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The problem of component estimation from a multicomponent signal in additive white Gaussian noise is considered. A parametric
ML approach, where all components are represented as a multiplication of a polynomial amplitude and polynomial phase term, is
used. The formulated optimization problem is solved via nonlinear iterative techniques and the amplitude and phase parameters
for all components are reconstructed. The initial amplitude and the phase parameters are obtained via time-frequency techniques.
An alternative method, which iterates amplitude and phase parameters separately, is proposed. The proposed method reduces
the computational complexity and convergence time significantly. Furthermore, by using the proposed method together with
Expectation Maximization (EM) approach, better reconstruction error level is obtained at low SNR. Though the proposed method
reduces the computations significantly, it does not guarantee global optimum. As is known, these types of non-linear optimization
algorithms converge to local minimum and do not guarantee global optimum. The global optimum is initialization dependent.

1. Introduction

In many practical signal applications involving ampli-
tude and/or phase-modulated carrier signals, we encounter
discrete-time signals which can be represented as

s[n] = a[n]e j∅[n], (1)

where a[n] and ∅[n] are the real amplitude and phase
functions, respectively. Such signals are common in radar,
sonar applications, and in many other natural problems. A
multicomponent [1] signal is a linear combination of these
types of signals and is given by

s[n] =
L∑

i=1

ai[n]e j∅i[n], (2)

where si[n] = ai[n]e j∅i[n] is the ith component and L is the
number of components. Clearly, the linear decomposition
of the multicomponent signal in terms of such components
is not unique. Some other restrictions should be put on
the components to have a unique decomposition [1]. In

general, a component is the part of the multicomponent
signal which is identifiable in time, in frequency, or in mixed
time-frequency plane. Therefore, we will assume that the
different components are well separated in time-frequency
plane and have a small instantaneous bandwidth compared
to separation between components.

The main problem is to separate the components from
each other or to recover one of the components. In general
the approaches for the solution are those which use non-
parametric time-frequency methods and those of parametric
ones. In case where the desired signal component is separable
or disjoint in one of time or frequency domain, then, with
some sort of time or frequency masking, the component can
be estimated. When the signals are disjoint either in time
or in frequency domain, then time-frequency processing
methods are needed for component separation. But, in some
cases even though the components are not separated in time
or in frequency, the Fractional Fourier Transform [2–4] can
be used to separate the components at the fraction, where
they are disjoint.

Time Frequency Distribution- (TFD-) based waveform
reconstruction techniques, for example, the one in [5],
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synthesize a time-domain signal from its bilinear TFD. In
these algorithms, a time-domain signal whose distribution is
close to a valid TFD, in a least-squares sense, is searched for.

The well-known time-frequency method is the Wigner-
Distribution [6] based signal synthesis [5, 7–9]. The main
drawback related to time-frequency methods is the cross-
terms and resolution of the time-frequency representations
[10]. Therefore, there have been many efforts to obtain cross-
term-free and high-resolution TFDs [11–13].

In parametric model a signal or component is repre-
sented as a linear combination of some known basis func-
tions [14, 15], and the component parameters are estimated.
In many radar and sonar applications the polynomials are
good basis functions.

If the phase and amplitude functions in (1) are poly-
nomials and amplitude function is constant or slowly
varying, the Polynomial Phase Transform (PPT) [14, 16] is
a practical tool for parameter estimation. While the method
is practical, it has difficulties in time-varying amplitude and
multicomponent cases [17]. It is also suboptimal since the
components are extracted in a sequential manner.

Another solution is the ML estimation of the parameters.
The related method is explained in [15, 17]. The ML esti-
mation of the parameters requires a multivariable nonlinear
optimization problem to be solved. Therefore, the solu-
tion requires iterative techniques like nonlinear conjugate
gradient (NL-CG) or quasi-Newton-type algorithms and is
computationally intensive [15, 17]. Another requirement is
a good initial estimate which avoids possible local minima.
But it estimates all parameters as a whole and is optimal in
this respect. Also it does not suffer from cross-terms related
to time-frequency techniques.

In [14] an algorithm is explained which extracts the
components using PPT in a sequential manner. In [18] a
mixed time-frequency and PPT-based algorithm is proposed.
The examples with the ML approach are given in [15, 17].

In this paper a method is proposed which uses ML
estimation. Similar to [18], the initial estimates are obtained
from time-frequency representation of the multicomponent
signal and then all parameters are estimated by ML estima-
tion. Since ML estimation requires large amount of computa-
tion, a method is proposed to reduce the computations. The
proposed method iterates amplitude and phase parameters
separately by assuming that the other is known. The method
is different from the ones given in [15, 17], where the
amplitude parameters are eliminated analytically and the
resultant equivalent cost function is minimized.

Eliminating amplitude parameters analytically results in
a cost function which has less number of parameters. But
it is computationally more complex in terms of function
and gradient evaluations, which are needed in nonlinear
optimization iterations.

With the proposed method, since the cost functions for
separate amplitude and phase parameters are less complex,
the amount of computation is reduced compared to case
where amplitude parameters are eliminated analytically. Fur-
thermore, by using the proposed method in an expectation
maximization loop, a better reconstruction error level is
obtained. The results are verified with simulations.

