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KAYHAN M. İMRE, Hacettepe University

Parallel and distributed simulations (PADS) realize the distributed execution of a simulation system over
multiple physical resources. To realize the execution of PADS, different simulation infrastructures such as
HLA, DIS and TENA have been defined. Recently, the Distributed Simulation Engineering and Execution
Process (DSEEP) that supports the mapping of the simulations on the infrastructures has been defined.
An important recommended task in DSEEP is the evaluation of the performance of the simulation systems
at the design phase. In general, the performance of a simulation is largely influenced by the allocation of
member applications to the resources. Usually, the deployment of the applications to the resources can be
done in many different ways. DSEEP does not provide a concrete approach for evaluating the deployment
alternatives. Moreover, current approaches that can be used for realizing various DSEEP activities do not
yet provide adequate support for this purpose. We provide a concrete approach for deriving feasible deploy-
ment alternatives based on the simulation system and the available resources. In the approach, first the
simulation components and the resources are designed. The design is used to define alternative execution
configurations, and based on the design and the execution configuration; a feasible deployment alternative
can be algorithmically derived. Tool support is developed for the simulation design, the execution configu-
ration definition and the automatic generation of feasible deployment alternatives. The approach has been
applied within a large-scale industrial case study for simulating Electronic Warfare systems.
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Çelik, T., Tekinerdogan, B., and İmre, K. M. 2013. Deriving feasible deployment alternatives for parallel and
distributed simulation systems. ACM Trans. Model. Comput. Simul. 23, 3, Article 18 (July 2013), 24 pages.
DOI:http://dx.doi.org/10.1145/2499913.2499917

1. INTRODUCTION

Parallel and distributed simulations (PADS) [Fujimoto 1999] realize the distributed
execution of a simulation system over multiple physical resources. Developing PADS
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18:2 T. Çelik et al.

is not trivial and requires realizing the concerns such as declaration management,
data exchange, time management, discovery mechanisms and data distribution man-
agement. To reduce the effort for developing PADS, common standard infrastructures
have been introduced including Distributed Interactive Simulation (DIS) [IEEE 1998],
Discrete Event System Specification (DEVS) [Zeigler 2003], High Level Architecture
(HLA) [IEEE 2010a; Kuhl et al. 1999], and Test and Training Enabling Architecture
(TENA) [Noseworthy 2008]. Among these, HLA is an important IEEE and NATO stan-
dard that defines a common architecture for supporting both parallel and distributed
simulation systems [Kuhl et al. 1999; Perumalla and Fujimoto 2003].

A simulation system usually consists of multiple applications. For example, for re-
alizing a traffic simulation as a PADS, the system can be decomposed in a number
of applications that simulate vehicles, pedestrians, traffic lights, environment, drivers
etc. The motivation for the decomposition of the system into multiple applications can
be based on quality concerns such as performance, reusability and interoperability
[Fujimoto 1999]. Usually, the decomposition and deployment of the applications to the
physical resources can be carried out in many different ways. Further, the performance
of the simulation system is largely influenced by the allocation of these applications to
the available physical resources.

To support the development of HLA compliant simulation systems, the IEEE Rec-
ommended Practice for High Level Architecture Federation Development and Execu-
tion Process (FEDEP) [IEEE 2003] has been defined. Based on FEDEP, recently the
IEEE standard DSEEP (Distributed Simulation Engineering and Execution Process)
has been defined [IEEE 2010d]. DSEEP consists of a set of steps and activities that
include recommended tasks for developing simulation systems.

DSEEP itself is an abstract process and deliberately does not mandate a particular
realization of the process. An important recommended task in DSEEP is the evaluation
of the performance of the simulation systems at the design phase. Various approaches
can be identified in the literature that can be used to support the DSEEP process in-
cluding conceptual model development approaches [Karagöz and Demirörs 2007; SISO
2006], tool support [Parr 2003; VT MAK 2010a] and simulation design approaches
[Çetinkaya and Oguztüzün 2006; Topçu et al. 2008]. Yet, despite the benefit of these
approaches, no adequate and explicit support for selecting and evaluating the deploy-
ment alternatives have been provided so far. As such, the evaluation of the design
and the performance estimation is usually either deferred to the development phase
or performed based on expert judgment in the design phase. Deferring these design
tasks to the development phase, however, might lead to non-feasible implementations
that may require unnecessary iteration of the design and the related project lifecycle
artifacts such as detailed design, implementation, test artifacts, documentation, etc.
As such, the search for a feasible solution can easily lead to delays in the project sched-
ule, and due to the unnecessary rework of the lifecycle artifacts the cost can increase
dramatically. Expert judgment can help to support this process, but finding experts
that have both a broad and specialized knowledge on the corresponding domains is
not easy. Further, expert judgments can be of help for small to medium systems but
can be limited if the system gets too complex. Obviously, a more systematic and formal
approach is required to guide the search for a feasible deployment alternative.

In this article, we provide a concrete approach for deriving a feasible deployment al-
ternative based on the simulation system and the available physical resources. In the
approach, first the simulation components and the physical resources are designed.
The design is used to define alternative simulation execution configurations that re-
fine the number and parameters of the corresponding design elements. Based on the
simulation design and the execution configuration, a feasible deployment alternative
can be algorithmically derived. The presented approach is supported by corresponding
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tools that support the simulation design, the execution configuration definition and
the automatic generation of feasible deployment alternatives. The approach has been
validated within a large-scale industrial case study for simulating Electronic Warfare
systems.

Concretely, the contributions of the article can be defined as follows.

— We provide a systematic approach that supports both the evaluation of the simula-
tion system design with respect to physical resources, and the automatic generation
of a feasible deployment alternative in the early phases of the system design. The
overall approach integrates the well-known Capacitated Task Assignment Problem
(CTAP) solving techniques with the Parallel and Distributed Simulation (PADS)
system design process. As such, the approach can be used for impact analysis at
the design level including, the impact analysis of adding new simulations modules
to the system, analyzing suitability of the selected physical resources for the given
simulation design, and impact analysis of the change in publish-subscribe relations.

— The approach is integrated in the DSEEP process and provides an implementation
of the corresponding recommended DSEEP tasks. The DSEEP has recommended
tasks for evaluating alternative design options and estimating the simulation per-
formance in design phase but deliberately does not provide a detailed process and
implementation for the indicated tasks. Our approach provides a detailed process to
ease the realization of these important tasks.

