
54

Hardware/Software Approaches for Reducing the Process Variation
Impact on Instruction Fetches

ISMAIL KADAYIF, MAHIR TURKCAN, and SEHER KIZILTEPE, Canakkale Onsekiz Mart
University, Turkey
OZCAN OZTURK, Bilkent University, Turkey

As technology moves towards finer process geometries, it is becoming extremely difficult to control critical
physical parameters such as channel length, gate oxide thickness, and dopant ion concentration. Variations
in these parameters lead to dramatic variations in access latencies in Static Random Access Memory (SRAM)
devices. This means that different lines of the same cache may have different access latencies. A simple solu-
tion to this problem is to adopt the worst-case latency paradigm. While this egalitarian cache management
is simple, it may introduce significant performance overhead during instruction fetches when both address
translation (instruction Translation Lookaside Buffer (TLB) access) and instruction cache access take place,
making this solution infeasible for future high-performance processors. In this study, we first propose some
hardware and software enhancements and then, based on those, investigate several techniques to mitigate
the effect of process variation on the instruction fetch pipeline stage in modern processors. For address
translation, we study an approach that performs the virtual-to-physical page translation once, then stores
it in a special register, reusing it as long as the execution remains on the same instruction page. To handle
varying access latencies across different instruction cache lines, we annotate the cache access latency of
instructions within themselves to give the circuitry a hint about how long to wait for the next instruction to
become available.

Categories and Subject Descriptors: C.1.3 [Processor Architectures]: Other Architecture Styles

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Process variation, instruction cache, address translation, encoding

ACM Reference Format:
Kadayif, I., Turkcan, M., Kiziltepe, S., and Ozturk, O. 2013. Hardware/software approaches for reducing the
process variation impact on instruction fetches. ACM Trans. Des. Autom. Electron. Syst. 18, 4, Article 54
(October 2013), 23 pages.
DOI: http://dx.doi.org/10.1145/2489778

1. INTRODUCTION

Over the last three decades, scaling of Complementary Metal Oxide Semiconductor
(CMOS) devices has improved the performance of computer systems dramatically. How-
ever, concurrent with finer-granular process technologies, it has becoming increasingly
difficult to keep transistor quality within desired bounds. This problem is especially
evident in sub-50nm and deeper regimes; as a result, process variation [Alam 2008]
is emerging as an important issue for future designs. Process variation can be defined
as the deviation from intended or designed target values of a circuit parameter of

Authors’ addresses: I. Kadayif, M. Turkcan, and S. Kiziltepe, Department of Computer Engineering,
Canakkale Onsekiz Mart University, Canakkale 17100, Turkey; email: kadayif@comu.edu.tr; O. Ozturk,
Department of Computer Engineering, Bilkent University, Bilkent, Ankara 06800, Turkey; email: ozturk@
cs.bilkent.edu.tr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1084-4309/2013/10-ART54 $15.00

DOI: http://dx.doi.org/10.1145/2489778

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

54:2 I. Kadayif et al.

Fig. 1. Six-transistor SRAM cell storing one bit.

concern, such as channel length or width, gate oxide thickness, and random placement
of dopants in a channel. It leads to significant variability in chip performance, power
consumption and stability [Borkar et al. 2003; Chang and Sapatnekar 2005; Fu et al.
2009]. Such variations may happen across identically designed neighboring devices (in-
tradie variation) [Agarwal et al. 2002] as well as across different identically designed
chips (interdie variation) [Nassif 2001].

As technology scales, intradie variations are particularly important because they
are increasing, and their primary source is the random placement of dopants [Tang
et al. 1997]. Caused by difficulties in deep submicron process technologies, the random
placement of dopants is independent of transistor spatial locality and can lead to
a threshold voltage mismatch among transistors in the same hardware component.
Since SRAM structures constitute a significant portion of a die area (for instance, for
Alpha 21264 and Strong ARM, 30% and 60% of the die areas, respectively, are devoted
to cache structures [Manne et al. 1998]) and are typically designed with minimum-
sized transistors for density reasons [Papanikolaou et al. 2005], they are quite prone to
random placements of dopants. As a result, different devices in the same cache line may
have different performance and reliability characteristics. Frequently accessing system
components in the instruction fetch stage and delayed access to the instruction cache
and the instruction TLB due to process variation can degrade the system performance
significantly. We believe that, in addition to circuit solutions [Chen and Naffziger 2003;
Gregg and Chen 2007; Tschanz et al. 2002], architecture and compiler-based solutions
to tackling the performance ramifications of process variation in the instruction fetch
stage are important [Papanikolaou et al. 2005].

Although threshold voltage mismatch can also cause read/write stability fail-
ures [Agarwal et al. 2005b; Chen et al. 2005], we confine our study to access time
failures (performance effects) of threshold voltage fluctuations of neighborhood tran-
sistors in SRAMs. A typical six-transistor cell used for SRAMs is depicted in Figure 1.
The cache access time strongly depends on the cell access time, which is defined as the
interval required to see a specific voltage difference (say, �MIN ≈ 0.1VCC) between
two bitlines. For a read operation, for example, both bitlines are first precharged, and
then the wordline is enabled (it is set to high). If the cell stores 0, as in the figure, the
bitline on the left side will discharge through transistors T5 and T2. Any variation in
the threshold voltages (Vt) of these transistors due to a process parameter variation
can extend the discharging interval, causing access time failure if the delay is larger
than the maximum tolerable limit. If a cache line accommodates a cell with access time

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

Hardware/SoftWare Approaches for Reducing the Process Variation 54:3

failure, accesses to this cache line must be delayed to give the failed cell some extra time
to achieve the required voltage difference on the corresponding bitlines; this in turn
results in delay violations in the cache structures. More specifically, for such SRAM
structures, cache/TLB access latency will not be uniform; that is, the different cache
lines/TLB entries may have different access latencies. A straightforward solution to this
problem for the instruction cache is to adopt the worst-case access latency paradigm in
the design; the same argument also goes for the TLB. This means all the cache lines are
assumed to have the latency of the slowest cache line. While this assumption makes
the design simple, it may introduce a significant performance penalty, considering the
fact that both the cache and the TLB are accessed very frequently. This performance
penalty is expected to increase in the move to the finer process technologies [Bowman
et al. 2002; Zuchowski et al. 2005].

In this study, we investigate various hardware and software solutions to the problem
of performance overheads on instruction fetches stemming from process variation in
modern processors. To handle delay violations during address translations, we place a
special register between the TLB and the CPU. This register, called the Current Frame
Register (CFR), holds the last virtual-to-physical address translation and prevents
access to the TLB if the translation demanded by the next instruction access is the one
captured by the register. Since instruction accesses are known to exhibit high levels of
locality, one can expect this register to supply the required address translations most
of the time. Consequently, even if we assume the worst-case access latency for those
accesses that miss the CFR and go to the TLB, the overall impact on performance will
not be very high because the number of those accesses would be very low.

On the other hand, to tackle the latency discrepancies over the different cache lines,
we make use of a compiler analysis to build the control flow graph (CFG) of the applica-
tion and annotate the cache access latency information of each succeeding instruction.
For this purpose, some unused bit positions of the instructions can be used to encode the
latencies. As soon as an instruction is fetched from the cache at the pipeline’s instruc-
tion fetch stage, these bits are decoded to obtain the cache access latency information,
which defines how long to wait to access the cache for the succeeding instruction. Note
that an alternate option could be to maintain a table storing the latencies. We could in-
dex the latency table using the predicted set address to obtain the cache access latency
so that the dependent instructions could be fetched accordingly. For two main reasons
we did not choose this alternate option: first, the table would introduce some area
and power ramifications; second, the table itself may be subjected to process-variation-
related effects.