In Section 2 we describe the notation and give the
explanation of the ML estimation approach which is given
in [15]. In Section 3 we describe the proposed method.
In Section 4 we compare the computational cost of the
proposed method with the case where amplitude parameters
are eliminated analytically. In Section 5 we give a brief expla-
nation of Expectation Maximization (EM) and how to use
the proposed alternating phase and amplitude minimization
method in an EM loop. In Section 6 we drive the Cramer-
Rao Bounds on mean square error related to component
reconstruction. In Section 7 we present the simulation
results. First taking Cramer-Rao bounds as the reference we
compare the proposed method with the one given in [15] in
terms of mean square reconstruction error and then compare
their performance in terms of computational cost.

2. Problem Formulation and ML Estimation

Let x[n] be a discrete-time process consisting of the sum of
a deterministic multicomponent signal and additive white
Gaussian noise given by

x[n] =
L∑

i=1

ai[n]e j∅i[n] +w[n], n = 0, 1, . . . ,N − 1, (3)

wherew[n] is the complex noise process. Denoting gk[n] and
pk[n] as the real-valued basis functions for amplitude and
phase terms, respectively, we will have

ai[n] =
Pi∑

k=0

ai,kgk[n], (4)

∅i[n] =
Qi∑

k=0

bi,k pk[n], (5)

where ai,k and bi,k are the real valued amplitude and phase
coefficients for the ith component. Similarly Pi + 1 and
Qi + 1 are the number of coefficients for amplitude and
phase functions of the ith component. In general, basis
functions can be any functions which are square integrable
and spans the space of real and integrable functions in a given
observation interval. Also they can be selected to be different
for amplitude and phase and for each component. In this
paper they are assumed to be polynomial for both amplitude
and phase and for all components. Therefore, Pi and Qi

corresponds to orders for amplitude and phase polynomials
of the ith component, respectively.

Defining the amplitude and phase coefficients of the ith
component by the vectors

ai =
[
ai,0 ai,1 ai,2 · · · ai,Pi

]T
,

bi =
[
bi,0 bi,1 bi,2 · · · bi,Qi

]T
,

(6)

we can define parameter vectors for all the components as

a =
[

aT1 aT2 aT3 · · · aTL
]T

,

b =
[

bT1 bT2 bT3 · · · bTL
]T
.

(7)
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We will use the following notation

x = x[n] =
[
x[0] x[1] x[2] · · · x[N − 1]

]T
, (8)

where

n = [0, 1, 2, . . . ,N − 1]T ,

w = w[n] =
[
w[0] w[1] w[2] · · · w[N − 1]

]T
,

e j∅i[n] =
[
e j∅i[0] e j∅i[1] e j∅i[3] · · · e j∅i[N−1]

]T
,

(9)

where the bold characters n, x, w, and e j∅i[n] are all N × 1
vectors. With these definitions the following matrices can be
defined

Φi =
[
g0[n] •e j∅i[n] g1[n] •e j∅i[n] g2[n]

•e j∅i[n] · · · gPi[n] •e j∅i[n]
]

,
(10)

Φ = [Φ1Φ2Φ3 · · ·ΦL], (11)

where “•” in (10) denotes component-by-component mul-
tiplication of vectors. Φis are N × (Pi + 1) matrices which
contain the phase parameters only and are defined for each
component. The matrix Φ is an N × ∑L

i=1(Pi + 1) matrix
and again contains the phase parameters for all components.
With these definitions the expression in (3) can be written in
matrix notation as

x = Φa + w. (12)

In this equation the amplitude parameter vector a enters the
equation in a linear way, while the phase parameter vector b
enters the equation in nonlinear way through Φ.

Now the problem is to estimate combined parameter

vector θ = [bTaT]
T

given observed data vector x =[
x[0] x[1] x[2] · · · x[N − 1]

]
T . It is assumed that the

observed data length N is sufficiently greater than the total
number of estimated parameters given by M = ∑L

i=1{(Pi +
1) + (Qi + 1)}.

The number of components, since components are
assumed to be well separated on TFD, can be estimated from
TFD. But here we will assume that L is known. Similarly Pi
andQi are assumed to be known. A method to estimate them
can be found in [14, 16].

With the additive white Gaussian noise assumption, the
probability density function (pdf) of data vector x, given the
parameter vector θ and logarithmic likelihood function, is
given by

p(x | θ) = 1

(πσ2)N exp
{
− 1
σ2
‖x −Φa‖2

}
, (13)

Λ = log p(x | θ) = −N(lnπ + 2 ln σ)− 1
σ2
‖x −Φa‖2,

(14)

where σ2 is the noise variance? Since x and Φ are com-

plex, by defining x =
[

Re{x}T Im{x}T
]T

and Ψ =
[

Re{Φ}T Im{Φ}T
]T

, the log-likelihood function can be
rewritten in real quantities as

Λ = −N(lnπ + 2 ln σ)− 1
σ2
‖x−Ψa‖2. (15)

Maximizing log likelihood in (15) corresponds to minimiz-
ing f (a, b) = ‖x−Ψa‖2. For a given phase vector b, this
cost function is quadratic in amplitude vector a. Therefore,
amplitude vector a can be solved analytically as

â =
(
ΨTΨ

)−1
ΨTx. (16)

Using this separability feature of the parameter set and
substituting (16) in (15) the original log-likelihood function
can be replaced by

Λ = −N(lnπ + 2 ln σ)− 1
σ2
J(b), (17)

where

J(b) = xTP⊥Ψx, (18)

P⊥Ψ = I− PΨ, (19)

PΨ = Ψ
(
ΨTΨ

)−1
ΨT . (20)

While the original cost function was a function of a and b,
this new augmented function is a function of b only. Like
the original cost function this new cost function J(b) is also
nonlinear in b. Therefore, minimization requires iterative
methods like nonlinear conjugate gradient or quasi-Newton-
type methods. These iterative methods require also a good
initial estimate to avoid possible local minima. In [15] initial
estimates are obtained by PPT. After b is solved iteratively, a
is obtained by (16).

