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Many machine learning algorithms require the features to be categorical. Hence, they require all

numeric-valued data to be discretized into intervals. In this paper, we present a new dis-

cretization method based on the receiver operating characteristics (ROC) Curve (AUC) mea-
sure. Maximum area under ROC curve-based discretization (MAD) is a global, static and

supervised discretization method. MAD uses the sorted order of the continuous values of a

feature and discretizes the feature in such a way that the AUC based on that feature is to be
maximized. The proposed method is compared with alternative discretization methods such as

ChiMerge, Entropy-Minimum Description Length Principle (MDLP), Fixed Frequency Dis-

cretization (FFD), and Proportional Discretization (PD). FFD and PD have been recently

proposed and are designed for Naïve Bayes learning. ChiMerge is a merging discretization
method as the MAD method. Evaluations are performed in terms of M-Measure, an AUC-based

metric for multi-class classi¯cation, and accuracy values obtained from Naïve Bayes and Ag-

gregating One-Dependence Estimators (AODE) algorithms by using real-world datasets. Em-

pirical results show that MAD is a strong candidate to be a good alternative to other
discretization methods.

Keywords : Data mining; discretization; area under ROC curve.

1. Introduction

Many machine learning algorithms require all features to be categorical. In order to

apply such algorithms to a dataset containing continuous features, the dataset needs

to be preprocessed so that such continuous features are converted into categorical

ones. This conversion is done by discretizing the range of the continuous feature into

intervals, and mapping these intervals to unique categorical values. The discretiza-

tion methods aim to ¯nd the proper cut-points that separate the intervals.
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Discretization can also be viewed as mechanism for generalization. Humans

usually use discretization to name range of continuous values. For example, rather

than referring to particular values for age, one can use terms such as child, adoles-

cent, adult, middle aged, and so on.

Discretization methods have received great attention from researchers and dif-

ferent kinds of discretization methods based on di®erent metrics have been pro-

posed.33 Recently, Wong36 proposed a new hybrid discretization method and Yang

and Webb37 proposed two new discretization methods for the Naïve Bayes classi¯er.
There are important reasons for this attention such as the inability of many machine-

learning algorithms to work with continuous values. For example, Aggregating One-

Dependence Estimators (AODE) is one of the algorithms used in this research that

cannot process continuous features.35 In addition, it has been shown by Dougherty

et al.7 that discretization methods improve the predictive performance and running

time of the machine learning algorithms.

Liu et al.21 categorized discretization algorithms on four axes. These dimensions

include supervised versus unsupervised, splitting versus merging, global versus local

and dynamic versus static. Simple methods such as equal-width or equal-frequency

binning algorithms do not use class labels of instances during the discretization

process.16 These methods are called unsupervised discretization methods. In order to

improve the quality of the discretization, methods that use the class labels are

proposed and they are referred to as supervised discretization methods. Splitting

methods try to divide a continuous space into a set of small intervals by ¯nding

proper cut-points, whereas merging methods handle each distinct point on the

continuous space as an individual candidate for a cut-point and merge similar

neighbors to form larger intervals. Some discretization methods process localized

parts of the instance space during discretization. As an example, the C4.5 algorithm

handles numerical features by using a discretization (binarization) method that is

applied to subsets of the instance space.29,30 These methods are called local methods.

Methods that use the whole instance space of the attribute to be discretized are called

global methods. Dynamic discretization methods use the whole attribute space

during discretization and perform better on data with interrelations between attri-

butes. Conversely, static discretization methods discretize attributes one by one and

assume that there are no interrelations between attributes.

Splitting discretization methods usually aim to optimize measures such as

entropy,4,5,9,28,31,32 which aims to obtain pure intervals, dependency15 or accuracy6 of

values placed into the bins. On the other hand, the merging algorithms proposed so

far use the �2 statistic.17,20,34 To the best of our knowledge, the receiver operating

characteristics (ROC) curve has never been applied in the discretization domain.

In this paper, we propose a discretization method called maximum area under

ROC curve-based discretization (MAD). According to the dimensions de¯ned above,

MAD is a supervised, merging, global and static discretization method. The next

section provides a brief introduction to the receiver operating characteristics, ROC
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space and area under ROC curve as measure of performance. Section 3 presents the

MAD method, in detail. Section 4 compares the MAD method with four other dis-

cretization algorithms on real-world datasets. The last section concludes with some

future directions for improvement.

2. Receiver Operating Characteristics

The ¯rst application of ROC was in the analysis of radar signals during World War

II.18 Since then, it has been used in di®erent areas such as signal detection theory and

medicine.11,22,39 It was applied to machine learning by Spackman31 for the ¯rst time.

According to Fawcett,8 the ROC graph is a tool that can be used to visualize,

organize and select classi¯ers based on their performance. It became a popular per-

formance measure in the machine learning community after it has been realized that

accuracy is often a poor metric to evaluate classi¯er performance.19,25,27

The ROC literature mostly deals with binary classi¯cation (two classes) problems.

In binary classi¯cation, each instance I has one of the two di®erent class labels, as p

(positive) or n (negative). At the end of the classi¯cation process, some classi¯ers

simply map each instance to a class label (discrete output). There are also classi¯ers

that are able to estimate the probability of an instance belonging to a speci¯c

class (continuous valued output, also called score or con¯dence). Classi¯ers produce a

discrete output represented by only one point in theROC space since only one confusion

matrix is produced from their classi¯cation output. However, continuous-output-

producing classi¯ers can have more than one confusion matrix by applying some

thresholds to predict class membership. Using such a classi¯er, all instances with a

score which is greater than the threshold are predicted as p class and all others are

predicted as n class. Therefore, for each threshold value one confusion matrix is

obtained, and each confusion matrix corresponds to a ROC point in an ROC graph.

2.1. ROC space

An ROC space is a two-dimensional space that has a range between [0.0, 1.0] on both

axes. In an ROC space, the y-axis represents the true positive rate (TPR) of a classi-

¯cation output and the x-axis represents the false positive rate (FPR) of an output.

In order to calculate TPR and FPR values, de¯nitions of the elements in the

confusion matrix should be given. The structure of a confusion matrix is shown in

Fig. 1. The number of true positives (TP) and false positives (FP) are the most

important elements of the confusion matrix in ROC graphs. TP is the number of

correctly classi¯ed positive instances and FP is the number of negative instances

which are classi¯ed as positive, falsely. The TPR and FPR values are calculated by

using Eq. (1). In this equation N is the number of total negative instances and P is

the number of total positive instances.

TPR ¼ TP

P
; FPR ¼ FP

N
: ð1Þ

A Discretization Method based on Maximizing the Area under ROC Curve
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2.2. Obtaining the ROC curve

As mentioned above, the classi¯ers producing continuous output can form a curve in

the ROC graph as they are represented by more than one point in the graph. In order

to calculate the ROC graph, di®erent threshold values are selected and di®erent

confusion matrices are formed. By varying the threshold between �1 and þ1 an

in¯nite number of ROC points can be produced for a given classi¯cation output.

Although this operation is computationally costly, it is possible to form the ROC

curve more e±ciently with other approaches. As proposed by Fawcett,8 in order to

calculate ROC curve more e±ciently, classi¯cation scores are ¯rst sorted in in-

creasing order. Starting from �1, each distinct score element is taken as a threshold,

and TPR and FPR values are calculated using Eq. (1).

