). TAD group also showed a similar

trend to TAA group with regards to BCL2L1 expression, but the

results were not statistically significant when compared to controls

(OR = 7.6; P = 0.06; 95% CI, 0.9–50).

Furthermore, we investigated the ratio of BAX to BCL2 expres-

sion as previously described [17]. As the control group exhibited

no immunoreactivity for proapoptotic BAX, BAX/BCL2 ratio was

close to zero in the control group. BAX/BCL2 ratio was signifi-

cantly increased in both TAA (1.2 ± 0.7, P < 0.001) and TAD

(0.6 ± 0.4, P = 0.05) groups relative to controls (0.2 ± 0.1,

P < 0.001).

TAAs and TADs Exhibit Aortic VSMC Apoptosis

All of the immunostaining and TUNEL staining were made in suc-

cessive sections, which were 5 lm apart, and the majority of cell

type was VSMCs in media in all groups as confirmed by ACTA2

immunostaining (Figure 2). VSMC apoptosis was detected in 18

of 20 TAD sections (90%) and 20 of 24 TAA sections (83.3%),

whereas negligible apoptosis was detected in control sections.

Apoptotic index was significantly increased in both TAD group

(31.3 ± 17.2, P < 0.001) and TAA group (21.1 ± 12.7, P = 0.001)

relative to control aortas (2.0 ± 1.2) as shown in Figure 3. Fur-

thermore, TAD group demonstrated higher apoptotic index com-

pared with TAA group (P = 0.041).

To confirm that apoptosis is restricted to VSMCs, we further per-

formed CASP3 and ACTA2 double immunolabeling. CASP3

immunoreactivity was colocalized with ACTA2 in medial layer of

TAA and TAD groups, whereas none or very little CASP3 staining

was found in control group samples (Figure 4). CASP3 area

measurement in aortic tunica media was significantly higher in

(A)

(B)

Figure 1 (A) Representative micrographs of tunica media immuno-

stained for ACTA2 and demonstration of aortic wall thickness

measurements in the aortas from control subjects and patients with

thoracic aortic aneurysms (TAA) and type-A aortic dissections (TAD).

Tunica media was thicker in a control subject (1357 lm) compared with

both TAA (503 lm) and TAD (597 lm) aortic samples. Additionally, a

representative rectangular area covering the whole thickness of the

tunica media was measured to calculate the total area of the positive

ACTA2 signals as shown in (B). Box-whisker plots display calculate the

total area of the positive ACTA2 signals. Central horizontal bars indicate

median, upper and lower ends of boxes indicate 75th and 25th

percentiles, and error bars indicate maximum and minimum values of

total ACTA2 area (#P = 0.211, ‡P = 0.038, ΔP = 0.038). ACTA2 areas were

compared by nonparametric analysis of covariance with adjusting for age.

Scale bar is 200 lm.
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Figure 2 Representative micrographs for immunohistochemical stainings of serial aortic paraffin sections of the 27-mm ascending aorta of a 37-year-old

man from the control group (left column); 67-mm ascending aortic aneurysm of a 66-year-old man from the thoracic aortic aneurysms (TAA) group (middle

column); and 70-mm aortic aneurysm after acute type-A aortic dissection of a 64-year-old man from the type-A aortic dissections (TAD) group (right

column) for ACTA2, antiapoptotic (BCL2, and BCL2L1), and proapoptotic (BAX, and BAK1) proteins. Elastic fiber fragmentation along with disrupted

architecture and vascular smooth muscle cell (VSMC) depletion were common in TAA and TAD groups. Scale bar is 50 lm.

Table 2 The intensity of staining of BCL2 family proteins for control, TAA and TAD groups

Controls (n = 6) TAA (n = 24) TAD (n = 20) OR (95% CI)* P value†

BCL2 score (0/1/2/3; %)‡ 0/33.3/33.3/33.3 4.2/33.3/37.5/25 10/45/25/20 TAD vs TAA: 0.64 (0.19–2.12) 0.5

Positive (%)§ 100 95.8 90 Control vs TAA: 2.33 (0.24–22.55) 0.5

Control vs TAD: 0.28 (0.04–2.03) 0.2

BCL2L1 score (0/1/2/3; %)‡ 0/66.7/33.3/0 37.5/33.3/25/4.2 30/50/15/5 TAD vs TAA: 1.48 (0.44–5.0) 0.5