3. Proposed Method for Iterative Solution

The separability feature of the original cost function in (15)
allows us to reduce the number of unknown parameters
via analytical method. Since the resultant cost function
is just a function of phase parameters, we will call this
method Phase-Only (PO) method. Though PO deals with
reduced set of parameters, the resultant cost function J(b) is
highly nonlinear and more complicated in terms of function
and gradient evaluations. This is a disadvantage when the
minimization of the reduced cost function is to be obtained
via nonlinear iterative methods. Therefore, in this paper,
an alternative method is proposed. The method carries out
two minimization algorithms in an alternating manner. The
method divides the original minimization problem given by
(15) into two subminimizations. The idea is to find one
parameter set assuming that the other set is known. First

assuming that the initial phase estimate b̂0 is known, the cost
function

fa(a) = f
(

a, b̂0
)
= ∥∥x − Ψ̂

0
a
∥∥2 (21)
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is formed and minimized, and a solution â1 is obtained,

where Ψ̂
0

is the matrix obtained by initial phase parameter

estimate b̂0. Then using this amplitude estimate â1 a second
cost function

fb(b) = f
(

â1, b
) = ∥∥x −Ψâ1

∥∥2 (22)

is formed and minimized, and a solution b̂1 is found.
These two minimizations constitute one cycle of proposed

algorithm. By repeating this cycle, taking b̂1 as the new

initial phase estimate, the estimates â2 and b̂2 are obtained.
By repeating the cycles sufficiently many times, the final

estimates â∗ and b̂∗ are obtained as shown in

b̂0 −→ â1 −→ b̂1 −→ â2 −→ b̂2 −→ â3 −→ b̂3 · · · â∗ −→ b̂∗.
(23)

The cost function for amplitude parameters fa(a) is
quadratic. Therefore, the solution can be obtained either
analytically or via conjugate gradient (CG). But the cost
function for phase parameters fb(b) is nonlinear. Therefore,
we need to use nonlinear methods.

The proposed method, which we will call, from now
on, Alternating Phase and Amplitude (APA) method, is a
generalization of the so-called coordinate descent method
[19], where the minimization of a multivariable function
is done by sequentially minimizing with respect to a single
variable or coordinate and keeping the others fixed. By
cyclically repeating the same process a minimum for the
function is searched. A generalization of coordinate descent
method is the Block Coordinate Descent (BCD) method,
where the variables are separated into blocks containing
more than one variable and the minimization is done over
a block of variables and keeping the others fixed. In our case
we have two blocks, and the minimization over one block
is quadratic. Though the indications on the convergence of
similar algorithms are given in [19], the theoretical proof
regarding the convergence of proposed method is beyond the
scope of this work, and we will content with the simulation
results.

The main trick with proposed algorithm is that during
amplitude and phase minimizations we do not have to
find the actual minimum. What we are looking for is a
sufficient improvement from the current estimate that we
have. Therefore, for the phase iterations rather than iterating
down to the convergence point we can iterate a sufficient
number of iterations to get some improvement. The same
is valid for the minimization of fa(a) if we decide to
use conjugate gradient. But overall alternating phase and
amplitude iterations will allow us to converge to a minimum.
The first minimization can be chosen to be the minimization
of fb(b) instead of fa(a). Then the sequence in (23) will start
by â0. The decision about which one to start with should be

based on which initial parameter vector, â0 or b̂0, is more
close to its actual. This cannot be known in advance, but,
based on success of the method by which the initial estimates

â0 and b̂0 are obtained, a decision can be given.
Like J(b), fb(b) is also nonlinear, and we need iterative

methods like nonlinear conjugate gradient or quasi-Newton.

These methods converge to local minimum and do not
guarantee global minimum unless initial estimates are
sufficiently close to global optimum. Therefore, we need to
find a method which gives us initial estimates. While in
[15] initial estimates are obtained by PPT, in this paper we
obtained the initial estimates from time-frequency methods.
The time-frequency distribution we used is the Short-Time
Fourier Transform (STFT).

At first cycle, the phase iterations will be started by b̂0 =
b̂TF where b̂TF is the estimate obtained from time-frequency
method. In later cycles, the previous cycle estimates will
be used. If minimization of fa(a) is done analytically, then
we will not need any initial value. But, if we decide to use
iterative methods again, we can use initial estimate â0 = âTF

obtained from time-frequency method.
As we stated before we assume that the different compo-

nents are well separated in time-frequency plane and have
a small instantaneous bandwidth; that is, the components
are not crossing each other. Therefore, by using magnitude
STFT, the ridges of each component are detected on TF
plane. The algorithm detects the ridges on TF plane by
detecting local frequency maximums for each time index.
Also by using a threshold the effect of noise is reduced, and
the IF is detected at points where component is stronger
than noise. Therefore, even though when the weak end of
some components is interfering on TF plane with some
other stronger component, the IF of stronger component is
detected at that point, but the week part of other components
is not detected. But the estimates obtained with this method,
though they are not the best ones, will be sufficient as initial
parameters.

Then from the ridges the instantaneous frequency (IF)

samples ( f̂i[n]) for each component are estimated and by
polynomial fit corresponding polynomial is obtained. Then
by integrating this polynomial the phase function ∅̂i[n]

and polynomial coefficients b̂TF
i for each component are

obtained. By dechirping x[n] by e− j∅̂i[n] and low-pass
filtering the result, the amplitude estimate âi[n] is obtained
for each component. Again by polynomial fit âTF

i is obtained
for each component. The overall steps for the proposed APA
algorithm are summarized in Table 1.