As an example, take the score values for test instances and actual class labels for a

toy dataset given in Table 1. The ROC curve for this toy dataset is shown in Fig. 2.

In this ¯gure, each ROC point is given with the threshold value used to calculate it.

The same ROC curve is obtained for threshold values when they are selected from

the intervals shown in the ¯gure, next to each ROC point. Starting from �1, nine

di®erent thresholds are used; the total number of threshold values is equal to S þ 1

where S is the number of distinct classi¯er scores in the dataset. With this simple

method, it is possible to obtain the ROC curve in linear time.

2.3. Area under ROC curve (AUC)

ROC graphs are useful for visualizing the performance of a classi¯er but a scalar

value is preferred to compare classi¯ers. In the literature, the area under the ROC

curve (AUC) is proposed as a performance measure by Bradley.3 According to the

AUC measure, a classi¯er with higher AUC value performs better classi¯cation in

general.

The ROC graph space is a one-unit square. The highest possible AUC value is 1.0

which represents the perfect classi¯cation. In ROC graphs a 0.5 AUC value means

Actual Class

p

p

n

n

P N

Predicted Class:

TP FP 

FN TN 

Column Totals:

Fig. 1. Structure of a confusion matrix.

Table 1. Toy dataset given with hypothetical scores.

Class Label n n n p p n p p p

Score �7 �3 0 0 4 7 8 10 11

M. Kurtcephe & H. A. G€uvenir
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random guessing has occurred. The values below 0.5 are not realistic as they can be

negated by changing the decision criteria of the classi¯er.

TheAUCvalue of a classi¯er is equal to the probability that the classi¯er will rank a

randomly chosen positive instance higher than a randomly chosen negative instance.

Hanley andMcNeil14 show that this is the same method employed byWilcoxon test of

ranks. This property of the AUC can be used to design a discretization algorithm. The

details of such an algorithm will be given in the next section.

3. MAD Method

In this section, the details of the MAD method are discussed. First, the de¯nition of

concepts such as cut-points, ROC space and stopping criteria are presented. Next,

the behavior of MAD in two-class datasets and multi-class datasets are examined in

separate sections.

3.1. De¯nition of cut-points

Given an attribute A which has n instances with known values, let k be the number

of distinct continuous values in the instance space of A. There are k� 1 candidate

cut-points that can be used in discretization process. First, the instances are sorted

(in this work in increasing order) according to their values for the attribute A. Then,

each of the candidate cut-points is calculated by using Eq. (2).

Ci ¼ ðAi þAiþ1Þ=2; ð2Þ

0

 0.2

 0.4

 0.6

 0.8

1

0  0.2  0.4  0.6  0.8 1

T
ru

e 
P

os
iti

ve
 R

at
e

False Positive Rate

(-∞,-7)[-7,-3)[-3,0)

[0,4)

[4,7)[7,8)

[8,10)

[10,11)

[11,+∞)

ROC Curve of Table 1

Fig. 2. ROC graph of the given toy dataset in Table 1.

A Discretization Method based on Maximizing the Area under ROC Curve

1350002-5

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

13
.2

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

IL
K

E
N

T
 U

N
IV

E
R

SI
T

Y
 o

n 
04

/1
0/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



where i is in [1 � � � k� 1] and Ai and Aiþ1 are distinct and consecutive values in the

sorted instance space.

3.2. De¯nition of ROC space for discretization

The numerical attribute values are taken as hypothetical classi¯er scores that are

needed to obtain the ROC curve. In this matter, the cut-points calculated by Eq. (2)

are used as the threshold values. According to Eq. (1), when the threshold value is

�1, the TPR and FPR values are equal to 1 and corresponds to the coordinate (1,1)

in the ROC space. The method will continue incrementally drawing the ROC curve

by using each candidate cut-point as a threshold value. Finally, thresholdþ1 will be

processed and the ROC point corresponding to the coordinate (0,0) will be obtained.

The total number of ROC points for discretization is k� 1 plus two for the trivial end

points.

3.3. Discretization measure

As mentioned above di®erent measures such as entropy, accuracy, dependency and

the �2 statistic have been used in discretization methods. On the other hand, Provost

et al. showed that AUC is a better performance metric for the comparison of the

induction algorithms.27 Therefore, in this work, the AUC of the ROC curve, obtained

from these TPR and FPR values, is used as the measure to be optimized.

The motivation behind this approach is that an ROC curve results in a high AUC

value when the p-labeled instances have higher score values then the n-labeled

instances. Using this heuristic, the minimum number of ROC points that maximize

the AUC value will be selected. That is, the minimum number of cut-points that rank

positive-labeled instances higher than the negative-labeled instances will be selected.

When the given attribute space has an ordering between negative and positive

instances, a higher AUC value is obtained and according to the discretization

measure of this method, a better discretization is achieved.

3.4. Stopping criteria

The MAD method is a merging discretization approach that continues to merge

candidate cut-points to form larger intervals until the maximum AUC is obtained.

The maximum AUC is de¯ned by the convex hull formed by the ROC points in the

given ROC space. The convex hull is a polygon with a minimum number of cut-

points that encloses all other points in the ROC space. Theorem 1 shows that the

maximum AUC can be obtained by ¯nding the convex hull. The ROC convex hull is

de¯ned by Provost and Fawcett26 to form classi¯ers that lead to maximum AUC

values. In this work, a similar approach is used to select cut-points that maximize the

AUC value.

Theorem 1. If all the points forming the ROC curve are on a convex hull, the AUC

is the maximum.

M. Kurtcephe & H. A. G€uvenir
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Proof. (By contradiction) Assume that an ROC curve for a given space has a

larger AUC. This curve should contain a point outside the convex hull to make area

even larger. Since the convex hull encloses all points in the space, this is a

contradiction.

3.5. Algorithm

The MAD method ¯nds the proper cut-points for the given instance space to max-

imize the AUC value. Since the maximum AUC value is obtained by the convex hull,

these cut-points must lie on the convex hull. MAD method employs slightly di®erent

logic to ¯nd this convex hull for two-class and multi-class datasets. Two-class be-

havior is covered in Sec. 3.5.1 and Multi-class in Sec. 3.5.2. Before delving into

details, we would like to point out the di®erence between two-class and multi-class

discretization. As will be revisited in Sec. 3.5.1, there exists symmetry in every ROC

curve for two-class datasets. If the labels of all instances are interchanged, that is,

label n's are replaced by p's, and p's are replaced by n's, the ROC curve obtained in

new setting is symmetric to the original on the y ¼ x line. That is, it is possible to ¯nd

the discretization results by calculating one ROC curve that is independent of class

label assignment. However, this symmetry does not exist for multi-class datasets. In

that case, more than one ROC curves will be obtained. Therefore, two-class datasets

and multi-class datasets require di®erent treatments.

The overview of the algorithm is given in Fig. 3. In a nutshell, the MAD method

starts by sorting the training instances. Then, ROC points are calculated by using

every cut-point as a threshold. Finally, the cut-points forming the corner points of

the convex hull are selected as ¯nal result.