— A toolset that supports the evaluation steps of the approach has been designed and
developed. Of particular interest hereby is the automatic analysis and generation of
a feasible deployment alternative. The toolset is based on a set of metamodels that
we have defined for automatically deriving the simulation design.

The remainder of the article is organized as follows. In Section 2, we provide the
background on PADS and DSEEP. Section 3 defines the case study that will be used
in subsequent sections. Section 4 describes the problem statement. Section 5 presents
the approach for evaluating alternative design options with the adopted models and
algorithmic solutions for the approach. Section 6 briefly presents the tools that support
the approach. Section 7 provides the discussion. Section 8 describes the related work
and finally we conclude the article in Section 9. The list of acronyms is provided in
Online Appendix A.

2. BACKGROUND AND CONTEXT

In this section, we describe the background for understanding and supporting the ap-
proach that we present in this article. In Section 2.1, we present the common reference
architecture for PADS, followed by a discussion in Section 2.2 on DSEEP.

2.1. PADS Reference Architecture

It appears that the current PADS architectures share the similar concepts. Based on
a domain analysis to simulation architectures such as DIS [IEEE 1998], HLA [IEEE
2010a; Kuhl et al. 1999], and TENA [Noseworthy 2008], we could derive the refer-
ence architecture for PADS, which is shown in Figure 1. A typical simulation system
is deployed on a number of Simulation Nodes. Each Simulation Node includes one or
more Members that are processes that together form the simulation execution. Each
member includes a number of Simulation Module Instances and Local Infrastructure
Component. Simulation Module Instances represent objects for simulating entities
or events in the simulation. Local Infrastructure Component enables bi-directional
interaction between members for data exchange and collaborative execution of the
simulation.
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Fig. 1. Reference architecture for parallel and distributed simulations.

The simulation may also include an optional Central Infrastructure Node that
contains a Central Infrastructure Component, which is responsible for managing the
simulation lifecycle, timing and synchronization concerns, and discovery concerns.
In case, this Central Infrastructure Component is missing, the services need to be
supported by the Local Infrastructure Components. As such both the Local Infrastruc-
ture Component and Central Infrastructure Component provide similar services. In
Figure 1, this is indicated through the stereotype <<Infrastructure>>.

HLA defines a specification of the architecture that largely conforms to the refer-
ence architecture in Figure 1. In HLA, Members called Federates connect to Runtime
Infrastructure (RTI) Components (e.g., Local RTI Component (LRC)) that correspond
to the Local Infrastructure Component in Figure 1. Federates in HLA define the
simulation logic that correspond to the Simulation Module Instances of this reference
architecture. Further, as a convention, Central Infrastructure Component is provided
in major RTI implementations, in which this is named as Central RTI Component
(CRC).

The CRC and LRC implementations together provide services for federation man-
agement, declaration management, object management, ownership management, time
management, and data distribution management [IEEE 2010b]. DIS and TENA are
largely similar to HLA, but these do not include a Central Infrastructure Component.
Further, the provided services are different for the three architectures. For example,
time management service is provided by HLA but is not explicitly included in DIS and
TENA.

The common interaction model that is adopted in the three simulation archi-
tectures conforms to the Publish/Subscribe pattern [Eugster et al. 2003]. In the
Publish/Subscribe pattern, the producer and consumer applications (members) are
decoupled. This increases the reusability and interoperability, which are key con-
cerns in simulation systems. The Publish/Subscribe interaction is realized by the
<<Infrastructure>> components in the reference architecture in Figure 1. Members
in the simulation execution can publish and subscribe data exchange model elements
through the services provided by the <<Infrastructure>> components. The adopted
data exchange models differ in the three architectures. In DIS, the data exchange
model is fixed through protocol data units (PDU). The HLA standard defines the
Object Model Template (OMT) that can be used to define different data exchange
models [IEEE 2010c] which are called Federate Object Model (FOM) and Simulation
Object Model (SOM). TENA specification provides a predefined object model called
Logical Range Object Model that can be extended and customized [Noseworthy 2008].
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2.2. DSEEP

As stated before, DSEEP is an abstract process and deliberately does not mandate a
particular realization of the process. The DSEEP process consists of the following steps
[IEEE 2010d].

(1) Define Simulation Environment Objectives. The objectives for the simulation envi-
ronment are defined by stakeholders.

(2) Perform Conceptual Analysis. Scenarios and conceptual model are developed,
and subsequently the simulation environment requirements and functionality is
defined.

(3) Design Simulation Environment. Existing reusable members are identified, new
members are defined and functionalities are allocated to members. Further a
development plan is defined.

(4) Develop Simulation Environment. The data exchange model is developed, newly
identified members are developed and if needed reusable members are customized.

(5) Integrate and Test Simulation Environment. The system components are inte-
grated and tested.

(6) Execute Simulation. The simulation system is executed and the resulting output
data is preprocessed for the next step.

(7) Analyze Data and Evaluate Results. The output data from the execution is
analyzed and evaluated with respect to the objectives.

Different efforts have been provided to realize these steps. In general, the proposed
solutions focus on a particular number of steps. For example, Base Object Model (BOM)
[SISO 2006] and the model proposed in Karagöz and Demirörs [2007] focus on develop-
ment of conceptual models that is needed for step 2 in DSEEP. The VR Forces [VT MAK
2010b] and VR Vantage XR [VT MAK 2010c] tools support step 4, MAK Data Logger
[VT MAK 2010a] and Pitch Commander [Pitch Technologies 2009] support step 5. In
this article, our focus is on step 3, which is explained in the following sections.

3. CASE STUDY - A LARGE SCALE ELECTRONIC WARFARE SIMULATION

In this section we provide a case study describing a large scale Electronic Warfare (EW)
[Adamy 2001] simulation. EW simulations are very important in the defense industry
to generate virtual exercises that are hard, expensive, and dangerous to perform with
real exercises [Adamy 2006]. The case study is used throughout the article to clarify
the problem statement and to illustrate our approach later on.

The logical view for the case study is given in Figure 2. The system includes plat-
form simulators that interact with a tactical environment simulator. A platform simu-
lator is a system that simulates the physical and behavioral properties of a platform.
Each platform simulator has simulation models like motion model, 3D visualization,
and specific equipments such as radars and communication devices. In our case study,
there are four different types of platform simulators including ship, flight, submarine,
and tank simulators. In the figure, no particular number for the platforms simula-
tors is given, but ‘*’ is used to indicate zero or more simulators. The specific number
of simulators will be defined by the concrete scenario, which will be explained in the
next subsection. Tactical environment simulator contains models for EW systems (e.g.,
radar, missiles, etc.) and environmental conditions (e.g., weather).

