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SCHUR COMPLEMENT PRECONDITIONERS FOR SURFACE
INTEGRAL-EQUATION FORMULATIONS OF DIELECTRIC

PROBLEMS SOLVED WITH THE MULTILEVEL FAST MULTIPOLE
ALGORITHM∗
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Abstract. Surface integral-equation methods accelerated with the multilevel fast multipole al-
gorithm (MLFMA) provide a suitable mechanism for electromagnetic analysis of real-life dielectric
problems. Unlike the perfect-electric-conductor case, discretizations of surface formulations of di-
electric problems yield 2 × 2 partitioned linear systems. Among various surface formulations, the
combined tangential formulation (CTF) is the closest to the category of first-kind integral equa-
tions, and hence it yields the most accurate results, particularly when the dielectric constant is high
and/or the dielectric problem involves sharp edges and corners. However, matrix equations of CTF
are highly ill-conditioned, and their iterative solutions require powerful preconditioners for conver-
gence. Second-kind surface integral-equation formulations yield better conditioned systems, but their
conditionings significantly degrade when real-life problems include high dielectric constants. In this
paper, for the first time in the context of surface integral-equation methods of dielectric objects,
we propose Schur complement preconditioners to increase their robustness and efficiency. First, we
approximate the dense system matrix by a sparse near-field matrix, which is formed naturally by
MLFMA. The Schur complement preconditioning requires approximate solutions of systems involv-
ing the (1,1) partition and the Schur complement. We approximate the inverse of the (1,1) partition
with a sparse approximate inverse (SAI) based on the Frobenius norm minimization. For the Schur
complement, we first approximate it via incomplete sparse matrix-matrix multiplications, and then
we generate its approximate inverse with the same SAI technique. Numerical experiments on sphere,
lens, and photonic crystal problems demonstrate the effectiveness of the proposed preconditioners.
In particular, the results for the photonic crystal problem, which has both surface singularity and a
high dielectric constant, shows that accurate CTF solutions for such problems can be obtained even
faster than with second-kind integral equation formulations, with the acceleration provided by the
proposed Schur complement preconditioners.

Key words. preconditioning, sparse-approximate-inverse preconditioners, partitioned matrices,
Schur complement reduction method, integral-equation methods, dielectric problems, computational
electromagnetics
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1. Introduction. We consider preconditioning of dense, complex, and non-
Hermitian linear systems, which are obtained by discretizing surface integral-equation
formulations of dielectric problems. These linear systems have an explicit 2 × 2 par-
titioned structure in the form

(1.1)

[
A11 A12

A21 A22

]
·
[
xJ

xM

]
=

[
b1

b2

]
, or A · x = b,
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SCHUR COMPLEMENT PRECONDITIONERS FOR MLFMA 2441

where

(1.2) A ∈ C
2N×2N and A11, A12, A21, A22 ∈ C

N×N .

In (1.1), xJ and xM areN×1 coefficient vectors of the Rao–Wilton–Glisson (RWG) [49]
basis functions expanding the equivalent electric and magnetic electric currents, re-
spectively, and b1,2 represent N × 1 excitation vectors obtained by testing incident
fields.

We analyze four types of surface formulations that are commonly used in computa-
tional electromagnetics (CEM): the combined tangential formulation (CTF), the com-
bined normal formulation (CNF), the modified normal Müller formulation (MNMF),
and the electric and magnetic current combined-field integral equation (JMCFIE)
(which is derived from the combination of CTF and CNF) [59, 60, 61]. Many real-life
problems in CEM involve dielectrics, such as the development of effective lenses [47],
simulations of photonic crystals [36], and optical analysis of blood for blood-related
diseases [41].

For large-scale problems, preconditioning is a vital technique for increasing the
robustness and efficiency of iterative solvers [4]. As is commonly known, a precondi-
tioner is a matrix M that approximates the system matrix A, and for which it is not
expensive to find the solution vector v of

(1.3) M · v = w

for a given right-hand-side vector w. In this paper, we aim a right-preconditioned
system by solving

(1.4) A ·M−1 · y = b with x = M
−1 · y

instead of the original system (1.1). As the preconditioner M approximates the
system matrix A better, we expect fewer iterations for convergence. On the other
hand, the costs of both construction and application of the preconditioner increase
with better approximations. Hence, a balance should be maintained between the
approximation level and preconditioning costs so that the preconditioned system is
solved in less time compared to the unpreconditioned one.

Note that standard algebraic preconditioners that do not take into account the
partitioned structure often perform poorly on systems similar to (1.1). Discretizations
of surface formulations yield indefinite matrices that are far from diagonally dominant,
especially for high dielectric constants [62]. Therefore, incomplete-LU-type (ILU-
type) preconditioners may exhibit instability problems, or very slow convergence [4].
Surface integral formulations of CEM give rise to off-diagonal partitions that are much
weaker than diagonal ones; hence it is also difficult to find suitable nonzero patterns
for sparse approximate inverses (SAIs).

In the literature, preconditioning techniques for systems similar to (1.1) are usu-
ally studied in the context of generalized saddle-point problems [2, 5, 6, 13, 16, 23,
35, 46, 52, 54, 63]. By approximating the dense system matrix in (1.1) by a sparse
near-field matrix, preconditioners developed for saddle-point problems can be adapted
to integral-equation formulations of dielectric problems. The partitions in (1.1), how-
ever, do not satisfy any of the conditions that generally exist in saddle-point prob-
lems, such as symmetry or positive definiteness [6]. Moreover, contrary to our case,
in many applications that lead to partitioned systems, the (2,2) partition is zero or
has a much smaller dimension than other partitions. In general, preconditioners are
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2442 TAHİR MALAS AND LEVENT GÜREL

tailored depending on the specific properties of the underlying problem [6]. Hence,
preconditioners developed for other applications may not be readily applicable to
surface integral-equation formulations.

In this work, we consider preconditioners that are obtained with some approxima-
tions to Schur complement reduction. We use the sparse near-field matrix to construct
preconditioners. The near-field matrix is formed naturally in the context of the mul-
tilevel fast multipole algorithm (MLFMA), which is employed to accelerate the dense
matrix-vector multiplications (MVMs). The success of the Schur complement precon-
ditioners depends on effective approximations for the solutions of systems involving
the (1,1) partition and the Schur complement. Similar to the work in [13], the current
paper uses SAIs in these approximations. In [13], however, the authors use an iterative
method [15] to generate the sparsity pattern of an SAI in the course of construction.
In our case, the near-field pattern is a natural candidate for the sparsity pattern of
an SAI, and this approach leads to successful preconditioners for the surface integral-
equation formulations of perfect-electric-conductor (PEC) objects [10, 43]. Therefore,
we employ the Frobenius-norm minimization technique and use the available near-
field pattern for approximate inverses. The advantages of using SAIs over ILU-type
preconditioners are robustness and ease of parallelization. Furthermore, by using the
block structure of the near-field matrix, we eliminate the high setup time of SAI. The
approximation for the Schur complement is more delicate than the (1,1) partition.
In the literature, most of the proposed approaches are limited to cases in which the
(2,2) partition is zero. We propose to obtain an approximate Schur complement via
incomplete matrix-matrix multiplications that retain the near-field sparsity pattern.
Then we construct an SAI from the approximate Schur complement.

This paper is organized as follows: In section 2, we briefly summarize integral
equation formulations of dielectric problems and the structure of MLFMA. Then we
introduce the Schur complement reduction method and related preconditioners. We
discuss approximations for the (1,1) partition and the Schur complement in section
4. In the numerical results section, we compare proposed preconditioners with simple
and ILU-type preconditioners using sphere and two real-life problems: a lens and a
photonic crystal.

A note on the use of “partitions” and “blocks.”. Throughout the paper,
we will use the term partition to denote one of the submatrices of a 2× 2 partitioned
system, i.e., we call A11 in (1.1) the (1,1) partition of A. As will be detailed in section
3, partitions of the near-field matrix are composed of interactions between pairs of
neighboring lowest-level MLFMA clusters. In the CEM community, the term block is
used to denote these interactions. We will adopt this convention and imply building
blocks of a near-field partition by the term block.