3.5.1. Discretization in two-class datasets

For two-class datasets, calculating candidate cut-points represented by ROC points

and the method that ¯nds the convex hull are di®erent than for the multi-class

datasets in the MAD method. MAD method for two-class datasets is given in Fig. 4.

Some important points deserve further elaboration. For example, in order to

calculate ROC points for a given attribute, the total number of instances predicted as

p and n classes have to be counted. There are two possible ways to predict the labels

of the instances: (a) label high scored instances as p and low scored instances as n,

1: MAD(trainInstances) 
2:   begin 
3:  sort(trainInstances); 
4:  rocPoints= calculateROCPoints(trainInstance); 
5:  cutPoints= findConvexHull(rocPoints); 
6:  return cutPoints; 
7:   end 

Fig. 3. Outline of the MAD algorithm.

A Discretization Method based on Maximizing the Area under ROC Curve
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(b) label low scored instances as p and high scored instances as n. However, there are

domains where class label assignments do not follow such way. Therefore, it is proven

in Theorem 2 that assigning either of the current class labels with p does not a®ect

the discretization process. As a result, MAD method randomly picks one of current

1 : MAD2C (trainInstances) 
2 :   begin 
3 :      sort(trainInstances); 
4 :      rocPoints= calculateROCPoints(trainInstance); 
5 :      cutPoints= findConvexHull(rocPoints); 
6 :      return cutPoints; 
7 :   end 

8 : function calculateROCPoints(trainInstance) 
9 :   begin 
10:      rocPoints<- (+ ,0,0),(- ,1,1);//initialize ROC points set 
11:      for i=0 to N 
12:         if(trainInstances[i]==positiveClass) 
13:            totalPositive++; 
14:         else totalNegative++; 
15:      curPos=totalPositive; 
16:      curNeg=totalNegative; 
17:      for i=0 to N-1 
18:         if(trainInstances[i]==positiveClass) 
19:            curPos--; 
20:         else curNeg--; 
21:         if(trainInstances[i]==trainInstance[i+1]) 
22:            continue; 
23:         cutValue=(trainInstances[i] 
24:                 +trainInstances[i+1]/2); 
25:         TPR= curPos/totalPositive; 
26:         FPR= curNeg/totalNegative; 
27:         If(upperTriangle(TPR,FPR)==true) 
28:            rocPoints<- (cutValue,TPR,FPR); 
29:         else rocPoints<- (cutValue,FPR,TPR); 
30:      return rocPoints; 
31:   end 

32: function findConvexHull(rocPoints) 
33:   begin 
34:      pointsKept<-(+ ,0,0); 
35:      currentSlope=slopeBetween(rocPoints[1], 
36:                                rocPoints[0]); 
37:      for i=2 to N 
38:         nextSlope=slopeBetween(rocPoints[i], 
39:                                rocPoints[i-1]); 
40:         if(nextSlope<=currentSlope) 
41:            concavityFound=true; 
42:         else pointsKept<- rocPoints[i-1]; 
43:         currentSlope=nextSlope; 
44:      pointsKept<-(- ,1,1); 
45:      if(concavitiyFound)  
46:         return findConvexHull(pointsKept); 
47:      else return pointsKept; 
48:   end 

Fig. 4. MAD algorithm in two-class datasets.
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class labels as p. Then, an ROC point for each candidate cut-points is calculated

using Eq. (1).

Theorem 2. In two-class problems, there exist two ROC points for the given

candidate cut-point C and these points are symmetric about the y ¼ x line.

Proof. In order to calculate ROC curve, one of the classes should be labeled as p and

the other as n. Assume that an arbitrary class is labeled as p and the confusion

matrix in Fig. 5(a) is obtained. The ROC point created from this confusion matrix is

v and its coordinate is (x; y). The calculation of this coordinate is given in Eq. (3).

x ¼ FPR ¼ FP

N
; y ¼ TPR ¼ TP

P
: ð3Þ

When the actual class labels are interchanged, the confusion matrix in Fig. 5(b) is

formed. This new confusion matrix is equal to the original confusion matrix, where

column values are interchanged. The new ROC point created from this matrix is v 0

represented by the (x 0; y 0) point. This ROC point is calculated using Eq. (4) and the

coordinate of v 0 is equal to (y;x). Therefore, the points v and v 0 are symmetric about

the y ¼ x line.

x 0 ¼ FPR 0 ¼ TP=P ;

y 0 ¼ TPR 0 ¼ FP=N ;

x 0 ¼ y and y 0 ¼ x:

ð4Þ

Corollary 1. Since there exists a symmetry between the ROC points, the one on or

above the y ¼ x line is taken into consideration. The ROC points below the y ¼ x line

are not candidate points for maximizing AUC since the default AUC value is 0:5. The

upperTriangle function on 27th line of the algorithm given in Fig. 4 assures this

property by checking on which side of the y ¼ x lies the given ROC point.

The next step of the discretization is selecting the ROC points that form the

convex hull. There are di®erent methods for calculating the convex hull in the given

n-dimensional space. One of these methods, proposed by Preperata and Shamos,23 is

Actual Class
p n 

Predicted 
Class

TP  FP  

FN  TN  

Column Totals: P N 

p

n

(a)

Column Totals:

Actual Class

Predicted 
Class

FP  TP  

TN  FN  

p

p

PN

n

n

(b)

Fig. 5. (a) Confusion matrix for the case where one of the classes is labeled as p and other class as n. (b)

Confusion matrix for the case when class labels interchanged.
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called QuickHull. This method has O(nlogn) expected time complexity and O(n2) in

the worst case. In this work, a new method for calculating the convex hull for two-

class problems is proposed.

The ¯ndConvexHull function is given in the 32nd line of the algorithm in Fig. 4.

The main motivation for this function is the ordering of the ROC points. The ¯rst

point created on the graph always corresponds to (1,1) and the last point to (0,0).

The ROC points lying between these two trivial points have a monotonically non-

decreasing property. For example, assume that v1 is the point created just before v2.

Point v1 always stands on the north, east or north-east side of v2 assuming y-axis

points north and x-axis points east. These points create a shape (possibly including

concavities) when connected to each other with hypothetical lines during the ROC

curve creation process. The ¯ndConvexHull method compares the slopes between

every two consecutive ROC points in the order of the creation of the hypothetical

lines and ¯nds the junction points that cause concavities and eliminates them. As a

result, due to the correspondence between ROC points and cut-points, ¯ndCon-

vexHull eliminates the cut-points that are not on the convex hull, as well.

The ¯ndConvexHull method guarantees ¯nding the convex hull in the best case

O(nÞ time and in the worst case O(n2). In the worst case, the method should leave at

least one point out to call itself again, which leads to O(n2) complexity. In the best

case, the method ¯nds the convex hull in a linear time if the points already form a

convex hull. The average case depends on the distribution of the points, which is

random. However, we will investigate the average behavior in the empirical evalu-

ation section.

With the MAD method, it is possible to visualize the discretization process. A toy

dataset given in Table 2 will be used as an example to explain how the MAD method

discretizes a feature in a visual way. The toy dataset contains 20 instances.

