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Abstract. We consider a single particle hopping on a tight binding lattice formed by the vertices of a regular
polyhedron and discuss the effect of a magnetic monopole enclosed in the polyhedron. The presence of
the monopole induces phases on the hopping terms, given by Peierls substitution. By requiring the flux
through each face of a regular polyhedron to be the same, Dirac’s quantization condition is obtained in
this discrete setting. For each regular polyhedron, we calculate the energy spectrum for an arbitrary value
of the flux through a Dirac string coming in from one of the faces. We find that the energy levels are
degenerate only when the flux through the Dirac string corresponds to a quantized monopole. We show
that the degeneracies in the presence of the monopole can be classified using the double group of the
symmetry of the polyhedron and label all energy levels with corresponding irreducible representations.

One of the most interesting problems in non-relativistic
quantum mechanics is the study of a charged particle in
the field of a magnetic monopole. As shown by Dirac [1],
a consistent description of this problem requires the total
magnetic flux of the monopole to be quantized in units of
flux quantum h/e. Or, conversely, one can argue that the
presence of a magnetic monopole requires electric charge
to be quantized.

Beyond its implications for charge quantization and
other topological arguments in field theory, the solution
of Dirac’s problem is used as a tool in numerical studies
of the fractional quantum Hall effect. As first discussed
by Haldane [2], one can imagine a particle confined to the
surface of a sphere, with a magnetic monopole of strength
g at the center of the sphere. The energy levels of the
single particle problem can be labelled by an angular mo-
mentum quantum number l, yielding the usual angular
momentum spectrum E = Cl(l + 1), with C a constant
related to the mass of the particle and the radius of the
sphere. However the smallest possible value l can take is
g/2. Thus, the lowest energy value is g + 1 fold degen-
erate. One can then formally take the constant C to in-
finity, leaving behind only the lowest degenerate manifold
and hence achieve the projection the lowest Landau level.
The single particle wavefunctions obtained this way forms
a ‘translationally invariant’ basis for the numerical exact
diagonalization studies.

The quantum Hall problem in the presence of a peri-
odic potential becomes much more intricate. Even without
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interactions, i.e. for a single particle, the energy spectrum
has a complicated dependence on the magnetic field. The
self-similar spectrum known as the Hofstadter butterfly
displays an infinite number of gaps [3]. Furthermore, each
gap in the spectrum forms a continuous region in mag-
netic field, and one can show that the Hall conductance
within such a region is an integer which is connected to
the topological properties of the phase of the wavefunc-
tion [4]. For an interacting system there is no clear picture
for the interplay between the complicated single particle
spectrum and interactions, more specifically the general
form of fractional quantum Hall states on a lattice are not
known.

While this was considered to be a purely academic
problem until recently, the experimental progress on cold
atoms holds promise for realization of lattice versions of
the quantum Hall problem [5–9]. A lattice where magnetic
field is simulated by rotation has been experimentally
demonstrated [10,11], and more recently, light induced po-
tentials have been used to create an artificial magnetic
field for neutral atoms [12]. Also, theoretical investiga-
tions found that the topological properties of the gaps in
the Hofstadter spectrum can be investigated within the
currently achievable experimental parameters [13]. Hence,
there is increased activity about the lattice studies of the
fractional quantum Hall states. In recent studies, exact
diagonalization has been carried out on systems of small
number of particles (2-8) on small lattices with periodic
boundary conditions (i.e. torus geometry) [6–8]. For small
values of flux per plaquette of the lattice, one can define
an effective lowest Landau level, as the width of the lowest
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Fig. 1. A cube containing a magnetic monopole at its cen-
ter. The total flux of the monopole gφ0 is shared by each face
φface = gφ0/6.

band of the Hofstadter butterfly is much smaller compared
to the gap separating it from higher states. However, near
half integer flux there is no well defined lowest Landau
level.