2. Surface integral-equation methods for dielectric problems. The sur-
face integral-equation approach is an important class of numerical methods in elec-
tromagnetics scattering analyses of three-dimensional (3-D) dielectric objects having
arbitrary shapes [48]. Recently, significant progress has been made in devising new
formulations that are well suited for iterative solutions [59, 60, 61]. In this section,
we will briefly review these methods.

For all formulations, consider a closed homogeneous dielectric object that resides
in a homogeneous medium. Let the electric permittivity and the electric permeability
of the outer region of the object be ε1, μ1, and let those of the inner region be ε2, μ2,
respectively. Using the equivalence principle, an equivalent electric current J and an
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equivalent magnetic current1 M are defined on the surface S of the object. Depending
on the testing procedure and the considered electromagnetic field, various integral-
equation formulations can be derived.

2.1. The combined tangential formulation (CTF). If the boundary con-
dition on the surface is tested directly, tangential electric-field and magnetic-field
integral equations for the outer and the inner regions can be defined. For example,
the tangential electric-field integral equation (T-EFIE) for the outer region is defined
as [34]

(2.1) t̂ · η1T1 {J} − t̂ · K1 {M} − t̂ · 1
2
n̂×M = −t̂ ·Einc (T-EFIE-O),

where t̂ is any tangential vector on the surface, η1 =
√
μ1/ε1 is the impedance of the

outer medium,

(2.2) Tl{X} = ikl

∫
S

dr′
[
X(r′) +

1

k2l
∇′ ·X(r′)∇

]
gl(r, r

′)

and

(2.3) Kl{X} =

∫
PV,S

dr′X(r′)×∇′gl(r, r′)

are the operators that can be defined for both the outer (l = 1) and inner (l = 2)
regions, n̂ is the outward normal vector on the surface S, andEinc is the incident elec-
tric field on the object. In (2.2) and (2.3), kl is the wavenumber in the corresponding
medium, PV is the principal value of the integral, and

(2.4) gl(r, r
′) =

eikl|r−r′|

4π|r − r′|

is the scalar Green’s function of the 3-D scalar Helmholtz equation for medium l,
which represents the response at r due to a point source located at r′. For the inner
region, the tangential electric-field integral equation is

(2.5) t̂ · η2T2 {J} − t̂ · K2 {M}+ t̂ · 1
2
n̂×M = 0 (T-EFIE-I),

where η2 is the impedance of the inner medium. Similar equations can also be obtained
by testing the tangential magnetic fields. Respectively, the tangential magnetic-field
integral equation (T-MFIE) for the outer and inner regions are

(2.6) t̂ · 1

η1
T1 {M}+ t̂ · K1 {J}+ t̂ · 1

2
n̂× J = −t̂ ·H inc (T-MFIE-O)

and

(2.7) t̂ · 1

η2
T2 {M}+ t̂ · K2 {J} − t̂ · 1

2
n̂× J = 0 (T-MFIE-I).

1Preconditioning matrices
(
M

)
and magnetic currents (M) are denoted by similar symbols,

following conventions. Since one of them is a matrix
(
M

)
and the other one is a vector (M), they

should be clearly distinguishable from the context.
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2444 TAHİR MALAS AND LEVENT GÜREL

The four sets of integral equations, i.e., (2.1), (2.5), (2.6), and (2.7), can be com-
bined in several ways to solve for the unknown currents J and M [48]. In particular,
the combination of the outer and the inner equations produces internal-resonance-free
formulations. Among such formulations, we consider the recently proposed CTF [61],
which is defined as

1

η1
T-EFIE-O +

1

η2
T-EFIE-I,

η1T-MFIE-O + η2T-MFIE-I.

(2.8)

Note that the identity terms in (2.8) (implicit in the MFIE operators) are not well
tested, and the resulting matrices are, in general, ill-conditioned and far from being
diagonally dominant. Hence, CTF is closer to the category of first-kind integral
equation. Also note that J is well tested in T-EFIE and M is well tested in T-
MFIE [61], hence the combination used in CTF leads to a stable matrix equation. The
scaling of the tangential equations further improves the condition of the formulation
compared to its former variants [61], such as the tangential Poggio–Miller–Chang–
Harrington–Wu–Tsai formulation [11, 57].

2.2. The combined normal formulation (CNF). Although CTF produces
a stable formulation, it still suffers from slow convergence since it is closer to a first-
kind integral equation. Hence, several authors proposed second-kind and better-
conditioned integral-equation formulations by making use of the normal formulations
[62]. These formulations can be obtained by testing the fields after they are projected
onto the surface via a cross-product by n̂. The normal outer and inner electric-field
integral equations are, respectively,

(2.9) −n̂× η1T1 {J}+ n̂×K1 {M} − 1

2
M = n̂×Einc (N-EFIE-O)

and

(2.10) n̂× η2T2 {J} − n̂×K2 {M} − 1

2
M = 0 (N-EFIE-I).

For the magnetic field, normal formulations yield

(2.11) n̂× 1

η1
T1 {M}+ n̂×K1 {J} −

1

2
J = −n̂×Hinc (N-MFIE-O)

and

(2.12) −n̂× 1

η2
T2 {M} − n̂×K2 {J} −

1

2
J = 0 (N-MFIE-I).

Then, similar to CTF, CNF is formed by the linear combinations of the outer and
inner integral equations, i.e.,

N-MFIE-O + N-MFIE-I,

N-EFIE-O + N-EFIE-I.
(2.13)

However, the identity terms do not cancel out in CNF, and a second-kind integral
equation is obtained. When the Galerkin scheme is used to discretize (2.13), these
well-tested identity operators appear on the diagonal partitions of the coefficient ma-
trix, resulting in more diagonally dominant linear systems than tangential formula-
tions.
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2.3. The modified normal Müller formulation (MNMF). In [60], the au-
thors show that a scaled version of the normal Müller formulation [45] leads to a
well-conditioned and stable formulation. Later, it is shown by the same authors that
MNMF produces the lowest iteration counts for iterative solutions of dielectric prob-
lems compared to other stable formulations. Hence, we also consider MNMF, which
is actually a scaled version of CNF. MNMF is defined as [60]

μ1

μ1 + μ1
N-MFIE-O +

μ2

μ1 + μ1
N-MFIE-I,

ε1
ε1 + ε1

N-EFIE-O +
ε2

ε1 + ε1
N-EFIE-I.

(2.14)

2.4. The electric and magnetic current combined-field integral formu-
lation (JMCFIE). For nondielectric PEC metallic objects, a combination of the
electric-field integral equation and the magnetic-field integral equation yields the
combined-field integral equation [50], which has favorable characteristics for itera-
tive solutions [53]. In the dielectric case, a similar combination of CTF and CNF can
be formed as [59]

(2.15) JMCFIE = αCTF + βCNF,

where 0 ≤ α ≤ 1 and β = 1− α. Similar to the PEC case, the matrix systems of the
JMCFIE formulation are more stable and can usually be solved in fewer iterations
compared to those of CTF and CNF [22].

2.5. Comparison of the integral-equation formulations for dielectrics.
All of the aforementioned integral-equation formulations have pros and cons in terms
of storage, accuracy, and conditioning. In terms of memory use, CTF requires the
least memory when MLFMA is applied to the solution. The reason is that CTF
has identical diagonal partitions and the same set of far-field patterns for the inner
and outer regions. CNF and JMCFIE also have identical diagonal partitions, but they
have different far-field patterns for each region. Finally, in addition to having different
far-field patterns, MNMF also has different diagonal partitions due to different scaling
of N-MFIE-O and N-EFIE-I in (2.14). These differences between the formulations can
be remarkable, because the storage of the near-field matrix and the radiation patterns
constitute the highest memory requirements in MLFMA. For example, the solution of
a sphere geometry with approximately 413,000 unknowns leads to 1.1 GB difference
of memory use between CTF and MNMF [22]. In that example, the sphere has a
radius of 7.5λ, where λ denotes the wavelength in free space.