Each steps of the convex hull in the given ROC space process is visualized in

Figs. 6 through 8. In Fig. 6, the ROC points generated for both classes assignment

are shown. The y ¼ x line is drawn to show the symmetry between curves, which is

proven in Theorem 2. According to Corollary 1, only the points on or above the y ¼ x

line will be processed in the next step.

In the next step of MAD, points that cause concavity will be eliminated. Figure 7

shows the points left after the ¯rst pass of the method that ¯nds the convex hull.

Since the algorithm checks the concavity on a local base, it is possible to have a

concave shape even after the ¯rst pass. The algorithm will continue recursively with

the points left in each step until it converges to the convex hull.

Table 2. Toy dataset for visualization of MAD in two-class problems. A is the name of the attribute to

be discretized.

Class Value n p n p n n n p n p n p n n p p p n p p

F1 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19
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In this example, the algorithm converges to the ¯nal convex hull after the second

pass. The points left on the graph are the cut points to be used in the discretization.

Figure 8 shows the ¯nal cut points left on the graph.

MAD method guarantees that any cut point left on the ¯nal graph does not divide

a sequence of instances that belong to the same class. This can be proven for two class

problems and can be extended to multi-class problems as well.
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Fig. 6. Visualization of ROC point in two-class discretization.
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Fig. 7. First pass of the convex hull algorithm.
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Theorem 3. Cut points found by MAD method in two class problem do not lie

between two consecutive instances of the same class.

Proof. (by contradiction) Assume that there exists such a cut-point Ci at the ¯nal

ROC curve that divides a sequence of instances of the same class. Let Ci�1 and Ciþ1

are the cut points before and after Ci, respectively. The total number of instances

labeled as p is P and the total number labeled as n is N . The number of instances

labeled as p and are higher than Ci�1 is p
0. The number of instances labeled as n and

are higher than Ci�1 is n 0. The number of instances between Ci�1 and Ci will be

represented by m and the number of instances between Ci and Ciþ1 will be

represented by l. If Ci divides an interval where all instances are labeled as p, the

TPR and FPR values of Ci�1, Ci and Ciþ1 are given in Eq. (5). Since all these cut-

points have the same TPR value, they lie on the same slope and the Ci point will be

eliminated at the 40th line of the algorithm given in Fig. 4, which requires the slope

between Ci and Ciþ1 to be strictly greater than the slope between Ci�1 and Ci.

TPRi�1 ¼ p 0=P ; TPRi ¼ p 0=P ; TPRiþ1 ¼ p 0=P ;

FPRi�1 ¼ n 0=N ; FPRi ¼ n 0 �m=N ; FPRiþ1 ¼ n 0 � l=N :
ð5Þ

The other case is that Ci divides an interval where all instances are labeled as n.

The TPR and FPR values of Ci�1, Ci and Ciþ1 are given in Eq. (6). In this case, all

points have the same FPR value and these points lie on the same slope, as well.

The algorithm shown in Fig. 4 will eliminate Ci. As a result in both cases the cut-

point Ci is eliminated and it is a contradiction to have such a point in the ¯nal
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Fig. 8. Final cut points left after the second pass of convex hull algorithm.
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ROC curve.

TPRi�1 ¼ p 0=P ; TPRi ¼ p 0 � k=P ; TPRiþ1 ¼ p 0 � l=P ;

FPRi�1 ¼ n 0=N ; FPRi ¼ n 0=N ; FPRiþ1 ¼ n 0=N :
ð6Þ

3.5.2. Multi-class behavior

In multi-class problems, the main problem is deciding how to choose the positive and

the negative classes. Further, no symmetry exists between ROC curves of each class,

as there is two-class problems. Therefore, in the multi-class MAD method for K

number of classes, K di®erent ROC curves are calculated.

The method used for two-class datasets can be extended to multi-class problems

by relabeling one class as p and all others as n and obtaining the ROC curve. This

technique is used by Provost and Domingos24 in order to form ROC curves for multi-

class datasets. For each class this relabeling operation is performed and the convex

hull of the ROC curve is computed. All the points calculated in K di®erent convex

hulls are gathered in the same space and the ¯nal convex hull is found by using the

QuickHull method. Outline of the multi-class MAD method is given in Fig. 9.

Multi-class MAD uses the same function to calculate ROC points (calculate-

ROCPoints given in the algorithm in Fig. 4) and convex hull (¯ndConvexHull given

in the algorithm in Fig. 4) as is used in the two-class datasets. Therefore, Theorem 3

applies to the multi-class MADmethod; that is, it is guaranteed that a cut-point does

not lie between two consecutive instances of the same class. On the 6th line of the

algorithm, QuickHull method is used. As mentioned in Sec. 3.5.1, ¯ndConvexHull

assumes there exists a monotonically nondecreasing property among the ROC

points. However, when K di®erent ROC curves are gathered in the same space, this

property is lost. Therefore, QuickHull, which is a more generic method, is used in

multi-class problems.

An example visualization of the discretization process for multi-class datasets is

given in Fig. 10. In this ¯gure, an attribute belonging to a three-class dataset is being

discretized. Each class label is represented by a convex hull and the points lying on

the border of the shaded area are the ¯nal cut-points that will be used in the

discretization process.

1 : MADMC (trainInstances) 
2 :   Begin 
3 :      sort(trainInstances); 
4 :      for each class 
5 :         mark current class as p others as n 
4 :         rocPoints=calculateROCPoints(trainInstance); 
5 :         totalrocPoints+=findConvexHull(rocPoints); 
6 :      cutPoints= QuickHull(totalrocPoints); 
7 :      return cutPoints; 
8 :   end 

Fig. 9. Multi-class MAD algorithm.
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By relabeling a class as p and marking others as n, the discretization method

becomes sensitive to class distributions. If one of the classes in the dataset has a

perfect ordering, only the points formed by that particular class will be selected by

the QuickHull method and some valuable information can be lost. This drawback can

be resolved by creating pairwise class ROC curves, which is similar to the method

used in the M-Measure.13 KðK � 1Þ di®erent ROC curves must then be created,

which will increase the computation time since the number of convex hulls to be

calculated increases. Even with this disadvantage, the MAD method works well for

multi-class datasets selected from the University of California Irvine (UCI) machine

learning repository.2

4. Empirical Evaluation

In this section, the MAD discretization method is compared with the well-known

Entropy-MDLPmethod proposed byFayyad and Irani,9 two othermethods (FFDand

PD) proposed recently by Yang and Webb37 and ChiMerge proposed by Kerber.17

As a splitting method, Entropy-MDLP uses the entropy measure to select the

proper cut-point to split an interval. An application of minimum description length

principle called information gain is used as the stopping criteria. In a nutshell, this

method selects the proper cut-points tominimize the entropy for the given interval and

continues to discretize recursively until the information gain is below a threshold.

The unsupervised FFD and PD methods are designed to obtain high classi¯cation

accuracy (lower classi¯cation error) by managing discretization bias and variance.

The FFD method discretizes attributes into equal-sized intervals where each bin

contains approximately 30 instances. The PD method also discretizes attributes into
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Fig. 10. Final cut points left after the second pass of convex hull algorithm.
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equal sized intervals but the number of instances in each interval is not ¯xed for each

dataset. In PD, the desired interval frequency and number of intervals are calculated

by using Eq. (7). Yang and Webb suggest that setting the interval frequency and

number of intervals as the same value (
ffiffiffi

n
p

) leads to lower bias and variance,37 where

n is the number of known instances. In this work, interval frequency and number of

intervals are set to
ffiffiffi

n
p

for the experiments.

s � t ¼ n; ð7Þ

where s is the interval frequency, t is the number of intervals and n is the number of

known instances.

