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Abstract. A typical first step of a direct solver for the linear system Mx = b is reordering of
the symmetric matrix M to improve execution time and space requirements of the solution process.
In this work, we propose a novel nested-dissection-based ordering approach that utilizes hypergraph
partitioning. Our approach is based on the formulation of graph partitioning by vertex separator
(GPVS) problem as a hypergraph partitioning problem. This new formulation is immune to deficiency
of GPVS in a multilevel framework and hence enables better orderings. In matrix terms, our method
relies on the existence of a structural factorization of the input M matrix in the form of M = AAT

(or M = AD2AT ). We show that the partitioning of the row-net hypergraph representation of the
rectangular matrix A induces a GPVS of the standard graph representation of matrix M . In the
absence of such factorization, we also propose simple, yet effective structural factorization techniques
that are based on finding an edge clique cover of the standard graph representation of matrix M , and
hence applicable to any arbitrary symmetric matrix M . Our experimental evaluation has shown that
the proposed method achieves better ordering in comparison to state-of-the-art graph-based ordering
tools even for symmetric matrices where structural M = AAT factorization is not provided as an
input. For matrices coming from linear programming problems, our method enables even faster and
better orderings.
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1. Introduction. The focus of this work is the solution of symmetric linear
systems of equations through direct methods such as LU and Cholesky factorizations.
A typical first step of a direct method is a heuristic reordering of the rows and columns
of M to reduce fill in the triangular factor matrices. The fill is the set of zero entries in
M that become nonzero in the triangular factor matrices. Another goal in reordering
is to reduce the number of floating-point operations required to perform the triangular
factorization, also known as operation count. It is equal to the sum of the squares of
the number nonzeros of each eliminated row/column; hence it is directly related with
the number of fills.

For a symmetric matrix, the evolution of the nonzero structure during the fac-
torization can easily be described in terms of its graph representation [50]. In graph
terms, the elimination of a vertex (which corresponds to a row/column of the matrix)
creates an edge for each pair of its adjacent vertices. In other words, elimination of a
vertex makes its adjacent vertices into a clique of size equal to its degree. In this pro-
cess, the extra edges, which are added to construct such cliques, directly correspond
to the fill in the matrix. Obviously, the amount of fill and operation count depends on
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HP-BASED ORDERING FOR SYMMETRIC MATRICES 1997

the row/column elimination order. The aim of ordering is to reduce these quantities,
which leads to both faster and less memory intensive solution of the linear system.
Unfortunately this problem is known to be NP-hard [54]; hence we consider heuristic
ordering methods.

Heuristic methods for fill-reducing ordering can be divided into mainly two cate-
gories: bottom-up (also called local) and top-down (also called global) approaches [49].
In the bottom-up category, one of the most popular ordering methods is the min-
imum degree (MD) heuristic [52] in which at every elimination step a vertex with
the minimum degree, hence the name, is chosen for elimination. Success of the MD
heuristic is followed by many variants of it, such as quotient minimum degree [29],
multiple minimum degree (MMD) [48], approximate minimum degree (AMD) [2], and
approximate minimum fill [51]. Among the top-down approaches, the most famous
and influential one is surely nested dissection (ND) [30]. The main idea of ND is as
follows. Consider a partitioning of vertices into three sets, V1 , V2 , and VS , such that
the removal of VS , called separator, decouples V1 and V2 . If we order the vertices of
VS after the vertices of V1 and V2 , certainly no fill can occur between the vertices
of V1 and V2 . Furthermore, the elimination processes in V1 and V2 are independent
tasks, and their elimination only incurs fill to themselves and VS . Hence, the ordering
of the vertices of V1 and V2 can be computed by applying the algorithm recursively.
In ND, since the quality of the ordering depends on the size of VS , finding a small
separator is desirable.

Although the ND scheme has some nice theoretical results [30], it has not been
widely used until the development of multilevel graph partitioning tools. State-of-
the-art ordering tools [18, 36, 40, 44] are mostly a hybrid of top-down and bottom-up
approaches and built using an incomplete ND approach that utilizes a multilevel graph
partitioning framework [10, 35, 39, 43] for recursively identifying separators until a
part becomes sufficiently small. After this point, a variant of MD, like constraint
minimum degree (CMD) [49] is used for the ordering of the parts.

Some of these tools utilize multilevel graph partitioning by edge separator (GPES)
[10, 43], whereas the others directly employ multilevel graph partitioning by vertex
separator (GPVS) [40, 43]. Any edge separator found by a GPES tool can be trans-
formed into a wide vertex separator by including all the vertices incident to separator
edges into the vertex separator. Here, a separator is said to be wide if a strict subset of
it forms a separator and narrow otherwise. The GPES-based tools utilize algorithms
like vertex cover to obtain a narrow separator from this initial wide separator. It has
been shown that the GPVS-based tools outperform the GPES-based tools [40], since
the GPES-based tools do not directly aim to minimize vertex separator size. However,
as we will demonstrate in section 2.5, GPVS-based approaches have a deficiency in
the multilevel frameworks.

In this work, we propose a new incomplete ND-based fill-reducing ordering. Our
approach is based on a novel formulation of the GPVS problem as a hypergraph parti-
tioning (HP) problem that is immune to GPVS’s deficiency in multilevel partitioning
frameworks. Our formulation relies on finding an edge clique cover of the standard
graph representation of matrix M. The edge clique cover is used to construct a hyper-
graph, which is referred to here as the clique-node hypergraph. In this hypergraph,
the nodes correspond to the cliques of the edge clique cover, and the hyperedges
correspond to the vertices of the standard graph representation of matrix M. We
show that the partitioning of the clique-node hypergraph can be decoded as a GPVS
of the standard graph representation of matrix M. In matrix terms, our formula-
tion corresponds to finding a structural factorization of the matrix M in the form of
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M=AAT (or M=AD2AT ). Here, structural factorization refers to the fact that we
are seeking a {0,1}-matrix A = {aij} , where AAT determines the sparsity pattern of
M. In applications like the solution of linear programming (LP) problems using an
interior point method, such a matrix is actually given as a part of the problem. For
other problems, we present efficient methods to find such a structural factorization.
Furthermore, we develop matrix sparsening techniques that allow faster orderings of
matrices coming from LP problems.

To the best of our knowledge, our work, including our preliminary work that had
been presented in [11, 15], is the first work that utilizes hypergraph partitioning for fill-
reducing ordering. This paper presents a much more detailed and formal presentation
of our proposed HP-based GPVS formulation in section 3, and its application for
fill-reducing ordering symmetric matrices in section 4. A recent and complementary
work [34] follows a different path and tackles unsymmetric ordering by leveraging
our hypergraph models for permuting matrices into singly bordered block-diagonal
form [8]. The HP-based fill-reducing ordering method we introduce in section 4 is
targeted for ordering symmetric matrices and uses our proposed HP-based GPVS
formulation. For general symmetric matrices, the theoretical foundations of HP-
based formulation of GPVS presented in this paper lead to development of two new
hypergraph construction algorithms that we present in section 3.2. For matrices
arising from LP problems, we present two structural factor sparsening methods in
section 4.2, one of which is a new formulation of the problem as a minimum set cover
problem. A detailed experimental evaluation of the proposed methods presented in
section 5 shows that our method achieves better orderings in comparison to the state-
of-the-art ordering tools. Finally, we conclude in section 6.

2. Preliminaries.

2.1. Graph partitioning by vertex separator. An undirected graph G =
(V , E) is defined as a set V of vertices and a set E of edges. Every edge eij ∈ E
connects a pair of distinct vertices vi and vj . We use the notation AdjG(vi) to
denote the set of vertices that are adjacent to vertex vi in graph G . We extend this
operator to include the adjacency set of a vertex subset V ′ ⊆ V , i.e., AdjG(V ′) =⋃

vi∈V′ AdjG(vi) − V ′ . The degree di of a vertex vi is equal to the number of edges
incident to vi , i.e., di= |AdjG(vi)| . A vertex subset VS is a K -way vertex separator if
the subgraph induced by the vertices in V−VS has at least K connected components.
ΠV S = {V1,V2, . . . ,VK ;VS} is a K -way vertex partition of G by vertex separator
VS⊆V if the following conditions hold: Vk⊆V and Vk �=∅ for 1≤k≤ K ; Vk∩V�=∅
for 1≤k<�≤K and Vk∩VS=∅ for 1≤k≤K ;

⋃K
k=1Vk∪VS=V ; removal of VS gives

K disconnected parts V1,V2, . . . ,VK (i.e., AdjG(Vk)⊆VS for 1≤k≤K ).
In the GPVS problem, the partitioning constraint is to maintain a balance cri-

terion on the weights of the K parts of the K -way vertex partition ΠV S = {V1,V2,
. . . ,VK ;VS} . The weight Wk of a part Vk is usually defined by the number of the
vertices in Vk , i.e., Wk = |Vk| , for 1 ≤ k ≤ K . The partitioning objective is to
minimize the separator size, which is usually defined as the number of vertices in the
separator, i.e.,

(2.1) Separatorsize(ΠVS) = |VS |.

2.2. Hypergraph partitioning. A hypergraph H=(U ,N ) is defined as a set
U of nodes (vertices) and a set N of nets (hyperedges). We refer to the vertices
of H as nodes, to avoid the confusion between graphs and hypergraphs. Every net
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ni ∈ N connects a subset of nodes of U , which are called the pins of ni and are
denoted as Pins(ni). The set of nets that connect node uh is denoted as Nets(uh).
Two distinct nets ni and nj are said to be adjacent, if they connect at least one
common node. We use the notation AdjH(ni) to denote the set of nets that are
adjacent to ni in H , i.e., AdjH(ni) = {nj ∈ N −{ni} : Pins(ni) ∩ Pins(nj) �= ∅} .
We extend this operator to include the adjacency set of a net subset N ′ ⊆N , i.e.,
AdjH(N ′) =

⋃
ni∈N ′AdjH(ni) − N ′ . The degree dh of a node uh is equal to the

number of nets that connect uh , i.e., dh = |Nets(uh)| . The size si of a net ni is
equal to the number of its pins, i.e., si = |Pins(ni)| .

ΠHP = {U1,U2, . . . ,UK} is a K -way node partition of H if the following con-
ditions hold: Uk ⊆ U and Uk �= ∅ for 1 ≤ k ≤ K ; Uk ∩ U� = ∅ for 1 ≤ k < � ≤ K ;⋃K

k=1Uk =U . In a partition ΠHP of H , a net that connects at least one node in a
part is said to connect that part. A net ni is said to be an internal net of a node-part
Uk , if it connects only part Uk , i.e., Pins(ni) ⊆ Uk . We use Nk to denote the set of
internal nets of node-part Uk , for 1≤k≤ K . A net ni is said to be cut (external), if
it connects more than one node part. We use NS to denote the set of external nets,
to show that it actually forms a net separator; that is, removal of NS gives at least
K disconnected parts.