CTF is closer to a first-kind integral-equation formulation, whereas the other for-
mulations (CNF, MNMF, and JMCFIE) are all second-kind formulations. In CTF,
the singularity of the hypersingular operator T can be decreased by moving the dif-
ferential operator from the Green’s function to the testing function. Hence, CTF has
a smoothing kernel, in contrast to other formulations with singular kernels [62]. The
smoothing property of the CTF kernel results in coefficient matrices that are far from
being diagonally dominant and that have poor conditioning. On the other hand, due
to the smoothing property of its kernel, CTF has a better solution accuracy compared
to normal formulations (CNF and MNMF). JMCFIE includes CNF, and therefore is
also less accurate than CTF. Despite the accuracy drawbacks, the singular kernels
and the identity terms of normal formulations and JMCFIE lead to more diagonally
dominant matrices and better conditioning than CTF.
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To evaluate the integral-equation formulations, however, one should also consider
two important parameters that seriously affect the accuracy and the stability of the
resulting matrices: the dielectric constant (or relative permittivity) of the medium
(εr = ε2/ε1) and the shape of the geometry. Both the solution accuracy and the
conditioning of second-kind integral equations decrease as the dielectric constant in-
creases [62]. Irregularities of the geometry, i.e., surfaces having sharp edges and
corners, also have a negative effect on the accuracy of second-kind integral equa-
tions. Therefore, when the dielectric constant is high and/or the surface of the object
has nonsmooth sections, the accuracy of second-kind integral equations can be much
poorer than the accuracy of CTF [62]. Finally, integral equations of the second kind
are also shown to be more sensitive to discretization quality of the surface and to the
accuracy of the numerical integration than integral equations of the first kind.

From these discussions, it can be deduced that preconditioning is a critical issue
for accurate and efficient electromagnetics simulations of dielectric objects. When the
surface of the object has nonsmooth regions or the dielectric constant of the object
is high, the accuracy of second-kind equations can be unacceptable and one may
have to employ CTF, for which the solutions are tough to obtain without effective
preconditioning. Moreover, a high dielectric constant impairs the conditioning of
normal formulations, and this can necessitate applying effective preconditioners to
these formulations.

3. Discretization of surface integral-equation formulations and MLFMA.
We can denote the surface integral equations described in section 2 as

L11{J}+ L12{M} = G1,

L21{J}+ L22{M} = G2

(3.1)

using linear operators Lkl. Projecting each operator in (3.1) onto the N -dimensional
space span{f1,f2, . . . ,fN} formed by the divergence-conforming RWG testing func-
tions [49], we have

〈fm,L11{J}〉+ 〈fm,L12{M}〉 = 〈fm,G1〉,
〈fm,L21{J}〉+ 〈fm,L22{M}〉 = 〈fm,G2〉,

1 ≤ m ≤ N,(3.2)

where

(3.3) 〈f , g〉 =
∫

drf(r) · g(r)

denotes the inner product of two real-valued vector functions f and g. This process is
also known as “testing the integral equation.” By choosing the basis functions to be
the same as the testing functions, we adopt a Galerkin scheme and seek the discrete
solutions of

(3.4) J ≈
N∑

n=1

xJnfn

and

(3.5) M ≈
N∑

n=1

xMnfn

D
ow

nl
oa

de
d 

12
/0

9/
12

 to
 1

39
.1

79
.1

55
.2

34
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCHUR COMPLEMENT PRECONDITIONERS FOR MLFMA 2447

in the same N -dimensional space. As a result, the complex-valued coefficient vectors
xJ and xM become the solution of the 2N × 2N linear system

(3.6)

[
A11 A12

A21 A22

]
·
[
xJ

xM

]
=

[
b1

b2

]
,

where
(3.7)(

Akl

)
mn

= 〈fm,Lkl{fn}〉, (bi)m = 〈fm,Gi〉, k, l = 1, 2, m, n = 1, 2, . . . , N.

Since the RWG basis functions are defined on planar triangles, geometry surfaces
are discretized accordingly, i.e., via planar triangulation. Each basis function is asso-
ciated with an edge; hence the number of unknowns is equal to the total number of
edges in a mesh. Unless dictated by the geometry, we set the average size of an edge
about one-tenth of the wavelength as a rule of thumb.

Many real-life problems require the analysis of objects that have sizes on the order
of several wavelengths. Therefore, the solution of the dense system (1.1) can only be
obtained by iterative solvers, which make use of the fast methods, such as MLFMA. In
MLFMA, MVMs of each partition in (3.6) are performed in O(NNL) computational
complexity, where NL = O(logN) [12]. For this purpose, a tree structure of NL levels
is constructed by positioning the dielectric object in a cube and then recursively
dividing the cube into smaller ones, which are called clusters. On any level, clusters
that do not touch each other are assigned as far-field clusters and the others as near-
field clusters. The interactions among touching lowest-level clusters constitute the
near-field matrix, whose entries are calculated directly using numerical integration
techniques [18, 25, 30, 58] and stored in the memory for later use in MVMs. In this
way, the dense system matrix is decomposed into its far-field and near-field parts as

(3.8)

[
A11 A12

A21 A22

]
=

[
ANF

11 ANF
12

ANF
21 ANF

22

]
+

[
AFF

11 AFF
12

AFF
21 AFF

22

]
, or A = ANF +AFF .

Since the lowest-level cluster is fixed to a certain size (i.e., 0.25λ) and the number of
touching clusters is also fixed by the shape of the geometry, there are O(N) near-field
interactions in each partition. In addition, the clustering of the geometry leads to
a near-field matrix with block-structured partitions, where the blocks of partitions
correspond to interactions of the lowest-level near-field clusters [42].

Interactions of the far-field clusters are computed by employing MLFMA individ-
ually for each partition of the system matrix. MLFMA performs a matrix-vector mul-
tiplication, where the matrix elements are the interactions between pairs of far-field
clusters, in a group-by-group and multilevel manner via processes called aggregation,
translation, and disaggregation. In the aggregation stage, radiation patterns of the
basis functions are multiplied with the excitation coefficients (i.e., the input vector of
the iterative solver), and radiated fields of the higher-level clusters are calculated in
a bottom-up scheme in the tree structure. Between two consecutive levels, interpo-
lations are employed to match the different sampling rates of the fields using a local
interpolation method [20, 21]. For each pair of far-field clusters, their cluster-to-cluster
interaction is computed in the translation stage. In any specific level, translations are
performed only for clusters whose parents are in the near-field zone of each other.
Interactions with farther clusters are accounted for by the translations of higher lev-
els. Because of the cubic symmetry, the number of translation operators is O(1) for
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each level. In the disaggregation stage, a top-down computation scheme is followed
to find the total incoming fields at the cluster centers. Translations and incoming
fields of parent clusters are combined to find the total incoming field for each cluster.
Transpose interpolations (or anterpolations) [9] are employed to reduce the sampling
rates of the fields of parent clusters in order to adapt them as incoming fields of child
clusters. The matrix-vector multiplication is completed in the lowest level when the
incoming fields are shifted from the centers of the clusters onto the testing functions,
and inner products are computed in the form of spectral integrations.

4. Preconditioning with approximate Schur complement reduction. For
iterative solutions of partitioned linear systems, preconditioners are frequently based
on segregated methods. In such methods, the unknown vectors are computed sepa-
rately [6]. The main representative of the segregated approach is the Schur comple-
ment reduction method. Since the whole matrix is not explicitly available in our case,
we first approximate the dense system matrix with the sparse near-field matrix, i.e.,

(4.1) A ≈ ANF .

In general, magnitudes of the elements of the matrix A change with physical proxim-
ity [43]. Therefore, the near-field matrix ANF is likely to preserve the most relevant
contributions of the dense system matrix.