For the given case study, we can now apply the DSEEP to derive a simulation
system. As stated before, the first step of DSEEP concerns the definition of simulation
environment objectives. In this particular case, this includes for example, defining
ship simulator, flight simulator, submarine simulator, tank simulator and tactical
environment simulator. After the definition of the simulation environment objectives,

ACM Transactions on Modeling and Computer Simulation, Vol. 23, No. 3, Article 18, Publication date: July 2013.
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Fig. 2. Logical view of case study.

Table I. A Sample Scenario for the Case Study

Simulation Number Simulation Participant # Total
Participant Entities Entities

Ship Simulator 10 1 ship model, 8 EW systems, 5 Surface to Air
EO missiles, 10 Surface to Surface RF missiles.

240

Submarine Simulator 8 1 submarine model, 10 EW systems,
10 Surface to Surface RF missiles.

168

Flight Simulator 12 1 flight model, 3 EW systems,
5 Air to Air EO missiles,
2 Air to Surface RF missiles.

132

Tank Simulator 15 1 tank model, 4 EW systems. 75
Tactical Environment
Simulator

1 40 airplanes, 20 ships, 10 submarines,
100 tanks, 10 Command Control Systems, 500
EW systems such as Radars, ESM systems, EA
systems, 300 Missiles, RF Propagation Model.

981

the next DSEEP step is performing the conceptual analysis of the simulation system.
An important activity of the conceptual analysis is the development of scenarios. A
scenario includes the types and numbers of major simulation entities according to
the earlier defined simulation objectives. Table I shows a sample scenario for the case
study.

The “Simulation Participant” column of the table indicates the simulators that to-
gether form the simulation of the system. The “Number” column defines the number of
simulation participants of the simulator type in the given scenario. For example, in the
scenario as defined in Table I there are 10 Ship Simulators. The column ‘Simulation
Participant Entities’ shows the entity models that are required for realizing the par-
ticular simulators. Each simulator has its own specific type of entities. For example,
in the given scenario the ship simulator has 1 ship model, 8 EW systems, 5 Surface
to Air EO missiles, and 10 Surface to Surface RF missiles. The last column “# Total
Entities” defines the total number of entities in the particular simulator. This number
is calculated by multiplying the number of participants with the number of Simula-
tion Participant Entities. For example, # total entities for 10 ship simulators is 10 x
(1 + 8 + 5 + 10) = 240. As it can be observed for a given scenario, the total number of
the required simulation entities might be quite large. For the given scenario, the total
number of entities for all the simulators together is 240+168+132+75+981 = 1596.
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Fig. 3. Deployment alternative for scenario of Table I - One tactical environment simulator and distributed
EW system models.

4. PROBLEM STATEMENT

After the required scenario is defined and the conceptual analysis is completed, we
can start designing the simulation system in step 3 of DSEEP. Using the reference
architecture as shown in Figure 1 and the given scenario in Table I, we can derive a
deployment alternative. A deployment alternative defines the mapping of the simula-
tion entity models in the scenario to the nodes and members. Here we assume that
each node has exactly one member that acts as a container for all simulation module
instances. The reason for adopting one member per node is to reduce the overhead of
interprocess communications, which is important in case we have to deal with a large
number of simulation module instances [Lees et al. 2007].

An example deployment alternative is shown in Figure 3. In this deployment alter-
native, each platform simulator and the tactical environment simulator is deployed on
a separate node. Each platform simulator node models its own EW systems and the
other simulation entities. This alternative actually follows the conceptual separation
of concerns in which each simulator is logically defined as a node and defines its own
responsibilities. Further the centralized tactical environment simulator decreases the
communication overhead among the tactical environment entities. Although this alter-
native is easy to understand because of the logical separation of concerns, it can result
in inefficiencies with respect to additional communication overheads. This is because
the EW System models may need to interact very frequently with each other to model
the coordination and interaction of electronic warfare systems.

A second example deployment alternative is shown in Figure 4. Here, each platform
simulator is deployed on a separate node, but the tactical environment simulator is
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Fig. 4. Deployment alternative for scenario of Table I - Two tactical environment simulators and distributed
EW system models.

divided and deployed on two nodes. The platform simulator nodes follow the logical
separation of concerns and as such are easy to understand. The separation of tactical
environment simulators over two nodes enhances the computation power, but on the
other hand increases the communication overhead between the tactical environment
simulator nodes.

We can also derive many other different deployment alternatives. These deployment
alternatives may differ with respect to the number of deployment nodes, the mapping
of simulators to the nodes, the distribution of the simulation entities over the nodes etc.
Obviously, the number of deployment alternatives is very large and each deployment
alternative will perform differently with respect to different quality considerations
such as logical separation for understandability, optimizing communication overhead,
enhancing utilization of physical resources, etc.

According to DSEEP, it is important to identify deployment alternatives and eval-
uate their performance. Concretely, DSEEP defines the following two recommended
tasks within the step “Design Simulation Environment” [IEEE 2010d].

— Evaluate alternative design options, and identify the simulation environment de-
sign that best addresses stated requirements.

— Estimate simulation environment performance, and determine if actions are nec-
essary to meet performance requirements

Since DSEEP is deliberately defined as an abstract process, it does not define how to
realize these tasks. Moreover, currently there is no adequate tool support yet to sup-
port these tasks. As stated before, the evaluation of the design and the performance
estimation is either deferred to the development phase or performed based on expert
judgment in the design phase. However, deferring these design tasks to the develop-
ment phase might lead to nonfeasible implementations that may require unnecessary
iteration of the design and the related project lifecycle artifacts such as detailed design,
implementation, test artifacts, documentation, etc. On its turn, this will lead to delays
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and higher cost in the project. On the other hand, expert judgments are also limited
if the system gets too complex. In the following section, we will provide a systematic
approach to guide the search for a feasible deployment alternative.

5. APPROACH FOR DERIVING FEASIBLE DEPLOYMENT ALTERNATIVES

In this section, we provide a concrete approach for deriving and evaluating feasible
deployment alternatives. The approach is represented as an activity diagram as shown
in Figure 5.