These studies naturally lead to the following question:
‘would it be possible to describe the quantum mechanics
of a particle moving in a closed tight binding lattice, such
that each site is equivalent and the flux through each pla-
quette of the lattice is the same?’ Equivalently, one can ask
‘what is the discrete version of Dirac’s magnetic monopole
problem?’. In this paper, we consider this problem, calcu-
late the energy levels for a particle on a regular polyhedron
lattice enclosing a magnetic monopole and classify the de-
generacies in the spectrum using group theory. While our
results have implications for the discrete Quantum Hall
problem outlined in the paragraph above, the system stud-
ied here can, in principle, be directly explored in an exper-
iment using an artificial magnetic field. While the search
for a monopole in the real magnetic field has so far not
yielded any results, an artificial magnetic created by light
coupling [12] does not have to obey Maxwell’s equations
and could be tailored to be a monopole field.

The paper is organized as follows: we introduce the
Hamiltonian for the tight binding lattice and discussed
how it is modified by the presence of the magnetic flux
through plaquettes. We then consider gauge transforma-
tions in such a discrete system and recover Dirac’s quan-
tization condition for magnetic monopoles in this setting.
We numerically determine the energy levels for each of the
five regular polyhedra, and discuss degeneracy and peri-
odicity properties of the system. Finally, we classify all
the degenerate manifolds in the spectrum in terms of the
irreducible representations of the double symmetry group
of the corresponding polyhedron. The results and their
bearing on the lattice quantum Hall problem are given at
the end.

Let us consider tight binding cube (Fig. 1), here we
assume that there is a localized state at each vertex. A
particle in one of these states can make a transition to an-

other state that is connected to the vertex by the edges of
the cube. Thus a tight binding Hamiltonian can be writ-
ten as

H = −t
∑

〈i,j〉
a†

iaj (1)

where t is the hopping strength, a†, a are the usual cre-
ation annihilation operators for the states at the corre-
sponding sites and the constrained sum 〈i, j〉 is evaluated
over pairs which are connected to each other by an edge
of the polyhedron.

Now let us consider the same system, however with a
magnetic monopole at the geometric center of the cube,
and assume that the total magnetic flux of the monopole
is φmonpole = gφ0. Here φ0 = h/e is the magnetic flux
quantum and the monopole strength g is not constrained
yet and can be taken as a real number (Fig. 1). Due the
the symmetry of the system, there will be an outward
magnetic flux from each face equal to φface = gφ0/6. The
Hamiltonian for the particle will be modified by the mag-
netic field. While this modification in the continuum is re-
alized by minimal coupling of the vector potential to the
momentum p → p−eA, in the discrete tight binding model
corresponding modification is achieved by giving phases to
hopping terms in the Hamiltonian. This method, known as
the ‘Peierls substitution’ can be justified within the tight
binding approximation [3,14–17], and as a result correctly
describes the phase gained by the particle upon traversing
an orbit that encloses certain amount of magnetic flux. In
our case the modified Hamiltonian can be written as

Hmag = −t
∑

〈i,j〉
ei2πAij a†

iaj . (2)

Here the hopping phases Aij = −Aji are chosen so that
their sum over a closed path gives the total magnetic flux
through the surface bounded by that closed path. In par-
ticular for each face

∑

face

Aij = φface/φ0. (3)

Here the sign of the flux is related to the direction of the
sum by the right hand rule. There is certain freedom in
the choice of the link variables Aij , the only requirement
being that they satisfy the above condition. This is the
reflection of the gauge freedom in the continuous problem
to the lattice problem.

Once a certain selection for the gauge, and hence Aij

are made and the Hamiltonian is written in the form equa-
tion (2), one can immediately notice that there is a diffi-
culty in the description of any system that is enclosing a
monopole. When the total flux leaving the surface of the
polyhedron is calculated

Φtotal =
∑

all faces

φface = φ0

∑

all faces

∑

face

Aij = 0, (4)

it is found to be zero as each link is traversed twice, once
in each direction. So it would seem that no choice of Aij

would be sufficient to describe the enclosed monopole.
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Fig. 2. A cube containing a Dirac string bringing in the mag-
netic flux through the bottom face. All the faces except the
bottom have flux φface = gφ0/6 while the bottom face has
φface = −5gφ0/6.