4.1. Schur complement reduction. Consider the 2× 2 partitioned near-field
system,

(4.2)

[
ANF

11 ANF
12

ANF
21 ANF

22

]
·
[
v1

v2

]
=

[
w1

w2

]
,

which can be rewritten as

ANF
11 · v1 +ANF

12 · v2 = w1,(4.3)

ANF
21 · v1 +ANF

22 · v2 = w2.(4.4)

When ANF
11 is nonsingular, from (4.3)

(4.5) v1 =
(
ANF

11

)−1 · (w1 −ANF
12 · v2).

If we insert (4.5) in (4.4) and rearrange, we can find v2 from

(4.6) S · v2 = w2 −ANF
21 ·

(
ANF

11

)−1 ·w1,

where

(4.7) S = ANF
22 −ANF

21 ·
(
ANF

11

)−1 ·ANF
12

is the Schur complement. Once v2 is found from (4.6), v1 can be found using

(4.8) ANF
11 · v1 = w1 −ANF

12 · v2.

Schur complement reduction is an attractive solution technique if the order of the
Schur complement S is small and if linear systems with matrix ANF

11 can be solved
efficiently. Even when these requirements are not entirely satisfied, approximate so-
lutions of (4.6) and (4.8) can serve as useful preconditioners. Hence, we consider the
approximate solution of the system (4.2) as an important step of constructing and
applying a preconditioner.
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4.2. Preconditioners based on approximate Schur complement reduc-
tion. Next, we describe four types of preconditioners derived from the Schur comple-
ment reduction with different approximations to the solutions of (4.8) and (4.6) [6].

4.2.1. Diagonal approximate Schur preconditioner (DASP). The diago-
nal approximate Schur preconditioner (DASP) is derived with the approximations

(4.9) ANF
12 = ANF

12 ≈ 0

performed on the right-hand sides (RHSs) of (4.8) and (4.6). Then these equations
reduce to

(4.10) ANF
11 · v1 = w1

and

(4.11) S · v2 = w2.

Therefore, the preconditioning matrix of DASP is given by

(4.12) MDASP =

[
ANF

11 0

0 S

]
.

4.2.2. Upper triangular approximate Schur preconditioner (UTASP).
If we set only one of the off-diagonal partitionsANF

12 andANF
21 in the RHSs of (4.8) and

(4.6) to zero, we obtain a partition triangular preconditioner. When we set ANF
21 ≈ 0,

we obtain the upper triangular approximate Schur preconditioner (UTASP). First, we
have to solve for v2 from

(4.13) S · v2 = w2.

Then we can find v1 using v2:

(4.14) ANF
11 · v1 = w1 −ANF

12 · v2.

Given the same RHS, UTASP finds the same v2 with DASP, but it is expected
to compute a more accurate v1. The preconditioning matrix of UTASP is defined as

(4.15) MUTASP =

[
ANF

11 ANF
12

0 S

]
.

4.2.3. Lower triangular approximate Schur preconditioner (LTASP). If
we set ANF

12 ≈ 0 instead of ANF
21 , we obtain the lower triangular approximate Schur

preconditioner (LTASP). In this case, we have to first solve for v1 from

(4.16) ANF
11 · v1 = w1.

Then we can find v2 using v1:

(4.17) S · v2 = w2 −ANF
21 ·

(
ANF

11

)−1 ·w1 = w2 −ANF
21 · v1.

Compared to DASP, LTASP finds the same v1, but it is expected to find a more
accurate v2 for a given RHS. The preconditioning matrix of LTASP is defined as

(4.18) MLTASP =

[
ANF

11 0

ANF
21 S

]
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4.2.4. Approximate Schur preconditioner (ASP). In an effort to devise
an effective preconditioner, it is also an option not to omit any of the off-diagonal
blocks in ANF . For efficiency, however, solutions of the systems involving S and
ANF

11 should be performed approximately, as will be detailed in section 4.3. Hence,
we call this preconditioner the approximate Schur preconditioner (ASP), for which
the preconditioning matrix is given by

(4.19) MASP = ANF =

[
ANF

11 ANF
12

ANF
21 ANF

22

]
.

4.3. Approximations of the solutions involving ANF
11 and the Schur

complement S. The performance of the preconditioners explained in sections 4.2.1,
4.2.2, 4.2.3, and 4.2.4 depends on the availability of fast and approximate solutions
to

(4.20) ANF
11 · v1 = w′

1

and

(4.21) S · v2 = w′
2,

where w′
1 and w′

2 take different forms depending on the type of preconditioner. Since
the approximations performed in these solutions define a preconditioner for the linear
system (1.1), accurate solutions are not required. On the other hand, very crude ap-
proximations of the exact solutions may deteriorate the quality of the preconditioner,
and iteration counts may not be decreased as desired.

In the literature, several approximation strategies for the solutions of (4.20) and
(4.21) have been proposed, but many of them are strongly problem dependent [6].
For surface integral-equation formulations, we discuss possible approximations and
our approach for A11 and S.

4.3.1. Approximating the solutions involving ANF
11 . For some specific prob-

lems, many efficient techniques are available for a fast and accurate solution of (4.20).
For example, if the system matrix were obtained from the discretization of a differ-
ential operator, in many cases a few multigrid sweeps would yield efficient and yet
sufficiently accurate solutions [19]. In general situations, however, one must resort to
algebraic approaches, such as ILU factorizations, SAIs, or approximations by a few
iterations of a Krylov subspace method.

In this work, we approximate the solution of the system (4.20) by an SAI of ANF
11 .

We denote the SAI of ANF
11 as M11. Hence, our approximation becomes

(4.22)
(
ANF

11

)−1 ≈ M11.

SAI preconditioners have been successfully used in CEM for PEC problems [1, 10, 39,
43]. Two important advantages of SAI preconditioners over ILU-type preconditioners
are robustness and ease of parallelization [8]. In our case, it is also possible to alleviate
the high construction cost of SAI using the block structure of the near-field matrix
[10, 43], as we describe in the following paragraph.

Approximate inverses of sparse matrices can be obtained in several ways [7, 8,
15, 26, 38]. Among these methods, we make use of the Frobenius-norm technique [8],
which decouples the generation of an N × N SAI into N independent least-squares
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Fig. 1. Eigenvalues of M11 ·ANF
11 for different formulations and increasing dielectric constants

of 4, 8, and 12.

problems for each row. Then each least-squares problem can be solved by employing
a QR factorization and an upper triangular system solution [56]. On the other hand,
due to the block structure of ANF

11 , we need to perform only N/m QR factorizations,
where m is the average block size of ANF

11 . For a 0.25λ lowest-level box size and λ/10
mesh size, typical values of m lie between 20 and 50, depending on the geometry.
Since the QR factorization constitutes the dominant cost in a least-squares solution,
we significantly reduce the construction time of SAI.

We evaluate the approximation (4.22) in Figure 1, where we depict eigenvalues of
matrices M11 ·ANF

11 for different formulations and increasing dielectric constants of
4, 8, and 12. The geometry is a 0.5λ sphere involving 1,860 unknowns. We see that
eigenvalues are very tightly clustered around (1, 0) for normal formulations (CNF and
MNMF). For CTF, we see a slightly looser clustering than CNF and MNMF. JMCFIE
lies between the two cases. Also note that the spectra of ANF

11 are unaffected by the
increase of the dielectric constant.

4.3.2. Approximating the solutions involving S. The approximation in-
volving the Schur complement matrix S is more subtle than that of ANF

11 . Moreover,
it is shown that the approximation quality provided to the system involving S should
accommodate the approximation level to the system involving ANF

11 [54]. Therefore,
we try to find an approximation for S that is as good as the approximation for ANF

11 .

