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Abstract – We study theoretically the electronic transport in parallel few-level quantum dots in
the presence of both intradot and interdot long-range Coulomb interaction. Each dot is connected
to two leads and the steady-state currents are calculated within the Keldysh formalism using the
random-phase approximation for the interacting Green functions. Due to the momentum transfer
between the two systems it is possible to get a nonvanishing current through an unbiased Coulomb-
blockaded dot, if the other dot is set in the nonlinear transport regime. The transitions between
the levels of the passive dot reduce the drag current and lead to negative differential conductance.
We also discuss the dependence on temperature and the role of the lead-dot coupling.

Copyright c© EPLA, 2009

Introduction. – The Coulomb interaction between
nearby mesoscopic conductors can be used to control or
to detect the charge flow through one system by simply
tuning the suitable parameters of the other one. Exper-
imental realizations of this idea revealed new effects or
confirmed fundamental concepts in mesoscopic transport:
charge sensing [1], real-time detection [2] and controlled
dephasing [3]. In a typical setup a quantum point contact
(QPC) detector is subjected to a finite bias and due to
the charge sensing effect the measured current is shown to
depend on the plunger gate voltage applied on a nearby
quantum dot. The dot is either coupled to the leads or
embedded in a mesoscopic ring in which case the detector
provides a “which-path” information. The key mechanism
behind these findings is the charge sensing effect: electrons
in the detector are sensitive to the electrostatic potential
generated by the charges localized in the quantum dot.
The potential itself changes in a transport process.
Onac et al. [4] proposed the opposite setting, using

the quantum dot as a detector and the nearby QPC
as a shot noise generator. It was shown that when the
QPC is driven out of equilibrium by applying a bias
voltage the Coulomb blockade in the QD is removed and
a dc current flows through it. The mechanism behind
this observation relies on the energy absorbsion from the
QPC. This process allows the ground-state electrons in
the Coulomb-blockaded dot to escape into the leads. In
a recent paper McClure et al. [5] replaced the QPC by a
quantum dot and investigated the complex pattern of cross

current-correlations for a parallel double-dot structure in
a four-lead geometry. More precisely, the dots are placed
in the Coulomb-blockade regime and two plunger gate
voltages are individually varied. It was shown that the
interdot Coulomb interaction leads to a complex pattern
of the current fluctuations. Goorden and Büttiker [6]
proposed a scattering formulation of transport for two
interacting conductors by introducing a two-particle S-
matrix and calculated the cross-correlation function using
the leading-order term in the interdot interaction strength,
while the intradot interaction is neglected. Also, Haupt
et al. [7] recently reproduced qualitatively the results in
ref. [5] within the real-time diagrammatic technique.
At the theoretical level the interest in the transport

properties of parallel quantum dots (PQD) is not new
and has been mainly focused on Kondo correlations
and interference effects [8–12]. In most cases the dots
accommodate at most two spins, are coupled to the same
pair of leads and the driving bias is fixed. On the other
hand, in the setup of ref. [5] each dot is coupled to two
leads and the bias applied on each dot can be individually
varied.
The aim of this work is to investigate one further aspect

of electronic transport in Coulomb-coupled parallel quan-
tum dots. Suppose that in the setup of ref. [5] one of
the dots (say QD1) is weakly coupled to unbiased leads.
What happens when the bias applied on the second dot
increases? Could one record a steady-state current in QD1
and if so, how it depends on the bias applied on QD2 or on
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Fig. 1: A sketch of the parallel double-quantum-dot system.
There is no tunneling between the dots but they influence
each other through the long-range Coulomb interaction of
strength U .

the level structure of the two dots? This problem is natu-
rally related to the well-known Coulomb drag effect in
two-dimensional layers or one-dimensional quantum wires
(see the reviews [13,14]). The inelastic Coulomb scatter-
ing processes imply a momentum transfer between the two
subsystems. As a consequence, one can measure a non-
vanishing drag voltage in the “passive” system as the elec-
trons pass through the “active” system under the action
of a bias. In the theoretical approaches a linear response
formula for the drag resistivity is written down while the
inelastic effects are calculated up to the second order in the
interaction strength. The effective interlayer interaction
is computed within different approximations that were
recently compared (see ref. [15] and references therein).
Mesoscopic Coulomb drag was discussed by Mortensen
et al. [16] and by Narozhny et al. [17] and calculations
up to third order in the interlayer interaction have also
been presented by Levchenko and Kamenev [18]. In the
context of Coulomb-coupled quantum point contacts it
was argued [19] that a drag current appears either due
to the electron-hole asymmetry in the linear regime or
due to the shot noise generated by the drive QPC in the
non-linear regime.
In this letter we complement the existing thoretical

studies by considering two quantum dots in a parallel
configuration. We consider both intradot and interdot
interactions and compute the steady-state currents in
the dots within the Keldysh formalism (see [20–22]) by
using the random-phase approximation (RPA) described
in ref. [23].