The initial estimates are obtained from signal TFD by
steps 1–5 given in Table 1. Some other methods could also
be used. But in this paper the main focus is on the last
step. Therefore, though the steps 1–5 were implemented, the
efficiency and performance of this part have not been studied
in detail. The only concern was to get initial estimates which
are close enough to actual values to avoid local minima if
possible. But it should be noted that for the comparison
purposes the same initial conditions will be used for the
proposed APA algorithm and the phase-only method given
in [15].

An important issue that we need to question is the
uniqueness of the solution to the optimization problem in
(15). Since we express a component in terms of amplitude
and phase functions and these functions are expressed in
terms of basis functions, we need to question the uniqueness
of the global optimum at three levels.
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Starting form last level, given a phase function ∅i[n],
uniqueness of the parameter vector bi for this function can
be assured if the base functions pk[n], k = 0, 1, . . . ,Qi, are
independent of each other. The same is valid for amplitude
function ai[n] and parameter vector ai.

Uniqueness at the amplitude and phase function level
(model functions level) will not be assured due to phase
ambiguity, because if ai[n] and ∅i[n] constitute a compo-
nent then −ai[n] and∅i[n] + π will also constitute the same
component. Therefore, even though ai is unique for ai[n]
and bi is unique for ∅i[n], the pair ai[n] and ∅i[n] will not

be unique for si[n] and, as a result, θi = [bTi aTi ]
T

will not
be unique for si[n]. This shows that the global optimum is
not unique in terms of model functions, hence in terms of

parameter vector θ = [bTaT]
T

.
On the other hand uniqueness at signal si[n] or com-

ponent level will be possible if the components are well
separated on TFD [1]. In simple terms if no component is
coinciding at the same time-frequency point with some other
component then the components which constitute the sum
in (2) can be found uniquely. Two extreme cases are those
where all components are separated in time domain or in
frequency domain.

Therefore, even though uniqueness is not satisfied at
model functions level hence at parameter level, it can be
satisfied at component or signal level with the restrictions
on time-frequency plane. In fact, the solution ambiguity
in model or parameter space will not affect the final
performance of the component reconstruction as long as

the combination of model functions or model parameters
gives the same signal or component. In our case we extract
the initial parameters for a component from related TF
area which is disjoint. Therefore, assuming that the initial
parameters are close enough to global optimum, we use
these restrictions, which will make the component level
uniqueness possible, at the beginning.

On the contrary to the assumptions made on time
frequency support of components, in simulations, one
example (Ex2) is selected such that the components are
slightly crossing each other. But most of the parts are
nonoverlapping, and these parts allow estimation of an initial
IF which will help uniqueness, because, we have assumed in
Section 2 that the phase orders Qis are also known. With this
assumption, the set of ambiguous IF estimates hence phase
estimates are eliminated for this example, because fitting
other ambiguous IFs to the known polynomial order will
result in higher fit error. Therefore, for similar examples, the
time-frequency restriction can be slightly relaxed.

3.1. Computational Cost Analysis. With the phase-only
method the resultant cost function J(b) is given by (18). For
the sake of computation ease if we reorganize this equation
we will have

J(b) = xTP⊥Ψx = xTx −
(
ΨTx

)T(
ΨTΨ

)−1
ΨTx, (24)

where Ψ = [Ψ1 Ψ2 Ψ3 · · ·ΨL] and Ψi is given by

Ψi =
⎡
⎣

Re{Φi}
Im{Φi}

⎤
⎦ =

⎡
⎣
g0[n]• Cos(∅i[n]) g1[n]• Cos(∅i[n]) · · · gPi[n]• Cos(∅i[n])

g0[n]• Sin(∅i[n]) g1[n]• Sin(∅i[n]) · · · gPi[n]• Sin(∅i[n])

⎤
⎦, (25)

where “•” again denotes component-by-component multi-
plication of vectors.

The gradient of J(b) is given by [15]

∇J(b) = −2xTP⊥ΨB, (26)

where

B = [B1, B2, . . . , BL],

Bi =
[

b̃i,0, b̃i,1, b̃i,2, . . . , b̃i,Qi

]
,

b̃i,k = ∂Ψi

∂bi,k
RT
i x k = 0, 1, . . . ,Qi,

R = Ψ
(
ΨTΨ

)−1 = [R1, R2, . . . , RL].

(27)

The derivative of Ψi with respect to bi,k is computed as
follows:

∂Ψi

∂bi,k
= Ψ̃i •Gk, (28)

where Ψ̃i is the reordered version of Ψi given by

Ψ̃i =
[− Im{Φi}

Re{Φi}

]
(29)

and Gk has the same dimensions as Ψ̃i and at each column

contains the same 2N ×1 vector
[pk[n]
pk[n]

]
. The multiplication

between Ψ̃i and Gk is component by component.
With the proposed method, the minimization of fa(a)

either by CG or analytically is relatively easy. Similarly the
computation of fb(b) = ‖x −Ψâ0‖2 is also easy. By defining

z = Ψâ0 =
L∑

i=1

zi,

zi=Ψi â0
i =
⎡
⎣

Re{Φi}
Im{Φi}

⎤
⎦â0

i =
⎡
⎣

ziR

ziI

⎤
⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

Pi∑

k=0

â0
i,kgk[n]•Cos(∅i[n])

Pi∑

k=0

â0
i,kgk[n]•Sin(∅i[n])

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(30)
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Table 1: The proposed alternating phase and amplitude (APA) algorithm.