In the HP problem, the partitioning constraint is to maintain a balance criterion
on the weights of the parts of the K -way partition ΠHP = {U1,U2, . . . ,UK} . The
weight Wk of a node-part Uk is usually defined by the cumulative effect of the nodes
in Uk , for 1≤k≤ K . However, in this work, we define Wk as the number of internal
nets of node-part Uk , i.e., Wk = |Nk| . The partitioning objective is to minimize the
cut size defined over the external nets. There are various cut-size definitions. The
relevant one used in this work is the cut-net metric, where cut size is equal to the
number of external nets, i.e.,

(2.2) Cutsize(ΠHP ) = |NS |.
2.3. Net-intersection graph representation of a hypergraph. The net-

intersection graph (NIG) representation [19], also known as intersection graph [1,
9], was proposed and used in the literature as a fast approximation approach for
solving the HP problem [41]. In the NIG representation NIG(H) = (V , E) of a given
hypergraph H = (U ,N ), each vertex vi of NIG(H) corresponds to net ni of H .
There exists an edge between vertices vi and vj of NIG(H) if and only if the respective
nets ni and nj are adjacent in H , i.e., ei,j ∈ E if and only if nj ∈ AdjH(ni), which
also implies that ni ∈ AdjH(nj). This NIG definition implies that every node uh of
H induces a clique Ch in NIG(H) where Ch = Nets(uh).

2.4. Graph and hypergraph models for representing sparse matrices.
Several graph and hypergraph models are proposed and used in the literature, for
representing sparse matrices for a variety of applications in parallel and scientific
computing [37].

In the standard graph model, a square and symmetric matrix M = {mij} is
represented as an undirected graph G(M) = (V , E). Vertex set V and edge set E ,
respectively, correspond to the rows/columns and off-diagonal nonzeros of matrix M .
There exists one vertex vi for each row/column ri /ci . There exists an edge eij for
each symmetric nonzero pair mij and mji ; i.e., eij ∈ E if mij �=0 and i < j .

Three hypergraph models are proposed and used in the literature; namely, row-
net, column-net, and row-column-net (a.k.a. fine-grain) hypergraph models [12, 14,
17, 53]. We will discuss only the row-net hypergraph model that is relevant to our
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Fig. 2.1. Partial illustration of two sample GPVS results to demonstrate the deficiency of the
graph model in the multilevel framework.

work. In the row-net hypergraph model, a rectangular matrix A = {aij} is repre-
sented as a hypergraph HRN(A) = (U ,N ). Node set U and net set N , respectively,
correspond to the columns and rows of matrix A . There exist one node uh for each
column ch and one net ni for each row ri . Net ni connects the nodes corresponding
to the columns that have a nonzero entry in row i ; i.e., uh∈Pins(ni) if aih �=0.

We should note that although row-net and column-net hypergraph models re-
semble the bipartite graph model [38] in structure, hypergraph models are the ones
that encapsulate both the partitioning objective and the multi-interaction among ver-
tices [37].

2.5. Deficiency of GPVS in the multilevel framework. The multilevel
graph/hypergraph partitioning framework basically contains three phases: coars-
ening, initial partitioning, and uncoarsening. During the coarsening phase, ver-
tices/nodes are visited in some (possibly random) order and usually two (or more)
of them are coalesced to construct the vertices/nodes of the next-level coarsened
graph/hypergraph. After multiple coarsening levels, an initial partition is found on the
coarsest graph/hypergraph, and this partition is projected back to a partition of the
original graph/hypergraph in the uncoarsening phase with further refinements at each
level of uncoarsening. Both GPES and HP problems are well suited for the multilevel
framework, because the following nice property holds for the edge and net separators
in multilevel GPES and HP: Any edge/net separator at a given level of uncoarsening
forms a valid narrow edge/net separator of all the finer graphs/hypergraphs, including
the original graph/hypergraph. Here, an edge/net separator is said to be narrow, if
no subset of edges/nets of the separator forms a separator.

However, this property does not hold for the GPVS problem. Consider the two
examples displayed in Figure 2.1 as partial illustration of two different GPVS par-
titioning results at some level m of a multilevel GPVS tool. In the first example,
n+1 vertices {vi, vi+1, . . . , vi+n} are coalesced to construct vertex vi..n as a result
of one or more levels of coarsening. Thus, VS = {vi..n} is a valid and narrow vertex
separator for level m . The GPVS tool computes the cost of this separator as n+1 at
this level. However, obviously this separator is a wide separator of the original graph.
In other words, there is a subset of those vertices that is a valid narrow separator of
the original graph. In fact, any single vertex in {vi, vi+1, . . . , vi+n} is a valid sepa-
rator of size 1 of the original graph. Similarly, for the second example, the GPVS
tool computes the size of the separator as 3; however, there is a subset of constituent
vertices of VS = {vijk} = {vi, vj , vk} that is a valid narrow separator of size 1 in the
original graph. That is, either VS = {vi} or VS = {vk} is a valid narrow separator.
Note that this deficiency is not because of a specific algorithm, but it is an inherent
feature of the multilevel paradigm on GPVS. We refer the reader to a recent work [45]
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for a more thorough comparison of GPVS and HP tools. In particular, K -way parti-
tioning results for net balancing presented in that work experimentally confirm that
a multilevel HP tool achieves smaller separator sizes than a graph-based tool.

3. HP-based GPVS formulation. We are considering a method to solve the
GPVS problem for a given undirected graph G = (V , E).

3.1. Theoretical foundations. The following theorem lays down the basis for
our HP-based GPVS formulation.

Theorem 1. Consider a hypergraph H = (U ,N ) and its NIG representation
NIG(H) = (V , E) . A K-way node-partition ΠHP = {U1,U2, . . . ,UK} of H induces
a K-way vertex separator ΠV S = {V1,V2, . . . ,VK ;VS} of NIG(H) , where
(a) the partitioning objective of minimizing the cut size of ΠHP according to (2.2)

corresponds to minimizing the separator size of ΠV S according to (2.1).
(b) the partitioning constraint of balancing on the internal net counts of node parts

of ΠHP infers balance among the vertex counts of parts of ΠV S .
Proof. As described in [8], the K -way node-partition ΠHP = {U1,U2, . . . ,UK}

of H induces a (K+1)-way net-partition {N1,N2, . . . ,NK ;NS} . We consider this
(K+1)-way net-partition ΠHP = {N1,N2, . . . ,NK ;NS} of H as inducing a K -way
GPVS ΠV S = {V1,V2, . . . ,VK ;VS} on NIG(H), where Vk ≡ Nk , for 1≤k≤ K , and
VS ≡ NS . Consider an internal net nj of node-part Uk in ΠHP , i.e., nj ∈ Nk . It
is clear that AdjH(nj) ⊆ Nk ∪ NS , which implies AdjH(Nk) ⊆ NS . Since Vk ≡ Nk

and VS ≡ NS , AdjH(Nk) ⊆ NS in ΠHP implies AdjG(Vk) ⊆ VS in ΠV S . In other
words, AdjG(Vk) ∩ V� = ∅ , for 1≤ �≤ K and � �= k . Thus, VS of ΠV S constitutes a
valid separator of size |VS | = |NS | . So, minimizing the cut size of ΠHP corresponds
to minimizing the separator size of ΠV S . Since |Vk| = |Nk| , for 1≤k≤ K , balancing
on the internal net counts of node parts of ΠHP corresponds to balancing the vertex
counts of parts of ΠV S .

Corollary 1. Consider an undirected graph G . A K-way partition ΠHP of any
hypergraph H for which NIG(H)≡ G induces a K-way vertex separator ΠV S of G .

Although NIG(H) is well defined for a given hypergraph H , there is no unique
reverse construction. We introduce the following definitions and theorems, which
show our approach for reverse construction.

Definition 3.1 (edge clique cover (ECC) [47]). Given a set C = {C1, C2, . . . } of
cliques in G = (V , E) , C is an ECC of G if for each edge eij ∈ E there exists a clique
Ch ∈ C that contains both vi and vj .

Definition 3.2 (clique-node hypergraph). Given a set C = {C1, C2, . . . } of
cliques in graph G = (V , E) , the clique-node hypergraph CNH(G, C) = H = (U ,N ) of
G for C is defined as a hypergraph with |C| nodes and |V| nets, where H contains
one node uh for each clique Ch of C and one net ni for each vertex vi of V , i.e.,
U ≡ C and N ≡ V . In H , the set of nets that connect node uh corresponds to the
set Ch of vertices; i.e., Nets(uh) ≡ Ch for 1≤ h≤ |C| . In other words, the net ni

connects the nodes corresponding to the cliques that contain vertex vi of G .
Figure 3.1(a) displays a sample graph G with 11 vertices and 18 edges. Fig-

ure 3.1(b) shows the clique-node hypergraph H of G for a sample ECC C that contains
12 cliques. Note that H contains 12 nodes and 11 nets. As seen in Figure 3.1(b), the
4-clique C5={v4, v5, v10, v11} in C induces node u5 with Nets(u5)={n4, n5, n10, n11}
in H . Figure 3.2(a) shows a 3-way partition ΠHP of H , where each node part con-
tains 3 internal nets and the cut contains 2 external nets. Figure 3.2(b) shows the
3-way GPVS ΠV S induced by ΠHP . In ΠV S , each part contains 3 vertices and the
separator contains 2 vertices. In particular, the cut with 2 external nets n10 and n11
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Fig. 3.1. (a) A sample graph G ; (b) the clique-node hypergraph H of G for ECC C = {C1 =
{v1, v2, v3}, C2 = {v2, v10, v11}, C3 = {v2, v3, v11}, C4 = {v1, v2}, C5 = {v4, v5, v10, v11}, C6 = {v5,
v6, v11}, C7 = {v5, v6} , C8 = {v4, v5}, C9 = {v7, v11}, C10 = {v7, v8, v9}, C11 = {v7, v9}, C12 =
{v7, v8}} .
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Fig. 3.2. (a) A 3 -way partition ΠHP of the clique-node hypergraph H given in Figure 3.1(b);
(b) the 3 -way GPVS ΠV S of G (given in Figure 3.1(a)) induced by ΠHP .

induces a separator with 2 vertices v10 and v11 . The node-part U1 with 3 internal
nets n1 , n2 , and n3 induces a vertex-part V1 with 3 vertices v1 , v2 , and v3 .

The following two theorems state that, for a given graph G , the problem of
constructing a hypergraph whose NIG representation is the same as G is equivalent
to the problem of finding an ECC of G .

Theorem 2. Given a graph G = (V , E) and a hypergraph H = (U ,N ) , if
NIG(H) ≡ G , then H ≡ CNH(G, C) with C = {Ch ≡Nets(uh) : 1≤ h≤ |U|} is an
ECC of G .

Proof. Since NIG(H) ≡ G , there is an edge eij={vi, vj} in G if and only if nets
ni and nj are adjacent in H , which means there exists a node uh in H such that
both ni ∈ Nets(uh) and nj ∈ Nets(uh). Since uh induces the clique Ch ∈ C , Ch
contains both vertices vi and vj .

Note that C = {Ch ≡Nets(uh) : 1≤ h≤ |U|} is the unique ECC of G satisfying
H ≡ CNH(G, C).