We implemented a number of techniques based on the two basic concepts just men-
tioned within a simulation platform and performed experiments on codes in SPEC2000
and SPEC2006 suites. Our evaluation indicates that, when we work with a cache expe-
riencing access variations due to process parameter variations, the proposed techniques
achieve significant performance benefits over both the worst case latency assumption
and an alternate scheme that uses an oracle to determine the latency of a TLB en-
try/cache line to be accessed ahead of time. For example, for the case where 15% of
cache lines and TLB entries are assumed to be affected by process variation, the av-
erage performance loss under the worst-case latency paradigm assumption is around
25.6%. The performance loss for the same system is 6.1% if the hardware has prior
knowledge of whether the cache and TLB accesses would be in perfect/imperfect (pro-
cess variation affected/unaffected) entries and is thus able to adjust the timing of
pipeline stages accordingly. On the other hand, our hardware-managed CFR (HMCFR)
for address-translation- and code-relocation-based encoding (CRBE) for cache access
techniques can together reduce the performance loss in the instruction fetch stage to
2.1%.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

54:4 I. Kadayif et al.

Fig. 2. Normalized execution cycles for oracle and worst-case assumption cases. All values are normalized
with respect to the corresponding values for the ideal case, where it is assumed that the cache is not affected
by process variation. The results are for the case where 25% of the cache lines are affected by process
variation and while the access to a perfect cache line completes in a single cycle, the access to an imperfect
cache line completes in 2 cycles.

The rest of this article is structured as follows: in the next section, we try to ex-
plain why the worst-case access latency paradigm cannot be accepted under process
variation. In Section 3 we introduce our basic hardware and software enhancements,
which are necessary to implement our schemes. We introduce our schemes in Section 4.
The experimental setup is given in Section 5. We evaluate our schemes in Section 6.
Related work is summarized in Section 7. Finally, our concluding remarks are given in
Section 8.

2. EGALITARIAN CACHE MANAGEMENT UNDER PROCESS VARIATION

To quantify the performance overhead in execution time introduced by process varia-
tion, let us look at Figure 2. This figure indicates the performance degradation when
the cache is assumed to be affected by process variation. The results in the graph are
with respect to the performance values of the ideal case, where it is assumed that the
cache is immune to process variation. The first bar for each application in the figure
(Oracle) plots the performance value of a scheme with an oracle predictor, which can
foretell for each cache access whether the corresponding cache set is affected by process
variation. In these experiments, we assume that when we access a line in an imperfect
set, the access takes an extra cycle (completing in two cycles); otherwise, the access
completes in one cycle. By an “imperfect set” of the cache we mean the set including at
least one cache line with an access failure (delay violation) due to parameter variation.
An “imperfect entry” of the TLB stands for an entry whose access takes longer because
of process variation. The results are given for a cache where 25% of the lines are imper-
fect. Our performance results are based on the assumption that a specific percentage
of cache lines are affected by process variation and such lines are randomly distributed
over the cache as in Mutyam and Narayanan [2007]. The second bar plots the perfor-
mance value of the access mechanism based on the worst-case access latency paradigm
(Delayed); where each cache access takes two cycles. We see from this figure that the
average performance losses from the Oracle and Delayed schemes are approximately
8.1% and 30.2%, respectively. We also observe that in some cases, such as with gamess,
soplex, and tonto, the overhead resulting from the scheme based on the worst-case
assumption results in more performance degradation of more than 60% .

To see the performance effects of process variations on the cache with a larger access
delay, we have repeated the experiments whose results are given in Figure 3. In these

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

Hardware/SoftWare Approaches for Reducing the Process Variation 54:5

Fig. 3. Normalized execution cycles for a cache with multi cycle access latency. The results are for the case
where 25% of the cache lines are affected by process variation and while the access to a perfect cache line
completes in 3 cycles, the access to an imperfect cache line completes in either 4 or 5 cycles, depending on
the severity of variations.

experiments, we assume that while a perfect cache line access completes in 3 cycles,
an imperfect cache line access may take either 4 or 5 cycles, with an equal probability,
depending on the severity of variations. The average performance degradation from the
Oracle and Delayed schemes are around 6.0% and 15.9%, respectively. When Figures 2
and 3 are considered together, it can be concluded that the performance losses due to
process variation are less severe for caches with a larger access latency. Moreover, the
results of the Delayed scheme motivated us to investigate new techniques for reducing
performance loss due to process variation. The results of the Oracle scheme show that
our proposed techniques of alleviating performance loss introduced by process variation
are quite effective.

3. OUR PROPOSED HARDWARE AND SOFTWARE ENHANCEMENTS

In this section we introduce our basic hardware and software enhancements proposed
for tackling delay discrepancies due to process variation in the instruction fetch stage.
We will first look at TLB-oriented modifications and then cache-oriented modifications.

3.1. Generating Physical Addresses Directly

Fast address translation has been the subject of previous studies [Knight and Rosenfeld
1984; Maddock et al. 1981; Chiueh and Katz 1992; Strecker 1978]. To facilitate ad-
dress translation in modern microprocessors, a special structure called a Translation
Lookaside Buffer (TLB) is used. TLB is a cache that stores recent virtual-to-physical
translations of instruction pages.

On the other hand, a cache lookup requires indexing a set and a subsequent tag com-
parison across the lines within that set. Indexing and tag comparison can be performed
using either a virtual address or a physical address, leading to four possible configura-
tions. Since virtually indexed, physically tagged (VI-PT) caches are more common, in
this study we focus only on those. However, it is possible to extend our work to handle
other cache lookup schemes as well.

In a VI-PT cache lookup, the virtual address is used to index the cache, and the
TLB is concurrently looked up to obtain the physical address, which removes the TLB
from the critical path. Consequently, the tag from the physical address is used for
comparison with the tags of the blocks within the chosen set. In modern processors,
a cache access and a TLB access is expected to complete within the same cycle for a
nonpipelined cache, which is very important from the system’s performance viewpoint.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

54:6 I. Kadayif et al.

Fig. 4. L1 instruction cache lookup using the CFR under the VI-PT cache lookup mechanism.

However, imperfect TLB entries (entries that are affected by process variations during
the manufacturing process) may cause the TLB access to complete later than the cache
indexing, thereby delaying the tag comparison and in turn the data access in the
selected set of the cache.

To avoid regenerating the last page translation we use a Current Frame Register
(CFR) in our design. The CFR can be considered a special register and is assumed to
be unaffected by process parameter variation. This can be ensured by including a few
additional registers in the design and by selecting a fault-resilient one as the CFR. This
register keeps the current virtual-to-physical translation. As long as the control flow
remains within the current instruction page, the translation can be safely obtained
from the CFR rather than the TLB. Thus, we do not pay any performance penalty for
accessing the TLB with nonuniform access latencies. Our use of the CFR is similar to
the one introduced in Kadayif et al. [2002, 2007], where it was used to optimize the
TLB’s dynamic energy. In this article, we exploit the CFR register in the context of
mitigating the impact of process variations on TLB latency. The basic format of the
CFR is as follows:

[<Virtual Page Number> <Physical Frame Number> <Protection Bits>].

We assume that the physical frame number and the protection bits of the correspond-
ing TLB entry are kept in the CFR. The next instruction fetch with the CFR under the
VI-PT L1 lookup mechanism is shown in Figure 4. To start page translation early when
the translation does not exist in the CFR, for each translation the TLBs are looked up
with the virtual page number (VPN) of the PC (program counter). At the same time,
the VPNs of the CFR are compared to those of the PC. If they match, the TLB lookup
is canceled and the physical frame number (PFN) in the CFR creates the tag portion
of the physical address, which is used to compare the tags in the set that was indexed
in the cache. Otherwise, the translation coming from the TLB lookup creates the tag
portion of the physical address. Since the program execution flow leaves the current
page boundary very infrequently, one can expect that most of the time the translation
will be found in the CFR register, hence overcoming access time violations caused by
imperfect TLB entries.

3.2. Minimizing the Number of Imperfect Cache Sets and Encoding Cache Access Latencies

Our cache-oriented schemes rely on compiler to encode the latency information for
cache lines. Since at compilation time, in general, only the set (not the cache line)

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

Hardware/SoftWare Approaches for Reducing the Process Variation 54:7

in which an instruction will reside can be determined (in our study we consider set
associative instruction caches, not direct mapped caches), we consider the latencies at
the set granularity (assuming that each set has a single latency, which is defined as
the largest latency among all its lines). It is clear that the success of our cache-oriented
schemes largely depends on the number of cache sets affected by process variations.
Thus, it is very important to minimize the number of imperfect sets.