In the literature related to saddle-point problems, several choices exist when the
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system matrix A is symmetric [6]. These choices include multigrid sweeps and low-
order discretization of the related operator. Many purely algebraic approaches have
also been proposed for the nonsymmetric case, in which the (2,2) partition is zero.
Those approaches include approximating the inverse of the (1,1) partition in the
Schur complement by the inverse of the diagonal or block-diagonal part of the (1,1)
partition. Better approximations can be provided in the form of incomplete factors
(e.g., [40]). However, a limited number of methods exist for the case of a nonzero
(2,2) partition [6, 13, 54]. Perhaps one of the most applicable methods is to use
a Krylov subspace solver to obtain an approximate solution of the system (4.21).
MVMs with S can be provided to the solver by multiplications with the (2,2) and off-
diagonal partitions, and by another iterative solve with ANF

11 . The required solve with
ANF

11 , however, can significantly increase the application cost of the preconditioner.
Moreover, in many cases, a preconditioner for S is still required to accelerate the
Krylov subspace solver.

In this work, we consider the following strategies for approximating the inverse
of S for the solution of (4.21):

1. As a simple approach, we can approximate the inverse of S using its block-
diagonal part. Let Bij denote the block-diagonal part of the near-field par-
tition (i, j), which consists of the self-interactions of the lowest-level clusters.
Then the approximation is

(4.23) S−1 ≈ MBD =
(
B22 −B21 ·

(
B11

)−1 ·B12

)−1

.

2. For normal formulations and JMCFIE, the resulting partitions and the Schur
complement are likely to have some degree of diagonal dominance. Therefore,
we expect to benefit from the approximation (4.23). On the other hand,
CTF partitions are far from being diagonally dominant, and indeed block-
diagonal preconditioners decelerate the convergence rate of iterative solvers
for tangential formulations of PEC problems [29]. Thus, for CTF, instead of
the approximation in (4.23), we consider the modification formula [32] that
expresses the inverse of S as

(4.24) S
−1

=
(
ANF

22

)−1
+
(
ANF

22

)−1 ·ANF
21 · S′−1 ·ANF

12 ·
(
ANF

22

)−1
,

where

(4.25) S
′
= ANF

11 −ANF
12 ·

(
ANF

22

)−1 ·ANF
21 .

The modification formula is also known as the Woodbury matrix identity
[24] or the matrix inversion lemma in control theory [33], or the Sherman–
Morrison–Woodbury formula in many disciplines, including CEM [27, 28]. To

obtain an approximate inverse for S, we discard the second term in S
′
and

approximate the inverses of ANF
11 and ANF

22 with SAIs, i.e.,

S
−1 ≈ MMF = M22 +M22 ·ANF

21 ·M 11 ·A12 ·M 22(4.26)

= M22 ·
(
I +ANF

21 ·M11 ·ANF
12 ·M 22

)
,(4.27)

whereM 22 denotes the SAI ofA
NF
22 . Note thatANF

22 = ANF
11 for CTF; hence,

we need to construct and store only one SAI. The application of (4.27) can
be performed by sparse MVMs during the iterative solution of (1.1), without
the need to store any matrices other than SAI.
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3. We can approximate the inverse of the Schur complement matrix by

(4.28) S
−1 ≈

(
ANF

22

)−1 ≈ M22,

assuming the first term in the RHS of (4.7) is the dominant term in the
Schur complement matrix. M 22 denotes the SAI of ANF

22 . Again, we need to
construct a second SAI only for MNMF.

4. Finally, by employing an incomplete matrix-matrix multiplication, we gen-
erate an explicit SAI for S that involves both of its first and second terms.
First, we compute a sparse approximation to S in the form of

(4.29) S̃ = A
NF

22 −A
NF

21 �M11 �A12,

where � denotes an incomplete matrix-matrix multiplication obtained by
retaining the near-field sparsity pattern and M11 is the SAI of ANF

11 . Then
the approximation is performed as

(4.30) S−1 ≈ S̃−1 ≈ MSchur,

where MSchur denotes an SAI approximation to the inverse of S̃. In our im-
plementation, the block entries of the near-field partitions are stored rowwise.
Therefore, the incomplete matrix-matrix multiplication can be performed in
O(N) time using the ikj loop order of the block matrix-matrix multiplica-
tion [24] so that the block entries of the matrices are accessed rowwise. Details
of this operation are elucidated with a pseudocode in Figure 2. Note that
the “if statement” in the innermost loop ensures that a block Cij is updated
only if clusters i and j are in the near-field zone of each other. In this way,
the near-field sparsity pattern is preserved for the product matrix C.

C = 0
for each lowest-level cluster i do

for each cluster k ∈ N (i) do
for each cluster j ∈ N (k) do

if j ∈ N (i) then

Cij = Cij +Dik ·Ekj

endif
endfor

endfor
endfor

Fig. 2. Incomplete matrix-matrix multiplication of C = D ·E, where C, D, and E are block
near-field matrices with the same sparsity pattern. Cij denotes the block of the near-field matrix C
that corresponds to the interaction of cluster i with cluster j. N (i) denotes the clusters that are in
the near-field zone of cluster i.

We evaluate the aforementioned approximations in Figures 3, 4, and 5, where
we depict the eigenvalues of the preconditioned Schur complement matrices. We
summarize our comments as follows:

• In Figure 3, we depict MMF · S for CTF and MBD · S for other formula-
tions. We see that the clustering (or localization) of the eigenvalues dimin-
ishes with increasing the dielectric constant, particularly for CTF and CNF.
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Fig. 3. Eigenvalues of preconditioned Schur complement S for increasing dielectric constants
of 4, 8, and 12. CTF is preconditioned with MMF , whereas MBD is used as the preconditioner for
the other formulations.

Even though the scattering (or spread) of the eigenvalues of CTF with MBD

is much worse than that of CNF (not shown here), interestingly, the spec-
tra of JMCFIE are less affected from the increase in the dielectric constant
than those of CTF and CNF. This can be related to the stronger diagonal
dominance of matrices produced with combined formulations than those of
tangential formulations [29]. Nonetheless, from the spectra in Figure 3, we
conclude that the approximations (4.23) and (4.27) are significantly poorer
than (4.22) for all formulations.

• When we omit the second term of the Schur complement matrix in (4.7) and
perform the approximation (4.28), we observe from Figure 4 that the spec-
tra of CNF are extensively scattered with an increasing dielectric constant.
Even though not as much as those of CNF, the spectra of CTF are also scat-
tered. JMCFIE, being a combination of CTF and CNF, is also affected from
the scattering of CNF and CTF. Hence, we conclude that this approxima-
tion is problematic for high dielectric constants in CTF, CNF, and JMCFIE.
MNMF, on the other hand, is less affected from the increase in the dielectric
constant. However, when we compare Figures 4 and 1, we conclude that the
approximation (4.28) is also significantly poorer than (4.22) for MNMF.

• From Figure 5, it is clear that the best approximation for the Schur comple-
ment S is provided by MSchur. Clusterings of CTF, MNMF, and JMCFIE
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Fig. 4. Eigenvalues of M22 · S for different formulations and increasing dielectric constants
of 4, 8, and 12.

are tight, whereas CNF exhibits slightly looser clustering. When we com-
pare Figures 5 and 1, we observe that the approximation (4.22) is as good
as (4.30) for CTF. For other formulations, clusterings in Figure 5 are a little
looser compared to those in Figure 1.

From these discussions, we conclude that MSchur provides the most appropriate
approximation to the inverse of the Schur complement matrix S. The other two
approximate inverses, MBD and M 22, have lower setup and memory costs, but they
are far from ensuring the requirement that the approximation for S should be as
good as that of A11. On the other hand, in the context of a nested iterative solver
(e.g., [31]), MSchur and other approximations, i.e., (4.23), (4.27), and (4.28), can also
be utilized as inner preconditioners for iterative solutions of S, and this will be the
subject of another study [44].

5. Numerical results. We use the following setup in our experiments:

• Computations are performed on an Intel Xeon 5355 processor with 16 GB of
available memory.

• The generalized minimal residual method (GMRES) [51] with no restart is
used as the iterative solver [3]. Even though it is not reported in detail
here, contrary to findings in [55], we observe a significant difference between
the performances of GMRES and other nonoptimal solvers, such as conju-
gate gradient squared (CGS) or biconjugate gradient stabilized (BiCGStab).
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Fig. 5. Eigenvalues of MSchur ·S for different formulations and increasing dielectric constants
of 4, 8, and 12.