Theorem 3. Given a graph G = (V , E) , for any ECC C of G , the NIG represen-
tation of the clique-node hypergraph of C is equivalent to G , i.e., NIG(CNH(G, C)) ≡ G .
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Proof. By construction, two nets ni and nj are adjacent in CNH(G, C) if and
only if there exists a clique Ch ∈ C such that Ch contains both vertices vi and vj in
G . Since C is an ECC of G , there is such a clique Ch ∈ C if and only if there is an
edge eij in G .

3.2. Hypergraph construction based on edge clique cover. According to
the theoretical findings given in section 3.1, our HP-based GPVS approach is based
on finding an ECC of the given graph and then partitioning the respective clique-node
hypergraph. Here, we will briefly discuss the effects of different ECCs on the solution
quality and the run-time performance of our approach.

In terms of solution quality of hypergraph partitioning, it is not easy to quantify
the metrics for a “good” ECC. In a multilevel HP tool that balances internal net
weights, the choice of an ECC should not affect the quality performance of the FM-
like [27] refinement heuristics commonly used in the uncoarsening phase. However,
the choice of an ECC may considerably affect the quality performance of the node
matchings performed in the coarsening phase. For example, large cliques in the ECC
may lead to better quality node matchings even in the initial coarsening levels. On
the other side, large amounts of edge overlaps among the cliques of a given ECC
may adversely affect the quality of the node matchings. Therefore, having large but
nonoverlapping cliques might be desirable for solution quality.

The choice of the ECC may affect the run-time performance of the HP tool
depending on the size of the clique-node hypergraph. Since the number of nets in the
clique-node hypergraph is fixed, the number of cliques and the sum of the clique sizes,
which, respectively, correspond to the number of nodes and pins, determine the size
of the hypergraph. Hence, an ECC with a small number of large cliques is likely to
induce a clique-node hypergraph of small size.

Although not a perfect match, the ECC problem [47], which is stated as finding
an ECC with minimum number of cliques, can be considered to be relevant to our
problem of finding a “good” ECC. Unfortunately, the ECC problem is also known
to be NP-hard [47]. The literature contains a number of heuristics [33, 46, 47] for
solving the ECC problem. However, even the fastest heuristic’s [33] running time
complexity is O(|V||E|), which makes it impractical in our approach.

In this work, we investigate three different types of ECCs, namely, C2, C3, and
C4 , to observe the effects of increasing clique size in the solution quality and run-time
performance of the proposed approach. Here, C2 denotes the ECC of all 2-cliques
(edges), i.e., C2 = E ; C3 denotes an ECC of 2- and 3-cliques; C4 denotes an ECC of
2-, 3-, and 4-cliques. In general, Ck denotes an ECC of cliques in which maximum
clique size is bounded above by k . Note that C2 is unique, whereas C3 and C4 are
not necessarily unique. We will refer to the clique-node hypergraph induced by Ck as
Hk = CNH(G, Ck).

The clique-node hypergraph H2 deserves special attention, since it is uniquely
defined for a given graph G . In H2 , there exists one node of degree 2 for each edge eij
of G . The net ni corresponding to vertex vi of G connects all nodes corresponding
to the edges that are incident to vertex vi , for 1≤ i≤|V| . So, H2 contains |E| nodes,
|V| nets, and 2|E| pins. The running time of HP-based GPVS using H2 is expected to
be quite high because of the large number of nodes and pins. Figure 3.3 displays the
2-clique-node hypergraph H2 of the sample graph G given in Figure 3.1(a). As seen
in the figure, each node of H2 is labeled as uij to show the one-to-one correspondence
between nodes of H2 and edges of G . That is, node uij of H2 corresponds to edge
eij of G , where Nets(uij)={ni, nj} .
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Fig. 3.3. The 2 -clique-node hypergraph H2 of graph G given in Figure 3.1(a).

Algorithm 1. C3 Construction Algorithm

Data: G = (V, E)
for each vertex v ∈ V do

π1 [v ] ← NIL

for each edge eij ∈ E do
cover[eij ] ← 0

C3 ← ∅
for each vertex vi ∈ V do

for each vertex vj ∈ AdjG(vi) with j > i do
π1 [vj ] ← vi

for each vertex vj ∈ AdjG(vi) with j > i do
for each vertex vk ∈ AdjG(vj) with k > j do

if π1 [vk ]= vi then
if

∑
e∈({vi,vj,vk}

2
)
cover[e ]< 2 then

C3 ← C3 ∪ {{vi, vj , vk}} � Add the 3-clique to C3
for each edge e ∈ ({vi,vj ,vk}

2

)
do

cover[e ] ← 1

if cover[eij ] = 0 then
C3 ← C3 ∪ {{vi, vj}} � Add the 2-clique to C3
cover[eij ] ← 1

Algorithm 1 displays the algorithm developed for constructing a C3 , whereas
the algorithm developed for constructing a C4 is given in our technical report [16].
The goal of both algorithms is to minimize the number of pins in the clique-node
hypergraphs as much as possible. Both algorithms visit the vertices in random or-
der in order to introduce randomization to the ECC construction process. In both
algorithms, each edge is processed along only one direction (i.e., from low to high
numbered vertex) to avoid identifying the same clique more than once.

In Algorithm 1, for each visited vertex vi , 3-cliques that contain vi are searched
for by trying to locate 2-cliques between the vertices in AdjG(vi). This search is
performed by scanning the adjacency list of each vertex vj in AdjG(vi). For each
vertex, a parent field π1 is maintained for efficient identification of 3-cliques during
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this search. An identified 3-clique Ch is selected for inclusion in C3 if the number of
already covered edges of Ch is at most 1. The rationale behind this selection criterion
is as follows: Recall that a 3-clique in C3 adds 3 pins to H3 , since it incurs a node of
degree 3 in H3 . If only one edge of Ch is already covered by an other 3-clique in C3 ,
it is still beneficial to cover the remaining two edges of Ch by selecting Ch instead
of selecting the two 2-cliques covering those uncovered edges, because the former
selection incurs 3 pins, whereas the latter incurs 4 pins. If, however, any two edges
of Ch are already covered by another 3-clique in C3 , it is clear that the remaining
uncovered edge is better to be covered by a 2-clique. After scanning the adjacency list
of vj in AdjG(vi), if edge {vi, vj} is not covered by any 3-clique, which is detected by
holding a cover field for each edge where cover[e ] is a boolean that registers whether
or not the edge e is covered already, then it is added to C3 as a 2-clique. Algorithm 1
runs in O(|V|Δ2) time where Δ denotes the maximum degree of G .

The C4 -construction algorithm, the details of which can be found in [16], runs in
O(|V|Δ3)-time. We should note here that the ideas in the C3 - and C4 -construction
algorithms can be extended to a general approach for constructing Ck . However, this
general approach requires maintaining k−2 parent fields for each vertex and runs in
O(|V|Δk−1) time.

3.3. Matrix-theoretic view of HP-based GPVS formulation. Here, we
will try to reveal the association between the graph-theoretic and matrix-theoretic
views of our HP-based GPVS formulation. Given a p×p symmetric and square matrix
M , let G(M) = (V , E) denote the standard graph representation of matrix M .

A K -way GPVS ΠV S = {V1,V2, . . . ,VK ;VS} of G(M) can be decoded as per-
muting matrix M into a doubly bordered block diagonal (DB) form MDB = PAPT

as follows: ΠV S is used to define the partial row/column permutation matrix P by
permuting the rows/columns corresponding to the vertices of Vk after those corre-
sponding to the vertices of Vk−1 for 2 ≤ k ≤ K , and permuting the rows/columns
corresponding to the separator vertices to the end. The partitioning objective of min-
imizing the separator size of ΠV S corresponds to minimizing the number of coupling
rows/columns in MDB , whereas the partitioning constraint of maintaining balance on
the part weights of ΠV S infers balance among the row/column counts of the square
diagonal submatrices in MDB .

In the graph-theoretic discussion given in section 3.2, we are looking for a hy-
pergraph H whose NIG representation is equivalent to G(M). In matrix-theoretic
view, this corresponds to looking for a structural factorization M = AAT of matrix
M , where A is an p × q rectangular matrix. Here, structural factorization refers
to the fact that A = {aij} is a {0,1}-matrix, where AAT determines the sparsity
patterns of M . In this factorization, the rows of matrix A correspond to the vertices
of G(M) and the set of columns of matrix A determines an ECC C of G(M). So,
matrix A can be considered as a clique incidence matrix of G(M). That is, col-
umn ch of matrix A corresponds to a clique Ch of C , where aih �= 0 implies that
vertex vi ∈ Ch . The row-net hypergraph model HRN(A) of matrix A is equivalent
to the clique-node hypergraph of graph G(M) for the ECC C determined by the
columns of A , i.e., HRN(A) ≡ CNH(G(M), C). In other words, the NIG representa-
tion of row-net hypergraph model HRN(A) of matrix A is equivalent to G(M), i.e.,
NIG(HRN(A)) ≡ G(M).1

1We would like to note the relation of net intersection graph with column intersection graph [31].
The column intersection graph of a given matrix A is equal to the net intersection graph of the
column-net hypergraph representation of A .
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As shown in [8], a K -way node-partition ΠHP = {U1,U2, . . . ,UK} , which induces
a (K+1)-way net partition {N1,N2, . . . ,NK ;NS} , of HRN(A) can be decoded as
permuting matrix A into a K -way rowwise singly bordered block diagonal (SB) form

(3.1) ASB = PAQ =

⎡
⎢⎢⎢⎣

A1

. . .

AK

AB1 . . . ABK

⎤
⎥⎥⎥⎦ .

Here, the K -way node partition is used to define the partial column permutation
matrix Q by permuting the columns corresponding to the nodes of part Uk after those
corresponding to the nodes of part Uk−1 for 2≤ k≤K . The (K+1)-way partition
on the nets of HRN(A) is used to define the partial row permutation matrix P by
permuting the rows corresponding to the nets of Nk after those corresponding to the
nets of Nk−1 for 2≤ k≤K , and permuting the rows corresponding to the external
nets to the end. Here, the partitioning objective of minimizing the cut size of ΠHP

corresponds to minimizing the number of coupling rows in ASB . The partitioning
constraint of balancing on the internal net counts of node parts of ΠHP infers balance
among the row counts of the rectangular diagonal submatrices in ASB . It is clear
that the transpose of ASB will be in a columnwise SB form.

An SB form ASB of A induces a DB form MDB of M , since multiplying ASB

with its transpose produces a DB form of M [28]. That is,

ASBA
T
SB =

⎡
⎢⎢⎢⎣

A1

. . .

AK

AB1 . . . ABK

⎤
⎥⎥⎥⎦

⎡
⎢⎣

AT
1 AT

B1

. . .
...

AT
K AT

BK

⎤
⎥⎦

=

⎡
⎢⎢⎢⎣

A1A
T
1 A1A

T
B1

. . .
...

