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Abstract. Spatial sparsity of the target space in subsurface or
through-the-wall imaging applications has been successfully used
within the compressive-sensing framework to decrease the data
acquisition load in practical systems, while also generating high-
resolution images. The developed techniques in this area mainly dis-
cretize the continuous target space into grid points and generate a
dictionary of model data that is used in image-reconstructing optimi-
zation problems. However, for targets that do not coincide with the
computation grid, imaging performance degrades considerably.
This phenomenon is known as the off-grid problem. This paper
presents a novel sparse ground-penetrating radar imaging method
that is robust for off-grid targets. The proposed technique is an iter-
ative orthogonal matching pursuit-based method that uses gradient-
based steepest ascent-type iterations to locate the off-grid target.
Simulations show that robust results with much smaller reconstruction
errors are obtained for multiple off-grid targets compared to standard
sparse reconstruction techniques. © 2013 SPIE and IS&T [DOI: 10
.1117/1.JE1.22.2.021007]

1 Introduction

Ground-penetrating radar (GPR) has been widely used in
detecting or imaging subsurface targets."> Traditional GPRs
image the subsurface by transmitting short electromagnetic
(EM) pulses or a train of sub-pulses with stepped carrier
frequencies and processing the reflections caused by permit-
tivity discontinuities in the ground. Imaging with GPR
requires the formation of a synthetic aperture, which is
done by scanning a GPR sensor over the region of interest
and recording the time/frequency signal returns for many
spatial positions. This operation generates a large amount
of space-time/frequency data. State-of-the-art GPR systems
operate with large bandwidths and a large number of chan-
nels, which further increases the amount of data for process-
ing. However, in most GPR applications, the target space
consists of a small number of strong targets. For example,
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potential targets, such as buried landmines or metallic
objects, cover a small part of the total subsurface to be
imaged. Hence, a large amount of data is processed to detect
or image a small number of targets. This provides the oppor-
tunity to apply sparse signal-processing techniques for GPR
applications.

Recent results in the theory of compressive sensing (CS)*”
show that reconstruction of unknown signals, which have a
sparse representation in a certain transformation domain, can
be obtained from a much smaller set of measurements com-
pared to conventional techniques. Because GPR applications
may admit a sparse representation, reconstruction of target
scenes can be formulated as a sparse signal-reconstruction
problem. Based on this main idea, application of CS to
GPR imaging has been investigated in several works. In
one of the earliest papers on CS applied to the general con-
text of radar,® initial ideas about the possibility of sub-
Nyquist sampling and elimination of match filtering in
radar was discussed. Application of CS to a GPR imaging
problem was first demonstrated in Ref. 9. In that work, the
subsurface area was modeled to consist of a small number of
discrete point-like targets, and a dictionary of model data was
generated for each possible discrete target point. The subsur-
face image was generated by solving an /; minimization-
based optimization problem with a decreased number of
measurements. Later, these results were extended to the
stepped frequency'® and impulse GPR'' cases. In Ref. 12,
Yoon and Amin used CS for through-the-wall imaging
(TWI) using wide-band beamforming, where the unmeas-
ured frequency points are reconstructed with CS and conven-
tional wideband beamforming is applied on the reconstructed
measurements. In Ref. 13, CS was applied to stepped-fre-
quency GPRs. Sparse signal reconstruction ideas are applied
to GPR rebar detection in Ref. 14. CS for TWI are further
explored in Refs. 15 and 16.