Positive (%)§ 100 62.5 70 Control vs TAA: 11.17 (1.01–123.90) 0.05

Control vs TAD: 0.132 (0.02–1.06) 0.06

BAX score (0/1/2/3; %)‡ 50/50/0/0 8.3/20.8/33.3/37.5 15/60/20/5 TAD vs TAA: 0.18 (0.05–0.67) 0.01

Positive (%)§ 50 91.7 85 Control vs TAA: 0.05 (0.004–0.63) 0.02

Control vs TAD: 3.49 (0.44–27.87) 0.3

BAK1 score (0/1/2/3; %)‡ 16.7/50/33.3/0 16.7/20.8/37.5/25 30/20/35/15 TAD vs TAA: 0.82 (0.25–2.67) 0.7

Positive (%)§ 83.3 83.3 70 Control vs TAA: 1.39 (0.15–13.07) 0.8

Control vs TAD: 0.59 (0.10–3.57) 0.6

TAA, thoracic aortic aneurysm; TAD, thoracic aortic dissection; OR, odds ratio; CI, confidence interval; BCL2L1, BCL2-like 1; BAX, BCL2-associated X

protein; BAK1, BCL2-antagonist/killer 1; BCL2, B-cell CLL/lymphoma 2. *Adjusted for age. †P values are calculated by using ordinal logistic regression

with proportional odds model. ‡Immunoreactivity scored as 0, not present; 1, light; 2, moderate; 3, high, respectively, and expressed as percentages

of samples with the score. §Immunopositivity includes scores 1, 2, and 3 degree of scoring.
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TAA (0.030 ± 0.009 mm2) and TAD (0.038 ± 0.007 mm2) com-

pared with that in control subjects (0.0007 ± 0.00006 mm2) as

shown in Figure 4(C).

Discussion

This study has focused on VSMCs, which is a poorly explored area

of the ascending aorta. We investigated whether medial VSMCs

survive or resist to apoptosis during the progression of TAA and

TAD. A number of previous studies have documented decreased

VSMC density within the medial layer of AAA in contrast to ath-

erosclerotic and normal human aortas and have shown evidence

of VSMC apoptosis in AAAs [4–6]. VSMC apoptosis has also been

documented in thoracic aortic disease including congenital aortic

pathologies [18], bicuspid aortic valve [19], and thoracic aneu-

rysms and dissections [7]. Our study confirms VSMC depletion

and an increase in the amount of apoptotic cells by TUNEL stain-

ing in the media of both TAA and TAD patients. Furthermore, the

novel contribution of the present study is the evaluation of the

role of BCL2 family of proteins in apoptotic VSMC depletion in

the human ascending aortas. Results presented in this study sug-

gest that TAA and TAD have similar expression patterns for BCL2

family of proteins by potentiating proapoptotic members and min-

imizing antiapoptotic BCL2 proteins. In brief, apoptotic VSMC

depletion in TAD and TAA is associated with increased BAX/BCL2

ratios.

Erdheim’s cystic medial degeneration is an important histologi-

cal sine qua non of TAAs and TADs, which is also detected, in con-

genital aortic disease such as Marfan syndrome, atherosclerosis,

and aging [20]. mRNA expression studies revealed that TAAs were

associated with pronounced increases in the expression of genes

involved in regulating cell survival, proliferation, and programmed

cell death including TNF-a and interleukin-1b, which are potent

inducers of apoptosis [21]. Wang et al. [22] had demonstrated

increased expression of connective tissue growth factor and colla-

gen deposition in the aortic wall of TAD patients. A number of

causes may lead to the generation of apoptotic signals within the

VSMCs, thereby impairing the maintenance of the arterial extra-

cellular matrix and influencing the progression of aneurysms.

With prolonged vessel wall stress and destructive proteases, the

aorta undergoes a cascade of compensatory structural events.