1 Compute |STFT| for x[n], and detect the ridges and the number of components L

2 Compute f̂i[n] and f̂i(t) via polynomial fit

3 Compute ∅̂i(t) = 2π
∫ t

0 f̂i(τ)dτ + ∅̂i(0) and ∅̂i[n] determine b̂TF
i where ∅̂i(0) is the phase offset estimated from data

4 Compute x[n]e− j∅̂i[n] and low-pass filter to get âi[n]

5 Using polynomial fit get âTF
i

6 Minimize fb(b) and fa(a) in an alternating manner using â0 = âTF and b̂0 = b̂TF

Table 2: Minimization of J(b) with quasi-Newton (BFGS) algorithm.

Phase iterations: minimization of J(b) with quasi-Newton (BFGS) algorithm

Step Computation Multiplication cost

Initial H0 = INb

1 dk = −Hk∇J(b(k)) N2
b

2
αk = minαJ(b(k) + αdk)

line search with Wolfe Conditions

Fk{2N(0.5N2
a + 2.5Na +Nb + 10L) +N3

a +N2
a +Na}

Gk{2N(1.5N2
a+3.5Na+2Nb+2

∑L
i=1 PiQi+10L+1)+N3

a }
3 b(k+1) = b(k) + αdk Nb

4
sk = b(k+1) − b(k)

yk = ∇J(b(k+1))−∇J(b(k))

ρk = 1/(yTk sk)

Nb + 1

5 Hk+1 = (I−ρkskyTk )Hk(I−ρkyksTk )+ρksksTk 5N2
b + 3Nb

Table 3: Minimization of fb(b) with quasi-Newton (BFGS) algorithm.

Phase iterations: minimization of fb(b) with quasi-Newton (BFGS) Algorithm

Step Computation Multiplication cost

Initial H0 = INb

1 dk = −Hk∇ fb(b(k)) N2
b

2
αk = minα fb(b(k) + αdk)

line search with Wolfe Conditions

2NFk{Na +Nb + 11L+ 1}
2NGk{Na+3Nb+11L+1}

3 b(k+1) = b(k) + αdk Nb

4
sk = b(k+1) − b(k)

yk = ∇ fb(b(k+1))−∇ fb(b(k))

ρk = 1/(yTk sk)

Nb + 1

5 Hk+1 = (I− ρkskyTk )Hk(I− ρkyksTk ) + ρksksTk 5N2
b + 3Nb

we can rewrite

fb(b) = ∥∥x −Ψâ0
∥∥2 = ‖x − z‖2. (31)

Using (32)–(34) the gradient of fb(b),∇ fb(b) is obtained as

∇ fb(b)

= −2(x − z)T

×
[

∂z
∂b1,0

∂z
∂b1,1

· · · ∂z
∂b1,Q1

· · · ∂z
∂bL,0

∂z
∂bL,1

· · · ∂z
∂bL,QL

]
,

(32)

where

∂z
∂bi,l

=
⎡
⎣
−ziI

ziR

⎤
⎦ •

⎡
⎣
pl[n]

pl[n]

⎤
⎦. (33)

Considering (24)–(29) and (30)–(33) it is apparent that
function and gradient evaluations for J(b) are much more
complicated compared to fb(b) and fa(a). But in order to get
a tangible comparison a computational cost analysis has been
done and the results are summarized in Tables 2–4, where,
the analysis is based on the assumption that both for the
minimization of J(b) and fb(b) the quasi-Newton algorithm
BFGS [19] is used.
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Table 4: Minimization of fa(a) with conjugate gradient (CG).

Amplitude iterations: minimization of fa(a) with conjugate gradient

Step Computation Multiplication cost

Initial
A = ΨTΨ, y = ΨTx

r0 = y − Aa(0) = ΨT(x−Ψa(0))

d0 = r0

2N(3Na +Nb + 10L)

1 αi = (rTi ri)/(dT
i Adi) N2

a + 2Na + 1

2 a(i+1) = a(i) + αidi Na

3 ri+1 = ri − αiAdi Na

4 βi+1 = (rTi+1ri+1)/(rTi ri) Na + 1

5 di+1 = ri+1 + βi+1di Na

The second columns in Tables 2–4 give the required
computation for each step during one BFGS or CG iteration.
The last columns give the number of multiplications per
step. where Pi = Pi + 1 and Qi = Qi + 1 represent number
of parameters for amplitude and phase functions of the ith
component. Parameters Na =

∑L
i=1 Pi and Nb = ∑L

i=1 Qi

represent total number of amplitude and phase parameters
for all components, respectively. Fk and Gk represent b(k)

denotes phase parameter vector for all the components at
kth iteration of BFGS. In order to differentiate it from the bi,
which is the phase parameter vector for the ith component,
the index is taken into parenthesis. Similarly a(i) denotes
amplitude parameter vector for all the components at ith
iteration of conjugate gradient.

During computation cost analysis some assumptions
were made. For example, the matrix inversion cost of an
Na ×Na matrix was taken as N3

a multiplications. These types
of assumptions do not alter main results but allow us to get a
final value.

Considering the phase iterations for J(b) in Table 2 and
phase iterations for fb(b) in Table 3, we can see that the
main step which contributes to the computations is the line
search step. This step requires the function and gradient
evaluations. Also, comparing the computation cost at this
step in parenthesis we see that while for J(b) the computation
cost is O(NN2

a) +O(NNb) +O(N
∑L

i=1 PiQi), it is O(NNa) +
O(NNb) for fb(b).