To minimize the number of imperfect cache sets, we introduce a technique called line
reshuffling, which is similar to block rearrangement techniques proposed by Mutyam
and Narayanan [2007]. They considered block rearrangement either between a pair
of two adjacent cache sets or among all cache sets. On the other hand, we perform
line reshuffling among a specific number of cache sets, which can be implemented by
a programmable address decoder [Shirvani and McCluskey 1999]. In this technique,
the control inputs of the pass transistors driving the word lines are programmed in
such a way that any set is allowed to include either only perfect cache lines or only
imperfect cache lines as much as possible. For simplification, we confine reshuffling to
way boundaries, that is, reshuffling is allowed only among the cache lines within the
same way. We use reshuffling degree, the term to refer to the number of address bits
involving in reshuffling. If r and s denote reshuffling degree and the number of sets,
reshuffling is done among 2r cache lines in consecutive sets belonging to the same way.
These lines constitute a reshuffling group and their sets can be expressed as follows,

2r j ≤ i < 2r(j + 1), where 0 ≤ j < s/2r.

For reshuffling we need to know which lines are perfect and which ones are imper-
fect. To do so, we can employ the March test [Chen et al. 2005], which was originally
proposed to test memory components’ functionality, and involves a sequence of oper-
ations performed on different locations in the memory. With this test, cache line i is
characterized either as perfect, fi = 0; or as imperfect, fi = 1.

While Figure 5(a) indicates a reshuffling with the reshuffling degree of 2, Figure 5(b)
shows the last two level decode logic in the address decoder necessary for reshuf-
fling. Here, the reshuffling is applied to four consecutive cache lines by considering
the two least significant set bits in address bits as well as the access latencies of
the cache lines in question. In reshuffling process, lines in a reshuffling group rear-
ranged in such a way that the perfect cache lines are moved toward the top of the
group while the imperfect cache lines are moved toward the bottom of the group.
For example, assume that the access latencies of four lines (l0, l1, l2, l3) in a reshuf-
fling group correspond to (f0, f1, f2, f3) = (1, 0, 1, 0). After reshuffling, l3, l0, and l1
map to l0, l1, and l3, respectively, as shown in Figure 5(a), which can be easily val-
idated by examining logic equations in Figure 5(b). This means that, for example,
the addresses originally mapping into line l3 will map into l0. In this way, the ad-
dresses whose the least two significant bits are 00 and 01 are mapped into perfect
lines l1 and l3 in the corresponding reshuffling group while the addresses whose the
least two significant bits are 10 and 11 are mapped into imperfect lines l2 and l0.
To limit the area overhead due to reshuffling, we have performed reshuffling among
8 lines in our study. Although we have not calculated the area overhead, with a
limited reshuffling degree such as 3 it is expected to be small as demonstrated in
Shirvani and McCluskey [1999].

In our hardware, we assume that there is a buffer between the cache and the CPU
that has the capacity of storing one cache block. As long as the requested instruc-
tions are available in this buffer, the demands are satisfied from there. Otherwise,
a cache access is made, and the whole cache block storing the instruction in ques-
tion is read out of the cache and is stored in this buffer for the next instruction
fetch. We further assume that there are some unused (empty) bit slots or reserved

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

54:8 I. Kadayif et al.

Fig. 5. Line reshuffling and decode logic for reshuffling degree r = 2. (a) Reshuffling among four lines based
on their access latencies. Cache line i is characterized either as perfect, fi = 0; or as imperfect, fi = 1.
(b) Last two level decode logic in the address decoder of cache necessary for implementing reshuffling. a0
and a1 indicate the two least significant set index bits.

opcodes in the instruction set architecture (ISA), which can be used for encoding the
latencies. Most CPUs are now 64-bit architectures, which provide a very large num-
ber of bits to encode instructions as well as a few unused bit slots or some reserved
opcodes (for future usage). We can exploit these slots to encode access latencies. To
encode access latencies, the compiler first builds a control flow graph (CFG) of the
application and then maps instructions into the sets of the cache, based on the in-
struction virtual addresses. This can be done under the assumption that the page-
offset bits of the virtual address constitute the cache-index bits, which is valid for
most processors with the VI-VP cache access mechanism. For n different access la-
tencies, we need to use logn unused bit slots or n reserved opcodes in the instruction
format.

4. SCHEMES UNDER CONSIDERATION

In this section, we first introduce some base schemes that do not exploit our proposed
hardware and software enhancements. These schemes will serve for comparison. Later,
we will introduce various schemes that take advantage of our hardware and software
enhancements and quantitatively compare their performances with those of the base
schemes.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

Hardware/SoftWare Approaches for Reducing the Process Variation 54:9

4.1. Base Schemes

—Perfect. This scheme represents the ideal case, where TLB and cache structures are
immune to process variation. That is, it is assumed that neither the TLB nor the
cache has an imperfect entry. Each TLB entry is assumed to take the same amount
of time to be accessed. The same is assumed for the cache. Thus, the TLB access and
cache access complete in the same cycle.

—Delayed. This captures the case where the TLB and cache experience process varia-
tions, that is, the TLB/cache has some imperfect entries, which require more time to
be accessed compared to the perfect entries. To resolve access latency discrepancies
across the different entries, this scheme assumes the worst-case access latency in
the design; that is, it assumes the access time of the slowest TLB entry/cache line for
all TLB entries/cache lines. Here, we consider that the TLB access and the cache ac-
cess complete within two cycles during the instruction fetch stage. The experimental
results of this scheme are important because they can help justify the necessity of
our hardware and software mechanisms to diminish the effect of process variations
on performance.

—Oracle. This scheme is hypothetical rather than practical, with an oracle predictor
that can foretell whether each virtual-to-physical translation resides in an perfect
entry or not. We also have prior knowledge as to whether the cache block to be
accessed resides in a perfect set or not. According the characteristics of the TLB and
cache entries accessed, the hardware is assumed to be able to adjust the timing of the
pipeline stages. If the translation is in a perfect TLB entry and the cache line belongs
to a perfect set, the TLB and the cache accesses are performed in the same cycle;
otherwise, they take one more cycle (for a total of two cycles) to complete. In other
words, delay violations either in the TLB or in the cache slow the instruction fetch
stage by one cycle. The results for this scheme can help us justify the effectiveness
of our proposed schemes on alleviating the performance degradation introduced by
process variation.

4.2. TLB-Oriented Schemes

4.2.1. Hardware-Managed CFR (HMCFR). In this scheme, the CFR register is managed
by the hardware. One CFR register is available in the hardware, and it maintains
the last instruction page’s translation. As long as the execution flow of the program
remains within the same page, the translation is obtained from the CFR. Otherwise
(i.e., if the execution leaves the current page), we incur a TLB access, and due to
the disparities between their latencies (as a result of process variation), the address
translation and instruction cache access are assumed not to complete in the same cycle
(as in the Delayed scheme). When the execution leaves the current page boundary, we
also need to update the CFR with a translation obtained from the TLB. Note that the
performance overhead of this update can be hidden from the critical path by updating
the CFR as soon as the PC is updated (before the subsequent instruction fetch cycle).
To start the page translation early (in cases when the translation does not exist in
the CFR), for each translation a TLB access is started up concurrently with the CFR
access. If the translation is found in the CFR, the TLB access is canceled immediately.