AKAT
K AKAT

BK

AB1A
T
1 . . . ABKAT

K

∑
k ABk

AT
Bk

⎤
⎥⎥⎥⎦ = MDB.(3.2)

As seen in (3.2), the number of rows/columns in the square diagonal block AkA
T
k

of MDB is equal to the number of rows of the rectangular diagonal block Ak of
ASB . Furthermore, the number of coupling rows/columns in MDB is equal to the
number of coupling rows in ASB . So, minimizing the number of coupling rows in ASB

corresponds to minimizing the number of coupling rows/columns in MDB , whereas
balancing on row counts of the rectangular diagonal submatrices in ASB infers balance
among the row/column counts of the square diagonal submatrices in MDB . Thus,
given a structural factorization M = AAT of matrix M , the proposed HP-based
GPVS formulation corresponds to formulating the problem of permuting M into a
DB block diagonal form as an instance of the problem of permuting A into an SB
block diagonal form. Figure 3.4 shows the matrix theoretical view of our HP-based
GPVS formulation on the sample graph, hypergraph, and their partitions given in
Figures 3.1 and 3.2.
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Fig. 3.4. (a) Matrix A whose row-net hypergraph representation is given in Figure 3.1(b) and
its 3 -way SB form ASB induced by the 3 -way partition ΠHP given in Figure 3.2(a); (b) matrix
M whose standard graph representation is given in Figure 3.1(a) and its 3 -way DB form MDB

induced by ASB .

4. HP-based fill-reducing ordering. Given a p×p symmetric and square
matrix M={mij} for fill-reducing ordering, let G(M) = (V , E) denote the standard
graph representation of matrix M .

4.1. Incomplete-nested-dissection-based orderings via recursive hyper-
graph bipartitioning. As described in [7], the fill-reducing matrix reordering schemes
based on incomplete nested dissection can be classified as ND and multisection (MS).
Both schemes apply 2-way GPVS (bisection) recursively on G(M) until the parts
(domains) become fairly small. After each bisection step, the vertices in the 2-
way separator (bisector) are removed and the further bisection operations are re-
cursively performed on the subgraphs induced by the parts of bisection. In the pro-
posed recursive-HP-based ordering approach, the constructed hypergraph H (where
NIG(H) ≡ G(M)) is bipartitioned recursively until the number of internal nets of the
parts become fairly small. After each bipartitioning step, the cut nets are removed
and the further bipartitioning operations are recursively performed on the subhyper-
graphs induced by the node parts of the bipartition. Note that this cut-net removal
scheme in recursive 2-way HP corresponds to the above-mentioned separator-vertex
removal scheme in recursive 2-way GPVS.

As mentioned above, both ND and MS schemes effectively obtain a multiway
separator (multisector) at the end of the recursive 2-way GPVS operations. In both
schemes, the parts of the multiway separator are ordered using an MD-based algo-
rithm before the separator. It is clear that the parts can be ordered independently.
These two schemes differ in the order that they number the vertices of the multiway
separator. In the ND scheme, the 2-way separators constituting the multiway separa-
tor are numbered using an MD-based algorithm in depth-first order of the recursive
bisection process. Note that the 2-way separators at the same level of the recursive bi-
section tree can be ordered independently. In the MS scheme, the multiway separator
is ordered using an MD-based algorithm as a whole in a single step.

Figure 4.1 displays a sample 4-way SB form of a matrix A and the corresponding
4-way DB form of the corresponding matrix M induced by a 2-level recursive bipar-
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Fig. 4.1. (a) A sample 4 -way SB form of a matrix A obtained through a 2 -level recursive
hypergraph bipartitioning process; (b) the corresponding 4 -way DB form of matrix M = AAT .

titioning/bisection process. Here, the bipartitioning/bisection operation at the root
level is numbered as 0, whereas the bipartitioning/bisection operations at the second
level are numbered as 1 and 2. The parts of a bipartition/bisection are always num-
bered as 1 and 2, whereas the border is numbered as B. For example, A11/M11 and
A12 /M12 denote the diagonal domain submatrices corresponding to the two parts
of the bipartitioning/bisection operation 1, whereas A21 /M21 and A22/M22 denote
the diagonal domain submatrices corresponding to the two parts of the bipartition-
ing/bisection operation 2. As seen in the figure, M0B=A0BA

T
0B denotes the diagonal

border submatrix corresponding to the 2-way separator obtained at the root level,
whereas M1B =A1BA

T
1B and M2B =A2BA

T
2B denote the diagonal border submatri-

ces corresponding to the 2-way separators obtained at the second level. Note that MB

denotes the diagonal border submatrix corresponding to the overall 4-way separator.
In both ND and MS schemes, diagonal domain submatrices are ordered before the
diagonal border submatrix MB . In the ND scheme, diagonal border submatrices are
ordered in depth-first order M1B , M2B , and M0B of the recursive bisection process.
In the MS scheme, the overall diagonal border submatrix MB is ordered as a whole.

4.2. Structural factor sparsening for ordering LP matrices. Interior point
methods are widely used for solving linear programming problems [21]. These are
iterative methods and usually adopt the normal equations approach [4]. The main
computational cost at each iteration is the solution of a symmetric positive definite
system of the form Mx = b , where M = AD2AT . Here, A= {aij} is a p×q sparse
rectangular constraint matrix that remains constant throughout the iterations, and
D2 is a q×q diagonal scaling matrix that changes from iteration to iteration. This
linear system is typically solved by computing the Cholesky factorization (M = LLT )
of M , and solving the triangular system through forward and backward substitution.
So, fill-reducing ordering of matrix M is crucial in the overall performance of the
interior point algorithm.

Since D2 is a diagonal matrix, AAT determines the sparsity pattern of M .
So, by neglecting numerical cancellations that may occur in matrix-matrix-transpose
multiplication AAT , we can consider A = {aij} as a {0,1}-matrix so that M = AAT

gives us a structural factorization of matrix M . Note that the matrix A may contain
redundant columns and/or nonzeros in terms of determining the sparsity pattern of
M . Here, we will propose and discuss two matrix sparsening algorithms that aim
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at deleting as many columns and/or nonzeros of matrix A without disturbing the
sparsity pattern of matrix M . The objective is to speed up the proposed HP-based
GPVS method for ordering LP matrices through decreasing the size of the row-net
hypergraph representation of matrix A . Both algorithms consider both column and
nonzero deletions. However, the first algorithm is nonzero-deletion based, whereas
the second one is column-deletion based.

For the nonzero-deletion-based sparsening algorithm, we define bij to denote the
number of common columns between rows ri and rj of matrix A . A column ch is
said to be common between rows ri and rj if both rows have a nonzero in column ch .
Note that bij is equal to the integer value of nonzero mij of matrix M if M = AAT

is computed using A as a {0,1}-matrix. So, the sparsity pattern of M will remain the
same as long as bij values corresponding to the nonzeros of matrix M remain greater
than or equal to 1 during nonzero deletions in matrix A . In particular, a nonzero aih
of matrix A can be deleted if bij>1 for each nonzero ajh in column ch of matrix A .

The proposed nonzero-deletion-based sparsening algorithm, spNZ, is given in
Algorithm 2. Note that the quality of the sparsening depends on the processing
order of nonzeros for deletion. Algorithm 2 considers the nonzeros for deletion in row
major order. In the doubly nested for loop in lines 4–6, the bij values for row ri are
computed in 1D array B . Then, for each nonzero aih in row ri , the for loop in lines
9–12 checks whether the condition bij > 1 holds for each nonzero ajh in column ch

Algorithm 2. spNZ: Nonzero-Deletion-Oriented Sparsening Algorithm

Data: A : both in CSR and CSC formats
1 for each row ri ∈ A do
2 B [i ] ← 0

3 for each row ri ∈ A do
4 for each nonzero aih ∈ ri do
5 for each nonzero ajh ∈ ch do
6 B[j]← B[j]+1

7 for each nonzero aih ∈ ri do
8 flag ← TRUE
9 for each nonzero ajh ∈ ch do

10 if B[j] = 1 then
11 flag ← FALSE
12 break

13 if flag = TRUE then
14 for each nonzero ajh ∈ ch do
15 B[j]← B[j]−1
16 delete nonzero aih

17 for each nonzero aih ∈ ri do
18 for each nonzero ajh ∈ ch do
19 B[j]← 0

20 for each column ch ∈ A do
21 if ch is empty then
22 delete column ch

D
ow

nl
oa

de
d 

06
/1

3/
13

 to
 1

39
.1

79
.1

.7
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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of matrix A . If it is so, the relevant bij (i.e., Bj ) values are decremented and the
nonzero aih is deleted in lines 13–16. At the end of the algorithm, the columns that
become empty due to the nonzero deletions are detected and deleted by the for loop
in lines 20–22. This algorithm runs in O(

∑
ch∈A |ch|2) time, where |ch| denotes the

number of nonzeros in column ch .
In the column-deletion-based sparsening, the objective is to maximize the number

of A-matrix column deletions without disturbing the sparsity pattern of matrix M .
This problem can be formulated as a minimum set cover problem as follows: The
set of nonzeros of matrix M constitutes the main set of elements, whereas the set
of A-matrix columns constitutes a family F of subsets of the main set. For each
A-matrix column ch , the subset S(ch) of the main set of elements is defined as
S(ch) = {mij ∈ M : aih and ajh are nonzeros} . That is, each nonzero pair (aih, ajh)
in column ch contributes mij to the subset S(ch). The objective of the minimum set
cover problem is to find a minimum number of subsets covering the main set. This
objective corresponds to minimizing the number of A-matrix columns to be retained
(maximizing the number of A-matrix columns to be deleted) without disturbing the
sparsity pattern of matrix M .

The minimum set cover problem is known to be NP-hard [42]. However, there is a
well-known (lnn) -approximation algorithm [20]. A two-phase sparsening algorithm,
which we will call spCol, is developed based on this minimum set cover algorithm
as follows: In the first phase, the set cover algorithm is used to obtain a matrix Ac

whose columns correspond to a minimum set of A-matrix columns that covers the
set of all nonzeros of M. In the second phase, Algorithm 2 is run on matrix Ac for
nonzero deletions.

5. Experimental results. The proposed HP-based GPVS formulation is em-
bedded into the state-of-the-art HP tool PaToH [13], and the resulting HP-based
fill-reducing ordering tool is referred to here as oPaToH. In oPaToH, the recursive
hypergraph bipartitioning process is continued until the number of internal nets of a
part of a bipartition drops below 200 or the number of nodes of a part of a bipartition
drops below 100. oPaToH implements both MS and ND schemes; for the sake of
simplicity in the presentation we will present only ND scheme results in this paper.
oPaToH uses SMOOTH’s [6] implementation of the CMD [49] algorithm for ordering
decoupled diagonal domain submatrices and the MMD [48] algorithm for ordering
diagonal border submatrices.

The performance of oPaToH is compared against the state-of-the-art ordering al-
gorithms and tools MeTiS [44], AMD [3], COLAMD [23], and SMOOTH [6].2 MeTiS
v4.0 [44] provides two multilevel nested dissection [43] programs: oemetis and on-
metis, which are GPES based and GPVS based, respectively. GPVS-based ordering
in general performs better than GPES-based ordering [40], and since our earlier ex-
periments, using the test matrices of this study, comply with this fact, we are only
presenting the onmetis results here, for the sake of simplicity in the presentation. The
onmetis uses MMD for ordering decoupled diagonal domain submatrices and diago-
nal border submatrices. We present the results for SMOOTH that utilizes the MS
scheme. oPaToH uses CMD for ordering decoupled diagonal domain submatrices and
MMD for ordering diagonal border submatrices. All the codes were run on a 24-core
PC equipped with quad 2.1Ghz 6-core AMD Opteron processors with 6 128 KB L1

2The SMOOTH sparse matrix ordering package has later been included in the sparse linear
system solver package called SPOOLES [5]. We will continue to use the name SMOOTH to denote
that we are referring to the ordering package.
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and 512 KB L2 caches, and a single 6MB L3 cache. The system is 128 GB memory
and runs Debian Linux v5.0.5.