Comparisons of MVM counts for the sphere problem presented in section 5.1
and in [22] demonstrate the superiority of GMRES. We note that the per-
formance difference of GMRES and other nonoptimal solvers is even more
severe for the real-life problems of sections 5.2 and 5.3.

• Iterations are performed until the norm of the initial residual is reduced by
a factor of 10−3. This error level is practical [12] and in accordance with the
controllable error performed in MLFMA.

• Solutions are started with a zero initial guess and terminated if a maximum
of 1,000 iterations is reached.

For comparison purposes, we provide solutions with the no-preconditioner (No
PC) case, a four-partition block-diagonal preconditioner (4PBDP) [22], two ILU-type
preconditioners, and an SAI preconditioner. SAI and ILU-type preconditioners are ap-
plied to the whole matrix, without exploiting the 2× 2 partitioned structure. 4PBDP
is a simple preconditioner constructed by the inclusion of only self-interactions of the
lowest-level clusters in each partition. Among several types of ILU preconditioners,
the dual-threshold ILUT preconditioner [51] has been shown to be very ineffective in
a finite-element implementation of the Navier–Stokes equations [13]. In CEM, how-
ever, ILU-type preconditioners have been successfully employed for surface integral-
equation formulations of PEC problems [42]. For the ILUT preconditioner, we set the
threshold values so that it uses up the same amount of memory as ILU(0) and the

D
ow

nl
oa

de
d 

12
/0

9/
12

 to
 1

39
.1

79
.1

55
.2

34
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCHUR COMPLEMENT PRECONDITIONERS FOR MLFMA 2457

Table 1

Salient features of the sphere problems investigated in this study.

Frequency Size MLFMA Number of

Problem (GHz) (λ) levels unknowns

S1 1.0 2 4 7,446

S2 1.5 3 5 16,728

S3 3.0 6 6 65,724

S4 6.0 12 7 264,006

S5 8.5 17 8 540,450

Note: λ denotes the wavlength at the frequency of operation.

near-field matrix [42]. We also implement an SAI preconditioner for the whole system
by using the nonzero pattern of the near-field matrix. Note that the Schur comple-
ment preconditioners described in section 4 require only half the memory consumed
by the ILU-type and SAI preconditioners.

We first evaluate the proposed preconditioners on a sphere problem, which has
an inner dielectric constant of 4.0. The sphere is a widely used geometry in CEM
since its analytical solutions are available via Mie-series solutions. We refer to [22]
for a comparison of the different integral formulations with respect to accuracy of the
solutions. Furthermore, since the sphere geometry is trivially reproducible, it is an
important benchmarking problem, providing an opportunity for the evaluation of the
performance of the proposed preconditioners with respect to other preconditioners.
However, with possible high dielectric constants and complex shapes, real-life prob-
lems are more important for judging the quality of a preconditioner. Therefore, we
also consider two real-life problems: a lens with a dielectric constant of 12.0 [47] and
a photonic crystal with a dielectric constant of 11.56 [37].

5.1. The sphere problem. In Table 1, we present solution frequencies, di-
ameters in terms of free-space wavelength, number of MLFMA levels, and number
of unknowns relating to the sphere problem. We deliberately solve problems with
increasing sizes to make a reasonable judgment about the preconditioner, because
near-field matrices become sparser as the number of MLFMA levels increases.

5.1.1. Setup times. The setup of the Schur complement preconditioners is com-
posed of the construction of M11 (SAI of A

NF
11 ) and MSchur (SAI of the approximate

Schur complement matrix S). In Table 2, we compare these setup times with those of
ILUTP (ILUT with 0.5 pivoting tolerance), ILU(0), and SAI. The setup of 4PPBDP
is negligible.

From Table 2, we see that setup times of ILUTP and SAI are much larger than
those of the others, particularly for the S5 problem. The time required for the setup
of ILU(0) is six to eight times less than that of the Schur complement preconditioners,
which require the constructions of both M 11 and MSchur. As the following tables
will reveal, however, both of these times are insignificant compared to the iterative
solution times of the problems. Finally, note that the setup time of MSchur is only
slightly higher than that of M 11 because of the efficiently implemented incomplete
matrix-matrix multiplication described in Figure 2.

5.1.2. ILU-type, SAI, and simple preconditioners. For CTF, similar to
the results of [13], we observe that the ILU-type preconditioners have an instability
issue. In particular, with ILU(0), the condition estimates [14] turn out to be very
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Table 2

Setup times (in minutes) of ILU-type preconditioners and SAIs of ANF
11 and the Schur com-

plement matrix S.

Problem ILUTP ILU(0) SAI M11 MSchur

S1 0.16 0.02 0.59 0.08 0.08

S2 0.56 0.05 1.38 0.18 0.19

S3 3.84 0.19 5.40 0.68 0.73

S4 20.54 0.77 22.54 2.82 3.05

S5 158.21 2.17 45.98 5.75 6.23

high for some large sphere problems. The same situation also arises for ILUT, but
the instability can be removed in this case if pivoting with 0.5 tolerance is applied.
Other formulations that are of the second-kind do not exhibit any instability and
ILU(0) performs the best among the ILU-type preconditioners for those formulations.
Therefore, we employ ILU(0) for formulations other than CTF, and ILUTP for CTF.
Our comments on the results of No PC, 4PBDP, SAI, and ILU-type preconditioners
presented in Table 3 are as follows:

• For all formulations, the no-restart GMRES solves all sphere problems suc-
cessfully. However, the number of iterations is very high in some instances,
such as the CNF solution of S4. Moreover, some large instances of these
problems cannot be solved with other nonoptimal solvers. For example, the
solutions of S5 do not converge with BiCGStab for CNF, MNMF, and JMC-
FIE.

• In accordance with the findings in [22], we observe that 4PBDP worsens
the convergence behavior of CTF. In that paper, it is shown that for other
formulations, CGS and BiCGStab solutions of the sphere geometry can sig-
nificantly be improved with 4PBDP. Nevertheless, 4PBDP is, in general, less
effective on the convergence of large problems when GMRES is employed as
the iterative solver.

• Considering the solutions with CTF, ILUTP provides a significant improve-
ment over No PC only for the S3 case. Solutions with CNF, on the other
hand, significantly benefit from ILU(0). For better-conditioned JMCFIE and
MNMF, ILU(0) provides minor improvements over 4PBDP.

• For CTF and MNMF, the SAI preconditioner for the whole system wors-
ens the convergence rate. This is also true for the largest two solutions of
JMCFIE. For CNF, SAI provides minor improvements with respect to much
cheaper 4PBDP. We note that failure or limited success of standard algebraic
preconditioners that do not take into account the partitioned structure, such
as ILU-type or SAI, has also been reported previously [6, 13].

5.1.3. Schur complement preconditioners. In Table 4, we present iteration
counts and total solution times of Schur complement preconditioners. We first note
that per-iteration times of all Schur complement preconditioners are very close to each
other. Even though the application of DASP requires two, the applications of UTASP
and LTASP require three, and the application of ASP requires four multiplications
with N × N sparse partitions, the time required for these multiplications is much
less than the time required for the far-field computations performed by MLFMA.
Furthermore, the complexity of near-field partition is O(N), whereas MLFMA scales
with O(N logN). As a result, per-iteration times are dominated by the MLFMA
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Table 3

Performances of the 4PBDP, ILU-type, and SAI preconditioners and No PC on the sphere
problem.