4.2.2. Software-Managed CFR (SMCFR). As mentioned before, when the execution leaves
the current page boundary, an TLB lookup is triggered for the target page. This trigger-
ing is initiated when the virtual page number stored in the CFR and the one captured
by the PC are not the same. At the same time, we record the translation obtained
from the TLB lookup in the CFR for future use. In the HMCFR scheme, because of the
performance concern, for each address translation a TLB lookup is started because we
do not know in advance whether the translation exists in the CFR. On the other hand,

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

54:10 I. Kadayif et al.

the SMCFR scheme determines where the address translation is to be obtained from
(either the CFR or the TLB). To accomplish this, the compiler first extracts the control
flow information from the code and builds the corresponding control flow graph. Later,
the compiler examines the CFG and when it is certain that the next instruction to be
fetched is within the current instruction page boundary, it assures the hardware that
the address translation exists in the CFR. Otherwise, the compiler can insert a special
instruction in the code to trigger a TLB lookup for the required page translation. The
disadvantage of this approach is an increase in code size due to the special instruction
insertions. To overcome these extra instruction insertions, the compiler can tell the
hardware whether or not a TLB lookup is needed by exploiting an unused bit slot
in the ISA. We can also use such an unused bit slot to tell the hardware whether a
TLB access is needed for the address translation of the next instruction. For example,
encoding a 0 (1) can signal the hardware to obtain the address translation for the
succeeding instruction from the CFR (or from the TLB). It needs to be noted that there
are two ways a program execution can move from one instruction page to another: first,
through explicit branch instructions, whose target may be on a different page, and
second, because of two successive instructions that happen to fall on page boundaries;
that is, one is the last instruction on a page, and the next is the first instruction on the
next page. In both cases, the compiler can encode a 1 into the preceding instruction’s
corresponding bit position to trigger the required translation from the TLB. Otherwise,
a 0 is encoded to tell the hardware to obtain the translation from the CFR. To obtain the
address translation from the CFR whenever possible, the compiler should analyze
the static branches, whose target addresses can be decided at compilation time, and if
the target address stays within the current page boundary, the compiler should make
sure that the translation goes through the CFR. SMCFR needs a hardware interlock
to always do address translation through TLB on first instruction of interrupt or
exception handler and first instruction after mispredicted branch.

This compiler technique has two advantageous properties. First, unlike the CFR
scheme, a TLB access is not necessary when it is determined that a translation exists
in the CFR. This aspect reduces the number of TLB accesses, which in turn leads to
dynamic energy savings. Second, as long as the translation is obtained from the CFR,
this compiler scheme can be tailored to save TLB leakage energy by changing the power
state of the TLB to a state preserving to a low-power mode.

4.3. Cache-Oriented Schemes

Our cache-oriented techniques rely on compiler to encode the latency information for
cache lines. As suggested in Mutyam and Narayanan [2007], a latency table can be used
to store the latency information of cache sets. In our case a single bit for each cache set
is used to mark it either perfect or imperfect. This table can be initialized through the
March test before the operational phase of a microprocessor whose instruction cache
is subjected to process parameter variations. The compiler can use this table to obtain
the latency information of cache sets prior to compilation.

We explain each of our cache-oriented schemes with the sample CFG given in
Figure 6. For simplicity, in the figure, we assume that each cache block can store four
instructions. For example, instructions I1, I2, I3, and I4 in basic block B1 constitute
a cache block, which maps into a cache line in set s1. Up to now, we have implicitly
assumed that each instruction encodes the succeeding instruction’s access latency.
However, since in our design we assume that the whole cache block is read out of the
cache and stored in the buffer (see earlier), we only need to encode access latencies
in two different types of instructions: first, in the last instruction of a cache block
to encode the succeeding set’s access latency (for instance, instructions I4 and I12);
and second, in the instructions modifying the program’s execution flow, whose target

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

Hardware/SoftWare Approaches for Reducing the Process Variation 54:11

Fig. 6. Sample CFG.

instruction is beyond the cache block boundary (for instance, instructions I7 and I14).
As mentioned earlier, it is possible to encode n different access latencies by using logn
empty bit slots; for simplicity, in our schemes we encode two different access latencies
using one bit. In the figure, we assume that the light-shaded instructions encode
the access latency of the cache lines that map into a perfect cache set, whereas the
dark-shaded instructions encode the access latency of the cache lines that map into an
imperfect cache set. Our cache oriented schemes need a hardware interlock to always
allow two cycles for the first instruction cache access of interrupt or exception handler.

Note that we can also apply our mechanisms to library codes. If libraries are statically
linked, the compiler can go through the library code to annotate the cache access latency
of the next instruction as in an application code. If libraries are dynamically linked, in
this case dynamic recompilation can be applied.

4.3.1. Conservative Encoding (CE). In this scheme, the compiler does not carry out any
analysis, and the target of a branch instruction is conservatively assumed to fall into
an imperfect cache set; this assumption is made in Figure 6. Based on this scheme,
branch instructions I7, I14, and I19 are encoded with the access latency of the imperfect
sets, as shown in the figure (that is, they are dark shaded).

4.3.2. Less-Conservative Encoding (LCE). In this scheme, the compiler analyzes the tar-
get of each branch instruction. If the fall-through and the target instructions fall into
perfect sets, the branch instruction in question is encoded with the access latency of
the perfect sets. Otherwise, the access latency of the imperfect set is encoded into the
branch. Although the LCE scheme is better than the CE scheme, it is still conser-
vative because the compiler may not locate the target instruction of some branches
in the binaries (for instance, a branch instruction whose target is taken from a reg-
ister). Fortunately, the number of these branch instructions (which we call statically
unanalyzable branch instructions) is not high, compared to the statically analyzable
instructions. If both s2 and s4 are perfect sets in Figure 6, the LCE scheme will encode

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

54:12 I. Kadayif et al.

Table I. Configuration Parameters and Their Values Used in Our Experiments

Processor Core
Functional Units 8 Integer ALUs, 4 Integer mult./divide, 8 FP add,

4 FP multiply, 4 FP divide/sqrt
RUU size 256 instructions
LSQ size 64 instructions
Fetch/Decode/Issue/Commit width 4 instructions/cycle
Fetch queue size 8 instructions

Cache and Memory Hierarchy
L1 instruction cache 64KB, 4-way (LRU), 64 byte blocks, 1-cycle latency
L1 data cache 64KB, 4-way (LRU), 32 byte blocks, 1-cycle latency
L2 cache 8MB unified, 8-way (LRU),

128 byte blocks, 12-cycle latency
Data/Instruction TLB 128 entries, full-associative, 30-cycle miss penalty
Memory 160-cycle latency
Page size 8K

Branch Prediction
Branch predictor Combined, Bimodal 4K table, 2-level 2K table,

8-bit history, 4K chooser
Branch target buffer (BTB) 4K-entry, 4-way
Return-address stack 32

instruction I7 with the access latency of perfect sets. However, if either of these two
sets is imperfect, instruction I7 is encoded with the access latency of imperfect sets.

4.3.3. Code-Relocation-Based Encoding (CRBE). In this scheme, in addition to trying to
locate the target of statically analyzable branch instructions (as in the LCE scheme),
the compiler also tries to relocate the code so that both the fall-through and the target
instructions of the branch fall into the same kind of cache sets; that is, if one falls
into a perfect/imperfect set, the compiler makes an attempt to map the other into a
perfect/imperfect set. We also aim to map frequently executed instructions to perfect
sets so that they can be fetched as quickly as possible. We have especially focused
on instructions in loop bodies with high iteration counts. We first build a control flow
graph (CFG) and then apply profiling to identify the edge frequencies in the CFG. Since
the compiler knows the access latencies of the sets, when it is necessary it relocates
the frequently executed code such that it is mapped into the nearest cache set ahead.
To do so, the compiler inserts an unconditional branch instruction in the binary whose
target is the address of the first instruction in the relocated code. The address holes
from the inserted branch instruction to the first instruction of the relocated code are
filled with nop instructions in the binary. The preference in the code relocation process
is given to the most frequently executed code blocks and it continues until the code size
increase in binary reaches at a predefined threshold, which is 2% in our experiments.