All the above CS-GPR imaging methods mainly discre-
tize the continuous target space, generate a number of grid
points, and assume that the targets are exactly positioned on
the center of these grids. Furthermore, medium parameters
such as permittivity or wave velocities are assumed to be
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perfectly known. These assumptions were used to build a
forward model between the discretized target space and mea-
surements, resulting in a dictionary of data formed by syn-
thesizing the model GPR data for each discrete target space
position. If the targets are located exactly on the grid points,
the sparsity requirement of CS is satisfied and CS theory
works. However, in general, a target might not be exactly
on the grid center. Depending on the discretization density,
actual points will be located off the grid at varying distances.
One simplistic approach is to use multiresolution refinement
strategy and decrease grid sizes iteratively. However, using a
smaller grid size is not a direct solution to the target off-
the-grid problem. First, the coherence between dictionary
columns is increased, making restricted isometry property
(RIP)! invalid; second, computational complexity of recon-
struction is increased due to the greater size of the optimi-
zation problem. It has been discussed in both GPR and
radar literature that off-grid targets cause an important deg-
radation in CS reconstruction performance.'®!” In the
Refs. 20-22, the effect of general basis mismatch, which
is a direct consequence of off-the-grid targets on the recon-
struction performance of CS, is analyzed and the resultant
performance degradation levels and analytical [, norm
error bounds are shown. In CS for noiseless case recovery,
the error bound for a general signal is |x* —x||; <
|lx — x¢]||{, but on the other hand, it is shown for a perturbed
signal in Ref. 21 that for ¥ = I 4 E and x = W0 with @ being
a sparse or compressible signal and no noise in the system, if
the rows e,, € C*""¥m =1,2,...,N of E are bounded as
llemlls < B for 1 < m < N, then

[lx = xills < (N = K)BIO]> + 116 = Okl M

This shows that the error bound for the perturbed case is
larger than the classic CS bound for the unperturbed case by
an amount of (N — k)p||0||,. If the signal is exactly k sparse,
then ||@ — 0;]|, is zero, which shows that the upper bound on
the error norm is linearly increasing in N, f, and ||6||, and
decreasing with k. These papers have shown effect of mis-
match on several cases such as reconstructing signals in
discrete Fourier transform domain and concluded that perfor-
mance of compressed sensing for approximating a sparse
physical field may degrade considerably in the presence
of basis mismatch, even when the assumed basis corresponds
to a fine-grained discretization of the parameter space.
However, in these works, a systematic approach on how
to do the sparse reconstruction and imaging under the off-
grid problem has not been discussed.

In this paper, a new iterative sparse reconstruction method
that can also handle off-grid targets is presented. The pro-
posed method uses the orthogonal matching pursuit
(OMP)* framework for reconstruction. In the OMP algo-
rithm, the dictionary column that has the largest correlation
with the current residual is selected, and the new residual is
calculated by projecting the measurements to the subspace
defined by the span of all selected columns. This procedure
is repeated until the termination criterion is met. OMP is a
much-used reconstruction technique for radar imaging prob-
lems, mainly owing to its relatively low computational com-
plexity and high reconstruction performance. For GPR
imaging it is shown in Ref. 24 that the performance of
OMP reconstruction is similar to that of /; minimization,
but with much lower reconstruction times.
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In the proposed technique, for each added grid point,
steepest-descent type iterations are run to find the off-grid
target within that grid. Here, the idea is to find the position
that maximizes the cost function of OMP. This is achieved by
iteratively calculating gradients on each spatial axis at the
current position, starting from the grid center, and taking
controlled steps in the directions of the gradients. These iter-
ations can be terminated if the calculated gradients are
smaller then a determined threshold. In the proposed method,
the model data corresponding to the final off-grid points are
generated, and the residual is calculated by projecting the
measurements to the span of these model data. This pro-
cedure provides a better fit to the measurements by decreas-
ing the modeling error due to off-grid targets.

Simulation results show that the proposed method is suc-
cessful in recovering a sparse GPR image independent of
whether the targets are on the grid. Whereas standard sparse
reconstruction techniques create nonsparse images due to
off-grid targets, the proposed method is shown to generate
images with correct sparsity levels. The proposed method
is compared to standard OMP for performance comparisons
of the methods under varying noise levels and measurement
number. It is observed that lower reconstruction errors are
obtained for all performance tests. In addition to solving
the off-grid problem, the proposed method is also simple
to implement and faster in comparison to /; minimization-
based optimizations. However, it is also computationally
more complex compared to OMP owing to the additional
gradient and model data calculations within the OMP
framework.