ChiMerge is one of the merging algorithms which uses �2 statistic in order to

determine the similarities or di®erences between adjacent intervals. In this method,

initially, all distinct values are considered as an interval similar to the MAD method.

Then, the values of �2 statistic for all adjacent intervals are calculated by using the

class frequencies. In each step, the adjacent intervals which have the lowest �2 value

are merged until all adjacent intervals satisfy �2-threshold values which are selected

from �2 table according to degree of freedom.17

The discretization results obtained by the MAD, ChiMerge, Entropy-MDLP,

FFD, and PD methods in real-world datasets will be shown. All datasets used in

the experiments are taken from the UCI machine learning repository and have at

least one continuous variable. During the selection of datasets, only classi¯cation

datasets are included in the experiments. Selected datasets cover both two-class and

multi-class classi¯cation problems. Table 3 shows the properties of these datasets.

In a recent study, Garcia et al. suggested accuracy, number of intervals and

Table 3. Dataset used in the experiments.

Name # Instances # Continuous Attributes # Nominal Attributes # Class Labels

Anneal 798 32 6 6

Bupa 345 6 0 2
Crx 653 9 6 2

Dermatology 366 33 1 7

German 1000 7 13 2

Glass 214 10 0 10
Heart (Statlog) 270 6 7 2

Ozone-onehr 2536 73 0 2

Ionoshpere 351 34 0 2

Mammography 961 1 4 2
Page-Blocks 5473 10 0 5

Pima-Indians 768 7 1 2

Sick-euthyroid 3163 7 18 2

SPECTF 267 44 0 2
Spambase 4601 58 0 2

Transfusion 748 5 0 2

Wisconsin 569 30 0 2
Yeast 1484 8 0 10

A Discretization Method based on Maximizing the Area under ROC Curve
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inconsistency as measures of performance in comparing discretization algorithms.10

On this basis, the performance of the algorithms is evaluated in four di®erent

aspects: predictive performance, running time, inconsistency of intervals, and

number of intervals found.

4.1. Predictive performance

As their ROC curve representation is more meaningful, the classi¯ers that associate

the predicted class with a con¯dence value are preferred in this work. Two di®erent

classi¯ers, supporting this property, are selected. The ¯rst one is the Naïve Bayes

classi¯er, which is one of the simplest and most e®ective classi¯ers. It is shown

that using discretization with the Naïve Bayes algorithm increases predictive

accuracy.7 The other selected algorithm is AODE, which can process only

categorical features.

The implementations of Naïve Bayes and AODE classi¯cation and Entropy-

MDLP discretization methods are taken from the source code of the WEKA software

package.12 The Naïve Bayes algorithm is applied with default parameters which uses

single normal distribution rather than kernel estimation. The FFD method is

implemented by using WEKA's unsupervised discretization method by passing the

number of intervals as a parameter. In implementing the PD, the number of known

values for each attribute is calculated in order to ¯nd the number of intervals as

shown in Eq. (7), and the number of intervals is passed as a parameter. ChiMerge

implementation for WEKA is obtained from Zimek.38 In empirical evaluations, the

signi¯cance level is kept as the default value, 0.95.

In this section, six di®erent cases will be considered for the Naïve Bayes algorithm:

The Naïve Bayes algorithm with MAD, ChiMerge, Entropy-MDLP, FFD, PD dis-

cretization methods, and with continuous values (without discretization). Also ¯ve

di®erent cases will be considered for AODE algorithm such as AODE with MAD,

ChiMerge, Entropy-MDLP, FFD, and PD discretization methods.

Two di®erent measures have been used to evaluate predictive performance. The

¯rst measure is called M-Measure that is suitable for both calculating two-class AUC

and multi-class AUC values. M-Measure is insensitive to class distributions and error

costs. In addition to M-Measure metric, the predictive performance of MAD against

other discretization methods is also measured by using accuracy metric. Strati¯ed

10-fold cross validation is employed to calculate the M-Measure and accuracy values

for each dataset. In each experiment, the standard deviation values are given since

10-fold cross validation is employed.

In order to measure the statistical signi¯cance of the di®erences between the MAD

method and the other discretization methods, the Wilcoxon signed rank test is used.

This statistic test is preferred since it is nonparametric and the distribution of the

results could be non-normal. In each experiment, p-values related to the statistical

tests is provided. P -values lower than 0.05 indicates that on average MAD method

outperforms the corresponding method.
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The predictive performance evaluation results of Naïve Bayes obtained by using

M-Measure is given in Table 4. Here it is clear that, on average, the MAD method

outperforms all other discretization methods in terms of the M-Measure. Wilcoxon

signed rank test method shows that in 95% con¯dence interval, only MAD method

improves Naïve Bayes algorithm performance signi¯cantly compared to the perfor-

mance obtained by using other discretization methods. The predictive performance

of MAD method is signi¯cantly higher than all other discretization methods except

Entropy-MDLP method according to M-Measure. However, MAD still outperforms

Entropy-MDLP on average.

The predictive performance of Naïve Bayes in terms of accuracy metric is given

in Table 5. The MAD method again outperforms all other methods on the average.

This di®erence in the predictive performance is statistically signi¯cant for all dis-

cretization methods except ChiMerge method. According to the Wilcoxon signed

rank test in 95% con¯dence, it is possible to say that all of the discretization

methods used in this paper improve the performance of Naïve Bayes algorithm

signi¯cantly.

The predictive performance of AODE algorithm in terms of M-Measure is given in

Table 6. The AODE method is an extension to Naïve Bayes method in order to

improve predictive performance, so it is natural to expect high performance from

FFD and PD methods since they are Naïve Bayes optimal. But according to the

Table 4. Predictive performance of Naïve Bayes in terms of M-Measure under di®erent discretization
methods. Standard deviations (SD) are given in parentheses (Higher M-Measure values and lower SD

values are better). P -values lower than 0.05 indicate signi¯cant di®erence wrt MAD.