5. EXPERIMENTAL SETUP

We implemented all our schemes by modifying SimpleScalar 3.0 [SimpleScalar 2012],
a tool set that simulates application programs on a range of processors and systems
using a fast execution-driven simulation, and outputs execution statistics, such as
the dynamic number of accesses to components in the memory hierarchy as well as
execution cycles. In this study, the sim-outorder component of SimpleScalar has been
modified to simulate the integration of the schemes discussed in the previous section
into an Alpha-like platform. All compiler analyses and code relocations were done based
on pre-compiled binaries. Unless otherwise stated, the simulation parameters used in
our experiments are listed in Table I. We used some codes from the SPEC2000 suite
(mgrid, applu, galgel, art, lucas, apsi, gzip, vpr, crafty, parser, eon, and twolf) as well as

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

Hardware/SoftWare Approaches for Reducing the Process Variation 54:13

Table II. Benchmarks Used in Our Experiments and Their Important Characteristics

Number of Number of Number of
Benchmark TLB (Cache) Execution CFR
Name Accesses Cycles Updates

bwaves 347110044 347982163 10918 (<0.01%)
mgrid 258785124 260407090 199747 (0.08%)
applu 260821970 261959435 868449 (0.33%)
gamess 120163487 160312282 11213959 (9.33%)
galgel 186777092 191221037 22288 (0.01%)
art 556587751 630700741 2607318 (0.47%)
soplex 109969817 130813719 8949246 (8.14%)
lucas 236223857 278925939 3945015 (1.67%)
tonto 109322546 180113099 7724247 (7.07%)
wrf 122194786 195349559 6544230 (5.36%)
apsi 189621174 210554664 1989830 (1.05%)
gzip 167916846 272520611 4140030 (2.47%)
vpr 308024576 435778113 14786342 (4.80%)
gcc 204429261 205505024 278397 (0.14%)
mcf 616617384 643506260 21447366 (3.48%)
crafty 153696081 256467119 12093625 (7.87%)
parser 237277415 371959380 18294287 (7.71%)
eon 140157315 257521967 11674993 (8.33%)
sjeng 186549445 367955497 18846428 (10.10%)
astar 143319970 212187011 12359927 (8.62%)
bzip2 168465412 231748913 5821013 (3.46%)
twolf 404191737 569302265 11311309 (2.80%)

some codes from the SPEC2006 suite (bwaves, gamess, soplex, tonto, wrf, gcc, mcf, sjeng,
astar, and bzip2) [SPEC 2012] in our experiments. Since the simulation takes a long
time to run the benchmarks we considered to completion, we used SimPoint [Hamerly
et al. 2005; Perelman et al. 2003] to generate simulation points. For each benchmark,
we fast forwarded a specific number of instructions, as suggested by Sherwood et
al. [Sherwood et al. 2001], and then simulated the next 500 million instructions on
predetermined simulation points. Table II gives the dynamic number of TLB/cache
accesses and the execution cycles of these benchmarks when the Perfect scheme is
used, under the configuration parameters listed in Table I. The values under the last
column show how many times the execution control leaves the current page boundary
(that is, the number of CFR updates).

6. EXPERIMENTAL RESULTS

In our experiments we assume that the percentage of TLB entries/cache lines affected
by process variations varies from 15% to 25% to 40%. This range is reasonable since
the circuit-level simulations show that with 32nm technology, bit-level flip rates
are around 0.4% [Liang et al. 2007], which leads to a 64% probability of cache-line
failure for 32-byte lines. We have determined 5 different instruction cache setups, each
one having randomly distributed variation-affected lines. The performance simulations
for each benchmark were run 5 times, each one with a different cache setup. Each
performance result was calculated by taking the average of the performance results
from these 5 setups.

6.1. Evaluation of TLB-Oriented Schemes

In this section we assume that only the TLB is affected by process variation; that
is, the cache is immune to process variation. The execution cycle results for such a

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

54:14 I. Kadayif et al.

Fig. 7. Normalized execution cycles for the Delayed, Oracle, and HMCFR schemes. Only TLB is assumed to
be affected by process variation, and the ratio of the affected TLB entries is 25%.

system with the Delayed, Oracle, and HMCFR schemes are plotted in Figure 7. These
performance values are normalized with respect to the cycle values of the Perfect
scheme, which are presented in Table II. In these experiments, 25% of the TLB entries
are considered to carry process variation effects.

As can be clearly seen from the figure, delaying the TLB access conservatively (based
on the worst-case access latency assumption) affects the program performance signif-
icantly, especially in benchmarks such as gamess, soplex, and tonto. For instance, the
TLB access delay due to process variation increases the execution cycles for soplex and
tonto as much as 95.1% and 77.2%, respectively. The significant performance degrada-
tion experienced by these three benchmarks can be attributed to their high IPC values,
which causes the TLB accesses to fall into the critical path most of the time, thereby ex-
tending execution time significantly. We observe that, on average, the Delayed scheme
results in 33.2% performance degradation over the Perfect scheme (the ideal scheme).
The average performance degradation with the Oracle scheme is 7.7%. Note that in
these experiments we assume the TLB entries affected by process variation are ran-
domly distributed over the entire TLB space. These results tell us that even if we are
able to perfectly predict the latency of the TLB entry to be accessed next (and adjust
the execution to take advantage of this knowledge), the incurred performance penalty
due to process variation will still be high.

When we look at the performance values for HMCFR on the graph, we can easily
see that this scheme performs much better than the Delayed and Oracle schemes for
all the benchmarks. The worst performance experienced by the HMCFR scheme is for
the benchmark soplex, and it is around 7% worse than that of the Perfect scheme,
which represents the ideal case. More importantly, for most of the benchmarks, the
performance of HMCFR is within 1% of the Perfect scheme. The reason why our scheme
performs better than the other schemes (except for the ideal scheme with no process
variation) is the fact that most of the time we are able to find the requested virtual-
to-physical page translation in the CFR register (See the last column of Table II),
which lists the number of CFR updates required during program execution. Finding
the translation in the CFR removes the need for TLB access and allows the cache
and TLB accesses to complete in the same cycle. Note that by employing more CFR
registers (instead of our default 1), it may be possible to further improve performance
by catching more translations. Further investigation of this issue is beyond the scope
of this article.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

Hardware/SoftWare Approaches for Reducing the Process Variation 54:15

98

100

102

104

106

108

N
or

m
al

iz
ed

 E
xe

cu
tio

n
C

yc
le

s

HMCFR SMCFR

Fig. 8. Normalized execution cycles for the HMCFR scheme and the alternate SMCFR scheme. All values
are normalized with respect to those of the Perfect scheme. Only TLB is assumed to be affected by process
variation, and the ratio of the affected TLB entries is 25%.

6.1.1. Comparison of HMCFR and SMCFR. The comparison of the HMCFR and SMCFR
schemes is depicted in Figure 8 in the context of execution cycles. Here the results
reflect the assumption that only the TLB is affected by the process variation (the cache
is immune to process variation). As depicted in the figure, the HMCFR scheme performs
better than the compiler-based scheme for each benchmark tested. The compiler-based
scheme performs worse because the compiler cannot determine (statically) whether
the target of some branches should stay on the current page. Therefore, it obtains
the address translations for those branch target instructions from the TLB instead
of the CFR, which leads to some performance degradation. This degradation is more
pronounced in integer-based applications, as evident from the graph. The average
performances of the HMCFR scheme and the SMCFR scheme are 1.8% and 2.4% lower
than that of the Perfect scheme with a page size of 8K. Since HMCFR performs better
than SMCFR, for the rest of our results we will not consider SMCFR.

6.1.2. Sensitivity to Page Size. To assess the robustness of the HMCFR scheme, we
measured its sensitivity to different instruction page sizes. For this purpose, we also
conducted experiments with page sizes of 4K and 16K. These results are presented in
Figure 9. In this graph, for each benchmark, the first, second, and third bars corre-
spond to normalized execution cycles with respect to the Perfect scheme when we use
instruction page sizes of 4K, 8K, and 16K, respectively. As seen in the figure, it is pos-
sible to improve performance by increasing page size, especially of those benchmarks
incurring large performance overheads through the HMCFR scheme. For example, for
soplex, we can cut the performance overhead from 8.6% to 7.1% to 5.3% by increasing
page size from 4K to 8K to 16K. The average overhead incurred by the HMCFR scheme
with a page size of 4K is 2.2%, whereas the average overheads with page sizes of 8K
and 16K are 1.8% and 1.3%, respectively. On the other hand, the harmonic means of
the performance overheads are around 2.1%, 1.7% and 1.3%, respectively. Since we did
not observe any significant change in our results when the instruction page size was
increased beyond 16K, we do not present the results of larger page sizes.

6.2. Evaluation of Cache-Oriented Schemes

In this section, we assume that only the cache is affected by process variation; that
is, the TLB is immune to process variation. In all our evaluations, reshuffling degree
is assumed to be 3; that is, reshuffling is implemented among eight consecutive cache
lines.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

54:16 I. Kadayif et al.

Fig. 9. Normalized execution cycles for the HMCFR scheme under page size of 4K, 8K, and 16K. All values
are normalized with respect to the corresponding values for the Perfect scheme. 25% of TLB entries are
assumed to be affected by process variation.