We performed experimental evaluation of the proposed HP-based fill-reducing
ordering approach using 50 matrices obtained from the University of Florida sparse
matrix collection [22]. The first 25 matrices are general symmetric and square matrices
M arising in different application domains, mostly discretization on regular 2D/3D
grids, whereas the remaining 25 M matrices are derived from LP constraint matrices
using M = AAT . Table 5.1 illustrates the properties of these matrices. In this table,
p and nnz(M) denote, respectively, the number of rows/columns and nonzeros of
matrix M . For a matrix M derived from an LP problem, the number of columns
q and nonzeros nnz(A) are also listed for the respective A-matrix. Note that the
number of rows of A is equal to the number of rows/columns of M . The general
matrices are further divided into three groups (first 5, second 5, and remaining 15)
according to the size of the maximum cliques that can be obtained from their graph
representations. The reason for this division will become clear during the discussion
of Table 5.2. The matrices in each category/group are listed in increasing order of
number of nonzeros. This table also displays the performance of the onmetis ordering
in terms of operation count in triangular factorization (shown as opc), number of
nonzeros in the triangular factor (shown as nnz(L)), and ordering time in seconds.

The detailed performance comparison of nonzero-deletion-based (spNZ) and
column-deletion-based (spCol) matrix sparsening algorithms are reported in our tech-
nical report [16]. We summarize this detailed performance comparison as follows. In
terms of the ordering quality, oPaToH using spNZ and oPaToH using spCol dis-
play very close performance to that of oPaToH using the original A-matrix. Both
sparsening algorithms amortize the sparsening overhead by considerably reducing the
ordering time such that oPaToH using spNZ and oPaToH using spCol, respectively,
run 18% and 10% faster than oPaToH using the original A matrix, on the average.
Therefore, spNZ is used for sparsening in oPaToH for LP matrices.

Table 5.2 displays the properties of the hypergraphs in terms of number of nodes
and pins. In the table, H2 , H3 , and H4 denote the clique-node hypergraphs induced
by ECCs C2 , C3 , and C4 , respectively. For LP matrices, HRN(Ã) refers to the
hypergraphs obtained from row-net representations of the sparsened A matrices. Note
that, for ordering LP matrices, we recommend to use HRN(Ã) hypergraphs. Here,
we provide the results for H2 , H3 , and H4 hypergraphs. Also note that, for a given
matrix M , all hypergraphs have the same number of nets, which is equal to the
number of rows/columns of M . In the table, the H2 model is considered as the base
model, so the number of nodes and pins of H3 , H4 , and HRN(Ã) are displayed as
normalized with respect to those of H2 .

As seen in Table 5.2, the size of the clique-node hypergraph for a given matrix M
decreases in terms of both number of nodes and number of pins when larger cliques of
G(M) are considered while constructing the hypergraph. That is, H4 has smaller size
than H3 , which in turn has smaller size than H2 . However, the first 5 and the first
10 out of 25 general matrices do not lead to 3-cliques and 4-cliques, respectively. So,
the H2 , H3 , and H4 hypergraphs are the same for the first 5 general matrices M ,
whereas the H3 and H4 hypergraphs are the same for the first 10 general matrices M .
As seen in Table 5.2, for LP matrices, HRN(Ã) hypergraphs have drastically smaller
size than even H4 hypergraphs in general. We should note here that the memory
footprint of graph- and hypergraph-based ordering tools will be proportional to the
size of the graph and hypergraph they are operating on, respectively. The memory
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Table 5.1

Properties of test matrices and results of onmetis orderings.

p×p matrix M p×q matrix A Onmetis
Name p nnz(M) q nnz(A) opc nnz(L) Time (s)

General M matrices
ncvxqp9 16,554 61,540 — — 6.33E+06 140,016 0.080
aug3dcqp 35,543 136,115 — — 2.88E+08 1,057,586 0.280
c-53 30,235 372,213 — — 3.68E+07 434,369 0.330
c-59 41,282 480,536 — — 2.73E+09 3,476,329 0.520
c-67 57,975 531,935 — — 1.27E+07 486,890 0.620

lshp3025 3,025 20,833 — — 3.23E+06 75,083 0.010
lshp3466 3,466 23,896 — — 3.91E+06 87,804 0.010
bodyy4 17,546 121,938 — — 3.44E+07 519,040 0.090
rail 20209 20,209 139,233 — — 1.41E+07 339,610 0.130
cvxbqp1 50,000 349,968 — — 4.94E+08 2,073,553 0.340

shuttle eddy 10,429 103,599 — — 2.23E+07 363,205 0.060
nasa4704 4,704 104,756 — — 3.87E+07 301,609 0.020
bcsstk24 3,562 159,910 — — 4.20E+07 316,582 0.010
skirt 12,598 196,520 — — 3.11E+07 483,714 0.090
bcsstk28 4,410 219,024 — — 5.52E+07 407,462 0.010
s1rmq4m1 5,489 281,111 — — 1.09E+08 652,367 0.010
vibrobox 12,328 342,828 — — 1.01E+09 2,214,711 0.170
crystk01 4,875 315,891 — — 2.76E+08 1,011,036 0.020
bcsstm36 23,052 331,486 — — 1.17E+08 902,765 0.240
gridgena 48,962 512,084 — — 3.61E+08 2,700,347 0.400
k1 san 67,759 580,579 — — 4.14E+08 2,666,745 0.650
finan512 74,752 596,992 — — 1.52E+08 1,794,080 0.650
msc23052 23,052 1,154,814 — — 6.48E+08 2,957,144 0.050
bcsstk35 30,237 1,450,163 — — 5.15E+08 3,116,057 0.100
oilpan 73,752 3,597,188 — — 2.81E+09 9,211,195 0.140

Linear programming matrices M=AAT

lp pds 02 2,953 23,281 7,716 16,571 1.92E+06 44,788 0.020
delf 3,170 33,508 6,654 15,397 1.92E+06 53,355 0.020
lp dfl001 6,071 82,267 12,230 35,632 7.23E+08 1,254,715 0.060
model9 2,879 103,961 10,939 55,956 5.36E+06 101,358 0.040
nl 7,039 105,089 15,325 47,035 4.19E+07 302,932 0.060
ge 10,099 112,129 16,369 44,825 2.46E+07 279,501 0.080
nemsemm2 6,943 145,413 48,878 182,012 6.31E+06 149,308 0.070
lp nug12 3,192 152,376 8,856 38,304 3.36E+09 2,566,910 0.060
lp ken 13 28,632 161,804 42,659 97,246 1.83E+07 378,309 0.150
lpi gosh 3,792 206,010 13,455 99,953 3.98E+07 260,364 0.050
cq9 9,278 221,590 21,534 96,653 4.28E+07 418,398 0.090
lp osa 14 2,337 230,023 54,797 317,097 6.56E+06 118,497 0.060
co9 10,789 249,205 22,924 109,651 5.59E+07 496,545 0.090
pltexpa 26,894 269,736 70,364 143,059 1.88E+08 1,305,653 0.240
model10 4,400 293,260 16,819 150,372 5.75E+07 394,819 0.070
fome12 24,284 329,068 48,920 142,528 2.86E+09 4,999,922 0.330
lp cre d 8,926 372,266 73,948 246,614 2.10E+08 761,732 0.180
r05 5,190 406,158 9,690 104,145 1.22E+08 533,825 0.070
p010 10,090 448,318 19,090 118,000 3.61E+07 511,074 0.090
world 34,506 582,064 67,147 198,883 4.12E+08 2,149,318 0.430
mod2 34,774 604,910 66,409 199,810 4.07E+08 2,193,281 0.420
lp maros r7 3,136 664,080 9,408 144,848 7.35E+08 1,410,013 0.130
ex3sta1 17,443 679,857 17,516 68,779 7.73E+09 8,054,982 0.210
fxm3 16 41,340 765,526 85,575 392,252 2.84E+07 720,939 0.450
stat96v5 2,307 1,790,467 75,779 233,921 2.56E+09 2,172,256 0.210
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Table 5.2

Hypergraph properties.

H2 H3 H4 HRN(Ã)

Name #nets #nodes #pins #nodes #pins #nodes #pins #nodes #pins
General Matrices

ncvxqp9 16,554 23,047 45,540 1.00 1.00 1.00 1.00 — —
aug3dcqp 35,543 50,286 100,572 1.00 1.00 1.00 1.00 — —
c-53 30,235 170,989 341,978 1.00 1.00 1.00 1.00 — —
c-59 41,282 219,627 439,254 1.00 1.00 1.00 1.00 — —
c-67 57,975 236,980 473,960 1.00 1.00 1.00 1.00 — —

lshp3025 3,025 8,904 17,808 0.35 0.53 0.35 0.53 — —
lshp3466 3,466 10,215 20,430 0.35 0.53 0.35 0.53 — —
bodyy4 17,546 52,196 104,392 0.36 0.53 0.36 0.53 — —
rail 20209 20,209 59,512 119,024 0.48 0.71 0.48 0.71 — —
cvxbqp1 50,000 149,984 299,968 0.45 0.67 0.45 0.67 — —

shuttle eddy 10,429 46,585 93,170 0.51 0.75 0.36 0.53 — —
nasa4704 4,704 50,026 100,052 0.48 0.72 0.30 0.60 — —
bcsstk24 3,562 78,174 156,348 0.49 0.73 0.31 0.62 — —
skirt 12,598 91,964 183,925 0.48 0.72 0.30 0.55 — —
bcsstk28 4,410 107,307 214,614 0.49 0.73 0.31 0.63 — —
s1rmq4m1 5,489 137,811 275,622 0.49 0.74 0.32 0.64 — —
vibrobox 12,328 165,250 330,500 0.50 0.74 0.33 0.62 — —
crystk01 4,875 155,508 311,016 0.50 0.74 0.32 0.63 — —
bcsstm36 23,052 165,097 319,314 0.52 0.74 0.34 0.60 — —
gridgena 48,962 231,561 463,122 0.54 0.74 0.39 0.59 — —
k1 san 67,759 256,411 512,821 0.45 0.65 0.27 0.49 — —
finan512 74,752 261,120 522,240 0.49 0.68 0.25 0.43 — —
msc23052 23,052 565,881 1,131,762 0.49 0.74 0.32 0.64 — —
bcsstk35 30,237 709,963 1,419,926 0.49 0.73 0.31 0.62 — —
oilpan 73,752 1,761,718 3,523,436 0.49 0.74 0.30 0.60 — —