If minimization of fa(a) is done via conjugate gradient
(CG) algorithm then the computation cost is given in Table
4. But, if minimum is found analytically, then the cost of
(16) need to be taken into account. Using similar calculation
analysis it will be found that cost of finding minimum
of fa(a) is approximately 2N(2Na + Nb + 10L) + 2N3

a +
N2
a .

For a better comparison of APA and PO methods we
need to consider overall complexity of two methods. For
the minimization of J(b) we need to compute the cost of
each BFGS iteration, which consists of 5 steps, and multiply
with the number of iterations. On the other hand, for the
proposed APA method we need to compute the cost of
minimizing fb(b) and plus the cost of minimizing fa(a) and
multiply the result with the number of cycles of alternating
phase and amplitude minimizations.

The cost of line search step in minimization of J(b)
and fb(b) with BFGS requires the number of function and
gradient evaluations to be known. But, the actual numbers
of the evaluations are not known beforehand. Therefore we
need to find them via simulations.

4. Expectation Maximization with Alternating
Phase and Amplitude Method

In ML estimation the aim is to maximize the conditional
pdf p(x | θ) or its logarithm, that is, L(θ) = log p(x | θ),
where, x is the observation data vector, θ is the parameter
vector to be estimated, and L(θ) is the logarithmic likelihood
function. In most of cases, if the pdf is not Gaussian,
analytic maximization is difficult. Therefore, the Expectation
Maximization (EM) [20, 21] procedure is used to simplify
the maximization iteratively.

The key idea underlying EM is to introduce a latent or
hidden variable z whose pdf depends on θ with the property
p(z | θ) whose maximizing is easy or, at least, easier than
maximizing p(x | θ). The observed data x without hidden or
missing data is called incomplete data.

EM is an efficient iterative procedure to compute the
Maximum Likelihood (ML) estimate in the presence of
missing or hidden data. In other words, the incomplete data x
is enhanced by guessing some useful additional information.
The hidden vector z is called as complete data in the sense
that, if it were fully observed, then estimating θ would be an
easy task.

Technically z can be any variable such that θ → z → x
is a Markov chain, that is, z is such that, p(x | z, θ) is
independent of θ. Therefore, we have

p(x | z, θ) = p(x | z). (34)

While in some problems there are “natural” hidden variables,
in most of the cases they are artificially defined.

In ML parameter estimation given in Section 2 the EM
method is applied as follows. Assume that we would like to
estimate the amplitude and phase parameters ak and bk for
the kth component given the data x[n] expressed by (3). The
data is incomplete in the sense that it includes the linear
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Table 5: Expectation Maximization (EM) iteration steps.

EM steps for multicomponent signal parameter estimation

Step Operation

Initial Get initial estimates [âTk b̂Tk ]
T

, k = 1, 2, . . . ,L via any method

1 Construct x̂k = x −∑i /= k Φ̂iâi k = 1, 2, . . . ,L

2 Maximize Λk = −N(lnπ + 2 ln σ)− (1/σ2) ‖x̂k −Φkak‖2, k = 1, 2, . . . ,L

3 Update the initial estimates with maximization results in Step 2, and go to Step 1

combination of all the other components together with the
noise. But if we knew, somehow, the other components given
by

dk[n] =
∑

i /= k
ai[n]e j∅i[n], (35)

then we would be able to define the following new data
vector:

xk[n] = x[n]− dk[n], n = 0, 1, . . . ,N − 1. (36)

In that case the problem would be, given the data sequence

xk[n] = ak[n]e j∅k[n] +w[n], n = 0, 1, . . . ,N − 1, (37)

estimate the parameters ak and bk. As we are going to
estimate the phase and amplitude parameters of the kth
component, xk[n] can be considered as the complete data
in the EM context. Similar to multicomponent case given
in Section 2 the matrix notation and related logarithmic
likelihood function for this single component case is

xk = Φkak + w, (38)

Λk = −N(lnπ + 2 ln σ)− 1
σ2
‖xk −Ψkak‖2. (39)

The minimization can be done either by PO method or by
the proposed APA method in Section 3.

But, since we do not know the other components, we
would not be able to compute the summation dk[n] given in
(35). The only thing that we can do is to get an estimate for
the other components. This is what the EM method suggests
us. Therefore, for all components, the following EM iteration
steps are carried out.

The EM iterations given in Table 5 will be carried out
for sufficiently many times and when there is no significant
change in the value of estimates compared to previous
iteration, the iterations will be stopped.

The important thing in the EM method is that the initial
estimates should be close enough to the actual values so that
the estimate for complete data x̂k given at Step 1 is not too
deteriorated compared to its actual.

Actually the alternating phase and amplitude minimiza-
tion proposed in Section 3 can also be considered as an
application of EM method. While for the minimization of
fb(b) the amplitude parameters a are the missing or hidden
variables, for the minimization of fa(a) the phase parameters
are missing or hidden variables.

During each EM iteration a monocomponent system of
equation given by (38) is constructed. The related objective
function is minimized by proposed APA method. Then
this is done for all components and overall steps are
repeated for a number of EM iterations. Since the order
of computation cost for APA is O(NNa) + O(NNb) and
does not involve squares of Na and Nb, minimizing one
by one is expected to have a comparable computational
cost to that of multicomponent case. But since we repeat
overall steps for a number of EM iterations, the cost will
increase at a ratio of number of EM iterations. Also since
during each EM step we need to compute dk[n] and xk[n]
given by (35) and (36), this requires going from parameter
space to component or signal space and will also increase
computations. Therefore using EM with proposed APA
method will increase the computational cost compared to
APA method. But, it will be still less than the cost of phase-
only method, because, the phase-only method hasO(NN2

a)+
O(NNb) + O(N

∑L
i=1 PiQi) order computation, while EM

will approximately have O(REMNNa) + O(REMNNb) order
computations, whereREM is the number of the EM iterations.