Fig. 10. Normalized execution cycles for various cache access latency encoding schemes under the assump-
tion that 25% of the cache lines are affected by process variation. All values are normalized with respect
to the corresponding values for the Perfect scheme. Only the cache is assumed to be affected by process
variation (the TLB is immune to the variation).

6.2.1. Comparison of Our Cache-Oriented Schemes. The bar chart in Figure 10 presents
the performance values of various techniques aiming at alleviating the effects of process
variation on the cache. For any benchmark, each bar from left to right shows the
performance values for the Oracle, CE, LCE, and CRBE schemes, respectively. These
performance values are normalized with respect to the values of the Perfect scheme
and reflect the case where 25% of the cache lines are affected by process variation.
Process variation effects are considered to be randomly distributed across the cache
lines and these effects extend the access latency of the sets by one cycle, causing a load
to complete in two cycles. Since we consider buffered stores, process variation does not
introduce any performance overhead for stores, as long as the buffer can accommodate
the stores.

From this figure, we observe that the average (harmonic means) performance cycles
across all benchmarks for the CE and LCE schemes are 12.5% (12.1%) and 9.2% (9.0%)
above the cycles of the Perfect scheme, respectively, whereas the average (harmonic
means) performance cycles for the CRBE scheme is around 5.9% (5.7%) above the cycle
values of the Perfect scheme. Considering the average values from the Delayed and

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

Hardware/SoftWare Approaches for Reducing the Process Variation 54:17

Fig. 11. Normalized execution cycles for various percentages of affected cache lines for the CRBE scheme
and the PADed cache. The percentages of affected lines vary from 15% to 25% to 40%.

Oracle schemes (30.2% and 8.1%), we reach the following conclusions. First, the large
overhead (30.2%) introduced by the Delayed scheme (adopting the worst-case access
latency paradigm) necessitates new architectural-level mechanisms for caches affected
by process variations. Second, encoding access latencies in the instructions themselves,
even without analyzing targets of the branch instructions, improves performance dra-
matically, cutting the overhead to 12.5% on average. Third, with the LCE scheme, the
average performance overhead (9.2%) comes very close to that of the Oracle scheme
(8.1%), which means that encoding access latencies based on analyzing targets of the
branches is very effective. Fourth, by encoding access latencies and applying code relo-
cation, it is possible to drop the overhead (to 5.9%) to below the one introduced by the
Oracle scheme, which is based on the assumption of a completely accurate prediction
of set access latencies. This clearly shows the effectiveness of code relocation in allevi-
ating the effect of process variation on performance. Also, the code size increase for the
CRBS scheme due to inserting unconditional branches for code relocation is under 1%,
and therefore negligible, so can be omitted.

6.2.2. Comparison of CRBE and PADded Cache. The PADded cache was presented as
a fault-tolerance technique for cache memories by Shirvani and McCluskey [1999].
This technique employs a special Programmable Address Decoder (PAD) to disable
faulty cache lines and to re-map their references to healthy lines; thus, tolerating
faulty cache lines. It was claimed that PADed caches could be a very effective way of
tolerating permanent faults in cache lines and introduce around 10% area overhead.
This technique can also be employed to handle longer access latencies by diverging
imperfect line references into perfect cache lines. To compare our CRBE scheme to the
PADded cache technique, we conducted a set of experiments. In CRBE experiments,
reshuffling was implemented among 8 lines. Similarly, in PADded cache experiments
re-mapping was implemented among the cache lines of 8 consecutive cache sets in each
way. Furthermore, we uniformly distributed the references of imperfect cache lines
to perfect cache lines in each 8 consecutive sets. For example, if 4 out of 8 lines are
imperfect, the references to each imperfect cache line are diverted to a different perfect
cache line. The experimental results are presented in Figure 11. The experiments are
conducted for various percentages of affected cache lines; from 15% to 25% to 40%. All
the performance values are presented with respect to the corresponding values for the
ideal case, where the cache is immune to process variation. The average performance
values (harmonic means) across the benchmarks tested for CRBE are 3.0% (2.9%),

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

54:18 I. Kadayif et al.

Fig. 12. Normalized execution cycles for various percentages of affected cache lines and TLB entries. The
percentages of affected lines and entries vary from 15% to 25% to 40%.

4.2% (4.1%) and 5.7% (5.6%), respectively. The corresponding values for the PADded
scheme are 4.1% (4.1%), 8.5% (8.3%) and 13.8% (13.7%), respectively.

As can be seen from the figure, if the percentage of cache lines affected by process
variation is small, the performance of the CRBE scheme is generally a little bit better
than that of the PADed cache technique. However, as the percentage of affected cache
lines increases, our CRBE technique outperforms the PADded technique considerably.
This is ascribed to the fact that as the percentage of imperfect cache lines increase,
the PAD caches introduce more conflict misses due to disabling imperfect cache lines
and re-mapping their references to perfect cache lines. This is especially evident in
experiments with the cache having 40% of imperfect lines.

6.3. Evaluating TLB-Oriented and Cache-Oriented Techniques Together

Up to now we evaluated our TLB-oriented and cache-oriented techniques separately.
The TLB-oriented techniques were evaluated under the assumption that only the TLB
is affected by process variation; the cache-oriented techniques were evaluated under the
assumption that only the cache is affected by process variation. A separate evaluation
gives us an idea about how effective the technique is in reducing the performance
degradation when only the corresponding hardware component is affected by process
variation. But due to two main reasons, we need to evaluate our techniques together.
First, in a real system process parameter variations can cause variations not only in
access latencies of the TLB/cache but also in access latencies of the cache/TLB. Second,
attacking only one component will put the other component on the critical path. For
example, when we employ only a cache-oriented technique, delayed TLB accesses will
constitute the critical path in instruction fetches. So, the cache-oriented technique
alone would not bring any significant benefit in reducing the process variation impact
on instruction fetches. This makes it necessary to employ a TLB-oriented technique
and a cache-oriented technique together.

In this section, we consider a system where the TLB and the cache are affected by
process variation. The performance values for such a system are given in Figure 12.
Since we have observed similar trends in the remaining benchmarks, here we give
results for only eight benchmarks. We conducted experiments for various percentages
of affected cache sets and TLB entries, changing the percentage of affected sets and
entries from 15% to 25% to 40%. In these experiments, we assume that, for the Delayed
scheme the cache access and the TLB access together in the instruction fetch stage are
completed within two cycles. For the Oracle scheme, an imperfect entry access in the

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

Hardware/SoftWare Approaches for Reducing the Process Variation 54:19

cache or in the TLB extends the fetch stage by one cycle, thus, that stage completes in
two cycles. The HMCFR+CRBE bar indicates that the hardware-managed CFR is used
in address translations and the CRBE scheme is applied when encoding cache access
latencies. Here we assume that if the translation does not exist in the CFR register or if
the cache access is done in a cache block in an imperfect set, the instruction fetch takes
two cycles to complete. As seen in the figure, when the HMCFR and CRBE schemes are
applied together, they are very effective at decreasing the varying number of imperfect
cache sets and imperfect TLB entries. When we change the percentages of the
cache sets and TLB entries affected by process variation from 15% to 25% to 40%, the
average performance values (harmonic means) across these eight benchmarks for
the Oracle scheme are 6.1% (5.9%), 8.5% (8.3%), and 12.2% (11.9%), respectively, worse
than the Perfect scheme. On the other hand, the corresponding performance values
for HMCFR+CRBE are only 2.1% (2.0%), 4.4% (4.2%), and 5.6% (5.4%), respectively,
deviating less from the performance values of the Perfect scheme. These results tell us
that our HMCFR and CRBE schemes are so effective that when they are used together,
the performance loss in the instruction fetch stage caused by process variation is
more effectively diminished compared to the hypothetical case where the hardware
knows in advance whether the cache and TLB accesses would be made in perfect
(imperfect) entries, and thus is capable of tuning the timing of the pipeline stages
accordingly.