geomean 0.54 0.74 0.41 0.65 — —
LP Problems

lp pds 02 2953 10164 20328 0.75 0.83 0.74 0.81 0.74 0.81
delf 3170 15169 30338 0.48 0.70 0.34 0.60 0.18 0.31
lp dfl001 6071 38098 76196 0.51 0.70 0.37 0.56 0.28 0.44
model9 2879 50730 101271 0.51 0.75 0.33 0.62 0.13 0.48
nl 7039 49034 98059 0.52 0.74 0.36 0.61 0.16 0.37
ge 10099 51015 102030 0.50 0.72 0.35 0.60 0.18 0.31
nemsemm2 6943 69269 138504 0.50 0.74 0.35 0.62 0.20 0.34
lp nug12 3192 74592 149184 0.49 0.73 0.24 0.48 0.12 0.26
lp ken 13 28632 66586 133172 0.62 0.72 0.62 0.72 0.64 0.73
lpi gosh 3792 101213 202322 0.52 0.75 0.35 0.66 0.10 0.47
cq9 9278 106187 212343 0.50 0.74 0.34 0.60 0.11 0.33
lp osa 14 2337 113843 227686 0.51 0.76 0.48 0.74 0.46 0.73
co9 10789 119330 238538 0.50 0.74 0.35 0.63 0.10 0.33
pltexpa 26894 121421 242842 0.51 0.69 0.43 0.63 0.33 0.46
model10 4400 144431 288861 0.51 0.75 0.33 0.62 0.10 0.49
fome12 24284 152392 304784 0.51 0.70 0.37 0.56 0.28 0.44
lp cre d 8926 184120 365790 0.57 0.78 0.47 0.68 0.38 0.58
r05 5190 200503 400987 0.50 0.74 0.34 0.66 0.04 0.26
p010 10090 219123 438237 0.49 0.74 0.35 0.66 0.08 0.27
world 34506 274179 547958 0.49 0.72 0.34 0.60 0.11 0.29
mod2 34774 285487 570555 0.49 0.72 0.34 0.60 0.10 0.28
lp maros r7 3136 330472 660944 0.50 0.75 0.35 0.70 0.01 0.11
ex3sta1 17443 331207 662414 0.49 0.73 0.31 0.61 0.02 0.08
fxm3 16 41340 362093 724186 0.51 0.74 0.37 0.65 0.13 0.29
stat96v5 2307 894082 1788162 0.50 0.75 0.34 0.68 0.00 0.01

geomean 0.52 0.74 0.37 0.63 0.12 0.30D
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footprint of the H2 hypergraph will be twice that of the graph representation of the
respective matrix. However, as seen in the table, this size will be reduced by using H4

such that for many of the matrices, the memory footprint will be almost the same.
For LP problems, the use of A matrix drastically reduces the memory footprint, and
for the majority of the problems memory footprints of hypergraph-based ordering will
be much smaller than those of a graph-based tool.

Tables 5.3 and 5.4 compare the ordering quality of the tools in terms of operation-
count and fill-in metrics, respectively. In these two tables, ordering performances are
displayed as normalized with respect to those of onmetis. In these two tables and
the following tables and figures, COLAMD represents SYMAMD results on general
matrices and COLAMD results on LP matrices.

First, we discuss the relative ordering quality performance of existing methods
and tools on the results displayed in Tables 5.3 and 5.4. The onmetis is the clear
winner on the average for ordering both general and LP matrices in terms of both
operation-count and fill-in metrics. For the ordering of LP matrices, AMD, COLAMD
and SMOOTH show close performances on the average. For the ordering of general
matrices, AMD and COLAMD show better performance than SMOOTH on the av-
erage. Comparison of AMD and COLAMD for general matrices reveals that they
display close performance in terms of fill-in metric, whereas AMD shows better per-
formance than COLAMD in terms of operation-count metric, on the average. As seen
in Table 5.5, AMD is the fastest for both general and LP matrices, whereas COLAMD
is the second fastest in both general and LP matrices, on the average.

Second, we discuss the effect of different clique cover finding algorithms and or-
dering schemes implemented in oPaToH. As seen in Tables 5.3 and 5.4, the ordering
quality of oPaToH increases in general when larger cliques of G(M) are considered
while constructing the hypergraph. That is, in general, oPaToH using H4 produces
better orderings than oPaToH using H3 , which in turn produces better orderings
than oPaToH using H2 . For LP matrices, oPaToH using HRN(Ã) usually produces
better orderings than oPaToH using H2 , H3 , and H4 . These results justify our
earlier choice on the use of HRN(Ã) for ordering LP matrices.

Third, we discuss the ordering performance of oPaToH with respect to onmetis,
since onmetis appears to be the best existing ordering tool, on the overall average.
As seen in Tables 5.3 and 5.4, oPaToH produces considerably better orderings than
onmetis, for both general and LP matrices, where the performance gap is more pro-
nounced in the ordering of LP matrices. As seen in Table 5.3, the ordering quality
of oPaToH increases with increasing clique sizes used in clique-node hypergraph con-
struction, on the average. For example, for general matrices, oPaToH using H2 , H3 ,
and H4 produce orderings with 10%, 13%, and 14% less operation count than on-
metis, respectively, on the average. For LP matrices, oPaToH using HRN(Ã) produces
orderings with 20% less operation count than onmetis, on the average. Comparison of
Tables 5.3 and 5.4 shows that the performance gap between oPaToH and onmetis is
smaller in terms of fill-in metric than in terms of operation-count metric, as expected.
As seen in Table 5.4, for general matrices, oPaToH using H2 , H3 , and H4 produce
orderings with 6%, 7%, and 8% less nonzeros in factor matrices than onmetis, respec-
tively, on the average. For LP matrices, oPaToH using HRN(Ã) produces orderings
with 10% less nonzeros in factor matrices than onmetis, on the average. Since oPaToH
and onmetis are HP-based and GPVS-based ordering tools, respectively, the better
quality orderings produced by oPaToH confirm the validity of our HP-based GPVS
formulation in the application of fill-reducing ordering of sparse matrices.
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Table 5.3

Operation counts of various ordering methods and tools relative to onmetis.

oPaToH

Name AMD COLAMD SMOOTH H2 H3 H4 HRN(Ã)

General Matrices
ncvxqp9 1.12 1.73 1.56 0.65 0.65 0.65 —
aug3dcqp 1.03 1.06 1.56 0.72 0.72 0.72 —
c-53 2.55 0.95 1.53 0.72 0.72 0.72 —
c-59 1.18 0.96 1.22 1.09 1.09 1.09 —
c-67 1.96 0.88 0.89 0.94 0.94 0.94 —

lshp3025 0.98 0.91 1.07 0.92 0.91 0.91 —
lshp3466 1.09 0.95 1.14 0.93 0.90 0.90 —
bodyy4 1.04 1.45 1.56 0.98 0.98 0.98 —
rail 20209 1.12 1.07 1.16 1.08 1.02 1.02 —
cvxbqp1 0.91 5.72 5.80 0.84 0.84 0.86 —

shuttle eddy 0.98 0.84 1.18 1.01 0.97 0.95 —
nasa4704 0.83 1.01 0.83 0.69 0.67 0.68 —
bcsstk24 1.14 0.85 0.89 0.91 0.88 0.96 —
skirt 0.97 1.13 1.14 1.08 1.00 1.01 —
bcsstk28 0.78 0.69 0.67 0.79 0.78 0.76 —
s1rmq4m1 0.80 0.97 1.05 0.88 0.91 0.95 —
vibrobox 1.04 1.09 0.87 1.09 0.85 0.68 —
crystk01 0.78 1.16 1.27 1.08 1.07 1.13 —
bcsstm36 0.97 0.90 0.91 0.81 0.81 0.80 —
gridgena 1.05 1.04 1.16 1.05 0.97 0.98 —
k1 san 0.96 3.44 3.02 1.17 0.81 0.88 —
finan512 1.08 1.64 20.68 0.75 0.82 0.62 —
msc23052 1.11 0.97 0.95 0.87 0.88 0.88 —
bcsstk35 1.04 0.75 0.78 0.82 0.82 0.80 —
oilpan 1.06 1.47 1.41 0.98 1.00 1.04 —

geomean 1.06 1.16 1.37 0.90 0.87 0.86
LP Problems

lp pds 02 1.18 1.17 0.90 1.66 0.83 0.84 0.89
delf 0.92 0.86 0.94 0.90 0.86 0.82 0.84
lp dfl001 1.77 1.74 1.79 0.69 0.66 0.65 0.65
model9 0.72 0.89 0.81 0.66 0.65 0.65 0.64
nl 0.89 0.88 0.91 0.93 0.94 0.94 0.96
ge 1.59 1.70 1.42 1.14 0.99 0.98 0.82
nemsemm2 0.76 0.96 0.80 0.84 0.80 0.79 0.78
lp nug12 1.20 1.16 1.26 1.11 1.24 1.21 0.89
lp ken 13 0.89 0.92 0.94 0.92 0.92 0.93 0.92
lpi gosh 1.04 1.17 1.06 0.87 0.99 0.76 0.70
cq9 1.23 1.25 1.32 1.00 1.02 0.98 0.97
lp osa 14 1.00 1.00 1.00 1.00 1.00 1.00 1.00
co9 1.10 1.06 1.16 0.95 0.94 0.93 0.87
pltexpa 2.11 0.99 6.16 1.01 0.69 0.67 0.71
model10 1.72 3.79 1.92 1.06 0.93 0.94 0.92
fome12 1.76 1.76 1.81 0.71 0.66 0.65 0.66
lp cre d 1.43 1.06 1.46 1.23 1.00 0.97 0.85
r05 0.75 0.53 0.60 0.43 0.44 0.44 0.43
p010 1.39 1.12 1.20 0.91 0.91 0.92 0.91
world 0.64 0.64 0.67 0.75 0.73 0.73 0.65
mod2 0.67 0.64 0.67 0.76 0.75 0.73 0.68
lp maros r7 0.67 0.33 0.66 1.19 1.03 0.98 0.92
ex3sta1 8.03 8.69 9.53 1.52 1.14 1.34 1.00
fxm3 16 0.71 1.07 0.69 1.06 0.93 0.84 0.93
stat96v5 1.60 1.60 0.76 0.94 0.89 0.87 0.78

geomean 1.17 1.15 1.19 0.94 0.86 0.84 0.80
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Table 5.4

Factor nonzero counts of various ordering methods and tools relative to onmetis.

oPaToH

Name AMD COLAMD SMOOTH H2 H3 H4 HRN(Ã)