We assume that the first two DSEEP steps shown in Figure 5 are performed using
the approaches as defined in the literature (e.g., see SISO [2006]). Therefore the activ-
ities in the first two steps are shown in grey scale. As stated before, our focus is on step
3 of DSEEP. Further, it is assumed that the system is not developed yet, and the code is
not available. The final deployment model is actually built up over several iterations
of the DSEEP steps 3, 4, and 5. Hereby, the initial deployment model is prototyped
and tested in steps 4–5, and the results are fed back into the concept definition until
the best alternative is identified and defined to the proper level for implementation.
The iterative nature of the DSEEP is shown through back arrows between the DSEEP
steps.

In the following sections, we will explain the concrete activities that we have defined
to realize our approach within the context of DSEEP step-3.

5.1. Design Simulation Data Exchange Model

The activity Design Simulation Data Exchange Model defines an initial design of the
Simulation Data Exchange Model (SDEM) that is necessary to enable data exchange
among simulation modules. Actually, in DSEEP the development of the simulation
data exchange model (SDEM) is defined in step 4. However, since SDEM elements are
required for designing the pub-sub relations among simulation modules, the SDEM
design is started in step 3 in our process. Because the basic elements that are required
for the design of SDEM are defined in step 2 and sub-steps of step 3, the SDEM design
can be started earlier in step 3 and finalized in step 4 without problems since DSEEP
is also an iterative process.

For the SDEM we could use existing standard models such as Real-time Platform
Reference Federation Object Model (RPR-FOM) [SISO 1999], extend standard models
or even develop from scratch as stated in DSEEP. In this context, the HLA OMT [IEEE
2010c] standard defines a standard metamodel for deriving SDEMs. To represent
simulation entities HLA OMT specification defines the three key elements of Object
Classes, Interactions and DataTypes. ObjectClasses are used to define the simulation
entities. In our case, Object Classes are used to represent, for example, Surface Vessel,
AirPlatform, Tank, Radar etc. Interactions are used to represent the messaging seman-
tics among simulation participants. For example, messages like MunitionDetonation,
SystemStatusChange, MissileLaunch are example of interactions in our EW simula-
tion domain. Finally, DataTypes represent types of the attributes of ObjectClasses and
parameters of Interactions. For example, the ObjectClass Platform could have an at-
tribute position of type Position3D, and the Interaction SystemStatusChange can have
a parameter systemState of enumeration type with the values on, off.

We have adopted HLA OMT standard and enhanced it to define our simulation
data exchange metamodel. The resulting Simulation Data Exchange Metamodel cor-
responds to the HLA OMT artifacts with an addition of the average size attribute
to array datatype. Later on, this is necessary to allow the estimation of the size of
an exchanged object during feasible deployment analysis at the design phase. Figure 6
shows modified version of arrayDataType element in HLA OMT schema [IEEE 2010c].
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Fig. 5. Activity flow of alternative design evaluation and deriving feasible deployment.

5.2. Design Simulation Modules

The activity Design Simulation Modules includes the definition of simulation enti-
ties of the simulation participants. Simulation modules are artifacts of a simulation
system that are responsible for modeling a part of the system. In the given example
scenario as given in Table I simulation modules are, for example, Ship, Submarine,
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Fig. 6. Extension of HLA OMT schema for the approach.

Fig. 7. Metamodel for module and publish subscribe definitions.

Tank, SA EO Missiles, SS RF Missiles, EW Models, etc. In addition to defining the
simulation modules, the activity also aims to define the composition relations among
the simulation entities. For example, a Radar Module may contain a receiver module
and a transmitter module. We have defined a common metamodel (Figure 7) that can
be used to define both the simulation modules and the composition relations. Similar
to the Discrete Event Virtual Simulation (DEVS) [Zeigler 2003] model the metamodel
defines atomic and coupled models that form the simulation systems.

The ModuleDefinitionModel is the root class of the metamodel that represents a
module definition model that defines modules and their Publish/Subscribe relations.
We will elaborate on the Publish/Subscribe relations in the next subsection. The Mod-
ule is the abstract base class for simulation module definitions. The Module has a
name attribute that identifies the module. An AtomicModule represents elementary
simulation models while CoupledModule represents more complex simulation models
that may contain other atomic or coupled modules. This containment relation is shown
as moduleContent reference in the metamodel.

5.3. Design Publish/Subscribe Relations of Simulation Modules

The activity Design Publish/Subscribe Relations of Simulation Modules defines the
publish/subscribe relations of simulation modules based on the simulation data
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Fig. 8. Physical resource metamodel.

exchange model. For example, Radar Module can publish RadarBeam object while
RFPropagation Module subscribes to RadarBeam object.

PubSubRelation class in the metamodel of Figure 7 defines a publish/subscribe rela-
tion between a simulation module Module and a SDEM element ObjectModelElement.
ObjectModelElement class is defined in Simulation Data Exchange Metamodel and it
is the base class for SDEM elements as described in the previous section. PubSubRe-
lation class has further a pubSubType attribute which defines the type of the relation.
The possible types are defined by the values of the enumeration class PubSubType-
Enum that defines the values Publish, Subscribe, and PublishSubscribe.

5.4. Design Physical Resources

Parallel to these three activities, the activity Design Physical Resources defines the
available nodes together with their processing power and memory capacity, as well as
the network connections among the nodes. For example, one may decide to adopt 25
nodes on which the simulation participants need to be deployed. Further, it could be
decided that each node has a memory capacity of 12280 MB and contains two process-
ing units with four cores at the frequency of 2.3 MHz. Equally, the nodes could also
have different memory capacity and processing power.

The Physical Resource Metamodel given in Figure 8 can be used to represent the
artifacts for modeling the available physical resources. PhysicalResourceModel is the
root class of the metamodel that defines a physical resource model. There can be one
or more Nodes in a physical resource model, which represents computation resources.
Each node has a name attribute that identifies the node. The powerFactor attribute
defines the processing power of the node relative to other nodes. A node can have one
or more processors, one or more custom node properties, and memory capacity. Proces-
sor defines properties of a processing unit using the attributes name, frequency, and
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coreCount. The attribute name is the symbolic name of the processor like “Intel Core
I7”. The attribute coreCount defines the number of cores that the processor has. The
attribute frequency defines the frequency of the processor in MHz. MemoryCapacity
has a value attribute that represents the memory capacity of the node in terms of
megabytes. CustomNodeProperty can be used to define additional properties for the
node. The properties are defined as name-value pairs. For example, one may decide to
include a specific property diskCapacity with value 340 Gb.