The organization of the paper is as follows. Section 2 out-
lines the CS-based GPR imaging formulation and the sparse
GPR-imaging framework. Derivation of the proposed
method is done in Sec. 3. Simulation results and performance
comparisons are given in Sec. 4. Conclusions are drawn
in Sec. 5.

2 Compressive Sensing-Based GPR Imaging

GPR systems transmit short EM pulses or a train of sub-
pulses with stepped carrier frequencies at each spatial posi-
tion, forming a synthetic array during the data acquisition
process. The total subsurface response, which is a superpo-
sition of the responses from all reflectors within the medium,
can be inverted using various techniques. There are excellent
references on GPR data processing, including Refs. 1, 2,
and 25. For the purposes of this paper, an example GPR sce-
nario will be used to illustrate the proposed technique.
However, this framework can be extended to other types
of GPR applications with small modifications. In our
model, we consider a subsurface imaging scenario with a
two-layer model, where the GPR antennas will be in air
and the targets are in a homogeneous medium with known
permittivity level. A stepped-frequency GPR (SF-GPR) is
considered, as it is more suitable for a compressive-sensing
data acquisition model. As the SF-GPR scans a region, at
each scan position it transmits L continuous sinusoidal
signals, sequentially changing the frequency. The transmitted
signal for frequency [ w, =2xz(fy+ ¢Af), can be
written as

Er(£.1) = Aem 2ot tANE = pemioet, )
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where [ = 0,1,2,...,L — 1, with L being the total number of
frequency steps, Af the frequency-step interval, and f, the
initial frequency. A is the strength of the transmitted signal.
Assuming K dominant point targets, the received frequency
measurements at the ith scan point y; can be expressed as

K
yi(£) = ageIorl=uitpi)l, 3)
k=1

where 7;(p; ) is the time delay for the target at position p, =
[x%; i zx) when the GPR antenna is at the ith scan point,
and ay, is the weight parameter for target k including target
reflectivity and all propagation effects. At this point, the
conventional practice is to employ a matched filter of
the measured data with the impulse response of the GPR
data acquisition process. Diverging from the conventional
methods, CS-based imaging first discretizes the target
space and tries to generate a linear relation between the
measured data and the target space to be imaged. This
is accomplished by generating a data dictionary. For this
purpose, the target space my which lies in the product
space  [x,.X¢] X [yo.¥¢] X [2,.27] must be discretized.
Here (x,.y,.2,) and (x;,y;,zs) denote the initial and
final positions of the target space to be imaged along
each axis. Discretization generates a finite set of N target
points B = {m,,m,,...,wy}, where N determines the
grid resolution and each z, is a 3-D vector [x,;¥,;Z2,)-
For any target at grid point z,, the received frequency
data can be modeled using Eq. (3) with a, =1 for
K = 1. A data dictionary for the i’th GPR scan location
can be generated by synthesizing the time-frequency data
for each possible target space point #, n=12,...,N.
Hence, the nth column of the data dictionary W; which cor-
responds to a target at x,, will be

(W], = exp{—jo[t — 7,(m,)]}, “4)

where w is the vector of L frequencies. To have uniform
column norms, each dictionary column can be normalized
to have norm one. Note that ¥, is the dictionary for only
the i’th scan position, and its dimension will be L X N. If
all the K targets fall exactly on the grid centers, then the
measurements at the i’th scan point y; can be represented as
a linear combination of the dictionary columns of ¥; as
y; = ¥;b, where b is a vector defining the discrete target
space, i.e., if there is a target at x,, then the n’th index
of b will be a,, otherwise zero. Hence, if all K targets
are on the grid, then the vector b should be a K sparse
vector. However, actual targets will not be exactly on
the grid centers, and since their response is not modeled
in the dictionary, an approximate relationship

yi=¥b+n (@)

is used, where the term n compensates for any error due to
discretization of the target space, any modeling errors or
unmodeled factors, and the true measurement noise of the
system. The goal is to find a sparse b, which is actually an
image of the medium using the measurements y; at all scan
points i = 1,2... S, where S represents the total number of
spatial measurements. CS theory requires a much smaller
number of random measurements to reconstruct a sparsely
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represented signal. Hence, instead of measuring all the L
frequency step, a random subset of M frequencies for
each scan position can be measured. This can be stated
in matrix form as