General Matrices
ncvxqp9 1.02 1.03 1.01 0.83 0.83 0.83 —
aug3dcqp 1.03 0.88 1.07 0.78 0.78 0.78 —
c-53 1.36 0.92 1.28 0.96 0.96 0.96 —
c-59 1.07 0.89 1.00 0.96 0.96 0.96 —
c-67 1.16 0.92 0.93 0.93 0.93 0.93 —

lshp3025 0.99 0.95 1.00 0.96 0.95 0.95 —
lshp3466 1.03 0.96 1.03 0.96 0.96 0.96 —
bodyy4 1.01 1.09 1.13 0.97 0.97 0.97 —
rail 20209 1.04 0.99 1.02 1.01 0.98 0.98 —
cvxbqp1 0.96 1.91 1.89 0.92 0.92 0.92 —

shuttle eddy 1.00 0.92 1.08 0.99 0.97 0.97 —
nasa4704 0.96 0.96 0.89 0.84 0.83 0.84 —
bcsstk24 1.07 0.91 0.93 0.95 0.93 0.96 —
skirt 0.98 1.01 1.01 1.00 0.98 0.98 —
bcsstk28 0.95 0.87 0.85 0.91 0.91 0.90 —
s1rmq4m1 0.92 0.97 1.01 0.95 0.96 0.97 —
vibrobox 1.01 1.00 0.94 0.96 0.88 0.80 —
crystk01 0.88 1.03 1.09 1.02 1.02 1.04 —
bcsstm36 0.97 0.93 0.93 0.89 0.90 0.89 —
gridgena 1.01 1.02 1.08 1.00 0.97 0.97 —
k1 san 0.99 1.63 1.60 1.07 0.91 0.94 —
finan512 1.05 1.13 2.79 0.91 0.91 0.85 —
msc23052 1.03 0.93 0.93 0.92 0.92 0.92 —
bcsstk35 1.02 0.88 0.89 0.91 0.91 0.90 —
oilpan 1.04 1.10 1.08 0.96 0.97 0.99 —

geomean 1.02 1.01 1.09 0.94 0.93 0.92
LP Problems

lp pds 02 0.99 0.99 0.91 1.09 0.90 0.90 0.92
delf 0.93 0.92 0.94 0.93 0.92 0.91 0.91
lp dfl001 1.25 1.23 1.26 0.84 0.82 0.81 0.81
model9 0.89 0.98 0.93 0.85 0.84 0.84 0.84
nl 0.93 0.93 0.94 0.94 0.94 0.94 0.95
ge 1.08 1.10 1.06 0.99 0.95 0.95 0.91
nemsemm2 0.89 0.98 0.90 0.91 0.90 0.90 0.90
lp nug12 1.08 1.06 1.10 1.10 1.17 1.14 0.95
lp ken 13 0.92 0.93 0.94 0.95 0.95 0.95 0.95
lpi gosh 0.97 1.06 0.97 0.93 0.97 0.89 0.87
cq9 1.06 1.04 1.07 0.98 0.98 0.97 0.96
lp osa 14 1.00 1.00 1.00 1.00 1.00 1.00 1.00
co9 0.99 0.98 1.01 0.94 0.94 0.94 0.92
pltexpa 1.16 0.99 1.82 0.95 0.80 0.80 0.79
model10 1.23 1.74 1.30 1.03 0.98 0.99 0.96
fome12 1.25 1.24 1.26 0.84 0.81 0.81 0.81
lp cre d 1.14 1.00 1.15 1.08 0.98 0.98 0.93
r05 1.16 0.86 0.91 0.81 0.81 0.81 0.81
p010 1.26 0.99 1.02 0.94 0.94 0.95 0.94
world 0.81 0.82 0.83 0.86 0.85 0.85 0.81
mod2 0.83 0.82 0.83 0.87 0.86 0.86 0.83
lp maros r7 0.84 0.61 0.83 1.07 1.01 0.98 0.95
ex3sta1 3.03 3.07 3.19 1.17 1.03 1.13 0.96
fxm3 16 0.89 1.10 0.88 0.98 0.94 0.92 0.95
stat96v5 1.22 1.22 0.88 0.97 0.95 0.94 0.90

geomean 1.07 1.05 1.06 0.96 0.93 0.92 0.90
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Table 5.5

Total execution times of various ordering methods and tools relative to onmetis.

oPaToH

Name AMD COLAMD SMOOTH H2 H3 H4 HRN(Ã)

General Matrices
ncvxqp9 0.16 0.17 2.25 2.84 2.86 2.88 —
aug3dcqp 0.10 0.11 3.54 2.55 2.57 2.58 —
c-53 0.40 1.28 14.26 15.56 15.64 15.72 —
c-59 0.16 0.37 13.24 7.21 7.35 7.54 —
c-67 0.30 1.00 4.17 8.20 8.25 8.31 —

lshp3025 0.24 0.29 2.19 6.93 4.45 4.53 —
lshp3466 0.28 0.33 2.60 7.99 5.25 5.35 —
bodyy4 0.20 0.22 2.04 5.88 3.59 3.65 —
rail 20209 0.16 0.20 1.76 4.58 3.13 3.17 —
cvxbqp1 0.25 0.28 2.30 6.50 4.46 4.55 —

shuttle eddy 0.17 0.23 2.03 6.99 4.79 4.31 —
nasa4704 0.26 0.49 3.76 4.30 4.38 4.74 —
bcsstk24 0.42 1.11 8.61 4.70 6.69 9.73 —
skirt 0.19 0.29 2.05 8.38 6.00 5.12 —
bcsstk28 0.55 1.53 11.39 4.29 6.56 11.17 —
s1rmq4m1 0.69 1.84 16.66 5.22 8.20 14.14 —
vibrobox 0.22 0.41 5.13 11.72 8.30 7.02 —
crystk01 0.45 1.26 13.38 7.92 9.93 15.61 —
bcsstm36 0.06 0.13 5.16 0.89 0.96 1.14 —
gridgena 0.18 0.24 1.99 6.89 4.87 4.15 —
k1 san 0.10 0.15 1.85 4.91 2.96 2.33 —
finan512 0.14 0.20 2.56 5.74 3.66 2.37 —
msc23052 0.72 2.47 17.67 5.73 8.35 13.43 —
bcsstk35 0.45 1.39 10.88 5.00 6.61 9.71 —
oilpan 0.77 2.22 23.38 4.92 7.80 13.83 —

geomean 0.25 0.46 4.81 5.54 5.16 5.70 —
LP Problems

lp pds 02 0.27 0.29 2.26 3.52 3.20 3.24 3.09
delf 0.18 0.16 1.76 4.49 3.38 3.04 1.77
lp dfl001 0.66 0.64 10.08 7.96 6.78 6.25 5.14
model9 0.18 0.23 1.78 5.71 6.23 5.67 2.61
nl 0.52 0.60 9.84 9.78 7.31 7.03 3.77
ge 0.19 0.16 2.22 4.10 3.18 2.87 1.90
nemsemm2 0.25 0.53 1.92 8.46 7.50 5.99 2.74
lp nug12 0.41 0.49 12.87 9.41 6.11 5.12 2.95
lp ken 13 0.52 0.49 3.29 8.77 6.17 6.66 6.08
lpi gosh 0.57 0.73 11.60 17.12 13.69 12.92 5.88
cq9 0.89 1.53 12.92 18.69 14.17 14.09 5.76
lp osa 14 0.13 0.19 1.43 1.96 13.47 38.45 2.67
co9 1.01 1.87 15.72 22.25 17.18 16.76 7.28
pltexpa 0.17 0.14 2.01 4.20 3.22 2.92 2.34
model10 0.32 0.45 10.08 14.03 14.91 13.31 5.43
fome12 0.53 0.50 7.99 9.44 6.92 6.07 4.97
lp cre d 0.54 1.24 23.45 31.43 21.31 17.35 12.39
r05 0.27 0.29 3.86 7.01 5.70 6.22 2.73
p010 0.32 0.74 4.33 7.50 5.09 6.11 2.66
world 0.46 0.48 6.16 10.38 7.25 5.94 3.00
mod2 0.46 0.45 6.25 10.42 7.41 6.04 2.94
lp maros r7 0.24 2.17 7.11 64.19 36.66 37.44 2.75
ex3sta1 0.34 0.16 26.21 8.84 8.48 7.66 1.99
fxm3 16 0.14 0.14 1.56 6.94 5.81 5.25 1.79
stat96v5 0.56 0.07 10.79 251.54 149.93 129.38 2.43

geomean 0.35 0.41 5.50 10.42 8.79 8.52 3.41
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Fig. 5.1. Performance profile charts for operation counts and factor nonzero counts.

For a visual summary of the results we presented in Tables 5.3 and 5.4, we use
performance profiles [25], a visual tool for comparing various methods over a large set
of test cases with respect to the same metric. The metrics we use in the following
profile plots are the operation counts and factor nonzero counts. In Figure 5.1, each
performance profile plot shows the probability that a specific method gives results
within some value τ multiple of the best result reached by all of the methods. The
higher the probability of small τ values, the more preferable the method is. For
example, in Figure 5.1(b), the curve oPaToH roughly passes through the point (1.1,
0.9), which means that on 90% of the tested cases, the factor nonzero count found by
oPaToH was no more than 1.1 times more than the best obtained by any method. In
other words, a curve closer to the left means the method’s solution is closer to best
known solutions than the others. These charts show that oPaToH produces more
favorable orderings than all four other methods compared in this experiment.

Table 5.5 displays total execution times of ordering methods and tools as nor-
malized with respect to those of onmetis. As seen in the table, AMD is the fastest
ordering method and COLAMD is the second fastest. For general matrices, search-
ing for 3-cliques in the construction of clique-node hypergraphs amortizes its cost in
11 out of 20 matrices by reducing the total ordering time. oPaToH using H3 takes
6.9% less ordering time than oPaToH using H2 , on the average. However, as seen
in the table, searching for 4-cliques in the construction of clique-node hypergraphs
amortizes its cost in only 6 out of 15 matrices. oPaToH using H4 takes 2.8% more
ordering time than oPaToH using H2 , on the average. As seen in Table 5.5, oPaToH
is significantly slower than onmetis for the ordering of general matrices. However, for
LP matrices, oPaToH using HRN(Ã) is quite fast, and it is 241% slower than onmetis,
on the average. The slower run-time performance of oPaToH compared to onmetis
is expected, because hypergraph partitioning is computationally more expensive than
graph partitioning, in general.

Table 5.6 displays results about the structure of the elimination tree, and solver
performance results for onmetis, AMD, and oPaToH. We report average leaf depths
of the elimination trees produced by AMD and oPaToH as normalized with respect
to those by onmetis, whereas average leaf depths produced by onmetis are given in
absolute values. The standard deviations of the leaf depths are given in absolute
values for all tools. The structure of the elimination tree is a relevant metric for the
ability of the linear system to be solved in parallel since broader and shorter trees are
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Table 5.6

Elimination tree and solver performances.