5. Cramer-Rao Bounds for Mean Square
Reconstruction Error

Before comparing the proposed APA method with any
other method in terms of computational cost, we first
need to compare them in terms of attainable mean square
reconstruction error performance. For that purpose we need
to have the Cramer-Rao bounds on selected performance
criteria.

Given the likelihood function Λ in (14) the Fisher
Information Matrix (FIM) for the parameter set θ = [bTaT]

T

is obtained by

Fi j = −E
{

∂2Λ

∂θi∂θj

}
. (40)

The matrix is obtained [15] as

F = 2
σ2

Re
{[

[AΦ]H [AΦ]
]}

, (41)

where

A =
[

A1 A2 A3 · · · AL

]
,

Ai = j
[
p0[n] • si[n]p1[n] • si[n]p2[n]

•[n] · · · pQi[n] • si[n]
]
,

(42)
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Table 6: Amplitude and phase orders for the components.

Polynomial orders
Component 1 Component 2 Component 3

Amplitude Phase Amplitude Phase Amplitude Phase

Ex1 10 3 20 1

Ex2 10 3 10 3

Ex3 10 1 10 2 10 2

where si[n] is the signal vector obtained by taking val-
ues at each time instant and “•” denotes component-by-
component vector multiplication. An important property
of the FIM for Λ is that it does not depend on a and
b directly but, rather, through phase functions ∅i[n] and
signal components, si[n]. It also depends on basis functions.

Cramer-Rao bound on variances (auto and cross) of the
ML estimates of the parameter set θ = [bTaT]

T
is simply the

inverse of FIM [22], that is,

CRB(θ) = F−1. (43)

In an actual application rather than a and b parameters, we
will be interested in signal components si[n]. Therefore, we
will drive the bounds on the variance of the estimate for the
signal components at time instant n. The component si[n]

is a function of the parameter set θi = [bTi aTi ]
T

. Having
CRB(θi), which is a submatrix of CRB(θ), the CRB(si[n]) can
be obtained as [23]

CRB(si[n]) =
(

s′i,n
)H

CRB(θi)s′i,n, (44)

where

s′i,n =
∂si[n]
∂θi

. (45)

Using (4), and (51) s′i will be obtained as

s′i,n =
[

Ai[n] Φi[n]
]T
. (46)

s′i,n is simply the transpose of the row of [A Φ] corresponding
to time instant n.

Since in our application we have N time instants we need
to compute (44) for all of them. But, in order to get an
overall performance indication, we will sum them up and
obtain the following bound as a reference for the component
reconstruction error performance:

CRB(si) =
N−1∑

n=0

CRB(si[n]), (47)

where si denotes the ith component. This is the total variance
bound for the estimate of the signal values at all time instants
between 0 and N − 1.

6. Simulation Results

Though in terms of computation cost some comparison
between proposed APA method and phase-only method is
given in Section 4, in this section some simulation results are
given. For the simulation, three nonstationary multicompo-
nent signals were selected. The first two examples have two
components, and the last example has three components.
The real part of components and the magnitude STFT plot
of the multicomponent signals are given in Figures 1 and 2.

All the examples were selected to be nonstationary signals
with 256 samples. The components for the examples were
obtained by sampling the following amplitude and phase
functions selected with proper parameters and time shifting:

a(t,α) = 4
√

2αe−παt
2
,

φ
(
t, fc,β, γ

) = π
(
2 fct + βt2 + γt3

)
.

(48)

While Ex1 and Ex2 include components with quadratic phase
terms, Ex3 includes two chirps and a Gaussian pulse. Since
the phase terms are already polynomials, their orders were
taken directly for the simulation. But since the amplitude
parts are obtained by a Gaussian pulse, their polynomial fit
orders were used. The polynomial orders for the examples
are given in Table 6.

Simulation was carried out as follows: For a given noise

realization, the initial estimates â0 = âTF and b̂0 = b̂TF

were obtained from TFD. Then, using this initial phase
parameters, J(b) was minimized by iterating the BFGS
algorithm up to some maximum number of steps. The
maximum number of steps was set to values 4, 6, 8, 10, 14,
20, and 26 respectively and for each one the reconstruction
error defined by

ei =
N−1∑

n=0

∣∣ŝi[n]− si[n]
∣∣2, (49)

was computed for each component. This error, when aver-
aged for many simulation runs, will give us, for a component,
the total of experimental mean square reconstruction error
for all time instants and will be compared to corresponding
Cramer-Rao Bound given by (47).

Then proposed APA method was iterated with the same
initial conditions used for minimization of J(b) and with
three different scenarios which defines number of the phase
iterations and the alternating cycles. Then the minimization
with PO and APA was repeated for another noise realiza-
tion.
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Figure 1: The Multicomponent signal examples Ex1 (left) and Ex2 with two components.

In first scenario of the APA method, denoted by APA1,
the number of phase iterations for the minimization of fb(b)
was taken as the half of that used for minimization of J(b).
The number of alternating cycles for APA1 was selected as
5. For the second scenario, denoted by APA2, the phase
iterations for the minimization of fb(b) was taken the same
as used for J(b) and the number of alternating cycles was
selected as 8. The third scenario was the EM algorithm with
the same conditions as APA1. The EM algorithm given in
Table 5 was repeated for 4 iterations.