ﬁi = ¢LYZ = ¢i\1‘ib + ﬁ, (6)

where ®@; is an M X L measurement matrix constructed by
randomly selecting M rows of an L X L identity matrix,
which amounts to measuring random frequency points at
the ith scan point. This reduces the data acquisition time
by a factor of L /M for SF-GPRs. Note that ®; can be differ-
ent at each scan point. Using measurements f3; from S differ-
ent scan positions, the target space b is constructed with
conventional CS>’ by solving a combined optimization prob-
lem as

b = argmin||B||, s.t. |8 —Ab|; <e, (7)
where  p=[p1,....pL", ¥Y=[PT,.. . Y[, ®=
diag{®,,...,Dg}, and A = ®Y and ¢ is a regularization

parameter of the problem. Here the selected S scan positions
can also be a random subset of the scan positions within the
whole synthetic aperture. The optimization problem in
Eq. (7) can all minimize convex functionals and global opti-
mal solutions can be obtained through linear programming.
Instead of solving Eq. (7), suboptimal greedy algorithms are
also used in many applications owing to their lower compu-
tational complexity. OMP,>* compressive sampling matching
pursuit (CoSamp),”® and iterative hard/soft thresholding
(IHT)*’ are some of these greedy algorithms. We used
OMP as a basic iterative scheme for our proposed oft-
grid reconstruction technique as detailed in the next section.

3 Gradient-Based OMP for Off-Grid Targets

Actual targets can be at any spatial position within the im-
aging area, but conventional reconstruction techniques such
as OMP try to generate a sparse target space image by iden-
tifying the grid cells in which the targets are present. OMP
method starts with an empty support set S, and the most cor-
related column of A with the current residual is added to the
support list, increasing the span of the current support at each
iteration. Hence at each new iteration of OMP, a new grid

Table 1 OMP Algorithm.

OMP (A, B, ¢€):
Initialization: Sy = {}, ro =4, k=1

While loop, repeat until ||r||, <€

(rom)

U:A{:,Sk} ax = Ufﬂ

A = argmax,,

Sk = [Sk-14]

l‘k :ﬂ e U(lk
Increase k by 1

Output: b*(Sy) = U'p
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point is added to the target list. Then, projection of the mea-
surements onto current support is computed to obtain an esti-
mate for that iteration level. This procedure is repeated until
the residual norm is less than a given tolerance level of € or a
predetermined sparsity level. The main process of OMP is
summarized in Table 1.

In general, a target at position p, may not be exactly on
the grid center, but it is at an unknown shift Ap, =
[Axy; Ayy; Azy;] from the grid center and still in the grid
area, where |6x;| < A,/2, |6yx] <A,/2, and [67;] < A./2
with A,, A, A defining the grid dimensions in x, y, and
z axis, respectively. It is expected that the measurements
due to this off-grid target will be correlated the most with
its own grid center, and OMP procedure will select the dic-
tionary column corresponding to that grid center to represent
response from this target. A desired algorithm would be able
to find the unknown shift Ap, and add the model data for that
target point to the support vector list.

OMP procedure in Table 1 calculates a cost function of
|(r_1A,,)| at only grid centers by projecting the combined
measurements from all scan points to the combined data dic-
tionary and tries to maximizes this cost. If we had the chance
to calculate this cost at every spatial position, then this cost
would be defining a continuous surface on the target space
and the goal would be to find the peaks of this surface.
One example cost-function image over the target space
with three off-grid targets with underlying grid centers is
shown in Fig. 1.