CTF

No PC 4PBDP ILUTP SAI

Problem iter time iter time iter time iter time

S1 179 7 467 18 149 6 216 9

S2 167 21 668 85 138 19 291 38

S3 471 313 † − 284 198 472 319

S4 291 912 † − 268 851 732 2,327

S5 271 2,028 † − 273 2,198 908 6,826

CNF

No PC 4PBDP ILU(0) SAI

iter time iter time iter time iter time

S1 67 3 45 2 27 1 46 2

S2 140 18 89 11 46 6 79 11

S3 171 113 126 83 61 41 96 69

S4 968 3,065 516 1,894 161 515 318 1,031

S5 390 2,916 386 2,880 120 902 315 2,413

MNMF

No PC 4PBDP ILU(0) SAI

iter time iter time iter time iter time

S1 47 2 32 1 27 1 225 9

S2 71 9 51 7 39 5 151 21

S3 112 73 85 56 63 42 224 155

S4 192 605 161 504 116 368 559 1,792

S5 187 1,405 165 1,240 108 826

JMCFIE

No PC 4PBDP ILU(0) SAI

iter time iter time iter time iter time

S1 79 3 53 2 31 1 61 3

S2 93 12 62 8 36 5 91 13

S3 139 92 100 67 68 46 91 66

S4 223 706 141 444 102 326 232 762

S5 143 1,075 111 836 102 805 160 1,259

Notes: “iter” and “time” denote the number of iterations and total
solution time in minutes. Nonconvergence is denoted by a dagger “†”.

operations and iteration times are in accordance with the iteration counts. For a
certain formulation, when we can decide that some of the preconditioners behave
worse than the others, we omit them for the largest S5 problem. For example, we
omit UTASP and LTASP solutions of S5 for CTF.

Our comments on the results presented in Table 4, also compared to those in
Table 3, are as follows:

• ASP is the best-performing preconditioner among the Schur complement pre-
conditioners except for the S4 solution of CNF and the largest three problems
of MNMF; it is possible that the indefiniteness of the matrices causes this [17].
While improving the preconditioner, the eigenvalues with a negative real part
move progressively towards the point (1, 0). Meanwhile, however, some eigen-
values may be very close to zero, slowing down the convergence.
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Table 4

Performances of the Schur complement preconditioners on the sphere problem.

CTF CNF

Prob- UTASP LTASP ASP UTASP LTASP ASP

lem iter time iter time iter time iter time iter time iter time

S1 53 2.2 48 2.0 43 1.8 33 1.4 30 1.3 27 1.2

S2 60 7.9 55 7.3 47 6.3 57 7.7 57 7.7 46 6.2

S3 147 98.7 121 81.5 103 69.8 64 43.8 59 40.5 55 38.0

S4 209 664.4 178 566.7 144 459.2 130 416.7 204 651.7 158 506.9

S5 ∗ ∗ 147 1,109.7 97 747.8 ∗ 97 741.0

MNMF JMCFIE

UTASP LTASP ASP UTASP LTASP ASP

iter time iter time iter time iter time iter time iter time

S1 45 1.9 33 1.4 29 1.3 33 1.4 35 1.5 29 1.3

S2 66 8.7 43 5.8 42 5.7 40 5.5 40 5.5 34 4.7

S3 123 83.3 67 46.0 70 48.0 63 43.4 76 52.1 55 38.1

S4 235 752.0 122 391.9 132 423.8 93 301.7 124 400.9 84 273.6

S5 ∗ 103 788.7 128 982.3 ∗ ∗ 77 595.7

Notes: “iter” and “time” denote the number of iterations and total solution time in minutes.
An asterisk “∗” denotes that the problem is not solved with that particular preconditioner.

• For CTF, ASP reduces solution times of the sphere problems by a factor
of two to four, compared to ILUTP and No PC. For CNF, ASP provides a
reduction by a factor of three to six with respect to 4PBDP. ILU(0) solves
CNF systems as fast as ASP, but for S5, solutions with ASP converge faster.
JMCFIE solutions are also obtained about two times faster with ASP than
with 4PBDP. ILU(0) is better than 4PBDP for JMCFIE, but it is worse than
ASP. Finally, MNMF benefits the least from the Schur complement precon-
ditioners. Nonetheless, for large problems, LTASP provides an approximate
30% reduction in time compared to 4PBDP. ILU(0) solves MNMF problems
as fast as the Schur complement preconditioners do.

• When we compare the formulations considering their performances with ASP,
we observe that JMCFIE systems are solved with the lowest iteration counts
and CTF systems are solved with the highest iteration counts. Although the
iteration counts of MNMF are much less than those of CNF without a pre-
conditioner, CNF benefits more from preconditioning. As a result, iteration
counts of these formulations become close to each other when an ILU-type or
a Schur complement preconditioner is employed.

5.2. The lens problem. For radiometric remote sensing applications, delicate
simulations of dielectric lenses are required for a wide spectrum, beginning from 30
GHz [47]. This application gives rise to large problems that are difficult to solve
without preconditioning. In this section, we analyze preconditioned iterative solutions
of this important problem. We increase the frequency by 30 GHz intervals, up to 120
GHz. The resulting problems are listed in Table 5. The lens problem involves a
dielectric half sphere with a high dielectric constant of 12.0.

5.2.1. ILU-type, SAI, and simple preconditioners. CTF solutions of lens
problems do not suffer from the instability of ILU-type preconditioners. ILU(0) per-
forms better than ILUT and ILUTP for all formulations. Hence, for all formulations,
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Table 5

Salient features of the lens problems investigated in this study.

Frequency Size MLFMA Number of

Problem (GHz) (λ) levels unknowns

L1 30 2.5 6 38,466

L2 60 5.0 7 158,286

L3 90 7.5 7 353,646

L4 120 10.0 8 632,172

Note: λ denotes the wavelength at the frequency of operation.

we compare ILU(0) with No PC and 4PBDP in Table 6. CNF solutions of L4 with
No PC and 4PBDP cannot be completed since the memory requirement cannot be
met with the available memory after 500 GMRES iterations. This is also the case for
the SAI solution of L4 with CTF. Our comments on the results are as follows:

• We observe that CNF cannot solve L2, L3, and L4 problems without a pre-
conditioner. CTF and JMCFIE converge with similar rates and MNMF con-
verges the fastest. These results are in accordance with the discussion in
section 2.5. A high dielectric constant degrades the conditioning of normal
formulations [62]. In addition, the spectra illustrated in Figures 3, 4, and 5
reveal that CNF is negatively affected more than the others by an increase in
the dielectric constant. As a combination of CTF and CNF, JMCFIE is also
adversely affected by a high dielectric constant. Consequently, its iteration
counts turn out to be close to those of CTF for the lens problem.

• JMCFIE benefits more from 4PBDP than MNMF, and iteration counts for
these formulations become close to each other with 4PBDP. For the largest
problem L4, JMCFIE converges even faster than MNMF. Superiority of JM-
CFIE over MNMF for large problems has also been demonstrated in [22].

• ILU(0) performs significantly better than 4PBDP on the lens problem. All
of the formulations can be solved faster with ILU(0), but second-kind for-
mulations are accelerated more than CTF since they have more diagonally
dominant matrices than CTF does.

• Similar to the sphere problem, SAI decelerates the convergence rate of CTF
and MNMF. For CNF and JMCFIE formulations, it performs better than
4PBDP, but poorer than ILU(0).

5.2.2. Schur complement preconditioners. In Table 7, we present solutions
of the lens problems with the Schur complement preconditioners. Solutions of L1
and L2 show that ASP performs significantly better than other Schur complement
preconditioners; hence, we perform solutions of the larger L3 and L4 problems only
with ASP. We summarize our comments on the results as follows:

• With ASP, all of the formulations can be solved much faster than with No PC
or 4PBDP, and solution times are reduced twofold to fivefold, depending on
the type of formulation. The number of iterations for JMCFIE and MNMF
are close to each other, and are approximately half of the number of iterations
for CTF and CNF.

• For CTF and JMCFIE, ASP performs significantly better than ILU(0). But
for CNF and MNMF, ILU(0) performs slightly better than ASP.

5.3. The photonic crystal problem. We conclude this section with a com-
parative investigation of the performance of ASP on a complicated structure, namely,
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Table 6

Performances of the 4PBDP, ILU(0), and SAI preconditioners and No PC on the lens problem.