Entropy Without

Name MAD ChiMerge MDLP FFD PD Discretization

Anneal 0.980 (0.024) 0.984 (0.031) 0.983 (0.018) 0.990 (0.012) 0.989 (0.014) 0.983 (0.007)

Bupa 0.756 (0.065) 0.654 (0.070) 0.530 (0.035) 0.686 (0.069) 0.683 (0.072) 0.633 (0.107)

Crx 0.925 (0.031) 0.920 (0.021) 0.929 (0.033) 0.930 (0.030) 0.931 (0.029) 0.900 (0.046)
Dermatology 1.000 (0.001) 1.000 (0.001) 1.000 (0.001) 0.999 (0.001) 0.999 (0.002) 0.998 (0.004)

German 0.794 (0.054) 0.737 (0.073) 0.773 (0.050) 0.790 (0.057) 0.790 (0.057) 0.784 (0.051)

Glass 0.929 (0.018) 0.839 (0.033) 0.929 (0.027) 0.922 (0.023) 0.908 (0.029) 0.880 (0.027)

Heart (Statlog) 0.905 (0.076) 0.874 (0.061) 0.900 (0.071) 0.906 (0.070) 0.906 (0.071) 0.900 (0.066)
Ionosphere 0.947 (0.046) 0.950 (0.030) 0.950 (0.035) 0.944 (0.039) 0.950 (0.034) 0.937 (0.056)

Mammography 0.903 (0.026) 0.898 (0.025) 0.902 (0.027) 0.902 (0.026) 0.901 (0.026) 0.897 (0.030)

Ozone-onehr 0.861 (0.069) 0.826 (0.088) 0.858 (0.070) 0.832 (0.082) 0.844 (0.074) 0.848 (0.067)
Page-Blocks 0.972 (0.010) 0.953 (0.017) 0.980 (0.010) 0.968 (0.012) 0.979 (0.010) 0.954 (0.016)

Pima-Indians 0.807 (0.064) 0.746 (0.065) 0.817 (0.049) 0.805 (0.054) 0.803 (0.039) 0.812 (0.066)

Sick-euthyroid 0.953 (0.019) 0.951 (0.012) 0.959 (0.013) 0.950 (0.011) 0.953 (0.015) 0.920 (0.037)

Spambase 0.965 (0.007) 0.968 (0.006) 0.965 (0.006) 0.950 (0.010) 0.957 (0.009) 0.940 (0.009)
SPECTF 0.867 (0.056) 0.834 (0.076) 0.823 (0.072) 0.846 (0.069) 0.844 (0.075) 0.850 (0.052)

Transfusion 0.723 (0.041) 0.665 (0.045) 0.701 (0.040) 0.693 (0.040) 0.688 (0.048) 0.713 (0.041)

Wisconsin 0.987 (0.013) 0.982 (0.016) 0.984 (0.014) 0.985 (0.014) 0.984 (0.014) 0.980 (0.020)

Yeast 0.842 (0.011) 0.781 (0.026) 0.835 (0.025) 0.818 (0.023) 0.819 (0.032) 0.879 (0.031)
Average 0.895 (0.035) 0.865 (0.039) 0.879 (0.033) 0.884 (0.036) 0.885 (0.036) 0.878 (0.041)

P -value 1.000 0.001 0.306 0.007 0.044 0.005

A Discretization Method based on Maximizing the Area under ROC Curve
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Table 5. Predictive performance of Naïve Bayes in terms of accuracy under di®erent discretization
methods SDs are given in parenthesis (Higher accuracy values and lower SD values are better). P -values

lower than 0.05 indicate signi¯cant di®erence wrt MAD.

Entropy Without

Name MAD ChiMerge MDLP FFD PD Discretization

Anneal 95.35 (2.12) 96.99 (1.51) 95.11 (1.64) 94.98 (3.18) 95.35 (2.93) 63.61 (4.68)

Bupa 70.13 (5.60) 62.03 (8.00) 57.70 (2.63) 63.18 (7.59) 63.22 (6.38) 53.96 (7.94)

Crx 85.91 (3.91) 84.38 (4.17) 86.53 (3.59) 85.61 (3.95) 86.22 (3.81) 77.97 (4.80)
Dermatology 97.55 (2.25) 97.82 (1.63) 98.09 (2.14) 98.09 (1.25) 97.82 (1.63) 97.81 (1.63)

German 75.90 (4.30) 71.00 (4.20) 73.50 (3.61) 75.20 (4.24) 75.20 (4.24) 75.00 (3.55)

Glass 72.36 (6.00) 62.12 (7.36) 71.02 (7.59) 67.27 (9.83) 68.68 (9.41) 48.55 (8.13)

Heart (Statlog) 82.59 (6.21) 80.00 (8.80) 82.59 (8.93) 82.59 (8.29) 82.96 (6.67) 83.70 (7.07)
Ionosphere 90.02 (5.76) 89.17 (5.09) 89.17 (5.40) 89.73 (3.68) 88.31 (4.34) 83.18 (5.04)

Mammography 83.35 (3.52) 82.83 (3.84) 82.10 (3.55) 83.25 (3.68) 83.24 (3.42) 82.10 (3.44)

Ozone-onehr 78.34 (1.18) 93.02 (1.32) 79.88 (1.72) 87.81 (1.65) 83.31 (1.55) 70.77 (2.96)
Page-Blocks 94.54 (0.78) 94.04 (0.82) 93.42 (0.85) 93.40 (0.86) 92.40 (1.16) 90.15 (3.10)

Pima-Indians 74.87 (6.49) 70.04 (5.51) 76.04 (4.42) 73.95 (6.30) 73.16 (4.94) 76.16 (5.30)

Sick-euthyroid 95.89 (0.93) 95.67 (1.12) 96.02 (0.97) 95.07 (1.20) 95.32 (1.11) 84.22 (1.97)

Spambase 89.96 (1.40) 90.15 (1.28) 89.81 (1.51) 87.83 (1.47) 89.13 (1.36) 79.72 (1.84)
SPECTF 76.81 (6.36) 78.66 (7.42) 72.66 (3.75) 74.16 (7.85) 76.79 (6.54) 68.58 (6.99)

Transfusion 77.94 (2.88) 73.65 (3.75) 75.27 (2.62) 76.47 (2.46) 75.27 (3.87) 75.67 (1.90)

Wisconsin 94.37 (2.34) 94.20 (2.61) 94.19 (2.38) 94.19 (2.63) 93.67 (3.09) 93.49 (4.26)

Yeast 58.32 (3.24) 51.44 (3.61) 56.71 (4.27) 52.79 (3.63) 53.74 (3.68) 57.99 (4.12)
Average 83.01 (3.63) 81.51 (4.00) 81.66 (3.42) 81.98 (4.10) 81.88 (3.90) 75.70 (4.37)

P-value 1.000 0.064 0.039 0.011 0.022 0.002

Table 6. Predictive performance of AODE in terms of M-Measure under di®erent discretization

methods SDs are given in parentheses (Higher M-Measure values and lower SD values are better).
P -values lower than 0.05 indicate signi¯cant di®erence.