There can be one or more networks in a physical resource model. The Network class
is the abstract base class for LocalAreaNetwork (LAN) and WideAreaNetwork (WAN)
classes. The name attribute of the Network class is the symbolic name of the network.
WideAreaNetwork class has speedFactor attribute that defines the speed of the network
in comparison with a LAN. LANConnection represents the connection of a node to a
LAN. Router represents routers for connecting networks with each other. The name
attribute of the Router class is the symbolic name of the router. LANRouterConnection
class represents connection of a LAN to a router while the RouterNetworkConnection
class represents connection of a router to a network.

5.5. Design Simulation Execution Configuration

The activity Design Simulation Execution Configuration defines the runtime proper-
ties of the modules defined in the previous steps. This includes the definition of the
number of simulation module instances, the definition of the update rate for module
instances for each publication (in the publish/subscribe definition), and the definition
of the execution cost of each module instance on each target node. For example, we
could decide to have 300 Radar module instances each of them publishing RadarBeam
objects with update rate of 5 times per second. The execution cost (with respect to
processing power) for each Radar module instance is defined using scaled value and
defined as 6 over 10 for one node, 4 over 10 for another node, etc.

Simulation Execution Configuration Metamodel as shown in Figure 9 is used to
define the artifacts to model the simulation execution configuration. SimulationEx-
ecutionConfiguration is the root class of the metamodel that defines a simulation
execution configuration which includes Metadata, ModuleInstances and Publications.
Metadata defines name, version, creator, and creation date of a simulation execution
configuration. ModuleInstance represents an instance of a simulation module that
was defined in the activity Design Simulation Modules. The attribute name of Mod-
uleInstance defines the symbolic name of the module instance. For example, the name
of a module instance that instantiates “AirplaneModel” simulation module can be
“F16 Block 50”. Each module instance can have a different execution cost for different
nodes. For this ModuleInstance includes the parameter nodeExecutionCostTable
that defines the execution cost values for the nodes on which the module instance
can execute. Note that the execution cost is dependent on the selected execution
configuration. For example, the execution cost of a radar model changes according
to existing signal reflection sources (e.g. air planes) in execution configuration.
Usually, the execution cost of a module instance can be measured exactly when it is
developed and executed on target nodes [Lauterbach et al. 2008]. During design time,
the value for the execution cost can be estimated using, for example, design phase,
complexity calculation methods such as proposed by Podgorelec and Hericko [2007],
or prototyping. The execution cost is a scaled value and shows the execution cost of
a Module Instance in comparison with other Module Instances of the same execution
configuration. For example, a radar model instance can have estimated execution cost
of 20 while a relatively simple Electro Optic Sensor has the value of 5. The attribute
requiredMemoryAmount of ModuleInstance represents the estimated memory amount
that the module instance will require during execution. Similar to the execution
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Fig. 9. Simulation execution configuration metamodel.

cost, this parameter can be estimated at design time. The attribute instanceCount of
ModuleInstance defines the number of instances in the execution configuration. This
attribute is added because there may be multiple instances of the same module in
an execution configuration. For example, in a large-scale EW scenario, there can be
hundreds of IR guided missiles and it is not feasible to add one module instance for
each of them to the execution configuration separately.

The relation containedModuleInstances of ModuleInstance class shows the contained
Module Instances. For example, this association can be used to show systems on a
platform such as radars on a surface vessel. The relation relatedModule associates a
ModuleInstance with a Module that is defined in the activity Design Simulation Mod-
ules. ModuleInstance can have zero or more Publications that represent the update
rate and the related element from SDEM. Each publish is associated with an object
class or interaction class defined in SDEM. The update rate shows how many times a
module instance will update a SDEM element in a second.

5.6. Generate Input Parameters for Allocation Algorithm

After defining the static and runtime properties of the simulation participants, the
simulation entities and the physical resources through these steps, we can start
searching for a deployment alternative. That is, we need to allocate the simulation
module instances to the nodes by considering execution costs, memory requirements,
communication costs, processing power and memory capacity restrictions defined in
the simulation design. In fact, the allocation problem that we want to solve here
is equivalent to the Capacitated Task Allocation Problem (CTAP) [Pirim 2006],
which is a special form of the Task Allocation Problem (TAP) [Stone 1977]. The TAP
considers the allocation of a set of tasks to a set of processors according to execution
cost, communication cost, I/O cost, and memory. The CTAP specializes the TAP by
including constraints on memory capacity and processing power. In the literature,
we can observe several studies that describe different versions of the TAP and the
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Fig. 10. Formulation of the problem.

CTAP focusing on different parameters and constraints [Lo 1988; Mehrabi et al. 2009;
Pirim 2006; Ucar et al. 2005].

Formally, in alignment with the general definitions of the TAP and the CTAP, we
define our problem as follows. There exists m tasks, where task i requires mi units of
memory. There are n nonidentical processors, where processor p has a memory capac-
ity of Mp and processing power of Cp. The cost of executing task i on processor p is xip.
In addition, cij denotes the communication cost of tasks i and j. Communication fre-
quencies shall be taken into account while calculating communication costs. A higher
communication frequency between tasks i and j results in a higher communication
cost, cij. We aim to assign each task to a processor without violating the memory and
the processing power constraints of each processor. Therefore, the decision variable of
the problem is:

aip = 1, if task i is assigned to processor p, 0 otherwise.
The problem can be formulated as a 0-1 program (M) similar to Ucar et al. [2005],

Pirim [2006], and Mehrabi et al. [2009], in which the objective function is to minimize
the sum of the completion time of all tasks and the communication overhead. Based
on these definitions, we can formulate our objective as an optimization problem with
binary decision variables.

The activity Generate Input Parameters for Allocation Algorithm derives all of the
parameters of the model (M) that is defined in Figure 10 from the simulation design
defined in the previous activities, as explained in Table II.

5.7. Find Feasible Deployment

The activity Find Feasible Deployment takes the parameter values of the previous
activity as input and aims to find a good feasible deployment alternative, if one is
available. In this context, a good feasible deployment alternative refers to a feasible
deployment alternative that is not too far from an optimal deployment. As such, it
should be noted that the term “feasibility” does not correspond to the feasibility of the
simulation system itself but the feasibility of the selected deployment alternatives.

We can identify different approaches in the literature that can be used to solve dif-
ferent forms of the TAP and the CTAP [Chen and Lin 2000; Hamam et al. 2000; Lo
1988; Mehrabi et al. 2009; Pirim 2006; Ucar et al. 2005]. For a detailed comparison of
these approaches, the reader might refer to Ucar et al. [2005] and Pirim [2006]. Since
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Table II. Deriving CTAP Parameters from the Design

CTAP Parameter Derivation from the design
m tasks Each module instance defined in Simulation Execution Configuration Develop-

ment activity corresponds to a task.
n processors Each node defined in Physical Resource Design activity corresponds to a processor.