Elimination tree statistics (leaf depths) Solver statistics
onmetis AMD oPaToH onmetis AMD oPaToH

Name avg std avg std avg std time opc time opc time opc
General Matrices

ncvxqp9 169 50.4 1.08 53.9 0.92 48.1 0.050 1.28E+07 1.01 1.63 0.82 0.65
aug3dcqp 790 111.8 1.01 109.5 0.91 120.4 0.620 5.77E+08 0.76 1.05 0.59 0.72
c-53 331 72.8 1.65 113.7 0.75 49.9 21.417 9.17E+09 0.11 0.18 0.22 0.27
c-59 1306 514.7 1.05 528.1 0.99 710.3 62.949 4.56E+10 0.19 0.38 0.38 0.34
c-67 122 58.1 1.96 98.7 1.15 64.7 0.182 2.59E+07 0.82 0.84 0.90 0.94

lshp3025 163 10.8 1.02 9.9 0.98 24.0 0.090 6.49E+07 1.61 2.19 0.79 0.77
lshp3466 178 9.7 1.03 10.2 0.96 24.5 0.113 8.23E+07 1.24 1.66 0.86 0.88
bodyy4 363 12.5 1.02 10.3 1.00 38.2 0.132 6.93E+07 1.13 1.58 0.92 0.98
rail 20209 230 36.1 1.05 40.6 0.98 69.3 0.090 2.85E+07 0.94 1.01 0.93 1.02
cvxbqp1 837 307.6 0.97 302.9 1.01 369.4 1.064 9.90E+08 4.33 6.81 0.92 0.85

shuttle eddy 266 16.6 0.98 14.4 0.98 27.2 0.655 5.76E+08 9.51 12.80 0.84 0.86
nasa4704 405 23.7 0.94 20.3 0.87 57.3 0.078 7.78E+07 0.92 0.94 0.76 0.68
bcsstk24 443 60.9 0.97 25.5 0.91 38.3 0.079 8.43E+07 0.79 0.78 0.93 0.96
skirt 167 76.3 0.96 73.3 0.92 83.9 0.603 5.89E+08 4.89 5.96 0.93 0.92
bcsstk28 424 77.5 0.87 24.4 0.86 64.7 0.100 1.11E+08 0.74 0.64 0.83 0.76
s1rmq4m1 521 37.4 0.96 8.4 1.02 72.7 0.173 2.19E+08 0.97 1.00 0.95 0.95
vibrobox 1247 66.6 1.01 53.3 0.91 188.6 1.331 2.02E+09 0.87 0.92 0.66 0.68
crystk01 676 29.9 0.96 23.8 1.08 67.9 1.587 2.56E+09 2.19 2.29 0.86 0.80
bcsstm36 37 138.3 0.88 127.9 0.90 126.7 0.235 2.35E+08 0.89 0.90 0.83 0.80
gridgena 713 29.0 1.03 73.9 0.98 100.9 0.765 7.25E+08 0.96 1.03 0.92 0.98
k1 san 822 48.3 0.97 54.7 0.94 124.7 0.833 8.30E+08 1.75 2.42 0.87 0.88
finan512 349 55.3 1.06 58.9 0.84 32.6 0.506 3.07E+08 2.14 4.13 0.89 0.62
msc23052 917 91.6 1.05 80.5 0.93 248.1 0.980 1.30E+09 0.91 0.93 0.87 0.88
bcsstk35 749 142.3 1.01 133.2 0.89 141.4 0.867 1.03E+09 0.79 0.75 0.84 0.80
oilpan 1474 92.3 1.01 44.0 1.06 140.8 3.804 5.64E+09 1.37 1.49 1.01 1.04

geomean 1.04 0.95 1.12 1.38 0.87 0.83
LP Problems

lp pds 02 130 33.6 1.35 52.7 0.78 27.2 0.013 3.88E+06 0.91 1.17 0.92 0.89
delf 110 39.6 1.31 48.7 1.01 35.4 0.014 3.89E+06 0.94 0.92 0.88 0.84
lp dfl001 1064 119.6 1.43 229.9 0.76 144.5 1.251 1.45E+09 1.46 1.77 0.86 0.66
model9 76 44.3 1.75 70.7 0.82 34.2 0.024 1.08E+07 0.85 0.72 0.85 0.65
nl 335 66.1 1.03 96.7 0.91 105.7 0.117 8.42E+07 0.85 0.89 0.99 0.96
ge 329 48.3 1.32 79.5 0.87 71.6 0.087 4.95E+07 1.11 1.58 0.89 0.82
nemsemm2 68 43.4 2.97 58.2 0.79 36.7 0.041 1.28E+07 0.86 0.76 0.93 0.79
lp nug12 1758 391.9 1.29 18.2 1.05 119.0 4.196 6.71E+09 1.04 1.20 0.87 0.90
lp ken 13 90 6.3 0.99 5.7 0.99 5.8 0.146 4.07E+07 0.98 0.81 1.07 0.98
lpi gosh 309 119.3 1.28 136.8 0.84 98.9 0.103 7.99E+07 0.86 1.04 0.86 0.70
cq9 267 67.0 1.29 87.8 0.98 84.3 0.149 8.60E+07 0.96 1.23 0.98 0.97
lp osa 14 74 0.5 1.00 1.8 0.93 3.8 0.047 1.32E+07 0.97 1.00 0.96 1.00
co9 304 81.8 1.19 108.0 0.90 92.3 0.188 1.12E+08 0.88 1.10 0.94 0.87
pltexpa 474 116.9 2.44 181.1 0.83 100.1 0.368 3.77E+08 1.59 2.11 0.81 0.71
model10 383 85.5 1.77 193.9 0.90 79.6 0.126 1.15E+08 1.26 1.72 1.02 0.92
fome12 1054 123.7 1.41 286.3 0.76 146.2 4.861 5.72E+09 1.46 1.77 0.90 0.66
lp cre d 325 326.3 1.31 425.1 0.83 291.7 0.383 4.20E+08 1.19 1.43 0.87 0.85
r05 599 91.9 0.49 62.1 0.40 41.9 0.242 2.45E+08 1.45 0.75 0.64 0.43
p010 166 25.3 1.28 30.0 0.91 23.0 0.195 7.28E+07 1.38 1.39 0.74 0.91
world 430 154.1 1.74 218.2 0.80 115.7 0.869 8.26E+08 0.69 0.64 0.79 0.65
mod2 440 148.3 1.94 293.7 0.75 111.7 0.901 8.15E+08 0.68 0.67 0.77 0.68
lp maros r7 931 68.5 1.26 371.9 0.99 93.9 0.860 1.47E+09 0.72 0.67 1.02 0.92
ex3sta1 2318 82.2 2.33 836.4 1.04 425.3 9.875 1.55E+10 6.75 8.02 0.95 1.00
fxm3 16 211 35.2 1.30 35.9 0.89 56.8 0.197 5.75E+07 0.88 0.71 1.04 0.93
stat96v5 997 889.2 0.77 1086.1 1.02 834.4 4.538 5.11E+09 0.89 1.60 0.84 0.78

geomean 1.36 0.86 1.09 1.17 0.89 0.80
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2020 Ü. V. ÇATALYÜREK, C. AYKANAT, AND E. KAYAASLAN

more amenable to parallelization. As seen in the table, oPaToH leads to noticeably
favorable elimination trees, in particular in LP problems.

As a solver, we used SuperLU [24] in “Symmetric Mode.”3 Like the other state-
of-the-art solvers, SuperLU is designed to use high performance Basic Linear Algebra
Subroutines (BLAS) libraries. We used SuperLU with vendor optimized AMD Core
Math Library v4.4.0. Since it uses BLAS, actual operation counts during the solution
can be higher than the ones we reported earlier. Hence, in addition to solver time (in
seconds) this table also includes the solver operation counts (abbreviated as “opc”). In
the table, onmetis results are given as absolute values, and again, AMD and oPaToH
results are normalized with respect to onmetis results. As seen in the table, orderings
obtained by oPaToH lead to significantly faster solution times and smaller solver
operation counts compared to those by onmetis and AMD. These results show the
merits of the proposed HP-based ordering method in practice.

The above discussions given on Tables 5.3–5.5 show that oPaToH produces con-
siderably better quality orderings than onmetis at a higher computational cost. Thus,
the higher computational cost of oPaToH can be typically justified for applications
that involve multiple numerical factorization of matrices with the same sparsity pat-
terns and/or multiple solutions with different right-hand side vectors. Interior point
methods that adopt the normal equations approach constitute such a typical case.
This is because the numerical factorization M = LLT of matrix M is required at
each iteration, where the sparsity pattern of matrix M = AD2AT is independent of
the value of the diagonal D2 matrix and hence remains the same at all iterations.

6. Conclusion and future work. Direct solvers are one of the preferred meth-
ods for solving linear systems due to their numerical robustness. A typical first step
in this process is reordering of the input matrix to improve execution time and space
requirements of the solution process. Graphs have been extensively used to model the
evolution of the nonzero structure during the factorization step of direct solvers and
hence for the reordering process. Decades after the first theoretical work on nested
dissection, advances in multilevel graph partitioning finally enabled the development
of long-awaited, successful nested dissection-based ordering tools that work for a wider
range of problems. The state-of-the-art nested dissection-based ordering tools directly
employ graph partitioning by vertex separator (GPVS). In this work, we presented
that GPVS has a deficiency in the multilevel framework, where a vertex separator
found in the coarser levels may not be a narrow separator in the original graph. We
introduced a novel hypergraph partitioning (HP) formulation of GPVS that is not
vulnerable to GPVS’s deficiency in the multilevel framework. We developed a novel
HP-based fill-reducing ordering method. In matrix terms, our approach relies on
the existence of a structural factorization of a symmetric matrix M in the form of
M = AAT , where A is a rectangular matrix. Such structural factorizations arise in
different contexts, such as solution of LP problems, where M = AD2AT and D2 is
a diagonal matrix. In the absence of such structural factorization, we also proposed
simple, yet effective, structural factorization techniques that can be applied to any ar-
bitrary symmetric matrix. For matrices coming from LP problems, we also proposed
two structural factor sparsening methods. We developed an HP-based fill-reducing
ordering tool oPaToH by embedding the proposed HP-based GPVS formulation and
suggested methods into the state-of-the-art HP tool PaToH.

3We use default options and set DiagPivotThresh=0.0 to make all diagonal entries to be an
acceptable pivot.

D
ow

nl
oa

de
d 

06
/1

3/
13

 to
 1

39
.1

79
.1

.7
6.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HP-BASED ORDERING FOR SYMMETRIC MATRICES 2021

We performed our experimental evaluations using 50 publicly available test matri-
ces, where 25 of them come from LP problems and 25 are general symmetric matrices.
We compared the performance of oPaToH against the state-of-the-art ordering tools
onmetis [44], AMD [2], COLAMD [23], and SMOOTH [6]. Among the existing tools
we tested, in general, GPVS-based onmetis produces best results in terms of oper-
ation counts and amount of fill-in. In terms of operation counts, oPaToH produced
orderings that require 14% and 20% less operation counts than the ones produced
by onmetis for general and LP matrices, respectively, on the average. In terms of
number of nonzero counts in the triangular factors, oPaToH produced 7% and 10%
less nonzeros in comparison to onmetis for general and LP matrices, respectively.
These reductions come at the expense of higher execution time, which can easily be
amortized in applications involving multiple numerical factorization of matrices with
the same sparsity patterns and/or multiple solutions with different right-hand side
vectors.

As a future work, although we have shown that higher ordering cost can easily
be amortized, we will continue to investigate to improve the runtime performance
of our tool. We observed that one of the reasons for slower execution time in our
ordering tool is due to MD codes we used [6]. We are planning to investigate faster
alternatives, such as constrainted approximate minimum degree [3].

Nested dissection is known to be asymptotically optimum for certain classes of
problems [30].4 It would be interesting to investigate how graph- or hypergraph-based
nested dissection tools behave. However, we feel such a study and also a theoretical
investigation like [32] is beyond the scope of this paper and can remain as future work.
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[15] U. V. Çatalyürek and C. Aykanat, Hypergraph-partitioning-based sparse matrix ordering, in
Proceedings of the Second International Workshop on Combinatorial Scientific Computing
(CSC05), CERFACS, Toulouse, France, 2005.
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