Several factors may have contributed to the apoptotic signals

and the expression pattern of BCL2 family of proteins in this

study. Hypertension is the most consistent predisposing condition

for TAAs and TADs. The reported incidence of hypertension in

acute dissections is about 75% [23]. In the present study, the inci-

dence of history of hypertension was 71% for TAA and 70% for

TAD groups. Reactive oxygen species, nitric oxide, angiotensin

(A)

(B) (C)

Figure 3 (A) Representative micrographs showing immunofluorescent TUNEL labeling within medial layer of serial aortic paraffin sections. Control, 27-

mm ascending aorta of a 37-year-old man from the control group; TAA, 67-mm ascending aortic aneurysm of a 66-year-old man; and TAA, 70-mm chronic

aortic dissection and aneurysm of a 64-year-old man. Arrowheads indicate DNA fragmentation of TUNEL-positive apoptotic medial vascular smooth

muscle cells (VSMCs). DNA fragmentation was detected in situ with a DNTT (terminal deoxynucleotidyl transferase)-mediated fluorescein-dUTP labeling kit

(Roche Diagnostics, Mannheim, Germany) in the parallel sections according to manufacturer’s instructions. To detect all nuclei, we used

7-aminoactinomycin D (7-AAD, Sigma; St Louis, MO). For each aortic sample, at least 10 grid fields per section within the vascular smooth muscle cell

(VSMC) layer were examined with an excitation wavelength of 450–500 nm and detection wavelength of 515–565 nm. Scale bar is 20 lm. (B) Box-whisker

plots display apoptotic indexes. Central horizontal bars indicate median, upper and lower ends of boxes indicate 75th and 25th percentiles, and error bars

indicate maximum and minimum values of apoptotic indexes. (#P = 0.041, †P < 0.001, ΔP = 0.001) and (C) box-whisker plots display BAX/BCL2 ratios.

(†P < 0.001,§P = 0.05, ‡P = 0.005). For each section, two independent observers counted TUNEL-positive cells, apoptotic indexes and BAX/BCL2 ratios;

P values were calculated by pairwise comparisons after Kruskal–Wallis test.
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type 2 receptors, and the endothelin system may play a role in the

progression of hypertension and apoptosis of VSMCs [24]. Sponta-

neously, hypertensive [25] and angiotensin-infused rats [26] were

found to have apoptosis detectable by DNA laddering, augmented

in situ end-labeling of fragmented DNA, and/or BAX/BCL2 ratio.

It has also been confirmed by Nagashima et al. [27] that angioten-

sin II type 2 receptor-mediated VSMC apoptosis had a pivotal role

in patients with cystic medial degeneration. Detection of VSMC

(A)

(B)

(C)

Figure 4 Caspase 3 (CASP3) activity in vascular smooth muscle cells (VSMCs). Confocal microscopic images of the aortas from control and patients with

thoracic aortic aneurysm (TAA), type-A aortic dissections (TAD [CASP3, red signal; ACTA2, blue signal; nuclear labeling, green signal]). No or very little

CASP3 activity is found in the control aortic samples, whereas disseminated CASP3 activity is detected within VSMCs of TAA and TAD patients shown in

(A). Zoomed areas in (A) (insets) are illustrated in (B). CASP3 and ACTA2 signals were quantified, and the total size of the positive signals is given in (C).

Box-whisker plots display the total calculated area of the positive CASP3 signals. Central horizontal bars indicate median, upper, and lower ends of boxes

indicate 75th and 25th percentiles, and error bars indicate maximum and minimum values of total CASP3 area. (#P = 0.204, ‡P = 0.038, ΔP = 0.040).

CASP3 areas were compared by nonparametric analysis of covariance with adjusting for age. Scale bars are 50 lm (A) and 10 lm (B).
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apoptosis in both TAA and TAD sections may also be related to

other common predisposing factors such as flow and shear stress.

For instance, recently Della et al. [28] demonstrated VSMC

apoptosis with bicuspid aortic valve stenosis occurring prior to

overt aortic dilation, mainly at the convexity, where wall stress is

expectedly higher. As apoptosis is under control of complex cellu-

lar signalling pathways that are involved in responses to cellular

stress signals and tissue injury, enhanced mechanical forces on

medial VSMCs leading to stretch mediated reactions including

programmed cell death via BAX upregulation [29]. However, we

also determined an overall upregulation of antiapoptotic proteins

BCL2 and BCL2L1 together with increased expression of BAX and

BAK1.