Mp The memoryCapacity attribute of each node p defined in Physical Resource Design
activity corresponds to the memory capacity of processor p.

Cp The powerFactor attribute of node p defined in Physical Resource Design activity
corresponds to the processing power of processor p.

mi The requiredMemory attribute of ModuleInstance i defined in Simulation Execu-
tion Configuration Development activity corresponds to memory requirement of
task i.

xip The nodeExecutionCostTable attribute of ModuleInstance i defined in Simulation
Execution Configuration Development activity defines execution cost for node p
which corresponds to cost of executing task i on processor p.

cij The communication cost cij for tasks i and j is calculated by using:
— Publications defined in Simulation Execution Configuration Design activity,
— Subscriptions defined in Publish/Subscribe Relations of Simulation Modules

Design activity,
— Object model elements defined in Simulation Data Exchange Model Design

activity

our deployment alternative selection problem defined in Section 5.6 is a form of CTAP,
the corresponding model (M) provided in Figure 10 can be solved through one of the
proposed approaches. Please note that we do not mandate a particular algorithm or
tool but recommend using a practical one for the corresponding case. We focused on
Pirim [2006] and Mehrabi et al. [2009], since their problem definition resembles our
problem. Pirim [2006], redefines the CTAP as a quadratic problem with capacity con-
straints, and solves the problem through a commercial optimization problem solver,
CPLEX [IBM 2010]. Pirim [2006] also compares the results of CPLEX with several
alternative methods for solving CTAP. Mehrabi et al. [2009] proposes a heuristic algo-
rithm to address the CTAP, and considers execution costs, communication costs, and
memory requirements similar to our problem.

If a feasible deployment is found, the output of this activity is a table that repre-
sents the mapping of tasks (module instances) to processors (nodes). If the algorithm
was not successful in finding a feasible solution, the process returns to the activity
Develop Simulation Execution Configuration. This can be repeated several times un-
til a feasible deployment is found. If it appears that a feasible deployment cannot be
found by changing just the simulation execution configuration, then the designer can
decide to return to the beginning of step 3 to refine/update the design. To find a feasible
design alternative, the cost parameter values that are extracted from the simulation
design including memory/execution costs and the communication cost between mod-
ules can be adapted. Even though the optimization of the PADS design parameters is
highly dependent on the nature of the specific application (in our case, the EW Sim-
ulation system), we provide the following generic recommendations to find a feasible
deployment alternative.

(1) Reduce the Update Rates in the Simulation Execution Configuration. The update
rates affect the communication cost between publisher and subscribers. Moreover,
the higher update rates results in higher execution costs for publishers. Likewise,
to optimize the PADS design, the update rates of some publications in the simu-
lation execution configuration can be reduced. For example, in our case study, the
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Fig. 11. Deployment metamodel.

update rates for surface vessels can be reduced because they are moving slow when
compared to air platforms.

(2) Check Subscribed Data Sets. A subscription causes the delivery of the updates of
the specific data class at runtime. In many cases, however, the subscriber only re-
quires a specific set of data class attributes (e.g. position of the object). As such,
the PADS design can be optimized to provide more precise subscription definitions
with respect to the needs of data set requirements. For example, in our case study,
the propagation model only requires the position and the orientation of the plat-
forms, likewise it should only subscribe to base Platform class instead of specific
platform classes such as Aircraft, Surface Vessel, Submarine, etc.

(3) Check Reliability of the Data. In the Publish/Subscribe model, a data object can be
shared among participants with two different reliability levels: reliable and best
effort. Sharing data in a reliable manner is higher than best effort sharing with
respect to the communication cost. Likewise, the reliability level of the data ob-
jects could be reduced to best effort, if possible, to further optimize the simulation
design. For example, in our case study, the position information of the platforms is
frequently updated and can be defined as best effort if the subscribers are using
dead reckoning methods [Fujimoto 1999] for calculating platform positions.

(4) Upgrade Physical Resources. If all software-level design optimizations described
here are applied and it is still not possible to find a feasible deployment alternative,
the only alternative is upgrading the physical resources.

5.8. Generate Deployment Model

The task-processor mapping table that is the output of the previous activity will be
used in the activity Generate Deployment Model to map this to a deployment model.
The deployment metamodel as shown in Figure 11 contains members and nodes. Each
member is deployed on one of the nodes defined in Physical Resource Model. One or
more module instances can be deployed on a member.

6. TOOLS AND APPLYING THE APPROACH TO THE CASE STUDY

To support the activities of the approach described in the previous section, we devel-
oped an IDE (Integrated Development Environment) tool that provides an integrated
development environment for designing the simulation system and automatic genera-
tion of deployment models.
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Table III. Time to Generate Values for Scenarios using an Implementation of CTAP Algorithm

Number of Simulation Entities Number of Nodes Time to generate (seconds)
5 4 20

17 4 50
81 4 182

141 5 325
1596 6 360

The automatic deployment model generation algorithm that is used by the tool is
given in the Online Appendix B.

We have used the tool for the case study that is described in Table I. We have defined
the Simulation Data Exchange Model, Simulation Modules, Publish/Subscribe Rela-
tions of the modules and Physical Resource Model (with 6 heterogeneous nodes with
different processor and memory capacities). After that, we have defined a sample ex-
ecution configuration for the system and executed the feasible deployment generation
algorithm. An example result of the generation algorithm is shown in Figure 1 in On-
line Appendix C. As it can be observed from the figure, the resulting deployment model
includes 6 nodes as it has been defined. Further, the simulation module instances de-
fined in the execution configuration model have been deployed to the physical nodes to
optimize the values for the metrics execution cost, communication cost and resource re-
quirements. A close analysis of the generated alternative shows that the total resource
requirements of the simulation module instances that are deployed on each node do
not exceed the capacity of the corresponding node. Further, based on the adopted ge-
netic algorithm, it appears that simulation module instances that interact frequently
and which have high communication costs, are as much as possible co-located on the
same node. For example, simulation module Propagation Model appeared to have fre-
quent interaction with other simulation modules in the simulation design, and we can
observe that it has a high update-rate. Likewise, the adopted algorithm has allocated
Propagation Model in a node together with as much as possible simulation module
instances it interacts with. The remaining simulation instances interacting with Prop-
agation Model that would exceed the resource capacity of this node are deployed to
other nodes in a similar manner.