Once again making the correspondence to the continuum
problem, this realization is no different from the realiza-
tion that the field of a monopole can not be described by a
single valued non-singular vector potential on the sphere.
Not surprisingly, the resolution follows the same lines.

The sum of the hopping phases Aij around a face es-
sentially describes the total phase the particle accumulates
when it goes once around the face. This quantity, being
a phase, is defined up to 2π. In other words selection of
different Aij which will increase this phase by an integer
multiple of 2π would just correspond to a gauge transfor-
mation. Thus, one can imagine describing the monopole
through the following selection of Aij . First choose Aij

so that the flux through each face but one is equal to
φface . Now because the sum of the flux through all faces
is equal to zero, flux through the remaining face would
be, −(N − 1)φface where N is the number of faces of
the polyhedron. Now this flux would generate a phase
−(N−1)φface/φ0. If this phase can be related to the phase
on the other faces by adding an integer multiple of 2π, then
one can choose an alternative gauge which defines the flux
through this face to be φface .

Thus to be able to describe the magnetic monopole
consistently we require

−(N − 1)φface/φ0 = φface/φ0 − m2π, (5)

with m an integer. Thus we get

Nφface/φ0 = φmonopole/φ0 = g = m, (6)

consequently, g has to be an integer. Hence, we recover the
the Dirac quantization condition that the total magnetic
flux emitted by a magnetic monopole has to be an integer
multiple of the flux quantum.

The above argument can be repeated much more
clearly if one thinks about bringing the flux to the
monopole by using an infinite solenoid, i.e., a Dirac string
(Fig. 2). The description of such a string in the present
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Fig. 3. Energy levels of the tight binding tetrahedron as a
function of the flux through the Dirac String. The degenera-
cies at integer values of the flux, corresponding to monopoles
are labelled by irreducible representations of the double tetra-
hedral group Table 1.

discrete case is much simpler compared to continuum as
the string can be brought into the polyhedron without
crossing the path of the particle. One can calculate the
spectra for an arbitrary value of the flux gφ0 through the
Dirac string. However it is only at the integer values of g
the Dirac string actually describes a magnetic monopole,
as the string can be made to ‘disappear’ by a gauge trans-
formation.

We numerically calculated the energy spectrum for an
arbitrary value of g, for all five platonic solids (tetrahe-
dron, octahedron, cube, icosahedron and dodecahedron).
This calculation is carried out for values 0 ≤ g ≤ N where
N is the number of faces of the polyhedron, as the spec-
trum is periodic with the period N . Adding N units of flux
quantum to the Dirac string would correspond to increas-
ing the phase around each loop by 2π. Our results are
plotted in Figures 3–7, where one can observe that the
degeneracies in the spectra occur only at integer values
of g, exactly at the values that correspond to magnetic
monopoles. The reason for these degeneracies is clearly
the restoration of the symmetry of the polyhedron, when
the flux through each of its faces is equal. The rest of the
paper is focused on an investigation of these degeneracies.

Each of the platonic solids posses operations that
leave the polyhedron invariant. These symmetry opera-
tions form a group within themselves, and furthermore
they all commute with the Hamiltonian describing the
tight binding dynamics of the particle. Hence, the degen-
eracies of the spectra can be labelled by the irreducible
representations of the corresponding group. This labelling
can be obtained straightforwardly by explicitly construct-
ing the a few of the symmetry operations from different
classes of the symmetry group and comparing their char-
acters with the character table of the group.