Although such a continuous cost function peaks at the
correct target locations, it is only evaluated at the grid cen-
ters. However, if gradients of this cost function can be cal-
culated at a given position, then starting from the grid center
a steepest ascent-type algorithm can be used to find the peak
of the cost function within the grid. Here we simply propose
to use this gradient-based optimization of the cost initially
starting from the grid point selected by the OMP algorithm
and by taking controlled steps in the direction of the gradient,
sequentially updating the target position until a convergence
criterion is met. Hence the proposed idea can be summarized
as follows: (1) First initialize the target point to the selected
grid center from OMP iteration as p; o = &, (2) Start from
s = 1 until convergence perform updates

Z (cm)

-1 -0.5 0 0.5 1
X (cm)

Fig. 1 Evaluation of the orthogonal matching pursuit (OMP) cost over
the target space in a single grid. x, grid center; o, true position of the
target.
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aJ
Pr.s—1 dy

aJ

Pk,sl:|

n [0]
pk,s :pk,s—l Hs |5 s

ox Pr.s-1 0z
(3) Terminate if derivatives are smaller than a threshold
where p, ; is the updated target point for iteration s, u is
a step-size vector having step sizes in each of x, y, and z

directions, and

a_J
ox

Prs-1

is the partial derivative of the cost function J with respect to a
spatial dimension x evaluated at the point p; ;_;. The conver-
gence rate of this steepest ascent-based algorithm is only lin-
ear, since the it is applied on a convex quadratic function.
This steepest-ascent procedure requires the evaluation of par-
tial derivatives in each direction at the updated target points.
The cost function and its derivatives can also be calculated
easily using the GPR data model relation. To do so, first
define the projection of the measurements to the data model
for a target at point p as

B) —jolzi(p)]

Clp) = Zﬂﬂe N ®)

where B is the hermitian transpose of #;. The cost function
calculated by OMP is the absolute of C(p) which can be
stated as

I(p) = 1/Clp)Cp)". )

Hence the partial derivatives with respect to spatial axis
can be calculated as

o] 1
ax  2,/C(p)C¥(p)

248) o) 270 |

(10)

Partial derivatives with respect to y and z can be defined
similar to Eq. (10). Calculation of Eq. (10) requires the evalu-
ation of the following derivatives:

S e—ioln(p)] T
L ot

acH(p XS: eja) . )()Ti(p). (11)

ox

Note that calculation of the derivatives in Eq. (11) needs
simply C(p) and C¥ (p) and the partial derivative of the time
delay with respect to spatial axes,

aTi(P)
ox

which can be easily computed depending on the data acquis-
ition geometry. The step size u, can be given a priori, or
locally optimal step sizes can be selected with line search
at every iteration. The proposed method using the OMP

Apr—Jun 2013/Vol. 22(2)
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Table 2 Gradient Based OMP Algorithm.

OMP (A, B, ¢):
Initialization: S, = {}, Uy = {}, ro =8, k=1
While loop, repeat until ||r||, < e

fon)

Run Gradient Iterations Until Terminated:

Ax = argmax,,

Initialize s =1, ug_y = [Ax, Ay, AZ]/10, Py sy = 7,,

Evaluate G = [%J(’%’,’%Hpk,H
Take a step pys = Pk,s—1 + Hs—1G
s=s+1and us = cx*pug_q With c <1
Output: p = py s

Sk = [Sk-1P]

Uy = (Ui exp—jolt(p)]} ax = U'p

re=p-Ua

Increase k by 1

Output: {ak, Sk}

framework and the detailed gradient-based iterations is sum-
marized in Table 2.