CTF

No PC 4PBDP ILU(0) SAI

Problem iter time iter time iter time iter time

L1 205 162 ∗ 105 61 272 161

L2 278 939 ∗ 152 442 541 1,575

L3 276 1,853 ∗ 227 1,525 465 3,137

L4 321 4,458 ∗ 229 3,165 MLE

CNF

No PC 4PBDP ILU(0) SAI

iter time iter time iter time iter time

L1 368 292 140 102 44 26 92 57

L2 † − 333 1,115 87 257 145 428

L3 † − 406 2,734 87 589 198 1,352

L4 MLE MLE 117 1,627 263 3,694

MNMF

No PC 4PBDP ILU(0) SAI

iter time iter time iter time iter time

L1 78 51 52 34 32 19 † −
L2 114 386 86 288 43 124 † −
L3 146 970 131 871 48 328 † −
L4 166 2,282 166 2,284 52 720 † −

JMCFIE

No PC 4PBDP ILU(0) SAI

iter time iter time iter time iter time

L1 138 110 77 57 40 23 70 44

L2 227 786 114 391 67 198 87 266

L3 276 1,850 128 860 71 501 110 766

L4 310 4,310 135 1,872 88 1,224 122 1,745

Notes: “iter” and “time” denote the number of iterations and total
solution time in minutes. An asterisk “∗” denotes that the problem is
not solved with that particular preconditioner. A dagger “†” denotes
nonconvergence. “MLE” denotes that memory limitation is exceeded.

a photonic crystal waveguide, which is composed of a dielectric slab etched with a
waveguiding pattern of holes [37]. An example of the problem and its near-field pat-
tern are shown in Figure 6. The operating frequency is chosen as 8.25 GHz. We
increase the problem size by enlarging the size of the structure and including more
holes, as shown in Table 8. Diameters of the holes are on the order of 0.1λ; hence, this
problem requires a fine meshing of about 0.05λ in order to model these small details.
As a result, the lowest-level clusters of MLFMA contain more basis functions and the
resulting near-field matrices become denser compared to previous problems.

In Table 9, we present information regarding the solutions of the photonic crystal
problems with No PC, 4PBDP, ILU(0), and ASP. For CTF solutions, ILU(0) is again
more successful than ILUTP and SAI in reducing the iteration counts. The solutions
with CNF and MMNMF are omitted for this particular problem because they perform
much poorer than CTF and JMCFIE do. We summarize our comments on the results
as follows:

• Note that the performance of No PC and that of 4PBDP are worse for this
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Table 7

Performances of the Schur complement preconditioners on the lens problem.

CTF CNF

Prob- UTASP LTASP ASP UTASP LTASP ASP

lem iter time iter time iter time iter time iter time iter time

L1 129 75 93 55 57 34 101 59 70 41 45 27

L2 189 550 135 394 85 249 227 655 160 461 92 266

L3 ∗ ∗ 99 669 ∗ ∗ 94 635

L4 ∗ ∗ 114 1,592 ∗ ∗ 128 1,785

MNMF JMCFIE

UTASP LTASP ASP UTASP LTASP ASP

iter time iter time iter time iter time iter time iter time

L1 90 53 41 25 35 21 56 34 48 29 31 19

L2 133 386 54 159 48 142 100 292 80 235 52 154

L3 ∗ ∗ 54 369 ∗ ∗ 54 368

L4 ∗ ∗ 60 846 ∗ ∗ 64 901

Notes: “iter” and “time” denote the number of iterations and total solution time in minutes.
An asterisk “∗” denotes that the problem is not solved with that particular preconditioner.
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Fig. 6. (a) A perforated photonic crystal waveguide. (b) Near-zone magnetic fields of the
problem when illuminated by a Hertzian dipole.

Table 8

Salient features of the photonic crystal problems investigated in this study.

Frequency Number of MLFMA Number of

Problem (GHz) holes levels unknowns

PhC1

8.25

5× 5 4 14,226

PhC2 5× 10 5 27,798

PhC3 10× 15 6 162,420

problem than for the sphere and lens problems. Specifically, the largest prob-
lem, PhC3, cannot be solved without a preconditioner or with 4PBDP when
formulated with CTF. In addition, the iteration counts with JMCFIE for
PhC3 turn out to be very high.

• Since the near-field matrix for this problem is significantly denser than for pre-
vious problems, ILU(0) performs remarkably well, particularly for JMCFIE.
On the other hand, in a double-precision implementation, ILU(0) requires 8.3
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Table 9

Comparison of ASP with ILU-type and simple preconditioners for the photonic crystal problem.

CTF

Prob- No PC 4PBDP ILU(0) ASP Setup ASP

lem iter time iter time setup iter time M11 MSchur iter time

PhC1 397 10 533 14 2 63 2 2 2 37 6

PhC2 695 43 881 56 5 141 10 6 6 58 16

PhC3 † − † − MLE 54 57 217 214

JMCFIE

No PC 4PBDP ILU(0) ASP Setup ASP

iter time iter time setup iter time M11 MSchur iter time

PhC1 196 6 118 3 2 19 1 2 2 39 6

PhC2 316 21 183 12 5 32 2 6 6 76 18

PhC3 874 374 593 255 MLE 54 57 278 248

Notes: “iter” denotes number of iterations. “time” denotes total solution time and “setup”
denotes setup time of the preconditioner, in minutes. A dagger “†” denotes nonconvergence.
“MLE” denotes that memory limitation is exceeded.

GB of memory for PhC3, and as a result, this problem does not fit into the
available memory.

• We have been able to solve the largest problem (PhC3) only by using ASP.
When we compare CTF and JMCFIE solutions with ASP, we observe that
CTF requires fewer number of iterations compared to JMCFIE. Also, CTF
uses less memory than JMCFIE, as explained in section 2.5. Moreover, this
problem involves a high dielectric constant and many surface singularities.
Therefore, we can expect CTF to produce more accurate results than JMC-
FIE.

6. Conclusion. In the context of surface integral-equation methods for dielectric
problems, simultaneous discretization of the surface currents and integral equations
leads to matrix equations with 2 × 2 partitions. These partitions show some resem-
blance to the matrices that are obtained in PEC problems. Based on our prior ex-
perience with the preconditioning of PEC problems, we have developed robust Schur
complement preconditioners for dielectric problems by using the 2 × 2 partitioned
structure of matrices. Inspired by its success in PEC problems [43], the SAI pre-
conditioner is applied to the (1,1) partition. For the Schur complement, we discuss
several approximation strategies and show that obtaining an approximation via sparse
matrix-matrix multiplications yields the best results.

To the best of our knowledge, the following conclusions drawn from the numerical
experiments are novel and have the potential to change the common wisdom regarding
the solutions of surface integral equations for dielectric problems:

• The no-restart GMRES solver is much more robust and efficient for precondi-
tioned and unpreconditioned matrix systems than other nonoptimal solvers.

• When high accuracy is a concern, CTF solutions can be obtained without
difficulty by using the Schur complement preconditioners. The lack of di-
agonal dominance in CTF prevents the success of block-diagonal-type (i.e.,
4PBDP [22]), ILU(0), or SAI preconditioners. Although they are known as
the most general and effective preconditioners for nonsymmetric and indefi-
nite systems [51], ILUT and ILUTP also have discouraging performances on
CTF.
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• Normal formulations and JMCFIE are second-kind integral equations that are
expected to yield well-conditioned linear systems. Particularly for large prob-
lem sizes, however, effective preconditioning becomes indispensable for these
formulations when the problem involves a high dielectric constant. We also
note that standard algebraic preconditioners that do not take into account
the partitioned structure can perform poorly on such systems.

• Furthermore, the photonic crystal problem shows that the complexity of the
geometry and the high dielectric constant may render linear systems obtained
from normal formulations unsolvable even with effective preconditioners. Lin-
ear systems obtained from JMCFIE can be solved with simple precondition-
ers, but they require many iterations. When ASP is used, on the other hand,
the most accurate CTF solutions can be attained with the lowest iteration
counts.
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