The model. – The two non-interacting quantum
dots and the four leads that carry the currents are
described by tight-binding Hamiltonians Hi (i= 1, 2)
and HL (see also the sketch in fig. 1). The lead-dot
coupling HT and the Coulomb interaction HI are
included adiabatically through a smooth switching
function χ(t). We denote the on-site energies of QDi by

ε
(i)
m and the creation/annihilation operators by c†mi/cmi .
The leads are modelled as one-dimensional semi-infinite
discrete chains their sites being indexed by ql where
l=L1, R1, L2, R2. The associated creation/annihilation
operators are denoted by d†ql and dql . We then have

H(t) =H1+H2+HL+χ(t)(HI +HT ) where

Hi =

2∑
i=1

∑
m,n∈QDi

(
ε(i)m δmn+ t

(i)
mn

)
c†micni , (1)

HT =
∑
i,n

∑
l,q

(
Vniqlc

†
ni
dql +h.c.

)
, (2)

HI =
∑
i,j

∑
m,n

W0,nimjc
†
ni
cnic

†
mj
cmj , (3)

The matrix element Vniql stands for the lead-dot hopping

integrals and W0,nimj =U/|r(i)n − r(j)m | is the bare interac-
tion potential depending on the constant U and on the
distance between two sites from the double-dot system.
We consider a nearest-neighbor coupling between the leads
and the dots and then Vniql has only four non-vanishing
elements that are denoted as VL1(R1) and VL2(R2). Also,

t
(i)
mn = tD, if m,n are nearest neighbors and zero, other-
wise. The leads are characterized by their chemical poten-
tial, and their temperature included through the Fermi
functions. One may write the steady-state current that
enters QD1 from the left lead (tL is the hopping energy on
leads):

JL1 =
e

h

∫ 2tL
−2tL

dE Tr
{
ΓL1G

RΓR1G
A(fL1− fR1)

−ΓL1GRIm
(
Σ<I +2fL1Σ

R
I

)
GA
}
. (4)

Evidently, the current entering the dot from the right
lead equals JL1 up to a sign JL1 =−JR1. The details of
the derivations can be found in ref. [24]. From eq. (4)
one observes that even in the absence of a bias on QD1
one is left with the second term in the current formula
which is given by the imaginary part of the interaction
self-energy. The net current in the passive dot is given
precisely by this term which embodies inelastic Coulomb
scattering processes which are known to be responsible
for the Coulomb drag. The Green functions in eq. (4)
are given by the Dyson equation G=G0+G0(ΣL+ΣI)G
where G0 is the Green function of the disconnected non-
interacting system and ΣI,L are the interaction self-energy
and the leads’ self-energy. ΓL1 =ΓR1 are matrices that
contain the coupling to the leads and the density of states
at the endpoint of the lead. The trace means a sum over
the sites of QD1. Since the RPA scheme used to compute
ΣI was presented in detail in ref. [23] here we only state
the main results (see also ref. [25]). The Green function
of the non-interacting dots in the presence of the leads is
denoted by Geff =G0+G0ΣLGeff and is used to compute
the contour-ordered polarization operator Πmn(t1, t2) =
−Geff,mn(t1, t2)Geff,nm(t2, t1).
We construct then screened interaction W , with the

retarded, lesser and greater components given by the
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Dyson and Keldysh equations1:

WR(E) =W0+W0Π
R(E)WR(E), (5)

W<,>(E) =WR(E)Π<,>(E)WA(E). (6)

The next step consists in calculating the lesser and greater
components of the interaction self-energy Σ<,>. Then the
imaginary part of the retarded correlation self-energy is
given as ImΣRC = (Σ

>−Σ<)/2i, while its real part should
be computed from the Kramers-Kronig identity. The
Hartree and exchange contributions are also computed
and included in the standard form of the interaction self-
energy2:

ΣI =ΣH +ΣX +ΣC . (7)

Note that i) ΣH does not contribute to the second
term in the current since it has no imaginary part; ii)
in the G0W approximation ΣX cannot couple sites from
different dots because the noninteracting Green function
has a block-diagonal form; iii) the imaginary part of
ΣI is non-vanishing as long as one has an applied bias
on QD2 in which case ΣI is a non-equilibrium quantity
—see ref. [24]. The effect of the interdot interaction is then
expected to come from higher-order diagrams containing
the electron-hole bubble.
The lesser Green function can be used to compute the

occupation number Ni of each dot or the density of states
(DOS) ρi, according to the definitions

Ni =
1

2π

∑
m∈QDi

∫ 2tL
−2tL

dEImG<mm =

∫ 2tL
−2tL

dEρi(E). (8)

In this work we consider only the long-range Coulomb
interaction and disregard the on-site Hubbard interaction
as well as the spin degree of freedom.