4 Numerical Simulations and Results

In this section, performance of the proposed algorithm is
analyzed for sparse GPR imaging in the case of targets
that can be arbitrarily located within the target space.
Hence the targets can be off the grid. First, an example
GPR scenario is simulated. A stepped-frequency GPR scan-
ning a bandwidth from 500 MHz to 5.5 GHz with 20-Mhz
step sizes is assumed. A two-dimensional (2-D) target space
covering between [—0.5,0.5] m in x direction and [0, —1] m
in depth (z) dimensions containing three randomly placed
point targets is generated, and the corresponding SF-GPR

0.8+
0.6+
0.4+~

0.2+

co

Z@m) 105 X (m Zm) 1

response of the target region is simulated. The target region
is scanned at 51 uniformly spaced scan points with 2-cm
increments, and at each scan point 20% of the total frequency
steps are randomly measured. To generate the data diction-
ary, the specified target domain is discretized with 5-cm grid
size in both x and z dimensions. The target space image is
inverted using both OMP and the proposed gradient-based
OMP (GB-OMP) techniques. Both techniques use the
same measurements, data dictionary, and termination cri-
terion, which is selected for this example as ¢ = 0.05||f]|,.

Figure 2(a) shows the correct positions of the point tar-
gets. Solution of the proposed technique and OMP are
given in Fig. 2(b) and 2(c), respectively. It can be seen that
whereas OMP has higher peaks around the true target
regions, it is not a sparse image and it has selected too
many grid points to satisfy the data contraint. However,
the proposed method directly finds three off-grid targets at
their nearly correct positions. Figure 3(a) shows the same
simulation result as a 2-D image with underlying grids
and their centers. The true locations of the targets are
shown with a circle, where the reconstructed target locations
(proposed technique) are shown with a plus sign. It can be
seen that GB-OMP found the target parameters very close to
the correct values. Figure 3(b) shows the gradient-based
steps taken for one of the targets starting from the grid center
until the gradient iterations are terminated. It can be seen that
with decreasing step sizes, the algorithm converges to the
correct target location.

One important point is to understand the effect of the grid
sizes on the compared reconstruction technique. Because
grid size determines the size of both the reconstruction prob-
lem and the data model dictionary, being able perform suc-
cessfully at bigger grid sizes decreases the computation and
memory requirements. Thus, a comparison between OMP
and the GB-OMP techniques for the same off-grid target
space with four-point targets is done with grid spacings of
5, 10, and 20 cm. In all cases, the same termination criterion
is used. The reconstructed target spaces for both techniques
are shown in Fig. 4. The proposed technique finds exactly
four targets at their nearly correct locations when the grid
size is 5 or 10 cm. When the grid size is increased to
20 cm, proposed method finds two of the four targets cor-
rectly but fail to find other targets and generates false targets
at wrong positions. OMP in all cases creates a nonsparse
images and suffers from the increased grid size more than
the proposed technique. Although higher peaks around the

Fig. 2 (a) True ground-penetrating radar (GPR) target space with K = 3 off-the-grid targets. (b) Gradient-based (GB)-OMP reconstruction result.
(c) OMP reconstruction result.
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(b)

Fig. 3 (a) Reconstructed target positions with the proposed technique with the underlying grids. O, correct target parameters; +, parameters found
by the proposed method; x, grid centers. (b) Gradient-based steps taken within the proposed algorithm at one of the target grids.

target region are obtained for the 5-cm grid size, OMP starts
to lose the targets with increasing grid sizes.

The average performance and robustness of the proposed
technique has also been analyzed in terms of parameters such
as sparsity level and signal-to-noise ratio (SNR). Methods
like OMP tend to generate nonsparse reconstructions,
since they cannot represent the data with the dictionary col-
umns generated from the grid centers sparsely. To test the
performance of the proposed technique on sparsity level
of the reconstructed GPR image, GB-OMP method is
applied to cases with varying levels of correct sparsity levels
changing from 1 to 20. For each sparsity level, point targets

are randomly placed in the target space, and the tested spar-
sity level and reconstruction is done with both OMP and the
GB-OMP techniques. An underlying grid of 5 cm in both
dimensions is taken, and the corresponding data dictionary
is used. Both techniques are terminated with the same cri-
terion, and the sparsity levels of the reconstructions are
observed. This simulation was repeated 20 times for each
sparsity level, with independent and random GPR target
space selections. The average level of estimated sparsity ver-
sus the true sparsity level for the GB-OMP technique is
shown in Fig. 5(a). OMP selected all grid indexes, which
is 420 for the grid size used, for all the tested sparsity levels