In this particular case, we have adopted the genetic algorithm as defined by Mehrabi
et al. [2009] for the CTAP algorithm. The generation algorithm is implemented in Java
and executed on an Intel Core I-7 2.70-GHz 64-Bit computer with 4 GBytes of RAM. As
an illustration, the performance results for a number of scenarios is shown in Table III.
The last row represents the scenario that is used in this case example. Each scenario
has been actually defined, executed and the time to generate has been measured. It
can be observed that the generation times of deployment alternatives are acceptable
for evaluation at design time. Even for the case study with 1596 simulation entities,
we were able to generate the deployment alternative in 360s. Please also note that
different algorithm implementations or tools might be used to obtain different results.
However, since the approach does not mandate a particular implementation of the
CTAP algorithm, we consider the analysis of the algorithm implementations beyond
the scope of this work.

7. DISCUSSION

In this article, we have provided a concrete approach and tool support for deriving
a feasible deployment alternative based on the simulation system and the available
physical resources. The approach supports the realization of two recommended
tasks defined in DSEEP step 3 (Design Simulation Environment). The necessity and
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practical value of the approach is based on the recommendations as defined by the
IEEE standard DSEEP. Both the approach and the corresponding tools assist the
designer to derive a feasible deployment model in early system design phase.

A valid question in this context is whether the adopted algorithm leads to a solution
and whether this solution is optimal with respect to the metric values. To define the
realization of the approach, we have applied the well-known CTAP solving algorithms
that have been widely addressed in the literature. The approach does not mandate the
usage of a particular algorithm but provides the required input parameters for these
algorithms. The correctness of these algorithms has been discussed in the correspond-
ing articles and based on this we can assume that a good feasible solution is derived.
In addition, depending on the state of the system, different CTAP solving algorithms
may be used to optimize the metric values. For the comparison of the algorithms we
refer to, for example, Ucar et al. [2005] and Pirim [2006]. We have also defined general
rules to improve the CTAP cost parameter values to be able to find a feasible deploy-
ment alternative with respect to the project requirements, if the original parameters
do not result in a feasible solution.

Besides of the algorithmic performance, we also focus on the organization level per-
formance gain. Existing practices usually base the generation of the deployment model
on the expert judgment or defer the generation of the deployment model to the imple-
mentation phase. Unfortunately, expert judgment is limited due to the manual effort.
We go one step further by integrating the existing CTAP solution techniques early in
the system design, and automate the decision process to support the evaluation of the
design alternatives by the experts. As stated before in Section 4 (problem statement),
deferring the definition of the deployment to the development phase might lead to
nonfeasible implementations which will require iterating the design and the related
project lifecycle artifacts such as detailed design, implementation, test artifacts, doc-
umentation, etc. On its turn, this will lead to delays and higher cost in the project.
This is also the reason why DSEEP recommends evaluating the design alternatives in
the early phases of the development life cycle. At design time, the values for execution
cost and memory requirements are estimated while the communication costs are calcu-
lated. Obviously, the better the estimation the more feasible the deployment model will
be. The estimation of the values can be enhanced by analyzing existing similar models
or by developing prototypes. Likewise, the identified deployment model may be refined
and optimized if more accurate information is available in subsequent phases of the
project lifecycle. The approach itself can actually be used at any time during the project
life cycle and, if possible, even after the system has been developed. In the latter case,
the measured runtime parameter values can be used, instead of estimated values, to
derive the deployment model. The runtime parameter values can be, for example, col-
lected using Management Object Model (MOM) services as defined in IEEE [2010b]
for HLA based simulation systems. A valid question in this context is whether the cost
of changing the selected deployment alternative is reasonable or not. In fact, changing
the selected deployment alternative does not require changing the simulation mod-
ules, because the publish/subscribe paradigm abstracts the location of the publishers
from subscribers and vice-versa. Selecting a different deployment alternative, as such,
will only require changing the execution locations of the simulation modules (e.g., by
changing a configuration file that defines the location of each simulation module).

The approach is developed for simulation architectures that adopt publish-subscribe
model, such as HLA and TENA. However, the approach can also be used for other
architectures that adopt publish-subscribe model, such as OMG DDS [OMG 2006]. The
basic steps as defined in Figure 5 will remain the same and, if needed, with relatively
small efforts the realization of the steps can be updated for the target architecture. For
example, the data exchange model may need to be changed due to the particular data
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exchange models for the given infrastructure. In our future research, we will analyze
this in more detail.

The approach has been defined based on the actual problems that were experienced
in a real industrial context. In addition, the case study in this article has been defined
reflecting the similar complexity level as we have experienced in our earlier Electronic
Warfare simulation projects. The case that we have defined is inspired from a real in-
dustrial project and includes 1596 simulation entities that were deployed on 6 nodes.
In general, this is a realistic case. Unfortunately, due to confidentiality reasons, com-
pany names and project names have not been given.

In large-scale parallel and distributed simulation systems, many simulation objects
may exist and communicate with each other, which can result in increased communi-
cation overhead across the network. The Data Distribution Management (DDM) is a
set of optional services to optimize the communication among the different simulation
members, typically by limiting and controlling the data exchanged in a simulation. As
such, using DDM services in PADS execution can affect the communication patterns
among the nodes. DDM requires knowing the values of the exchanged data at runtime,
for dynamically deciding the transmission of the data to the relevant subscribers. In
our approach, though, we have explicitly focused on deriving feasible decomposition
alternatives at design time where values of the simulation data objects are not nec-
essary yet. However, in case DDM is used, it is required to consider the actual data
values to further optimize the deployment alternative. With our approach, the derived
feasible alternatives will form an improvement at design time whereas DDM optimizes
the communication among the simulation members at runtime.

The scalability of the approach could be analyzed with respect to the number and
characteristics of simulation entities, the number of nodes, and the adopted imple-
mentation of the algorithm. In our particular case, the approach seemed to generate
deployment models in a reasonable time as shown in Table III. In our future work we
will also consider the analysis and comparison of various algorithm implementations
to further optimize the approach.