In all scenarios with proposed method, the amplitude
parameters were computed analytically. Looking at Table 4
it is seen that, compared to minimization of fb(b), the cost
of minimization of fa(a) is lower substantially, because the
main contribution to computation cost of minimizing fa(a)
comes from initialization step and this step is computed once
per alternating cycle. Similarly, if minimum fa(a) is found
analytically, the cost is again small compared to phase cost.

The quasi-Newton (BFGS) was implemented with line
search algorithm suggested by Nocedal and Wright [24]
which saves the gradient computations as much as possible.
Therefore, the minimization of J(b) is even favored.

Using the above scenarios for each SNR value between
8 dB and 20 dB the simulation was carried out for 400 runs.

During each run, together with component reconstruction
error, the total number of function and gradient evaluations
was also measured for each method and scenario. By
averaging 400 runs the average of the reconstruction error
given by (49) and average of the function and gradient
evaluations were computed. Based on average function and
gradient evaluations the computation cost for each method
and scenario was obtained.

Using simulation results two groups of figures were
obtained. In Figures 3, 4, 5, and 6 the attained average
reconstruction error (MSE) versus SNR is plotted for
proposed APA method and for the phase-only (PO) method
given in [15]. On these figures the corresponding Cramer-
Rao Bound (CRB) computed by (47) is also plotted. PO
stands for phase only method. APA1, APA2, and EM stand
for proposed method with scenario 1, 2, and Expectation
Maximization respectively.

On the other hand in Figures 7–12 the attained average
reconstruction error versus required computation cost, in
terms of millions of multiplications, is plotted for three SNR
values. These are 8 dB, 14 dB, and 20 dB. In these figures also
the Cramer Rao Bound (CRB) is shown as a bottom line.

In first group of figures the aim is to show that, for
a given SNR value and the same initial conditions, the
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Figure 2: The Multicomponent signal example Ex3 with 3 compo-
nents.

proposed method converges to comparable or even at some
cases to better reconstruction error levels than phase-only
method [15]. But in the second group of figures the aim
is to show that, for a given SNR value and the same
initial conditions, whatever the attained reconstruction error
level, the proposed method converges with substantially less
number of multiplications.

From Figures 3–6 we see that the proposed method with
scenarios APA1, APA2, and EM has a comparable error
performance to the phase-only method. While for Ex1 the
performance of EM is better than the others, for other
examples the performance is comparable. Therefore, with the
proposed APA method and EM method that uses APA, we
are able to solve the optimization problem in (15) iteratively
and reach a comparable MSE performance compared to
PO method. On the other hand the computational cost
performance of the proposed APA and EM method is
significantly better than that of PO method, that is, the
proposed method saves the computations substantially.

From Figures 7–12 this situation can be observed clearly.
For example, in Figure 7, which shows the average recon-
struction error for component 1, with the proposed method
using first scenario (APA1) the final reconstruction error
level is reached by around 3 million multiplications. A similar
level is reached with more than 20 million multiplications by
PO method. The multiplication required for the same level
for second scenario (APA2) is around 6 millions. On the
other hand using EM a better error level is obtained. Similar
results can be observed for component 2 as given in Figure 8.
From Figures 11 and 12 we see that again for Ex2 and Ex3 at
SNR 8 dB the proposed method reaches final reconstruction
error faster than PO method.
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Figure 3: Experimental MSE versus SNR for Ex1 component 1.
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Figure 4: Experimental MSE versus SNR for Ex1 component 2.
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Figure 5: Experimental MSE versus SNR for Ex2 component 1.

As can be seen from Figures 9 and 10 Increasing SNR to
14 or 20 dB for Ex1 makes the benefit of using APA1 or APA2
apparent. The same advantage was observed for Ex2 and Ex3
also. While at low SNR EM is usually better than the others
as the SNR increases, the advantage of EM is vanishing.
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Figure 6: Experimental MSE versus SNR for Ex3 component 2.
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Figure 7: Experimental MSE versus computation cost for Ex1 at
8 dB (component 1).
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Figure 8: Experimental MSE versus computation cost for Ex1 at
8 dB (component 2).
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Figure 9: Experimental MSE versus computation cost for Ex1 at
14 dB (component 1).
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Figure 10: Experimental MSE versus computation cost for Ex1 at
20 dB (component 1).
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Looking at all the selected examples for all SNR values
it is clear that the proposed APA method has a superior
performance in terms of computations required to reach a
reconstruction error. APA1 which keeps alternating cycles
and phase iterations lower than APA2 is superior at high
SNR.

7. Conclusion

An iterative method has been proposed to estimate the
components of a multicomponent signal via parametric
ML estimation. The components on the TF plane are
assumed to be well separated. Though can be estimated,
it was also assumed that the number of components and
polynomial orders for amplitude and phase functions are
known. The resultant minimization problem was divided
into separate amplitude and phase minimizations. With the
proposed alternating phase and amplitude minimizations,
the computation cost of original minimization problem
reduced significantly. Also via simulations it was shown that,
at low SNR, a better reconstruction error is achieved when
the proposed method is used in an EM algorithm.

The initial estimates were obtained from time-frequency
distribution. They can also be obtained via PPT. Depending
on the performance of method by which initial estimates are
obtained, good initial conditions can be obtained, and the
computations can be saved even further.
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