-
£
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Fig. 4 GB-OMP results with grid sizes of 5 cm (a) 10 cm (b) and 20 cm (c) Reconstructed OMP images with grid sizes of 5 cm (d) 10 cm (e) and

20 cm (f).
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Fig. 5 (a) Estimated sparsity level of the GB-OMP versus the correct sparsity of the target space. (b) Average location error in dB versus the

sparsity level of the scene for OMP and GB-OMP methods.

to satisfy the termination constraint. On the other hand, GB-
OMP reconstructs the target space with the correct sparsity
level until the sparsity level of the scene is about 13 for the
simulation parameters. For scenes with higher numbers of
targets, it is observed that GB-OMP generates slightly
fewer targets then the true sparsity level.

Another important metric is the average location error in
the detected targets. For this purpose, target spaces with
varying numbers of sparsity from 1 to 20 are generated,
and for each sparsity level, the absolute distance with the
true and estimated target locations is calculated for both
OMP and GB-OMP techniques. Because both techniques
may generate target spaces with more than K targets, the
best K representation (meaning locations of the K targets
having the highest reconstruction values) are compared for
both methods. This simulation was repeated 20 times with
independent random target space generations, and the aver-
age of the location errors is calculated in decibels since OMP
error is comparably higher than GB-OMP. Figure 5(b) shows
this average location error for varying sparsity levels for both
OMP and GB-OMP techniques. It can be observed that the
GB-OMP method could estimate the target locations with
much lower errors compared to OMP. The parameter error

Proposed

=301

Mean Location Error in dB
A
[=]

10 20 30 40 50 60 70
SNR (dB)

Fig. 6 Average location error in dB versus varying levels of SNR.
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for OMP seems to be flat for varying sparsity levels,
since OMP only selects the grid centers. Error for GB-OMP
is much lower compared to OMP, and the error increases
slightly with the increasing level of target space sparsity.

To investigate noise performance of the GB-OMP method
in varying levels of noise power, it was tested under SNR
levels from 10 to 70 dB. For each SNR level, a random target
space with a sparsity level of K = 3 is generated. Additive
white Gaussian noise with corresponding noise power is
added to the simulated received signal. As a performance
metric, the average absolute location errors are calculated
for the detected targets for the compared methods. This
simulation was repeated 20 times with independent target
space and noise generations. Figure 6 shows the average
location errors for the tested SNR levels. It is observed
that the average errors are significantly lower than the
OMP parameter errors for SNR levels >20 dB.

An important discussion on this topic is the effect of off-
grid targets to the receiver operating characteristics of a
system. From Eq. (1), a mismatch in the sparsity basis
results in an increase in the error bound by an amount of
(N —k)B||6|l,, which shows that any probability-of-
detection value will be achieved with a higher probability-
of-false-alarm ratio when a basis mismatch occurs and
conventional reconstruction techniques such as basis
pursuit or OMP are used. Although we have not proven
theoretically here, our proposed method removes the leak-
age due to off-grid targets to the other grid cells, hence
expectedly decreasing false alarms due to the off-grid
phenomenon.

5 Conclusions

Although CS brings important advantages to GPR imaging,
because of the off-the-grid target problem, CS techniques
had significant challenges in this application. A new gra-
dient-based iterative algorithm that can reconstruct the target
under off-grid targets is proposed in this paper. The proposed
technique calculates gradient base steps toward maximizing
the projection function cost for each selected grid.
Simulations show that sparse off-grid GPR imaging can
be successfully done with the proposed technique. Com-
pared to the standard OMP technique, the proposed method
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provides significantly lower localization errors for a wide
range of sparsity levels and SNRs.
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