According to our study design, the correlation between the

stages of aortic wall expansion and initiation of BCL2 family of

protein expression remains unclear. In this context, Bauriedel

et al. [30] demonstrated the upregulation of BCL2 proteins after

arterial injury. A certain degree of tendency for cell proliferation

and survival at molecular level may also be accounted as the fea-

tures of trophic response. Previously, Tang et al. [31] demon-

strated decreased expression of matrix proteins as a result of

increased matrix degradation but preserved VSMC density in

patients with TAA. Our study supports the concept that VSMC

apoptotic pathways may have a role in decreased expression of

matrix proteins by documenting the relative cell depletion in the

medial layer. Indeed, in agreement with our study, recent evi-

dence supports the role of interleukin-1b and interferon-c in the

formation of TAD and TAA through the upregulation of matrix

metalloproteinase-9 and the apoptosis of human media cells [32].

Latest studies have shown that inflammatory cells, which infil-

trate into vascular medial and adventitial layers, may cause apop-

tosis in AAA patients. Chemokine, cytokine and protease

secretion from the infiltrated inflammatory cells are held as the

probable cause of aneurysm pathogenesis, by leading resident vas-

cular cells to apoptosis, which eventually cause a depletion in

extracellular matrix proteins [33]. Immunohistocemical analyses

of our TAA/TAD samples have shown absence or low-density

CD8+ T cells, CD163+ macrophages, and tryptase+ mast cells (data

not shown). Thus, further research methods that focus on the

detection of infiltrated inflammatory cells in samples from human

ascending aorta and association of these cells with possible precur-

sors of apoptosis would be a clinically relevant approach that

could elucidate the mechanism of VSMC apoptosis in TAA and

TAD patient groups.

It is also important to note that VSMC apoptosis might be associ-

ated with different expression patterns of BCL2 family of proteins

in patients with TAA and TAD. However, the results presented

cannot be generalized to all patients with aneurysms and dissec-

tions, because patients with inherited connective tissue disorders

and any form of aortitis were excluded. In addition, microarray

techniques revealed different profiles of altered gene expression

and high degree of molecular heterogeneity in different locations

of aortic aneurysms [21]. Thus, the findings cannot be extended

to AAAs in which the embryonic origin of VSMCs is mesoderm

[34]. The major limitations of this study were quantification of

BCL2 family of proteins with methods such as Western blot or

ELISA. However, our aim in this study was to demonstrate the

expression patterns of these proteins within the aortic VSMCs.

Following homogenization to isolate BCL2 proteins, it would have

been impossible to claim that these proteins are in fact originated

from aortic VSMCs. Additionally, lack of immunocytochemistry

and TUNEL assay prior to the event of TAD or in the early stages

of aneurysms are lacking, which can be accomplished, in experi-

mental models. Surgically removed relatively advanced stage

aneurysmal specimens may not reflect earlier stages of aortic

aneurysms or the state of impending rupture. Finally, three main

questions still remain unanswered. Does the BCL2 family of pro-

tein expression start at the early stages of aneurysmal degenera-

tion? Does the progression of TAD and development of aortic

dissection change the expression profiles? And, how BCL2 family

of protein expression is modulated in TAA and TAD patients?

Conclusion

The primary significance of the observations in the present study

is that apoptotic VSMC depletion in TAD and TAA is associated

with upregulation of death promoting and downregulation of sur-

vival promoting BCL2 family of proteins. BAX/BCL2 ratio, an

apoptotic parameter that has been shown to be critical for the fate

of the cell [35], was elevated in TAA and TAD samples compared

with that of control aortas. Future research should consider target-

ing biological pathways including the BCL2 family of proteins in

the context of apoptotic VSMC depletion in TAA or dissections.

Our findings may lead to the conclusion that the apoptotic index

can be used as a predictor of TAA, because we have shown that

the apoptotic index in patients with TAA and TAD is higher com-

pared with the control group. In the present study, it is established

that the apoptotic cell death in VSMCs is involved in the develop-

ment of the TAA and TAD. In the years to come, novel medical

therapies that would target the proapoptotic cascade may benefit

the TAA and TAD patients, by slowing down the progression of

the pathology and even preventing the development of TAA and

TAD.
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