For example, consider the eigenvalues found for the
tetrahedron at zero field. The characters for one C3
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Fig. 4. Energy levels of the tight binding cube as a function
of the flux through the Dirac String. The degeneracies at inte-
ger values of the flux, corresponding to monopoles are labelled
by irreducible representations of the double octahedral group
Table 2. The cube is the only bipartite polytope, hence the
energy spectrum has E → −E symmetry.
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Fig. 5. Energy levels of the tight binding octahedron as a
function of the flux through the Dirac String. The degeneracies
at integer values of the flux, corresponding to monopoles are
labelled by irreducible representations of the double octahedral
group Table 2.

rotation around any of the axis reveals that the the non-
degenerate ground state is related to the irreducible rep-
resentation Γ1, from Table 1. Similarly the three fold de-
generacy of the excited states form the basis for the Γ4

irreducible representation of the group.
In the presence of the magnetic monopole, however,

the situation is more complicated. While all the elements
of the group still commute with the Hamiltonian, the
multiplication of two elements in the group give the corre-
sponding element in the multiplication table of the group
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Fig. 6. Energy levels of the tight binding icosahedron as a
function of the flux through the Dirac String. The degenera-
cies at integer values of the flux, corresponding to monopoles
are labelled by irreducible representations of the double icosa-
hedral group Table 3.
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Fig. 7. Energy levels of the tight binding dodecahedron as a
function of the flux through the Dirac String. The degeneracies
at integer values of the flux, corresponding to monopoles are la-
belled by irreducible representations of the double icosahedral
group Table 3.

only up to a factor. The new symmetry operations which
commute with the Hamiltonian are not pure rotations,
but involve rotations plus a gauge transformation. These
operations are similar to the operations of the Magnetic
translation group [18,19], defined for a two dimensional
periodic potential in a perpendicular magnetic field. Es-
sentially, one can observe that the action of symmetry
operations any degenerate manifold of the Hamiltonian
define matrices which form a ray (or projective) represen-
tation of the symmetry group of the Hamiltonian.
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Table 1. The character table for the double tetrahedral group.
ω = exp i 2π

3
.

T ′ E R 6C2 4C3 4C′
3 4C3R 4C3R

′

Γ1 1 1 1 1 1 1 1

Γ2 1 1 1 ω ω ω2 ω2

Γ3 1 1 1 ω2 ω2 ω ω

Γ4 3 3 –1 0 0 0 0

Γ5 2 –2 0 1 –1 1 –1

Γ6 2 –2 0 ω –ω ω2 –ω2

Γ7 2 –2 0 ω2 –ω2 ω –ω

Table 2. The character table for the double octahedral group.

O′ E R 6C2 6C4 6C′
4 12C2R 8C3 8C′

3

Γ1 1 1 1 1 1 1 1 1

Γ2 1 1 1 –1 –1 –1 1 1

Γ3 2 2 2 0 0 0 –1 –1

Γ4 3 3 –1 1 1 –1 0 0

Γ5 3 3 –1 –1 –1 1 0 0

Γ6 2 –2 0
√

2 –
√

2 0 1 –1

Γ7 2 –2 0 –
√

2
√

2 0 1 –1

Γ8 4 –4 0 0 0 0 –1 1

Table 3. The character table for the double icosahedral group.
α = (1 +

√
5)/2, β = (1 −√

5)/2.

I ′ E R 12C5 12C′
5 12C5R 12C5R

′ 20C3 20C′
3 30C2

Γ1 1 1 1 1 1 1 1 1 1

Γ2 3 3 α α β β 0 0 –1

Γ3 3 3 β β α α 0 0 –1

Γ4 4 4 –1 –1 –1 –1 1 1 0

Γ5 5 5 0 0 0 0 –1 –1 1

Γ6 2 –2 α −α −β β 1 –1 0

Γ7 2 –2 β −β −α α 1 –1 0

Γ8 4 –4 1 –1 –1 1 –1 1 0

Γ9 6 –6 –1 1 1 –1 0 0 0

In other words, if we have two elements of the symme-
try group p1 and p2, which upon group multiplication give
p3, in the zero magnetic field case we get a representation
in terms of the matrices:

D(p1)D(p2) = D(p3). (7)