6.4. Evaluating Our Schemes for Different Cache Designs

In this section, we would like to evaluate our TLB-oriented and cache-oriented tech-
niques together for two different instruction cache designs: a nonpipelined cache with 3
access latencies and a pipelined cache with 3 stages. In both setups, the number of any
execution unit is one half of the corresponding value given in Table I and the memory
latency is 250 cycles. In a nonpipelined cache setup, we assume that an imperfect cache
line access may take 4 or 5 cycles, with an equal probability, depending on the severity of
variations. In the pipelined cache setup, we take into consideration a 3-stage pipelined
cache as suggested in Chishti and Vijaykumar [2004]. According to this model, set ad-
dress is decoded in the first stage. Wordline driving, bitline precharging and monitoring
the voltage difference between a pair of bitlines by sense amplifiers take place in the
second stage. Driving the output multiplexors and the selected data out of the cache
are carried out in the last stage. Unlike the second stage, the first and the last stages
may be further divided into substages. Since the bitline signals are weak, not digital,
latching is possible only after the the voltage difference of analog bitlines is converted
into the digital by sense amplifiers, making the second stage indivisible [Chishti and
Vijaykumar 2004]. Process variations may affect all of the these three stages; however,
the second stage is the most critical since it cannot be divided further to lessen the
performance effect of the variations. Therefore, in our experiments we take only the
variations into consideration that affect the second pipe stage, delaying the stage by 1
or 2 cycles with an equal probability. More specifically, the perfect cache line accesses
complete in 3 cycles while variation affected cache accesses complete in either 4 cycles
or 5 cycles. This makes variation affected cache accesses compatible with that of the
nonpipelined cache. We have changed the SimpleScalar simulator’s code to support the
pipelined instruction cache with 3 stages experiencing one or two cycle delays in it’s
second stage due to variations. In both setups, two unused bit slots in memory access
instructions are used to encode three different access latencies. In the pipelined setup,
encoded access latencies give a hint to the second pipe stage about how long to wait for
imperfect cache line accesses.

The results for both setup is shown in Figure 13. The average performance val-
ues (harmonic means) of the nonpipelined cache across the eight benchmarks for the

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

54:20 I. Kadayif et al.

Fig. 13. Normalized execution cycles for the case where 25% of cache sets/TLB entries are assumed to
be affected by variations. The left hand side corresponds to non pipelined cache while right hand side
corresponds to pipelined cache.

Delayed, Oracle and HMCFR+CRBE schemes are 18.0% (17.1%), 6.5% (6.3%) and 4.5%
(4.3%), respectively. The corresponding values of the pipelined cache are 12.0% (11.7%),
4.6% (4.5%) and 4.0% (3.9%), respectively. When we look at Figures 12 and 13, we see
that the most variation affected cache form is the one with a single cycle latency and
the least affected one is the pipelined cache. From the two figures we can also draw the
following conclusion: Although our schemes are best suited for the single cycle latency
cache, both the pipelined caches and nonpipelined caches with larger latency, too, can
make use of them to lessen the variation introduced performance effects.

7. RELATED WORK

We can broadly classify the current studies on process variations into a circuit level
and an architectural level. These studies, in general, use models such as Statistical
Static Timing Analysis (SSTA) algorithms [Devgan and Kashyap 2003; Zhan et al.
2005; Sarangi et al. 2007] to analyze the effects of process variations such as circuit
delays and excessive leakage, and detect the components that are more susceptible. In
circuit level techniques, the vulnerable parts are adjusted by using methods such as
gate sizing [Sinha et al. 2005; Raj et al. 2004], adaptive body biasing [Gregg and Chen
2007; Tschanz et al. 2002], and adaptive supply voltages [Chen and Naffziger 2003].
Aside from these common techniques, there are other mechanisms to cope with process
variations at the circuit level. For example, by considering the ephemeral lifetime
of data cache blocks, on-chip memory architectures based on 3T1D (three-transistor,
one-diode) dynamic cells, instead of the classic 6T (six-transistor) static cells, were
proposed in cache designs [Liang et al. 2007]. In that study, they investigate a variety of
cache refresh and placement schemes to show that the proposed L1 cache architecture
can tolerate large process variations with little performance impact compared to 6T
SRAM designs.

Architectural-level studies include a variety of schemes and are complementary
with circuit level approaches. To improve the cache yield, a process-tolerant cache
architecture was proposed [Agarwal et al. 2005a]. In their study, a built-in self test
(BIST) circuitry is integrated into the cache structure, which detects faulty cache
blocks based on operating conditions. During the runtime cache accesses to a faulty
block are directed to a nonfaulty one in the same row, allowing the processor to ac-
cess the downsized cache with the same address as in the usual way. In Meng and
Joseph [2006], the effects of process variation on cache leakage were examined, and

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

Hardware/SoftWare Approaches for Reducing the Process Variation 54:21

a technique called way prioritization to close subarrays causing high leakage power
was proposed. Some techniques to minimize the yield loss due to power and delay
violations in the data cache were introduced [Ozdemir et al. 2006]. The number of
data cache sets affected by process variation is reduced by rearranging the physi-
cal location of cache blocks [Mutyam and Narayanan 2007]. In their study, a cycle-
time-stealing approach [Tiwari et al. 2007] is applied to processor pipelines to mit-
igate the timing effects of software variations on pipeline stages by transferring the
time slack of faster stages to slower ones. Variable latency register files and exe-
cution units are proposed in Liang and Brooks [2006] to mitigate the timing effect
of variations and to improve chip frequency. The reliability optimization of several-
process variation mitigating techniques is presented in Fu et al. [2009]. In this study,
the adverse reliability effects of variable latency variation techniques are alleviated
by reducing the quantity and residency cycles of vulnerable bits; body-biasing tech-
niques are applied to structures by taking the program’s reliability characteristics into
consideration.

Although the given process variation techniques are effective in general, they may
introduce a significant performance penalty (in case of leakage reduction) or increase
circuit complexity. Moreover, the literature lacks compiler-based approaches. In this
study, we propose some compiler- and architectural-level techniques to handle vari-
ations in access latencies across the instruction TLB and instruction cache without
undue hardware complexity or performance compromise.

8. CONCLUSIONS

In parallel with scaling VLSI technology, it is becoming increasingly difficult to control
transistor quality. As a result, process variation is emerging as an important problem in
system design for SRAM-based memory components, such as on-chip caches and TLBs.
Process variation may cause fluctuations in access latencies as well as increased power
consumption of identically designed components. While working with the worst-case
latency assumption makes things a lot simpler, our analysis of the instruction cache
and TLB clearly show that the performance hit resulting from this scheme is intolera-
ble in an instruction fetch stage where address translation and cache access take place.
In this study, we first proposed some hardware and software enhancements and then
studied various techniques based on those enhancements to mitigate the impact of
process variation on the instruction fetch stage. Our solution to the TLB performance
problem caused by process variation involves inserting a register between the CPU
and the TLB, and storing the last virtual-to-physical address translation in it. With
our hardware-managed CFR scheme, for any address translation the TLB access and
the CFR access are started in parallel. However, if the translation is found in the CFR
register, the TLB access is canceled. Since the execution flow leaves the boundary of the
current page very infrequently, the address translation is likely to be obtained from the
CFR, and thereby avoiding TLB access and thus also process variation. As to the per-
formance loss due to accessing a process-variation-affected cache, we try to annotate
the access latency of the set of instructions to be accessed next in the preceding in-
struction(s). This latency dictates how many cycles to wait for the corresponding cache
block to appear in the output buffer. We proposed several techniques based on the con-
cept of annotation. Our experimental results revealed that our hardware and software
techniques are indeed very effective in reducing the overhead caused by process vari-
ation. For example, using HMCFR and CRBE (our most effective schemes) together,
it is possible to diminish performance loss in the instruction fetch stage more than
in the case where the hardware has prior knowledge of whether the cache and TLB
accesses would be made in perfect (imperfect) entries and is thus able to adjust the
timing of the pipeline stages accordingly.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

54:22 I. Kadayif et al.

REFERENCES

AGARWAL, A., BLAAUW, D., AND ZOLOTOV, V. 2002. Statistical timing analysis for intra-die process variations
with spatial correlations. In Proceedings of the International Conference on Computer Aided Design.
900–907.

AGARWAL, A., PAUL, B. C., MAHMOODI, H., DATTA, A., AND ROY, K. 2005a. A process-tolerant cache architecture
for improved yield in nanoscale technologies. IEEE Trans. VLSI Syst. 13, 1, 27–38.

AGARWAL, A., PAUL, B. C., MUKHOPADHYAY, S., AND ROY, K. 2005b. Process variation in embedded memories:
Failure analysis and variation aware architecture. IEEE J. Solid-State Circuits 40, 9, 1804–1814.