Entropy

Name MAD ChiMerge MDLP FFD PD

Anneal 0.982 (0.025) 0.984 (0.031) 0.984 (0.022) 0.989 (0.014) 0.989 (0.016)

Bupa 0.761 (0.059) 0.651 (0.113) 0.530 (0.035) 0.661 (0.091) 0.658 (0.089)

Crx 0.929 (0.034) 0.932 (0.022) 0.932 (0.033) 0.932 (0.031) 0.929 (0.032)

Dermatology 1.000 (0.001) 1.000 (0.001) 1.000 (0.001) 1.000 (0.001) 0.999 (0.001)
German 0.795 (0.052) 0.761 (0.066) 0.783 (0.047) 0.789 (0.048) 0.789 (0.048)

Glass 0.926 (0.034) 0.872 (0.032) 0.934 (0.031) 0.934 (0.041) 0.931 (0.036)

Heart (Statlog) 0.915 (0.062) 0.881 (0.069) 0.905 (0.068) 0.908 (0.073) 0.896 (0.066)
Ionosphere 0.972 (0.026) 0.962 (0.028) 0.967 (0.026) 0.979 (0.011) 0.970 (0.016)

Mammography 0.902 (0.024) 0.892 (0.029) 0.905 (0.028) 0.900 (0.024) 0.901 (0.027)

Ozone-onehr 0.890 (0.049) 0.807 (0.059) 0.882 (0.063) 0.767 (0.064) 0.722 (0.079)

Page-Blocks 0.975 (0.014) 0.922 (0.018) 0.986 (0.014) 0.934 (0.018) 0.956 (0.016)
Pima-Indians 0.798 (0.057) 0.720 (0.064) 0.820 (0.050) 0.738 (0.060) 0.731 (0.045)

Sick-euthyroid 0.964 (0.012) 0.957 (0.015) 0.964 (0.010) 0.957 (0.011) 0.959 (0.014)

Spambase 0.977 (0.006) 0.971 (0.006) 0.980 (0.005) 0.945 (0.012) 0.959 (0.009)

SPECTF 0.871 (0.067) 0.823 (0.079) 0.821 (0.079) 0.827 (0.090) 0.787 (0.083)
Transfusion 0.703 (0.036) 0.641 (0.055) 0.727 (0.034) 0.663 (0.054) 0.656 (0.063)

Wisconsin 0.993 (0.008) 0.984 (0.015) 0.988 (0.014) 0.989 (0.011) 0.988 (0.015)

Yeast 0.834 (0.014) 0.773 (0.029) 0.833 (0.028) 0.812 (0.028) 0.817 (0.035)
Average 0.899 (0.032) 0.863 (0.041) 0.886 (0.033) 0.874 (0.038) 0.869 (0.038)

P -value 1.000 0.001 0.698 0.013 0.003
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Wilcoxon signed rank test in 95% con¯dence interval MAD method outperforms

both FFD and PD methods. Also the MAD method performs better than ChiMerge

algorithm signi¯cantly and Entropy-MDLP method on the average.

The predictive performance of AODE algorithm used on discretized datasets in

terms of accuracy metric is given in Table 7. According to this table, MAD method

outperforms all other discretization methods on the average. However, only the

di®erence between predictive performance of MAD and ChiMerge algorithm is sta-

tistically signi¯cant.

4.2. Running time

In machine learning research, performance on large datasets are essential and

therefore, the running time of the proposed method is critical. The worst- and the

best-case running time complexities of the MAD method are given in Sec. 3.5.1. In

this section, the empirical evaluation of runtime of the MAD algorithm will be given.

Since the actual running time of a method highly depends on its implementation, this

evaluation will be based on the measured running times of the MAD algorithm on

di®erent datasets, rather than a comparison with other algorithms.

As mentioned in Sec. 2.5, the main time consuming step of MAD (after sorting) is

¯nding the convex hull. In two class problems only one convex hull is calculated. On

the other hand, in multi-class problems the number of convex hulls calculated is

Table 7. Predictive performance of AODE in terms of accuracy under di®erent discretization
methods SDs are given in parentheses (Higher values and lower SD values are better). P -values

lower than 0.05 indicate signi¯cant di®erence.

Entropy

Name MAD ChiMerge MDLP FFD PD

Anneal 96.74 (1.00) 96.74 (1.51) 96.61 (1.49) 96.61 (2.46) 96.99 (1.97)

Bupa 71.85 (5.06) 60.92 (9.84) 57.70 (2.63) 63.19 (7.27) 62.39 (11.68)

Crx 86.68 (2.82) 85.76 (4.05) 86.68 (4.27) 87.45 (4.27) 86.68 (3.29)
Dermatology 97.55 (2.25) 97.82 (1.63) 98.08 (1.77) 98.09 (1.25) 97.55 (2.25)

German 75.40 (2.54) 73.00 (4.29) 74.90 (3.59) 75.60 (3.47) 75.60 (3.47)

Glass 76.60 (6.69) 65.84 (7.10) 72.88 (6.35) 77.01 (6.04) 77.06 (7.25)

Heart (Statlog) 82.22 (7.55) 80.37 (8.77) 82.96 (8.15) 82.96 (8.95) 82.22 (7.73)
Ionosphere 91.73 (5.64) 89.74 (3.89) 90.87 (5.25) 91.15 (4.14) 91.16 (4.34)

Mammography 82.62 (3.83) 82.62 (3.10) 82.72 (3.60) 82.62 (3.74) 82.51 (3.59)

Ozone-onehr 96.21 (1.22) 97.12 (0.18) 88.76 (1.73) 96.65 (0.75) 96.88 (0.48)
Page-Blocks 96.62 (0.54) 94.86 (0.44) 96.97 (0.51) 95.74 (0.42) 96.18 (0.53)

Pima-Indians 73.94 (6.27) 67.70 (4.34) 76.57 (4.08) 70.83 (4.54) 69.40 (4.54)

Sick-euthyroid 96.65 (0.91) 95.73 (1.22) 96.52 (0.93) 95.26 (0.86) 95.92 (1.00)

Spambase 93.35 (0.87) 91.22 (1.18) 93.31 (0.97) 88.02 (1.65) 90.15 (1.54)
SPECTF 79.42 (4.71) 78.66 (5.81) 73.77 (3.82) 79.37 (4.61) 76.81 (8.29)

Transfusion 76.34 (2.31) 78.08 (2.18) 75.27 (2.62) 77.41 (2.13) 77.55 (2.59)

Wisconsin 95.78 (1.79) 93.67 (2.54) 96.12 (2.08) 95.60 (2.26) 94.91 (2.53)

Yeast 57.38 (4.14) 49.69 (2.92) 56.77 (4.03) 53.67 (3.48) 54.41 (3.41)
Average 84.84 (3.34) 82.20 (3.61) 83.19 (3.22) 83.74 (3.46) 83.58 (3.92)

P -value 1.000 0.003 0.124 0.266 0.061
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equal to the number of class labels. Each of these convex hulls is calculated by the

method proposed in Sec. 2.5. Hence, the average running time of ¯nding the convex

hull method is the most prominent factor in the running time of the whole method.

The proposed convex hull calculation method is invoked recursively until it

converges to the convex hull. In order to give an insight into the running time of the

algorithm in practice, Table 8 shows the average number of recursive call for an

attribute to calculate convex hull. According to this table, it is possible to say that,

regardless of the number of instances, the convex hull can be found by recursively

calling the function at minimum one, maximum six and on average four times for the

given datasets.

The overall running times of all methods are measured using java virtual

machine's CPU time and a hundred di®erent runs are averaged in order to be

objective. As mentioned earlier, for multi-class datasets, the MAD method calculates

K di®erent ROC curves, where K is the number of classes. It also combines these

curves with the QuickHull algorithm whose complexity is no worse than O(nlogn) in

practical, where n is number of instances. On the other hand, since the convex hull is

found in a few iterations, MAD method works faster on two-class datasets. As it can

be seen in Table 8.

The running times of the MAD algorithm on the datasets listed in Table 3 are

measured using java virtual machine's CPU time and a hundred di®erent runs are

averaged in order to be objective. The results are shown in Table 8.

Table 8. Average number of recursive calls to calculate
convex hull for an attribute and the average running time

(in �s) for each datasets.