In the problem formulation of CTAP in Section 5.6, different processors can perform
a task with different costs. The rationale behind minimizing the sum of total process-
ing costs is to assign each task to the processor that can perform it with minimum
cost. The given CTAP formulation may cause imbalanced deployments if the total ca-
pacity of the processors is quite large with respect to the total execution cost of tasks.
We do not consider this always as a bad assignment because this might be favorable
for reducing the communication costs. In such a situation, the required action can be
different according to the targeted objective. If the objective is to find the minimum
necessary resource configuration, then the physical resources can be reduced. How-
ever, the physical resources can have been deliberately defined to be large in order
to enhance the level of parallelism. As such, we have not provided the constraint for
maximum load on each processor. Yet, we consider the load-balancing issue together
with the trade-off analysis between resource usage and communication costs as an
interesting future work.

8. RELATED WORK

Various approaches can be identified in the literature that can be used to support the
DSEEP including conceptual model development approaches [Karagöz and Demirörs
2007; SISO 2006], tool support [Parr 2003; VT MAK 2010a] and simulation design
approaches [Çetinkaya and Oguztüzün 2006; Topçu et al. 2008]. Yet, despite the benefit
of these approaches, no adequate and explicit support for selecting and evaluating the
deployment alternatives have been provided so far.
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Different metamodels for modeling parallel and distributed simulations have been
provided in the literature. BOM (Base Object Model) Template Specification [SISO
2006] defines the semantics and the syntax for specifying aspects of the conceptual
model of simulations that can be used and reused in the design, development, and
extension of interoperable simulations. A BOM is a platform independent model that
contains conceptual entities and conceptual events representing items in the real world.
Further, BOMs define the interactions among the simulation items in terms of patterns
of interplay and state machines. A BOM includes an interface description (Object Model
Definition) that is defined using the High Level Architecture Object Model Template
(HLA OMT) [IEEE 2010c]. The HLA OMT constructs include object classes, interaction
classes, and their attributes and parameters. In the literature different realizations of
the HLA OMT have been proposed [Çetinkaya and Oguztüzün 2006; Parr 2003]. The
Simulation Data Exchange Metamodel that we have defined in this article enhances
the HLA OMT for supporting the derivation of feasible deployment alternatives.

Based on the conceptual models as defined, for example, using BOM, simulation
systems can be designed using the UML [Fowler 2003] or UML profiles [Çelik 2005;
Guiffard et al. 2006]. In Topçu et al. [2008], Live Sequence Charts [Brill et al. 2004]
are adopted to model the behavior of federates in simulation systems.

To support the automation of the development of simulation systems, model-driven
development has been promoted; see, for example, Tolk [2002]. In this context, for ex-
ample, in the OMG’s Model Driven Architecture (MDA) approach [Frankel et al. 2004;
Schmidt 2006] a distinction is made between platform independent models (PIM) and
platform specific models (PSM). A PIM defines a model of the system independent
of the platform it abstracts away from. A PSM defines a refinement of the PIM us-
ing platform specific concern details. PSMs are automatically or semi-automatically
transformed from PIM. In a similar sense, PSM can be used to generate code that
is specific to the adopted programming language platform. Using the MDA approach,
the developed metamodel of the simulation system can be used to define platform inde-
pendent models (PIM) that abstract away from simulation architectures such as HLA,
DIS, and TENA. The metamodels that we have defined in this article are all platform
independent and we can derive platform specific models from these. For example, the
Simulation Data Exchange Model (SDEM) is a PIM that can be used to define PSMs
for particular simulation architectures. On the other hand, the HLA Federation Object
Model (FOM) is a PSM that is derived from this SDEM.

Our approach supports DSEEP Activity 3 which is “Design Simulation Environ-
ment” as explained before. Different approaches have been carried that can be used
to support the DSEEP. For example, Karagöz and Demirörs [2007] define a method-
ology to support DSEEP Activity 1, “Define Simulation Environment Objectives” and
Activity 2, “Perform Conceptual Analysis”. BOM [SISO 2006] provides a solution for
DSEEP Activity 2. The HLA Object Model Metamodel [Çetinkaya and Oguztüzün
2006], and FAMM [Topçu et al. 2008] support the DSEEP Step-3, Design Simulation
Environment. VR Forces [VT MAK 2010b], VR Vantage XR [VT MAK 2010c], and the
code generation tool defined in [Adak et al. 2010] support the DSEEP Step-4, “Develop
Simulation Environment”. The design and code generation tools given in [Guiffard
et al. 2006; Parr 2003] support both DSEEP Step-3 and Step-4. The Pitch Commander
tool [Pitch Technologies 2009] and RTI Spy module of MAK RTI [VT MAK 2010d]
support DSEEP Step-5, “Plan, Integrate and Test Simulation Environment”.

9. CONCLUSION

To realize the execution of the Parallel and Distributed Simulation Systems (PADS)
different simulation infrastructures have been defined in the literature such as HLA,
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DIS and TENA. One of the important problems in PADS is the allocation of the dif-
ferent applications to the available physical resources. Usually, the deployment of the
applications to the physical resources can be done in many different ways. In this ar-
ticle we have provided a concrete approach for deriving a feasible deployment alterna-
tive based on the simulation system and the available physical resources at the design
phase. The approach has been integrated in the Distributed Simulation Engineering
and Execution Process (DSEEP), which includes a recommended step for evaluation
of the performance of the simulation systems at the design phase. To illustrate the
approach, we have adopted a realistic case study concerning the development and in-
tegration of a simulation system that contains simulators in the context of Electronic
Warfare (EW). We have defined several models that are needed in the approach in-
cluding Simulation Data Exchange Model, Simulation Modules, Publish-Subscribe Re-
lations, Physical Resources, and Simulation Execution Configuration. Based on these
models the necessary parameter values for the CTAP algorithm have been defined to
generate a feasible deployment alternative. The generation times of the deployment
alternatives were acceptable for evaluation at design time.

Obviously, the approach would not be feasible without adequate tool support.
Therefore, we have developed an IDE tool that provides an integrated development
environment for designing the simulation, automatic generation of CTAP algorithm
parameters, and the automatic generation of the deployment alternative with respect
to the defined parameter values. We have used a relatively large case study that could
be easily supported in the tool, and we believe that the tool can be used for even larger
case studies without substantial problems.

The approach builds on various metamodels that we have defined, and which are
used to support the automatic generation of feasible deployment alternatives. In our
future work we will focus on further automation of the simulation development pro-
cess using the developed metamodels. In particular, we will focus on automatic code
generation for HLA using the metamodels. This will include the generation of mem-
ber templates and the mapping of data exchange model elements defined in SDEM to
the target platform. Further, we aim to integrate behavioral modeling to consider also
dynamic aspects of simulation systems.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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