ALAM, M. D. 2008. Reliability- and process-variation aware design of integrated circuits. Microelectron. Reliab.
48, 8, 1114–1122.

BORKAR, S., KARNIK, T., NARENDRA, S., TSCHANZ, J., KESHAVARZI, A., AND DE, V. 2003. Parameter variations
and impact on circuits and microarchitecture. In Proceedings of the 40th Annual Design Automation
Conference. 338–342.

BOWMAN, K., DUVALL, S. G., AND MEINDL, J. D. 2002. Impact of die-to-die and within-die parameter fluctuations
on the maximum clock frequency distribution for gigascale integration. IEEE J. Solid-State Circuits 37,
2, 183–190.

CHANG, H. AND SAPATNEKAR, S. S. 2005. Full-chip analysis of leakage power under process variations, including
spatial correlations. In Proceedings of the 42nd Annual Design Automation Conference. 523–528.

CHEN, Q., MAHMOODI, H., BHUNIA, S., AND ROY, K. 2005. Modeling and testing of SRAM for new failure mech-
anisms due to process variations in nanoscale CMOS. In Proceedings of the 23rd IEEE VLSI Test
Symposium. 292–297.

CHEN, T. AND NAFFZIGER, S. 2003. Comparison of adaptive body bias (ABB) and adaptive supply voltage (ASV)
for improving delay and leakage under the presence of process variation. IEEE Trans. VLSI Syst. 11, 5,
888–899.

CHISHTI, Z. AND VIJAYKUMAR, T. N. 2004. Wire delay is not a problem for SMT (in the near future). In Proceedings
of the International Symposium on Computer Architecture. 40–51.

CHIUEH, T. C. AND KATZ, R. H. 1992. Eliminating the address translation bottleneck for physical address cache.
In Proceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems. 137–148.

DEVGAN, A. AND KASHYAP, C. 2003. Block-based static timing analysis with uncertainty. In Proceedings of the
International Conference on Computer-Aided Design. 607–614.

FU, X., LI, T., AND FORTES, J. A. B. 2009. Soft error vulnerability aware process variation mitiga-
tion. In Proceedings of the International Symposium on High Performance Computer Architecture.
93–104.

GREGG, J. AND CHEN, T. 2007. Post silicon power/performance optimization in the presence of process variation
using individual well-adaptive body biasing. IEEE Trans. VLSI Syst. 15, 3, 366–376.

HAMERLY, G., PERELMAN, E., LAU, J., AND CALDER, B. 2005. Simpoint 3.0: faster and more flexible program
analysis. J. Instruction-Level Parallelism 7, 1–28.

KADAYIF, I., NATH, P., KANDEMIR, M., AND SIVASUBRAMANIAM, A. 2007. Reducing data TLB power via compiler-
directed address generation. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 26, 2, 312–324.

KADAYIF, I., SIVASUBRAMANIAM, A., KANDEMIR, M., KANDIRAJU, G., AND CHEN, G. 2002. Generating physical adresses
directly for saving instruction tlb energy. In Proceedings of the 35th Annual IEEE/ACM International
Symposium on Microarchitecture. 185–196.

KNIGHT, J. AND ROSENFELD, P. 1984. Segmented virtual to real translation assist. IBM Tech. Disclosure Bull.
27, 2, 1077–1078.

LIANG, X. AND BROOKS, D. 2006. Mitigating the impact of process variations on processor register files and
execution units. In Proceedings of the International Symposium on Microarchitecture. 504–514.

LIANG, X., CANAL, R., WEI, G. Y., AND BROOKS, D. 2007. Process variation tolerant 3T1D-based cache architec-
tures. In Proceedings of the International Symposium on Microarchitecture. 15–26.

MADDOCK, R., MARKS, B., MINSHULL, J., AND PINNEL, M. 1981. Hardware address resolution for variable length
segments. IBM Tech. Disclosure Bull. 23, 11, 5186–5187.

MANNE, S., KLAUSER, A., AND GRUNWALD, D. 1998. Pipeline gating: speculation control for energy reduction. In
Proceedings of the International Symposium on Computer Architecture. 132–141.

MENG, K. AND JOSEPH, R. 2006. Process variation aware cache leakage management. In Proceedings of the
International Symposium on Low Power Electronics and Design. 262–267.

MUTYAM, M. AND NARAYANAN, V. 2007. Working with process varation aware caches. In Proceedings of the
Design, Automation and Test in Europe Conference. 1–6.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

Hardware/SoftWare Approaches for Reducing the Process Variation 54:23

NASSIF, S. R. 2001. Modeling and analysis of manufacturing variations. In Proceedings of the IEEE Conference
on Custom Integrated Circuits. 223–228.

OZDEMIR, S., SINHA, D., MEMIK, G., ADAMS, J., AND ZHOU, H. 2006. Yield-aware cache architectures. In Proceedings
of the IEEE/ACM International Symposium on Microarchitecture. 15–25.

PAPANIKOLAOU, A., LOBMAIER, F., WANG, H., MIRANDA, M., AND CATTHOOR, F. 2005. A system-level methodology
for fully compensating process variability impact of memory organizations in periodic applicatios. In
Proceedings of the 3rd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis. 117–122.

PERELMAN, E., HAMERLY, G., AND CALDER, B. 2003. Picking statistically valid and early simulation points. In
Proceedings of the International Conference on Parallel Architectures and Compiling Techniques. 244–
255.

RAJ, S., VRUDHULA, S. B. K., AND WANG, J. 2004. A methodology to improve timing yield in the presence of
process variations. In Proceedings of the Design Automation Conference. 448–453.

SARANGI, S. R., GRESKAMP, B., AND TORRELLAS, J. 2007. A model for timing errors in processors with parameter
variation. In Proceedings of the International Symposium on Quality Electronic Design. 647–654.

SHERWOOD, T., PERELMAN, E., AND CALDER, B. 2001. Basic block distribution analysis to find periodic behav-
ior and simulation points in applications. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques. 3–14.

SHIRVANI, P. P. AND MCCLUSKEY, E. J. 1999. PADded cache: a new fault-tolerance technique for cache memories.
In Proceedings of the 17th IEEE VLSI Test Symposium. 440–445.

SIMPLESCALAR 2012. SimpleScalar toolset. http://www.simplescalar.com.
SINHA, D., SHENOY, N. V., AND ZHOU, H. 2005. Statistical gate sizing for timing yield optimization. In Proceedings

of the International Conference on Computer-Aided Design. 1037–1041.
SPEC 2012. SPEC2000 and SPEC2006 Benchmark Suites. http://www.spec.org.
STRECKER, W. D. 1978. VAX-11/780: a virtual address extension to the DEC PDP-11 family. In Proceedings of

the American Federation of Information Processing Societies National Computer Conference. 967–980.
TANG, X., DE, V., AND MEINDL, J. 1997. Intrinsic mosfet parameter fluctuations due to random dopant place-

ment. IEEE Trans. VLSI Syst. 5, 4, 369–376.
TIWARI, A., SARANGI, S. R., AND TORRELLAS, J. 2007. Recycle: pipeline adaptation to tolerate process variation.

In Proceedings of the International Symposium on Computer Architecture. 323–334.
TSCHANZ, J., KAO, J. T., NARENDRA, S. G., NAIR, R., ANTONIADIS, D. A., CHANDRAKASAN, A. P., AND DE, V. 2002. Adap-

tive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor
frequency and leakage. IEEE J. Solid-State Circuits 37, 11, 1396–1402.

ZHAN, Y., STROJWAS, A. J., LI, X., PILEGGI, L. T., NEWMARK, D., AND SHARMA, M. 2005. Correlation-aware sta-
tistical timing analysis with non-Gaussian delay distribution. In Proceedings of the Design Automation
Conference. 77–82.

ZUCHOWSKI, P. S., HABITZ, P. A., HAYES, J. D., AND OPPOLD, J. H. 2005. Process and environmental variation
impacts on ASIC timing. In Proceedings of the IEEE/ACM International Conference on Computer Aided
Design. 336–342.

Received November 2012; revised March 2013; accepted May 2013

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 4, Article 54, Pub. date: October 2013.