Name #Recursive Calls Running Time

Anneal 1 6630

Bupa 5 1528

Crx 5 2392

Dermatology 1 3165
German 3 2184

Glass 4 4524

Heart (Statlog) 2 732

Ionosphere 6 1092
Mammography 2 2589

Ozone-onehr 5 6358

Page-Blocks 6 67,033
Pima-Indians 5 1618

Sick-euthyroid 5 8134

Spambase 6 9075

SPECTF 4 648
Transfusion 4 2847

Wisconsin 6 1669

Yeast 3 28,002

Average 4 17,316

M. Kurtcephe & H. A. G€uvenir

1350002-20

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
20

13
.2

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 B

IL
K

E
N

T
 U

N
IV

E
R

SI
T

Y
 o

n 
04

/1
0/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



4.3. Inconsistency of intervals

First, the inconsistency of an interval has to be de¯ned. Given an interval that

consists of n instances, inconsistency of that interval is equal to value n� c where c is

the number of instances that belong to majority class on the given interval. For

example, given an interval with 10 instances, if 7 of these instances belong to the class

a and the others belong to the class b, the inconsistency of the given interval is

10� 7 ¼ 3.

A smaller amount of inconsistency indicates a better discretization in general. As

entropy is a measure that aims to obtain pure intervals, it is expected to achieve

lower inconsistency values with Entropy-MDLP discretization method. However,

Table 9 shows that on the average the MAD method forms intervals that are more

consistent than Entropy-MDLP. Furthermore, ChiMerge, FFD and PD methods

have lower inconsistencies but at the cost of producing a very high number of

intervals.

A discretization method which maps all numerical values into di®erent intervals

can produce pure intervals. Therefore, in next section the number of intervals pro-

duced by each discretization method will be investigated.

4.4. Number of intervals

The MAD method is not designed to minimize the number of intervals; its main aim

is to maximize the AUC. In contrast, the Entropy-MDLP method is known as

Table 9. Total inconsistencies for continuous attributes in given
datasets (Lower results are better).

Entropy

Name MAD ChiMerge MDLP FFD PD

Anneal 186 181 185 184 183

Bupa 138 111 143 135 129

Crx 216 161 221 218 215
Dermatology 214 213 216 214 213

German 296 263 299 296 296

Glass 107 65 114 113 106

Heart (Statlog) 89 81 93 89 88
Ionosphere 85 30 72 76 68

Mammography 271 267 271 270 270

Ozone-onehr 72 70 73 72 73

Page-Blocks 494 403 486 481 492
Pima-Indians 248 204 255 244 243

Sick-euthyroid 275 267 273 271 273

Spambase 1581 1508 1578 1544 1560
SPECTF 54 52 55 54 54

Transfusion 175 168 178 173 172

Wisconsin 122 30 127 125 123

Yeast 946 913 961 923 927

Average 309 277 311 305 305

A Discretization Method based on Maximizing the Area under ROC Curve
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producing less number of intervals. However, An and Cercone1 showed that Entropy-

MDLP method terminates too early on small datasets which results in less number of

intervals but higher inconsistencies.

The MAD method outperforms the ChiMerge method. ChiMerge method has a

known limitation to produce high number of intervals when the signi¯cance level is

set to very low values.17 However, in this work the signi¯cance level is used as 0.95

which is a proper value for discretization. As a result, ChiMerge method still

produced the highest number of intervals when compared to other methods. It is

possible to set the maximum number of intervals for this method. However, this

approach contradicts the purpose of using stopping criteria (�2-threshold).

The average number of intervals per attribute is given in Table 10. According to

these results, Entropy-MDLP outperforms MAD in this aspect. However, it is

necessary to mention an important point about the results in this table. In six

datasets, the Entropy-MDLP method discretizes all attributes into one interval, on

average. When an attribute is discretized into one interval, the discretization

method maps all elements to the same value such as (�1� � � þ1). This situation

occurs if the distribution of attribute values is not suitable according to the dis-

cretization methods measure. Thus, it is possible to say that Entropy-MDLP acts

like a feature selection algorithm. In turn, as shown in Sec. 3.1, there exists pre-

dictive accuracy gain in some of these datasets. Therefore, in some cases the

Entropy-MDLP method misses important information when it maps all instances to

the same interval.

Table 10. Average number of intervals per attribute. (Lower
results are better.)

Entropy
Name MAD ChiMerge MDLP FFD PD

Anneal 2 8 2 24 6

Bupa 7 47 1 11 17

Crx 10 114 1 20 24

Dermatology 3 6 1 11 5
German 5 65 1 31 15

Glass 8 72 2 7 14

Heart (Statlog) 5 22 1 9 8

Ionosphere 4 63 4 11 16
Mammography 6 16 2 29 10

Ozone-onehr 9 63 1 77 46

Page-Blocks 11 316 6 165 70
Pima-Indians 10 99 2 24 25

Sick-euthyroid 9 76 2 95 45

Spambase 8 132 2 139 63

SPECTF 7 23 1 9 15
Transfusion 9 36 1 23 25

Wisconsin 13 152 2 18 23

Yeast 11 47 2 45 27

Average 8 75 2 42 25
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On average, MAD outperforms the FFD and PD methods in terms of the number

of intervals. This was expected since FFD and PD methods are unsupervised and

always have a large number of intervals due to their design.

As seen in Sec. 4.3 and in this section, number of intervals and inconsistency of

intervals are related. When the number of intervals gets higher, the inconsistency of

intervals gets lower naturally. However, a proper discretization algorithm should

create consistent intervals without over¯tting the data, creating higher number of

intervals. On the other hand, creating very low number of intervals, as Entropy-

MDLP does, is a sign of data over-generalizing. It is expected that better

discretization algorithms have lower inconstancies without data over-generalizing.

MAD is the only method which can produce consistent intervals without overgen-

eralization or over¯tting.

5. Conclusion and Future Work

In this work, we proposed a novel approach called MAD, for discretization contin-

uous attributes. A new discretization measure and stopping criteria are de¯ned for

this method. The theoretical evidence for using ROC curves and AUC values in

discretization is given.

According to the empirical evaluations, the MAD method outperforms Entropy-

MDLP which is one of the most well-known discretization methods in terms of pre-

dictive performance. The MAD method also outperforms ChiMerge, FFD and PD

methods in terms of predictive performance. SinceFFDandPDdiscretizationmethods

are Naïve Bayes optimal, the signi¯cant gain in Naïve Bayes algorithm in terms of

M-Measure is important. Through real-world datasets, we also show that the MAD

method runs faster than other discretization methods for two-class datasets. In terms

of inconsistencies of intervals, theMADmethod outperforms Entropy-MDLPmethod

on average but it is outperformed by ChiMerge, FFD and PD methods. This was

expected, due to the inherent design of the FFD and PDmethods, which are intended

to produce large numbers of intervals that bring pure intervals naturally. ChiMerge

algorithm still results in high number of intervals even with proper parameterization.

The main bottleneck of the MAD method is the time complexity of the convex

hull computation for multi-class datasets. As a future work, a new method that will

¯nd the convex hull faster than the QuickHull algorithm will be sought. Such a faster

convex-hull algorithm will improve the time complexity of the MAD method.
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