However with the magnetic monopole present, this mul-
tiplication is modified by a phase, i.e., the corresponding
representation under the magnetic field satisfies

D′(p1)D′(p2) = u(p1, p2, p3)D′(p3), (8)

where u is a complex number, which is one of the h
roots of unity, with h the order of the group. The pro-
jective representations of point groups have been studied
by Janssen [20] and also by Boyle and Green [21]. However
in the present case it turns out that enumeration and de-
tailed study of the projective representations is not neces-
sary. All the group elements in the tetrahedral, octahedral
and icosahedral group are rotations, and they form a sub-

Table 4. The ground state irreducible representations and cor-
responding degeneracies of the five regular polyhedra.

Polyhedron faces 4 6 8 12 20

φ = 0 Γ1(1) Γ1(1) Γ1(1) Γ1(1) Γ1(1)

φ = 1 Γ6(2) Γ6(2) Γ6(2) Γ6(2) Γ6(2)

φ = 2 Γ4(3) Γ4(3) Γ4(3) Γ2(3) Γ2(3)

φ = 3 Γ8(4) Γ8(4) Γ8(4) Γ8(4)

φ = 4 Γ3(2) Γ5(5) Γ5(5)

φ = 5 Γ9(6) Γ9(6)

φ = 6 Γ3(3) Γ4(4)

φ = 7 Γ7(2)

φ = 8 Γ4(4)

φ = 9 Γ9(6)

φ = 10 Γ3(3)

group of the continuous group O(3). One can use the dou-
ble isomorphism between O(3), and SU(2), to extend the
finite subgroups to double groups by introducing a group
operation R, which corresponds to rotation by 2π [22].
Once the character tables for the double groups are con-
structed, energy spectrum for the polyhedra containing
magnetic monopoles can be entirely labelled in terms of
the irreducible representation of the double groups. As in
the continuum case, if the total magnetic flux from the
monopole is even, the energy eigenstates will be labelled
only in terms of the original irreducible representations,
while for odd magnetic flux the labelling will be in terms
of the irreducible representations that appear as a result
of the doubling of the group.

For the tetrahedron, we give the character table of the
double tetrahedral group in Table 1, for the cube and the
octahedron the relevant table is that of the double oc-
tahedral group Table 2. Finally, the degeneracies of the
icosahedron and the dodecahedron are labelled using the
character table of the double icosahedral group Table 3.
We did not consider the groups to include inversions, as
the inclusion of inversions are not needed to resolve any
further degeneracies.

For all the Platonic solids, we list the ground state de-
generacy and the corresponding irreducible representation
is given in Table 4. One must notice that the ground state
degeneracy for monopole strength g is not always equal to
g + 1 as in continuum. For example the octahedron con-
taining a 4 flux quanta has a twofold degenerate ground
state as opposed to the expected value 5. The evolution of
the states for continuous g, as plotted in the figures, sug-
gest that in all such cases on can view the degeneracy of
the ground state to be lifted through the reduction of the
symmetry group from the full spherical symmetry. Thus
the splitting is in a sense similar to the splitting of the
Landau levels by the application of a periodic potential,
forming the well known Hofstadter spectrum.

In conclusion, we have presented the Dirac quanti-
zation condition in a discrete setting and argued how
monopoles can be introduced to a tight binding lattice cal-
culation. Using this general framework we have calculated
the energy levels of the lattices formed by the vertices
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of five platonic solids, and then classified all the degen-
eracies with respect to the double symmetry group of the
solid. This classification, given in Figures 3–7, and Table 4
forms the main result of this paper. The irreducible rep-
resentations of the ground state manifold will be useful
for numerical calculations of many body states on these
lattices as it can cut down dimension of the many-body
Hilbert space dramatically. As the current studies of frac-
tional quantum Hall states are limited to a very small (2–
8) particles, the limited number of states on the regular
polyhedra here do not pose a significant constraint. Pro-
jection of single particle wavefunctions into a particular
irreducible representation can be used to look for lattice
quantum Hall states with larger number of particles.
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