Results and discussion. – We present below numeri-
cal simulations for identical dots having three sites (levels).
QD1 is set in the Coulomb blockade regime by taking a
small coupling to the leads and by fixing the chemical
potentials of the latter such that they do not align with
any of its levels. We shall consider two values of µ0:
i) µ0 = 1 (configuration A) for which the highest level of
QD1 is above µ0; ii) µ0 = 2.25 (configuration B), in which
all the levels are below µ0 (see the inset in fig. 2(a)). The
bias eV2 = µL2−µR2 is changed by keeping µL2 = 3 and
by lowering the chemical potential of the right lead from
µR2 = 3 to µR2 =−3. Therefore the three levels of the
active dot will enter the bias window one by one, which
is similar to opening more conduction channels in a quan-
tum point contact. The hopping energy tD of the dots is

1All quantities are finite rank matrices since the leads’ self-
energy has non-vanishing elements only at the contact sites while
the interaction self-energies are also restricted to sites from the dots.
2The explicit expressions can be traced from ref. [23]: Σ<,> are

given in eqs. (21)–(23), while the exchange and Hartree contributions
are given by eq. (25) and (26). Note that the first order self-energies
do not have lesser/greater components.
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Fig. 2: (Color online) (a) The currents through the dots as a
function of bias applied on the active dot. Full line: JL1 (config-
uration A), long-dashed line: JL1 (configuration B), dashed
line: J2 (configuration A), dotted line: JL2 (configuration B).
The 3rd level in configuration A is above the chemical poten-
tial of the leads. (b) The occupation numbers of the dots as
a function of V2. Full line: N1 (configuration B), long-dashed
line: N1 (configuration A), dashed line: N2. Other parameters:
U = 0.15, VL1 = VR1 = 0.25, VL2 = VR2 = 0.5, kT = 0.001.

chosen as the energy unit and the current is given in units
of etD/� .
We show and compare in fig. 2(a) the currents JL1,L2

entering QD1,2 from the left lead (the value of JL2 is to be
read on the right axis) in the two configurations defined
above. JL2 increases abruptly at three values of the bias
(e.g. at V2 = 1 and V2 = 2.3 and V2 = 3.7).
The jumps appear when one level of QD2 enters the

bias window [µL2, µR2] and the smooth regions between
them turn to steps if the lead-dot coupling is reduced,
recovering thus the well-known I-V curve. We observe that
a drag current appears in the passive dot when the first
level of QD2 enters the bias window (at V2 ∼ 0.85). JL1
continues to increase up to V2 ∼ 1.6 and then decreases in
the range [1.6, 2.25] until the bias window on the active
dot covers one more level. The current eventually settles
down for V2 > 5. The configuration A is characterized by
a higher value. It is clear that electrons tunneling through
the active dot drag a current in the passive dot and that by
increasing V2 one opens more conduction channels in QD2
enhancing therefore the Coulomb drag in the passive dot.
We have checked that the same effect ensues if one varies
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the gate potential applied to the active dot while keeping
a small bias window. In that case a peak appears in the
current through the passive dot when the gate potential
is such that a level of QD2 becomes resonant.
Another interesting feature is that between any two

jumps of JL2 the passive dot experiences a negative
differential conductance (NDC) regime which leads to a
sawtooth behavior. This rather peculiar feature of quan-
tum dot systems was observed in experiments with serially
coupled quantum dots and has been theoretically inves-
tigated for double dots [26,27]. To our best knowledge,
no experimental results of NDC have been reported for
parallel quantum dots as we consider here.
The occupation number N1 of the passive dot is given

in fig. 2(b). In both configurations N1 decreases when
JL1 increases. In the NDC regime, however, N1 increases
slightly and then decreases. The occupation number N2 of
the active dot in configuration B shows that as µR2 crosses
one level of QD2 the occupation number decreases from 1
to 1/2 (see the dashed line in fig. 2(b)).
We shall investigate in the following the role of the bias

applied on the active dot on the observed Coulomb drag
and the negative differential conductance regime. On the
one hand, it is clear that we need a finite bias on the active
dot in order to ensure a net flow of electrons which in
turn drive the passive dot out of equilibrium. The energy
transferred to the passive dot is then determined by the
bias window of the active dot and by the number of states
contained in it (see, e.g., fig. 2 in ref. [14]) and allows
transitions between different levels of the passive dot as
well. The main point here is that if this energy matches
the gaps ∆i = µ0−Ei electrons are allowed to tunnel out
from the i-th level of the passive dot. In order to check
this scenario, we analyze the density of states (DOS) of
the passive dot in configuration B. Figures 3(a)–(c) show
the energy regions with a nonvanishing DOS; the bright
traces allow one to locate the levels of the open quantum
dot and to monitor their behavior as the bias V2 on the
active dot is varied. One can see that at V2 = 0 these levels
are located around E1 =−0.75, E2 = 0.55 and E3 = 1.95.
At V2 ∼ 1 the DOS in fig. 3(a) already starts to decrease

because electrons from this level gain already enough
energy to escape into the leads. Figures 3(b) and (c)
indicate that the lowest levels come also into play at V2 ∼
1.4, because the level spacings E1−E2 and E2−E3 equal
the transferred energy. It is important to observe that
the transitions E3→E2 and E2→E1coexist and compete
with the drag effect, in the sense that the transferred
energy is not entirely spent on exciting electrons from
the highest level to the leads but also on such intradot
transitions. A comparison with figs. 2(a) and (b) reveals
that in the range [1.4 : 2.2] the current decreases but the
occupation number N1 is constant; also, the decrease in
the DOS in fig. 3(c) appears at V2 = 1.4 and can only
be associated with the transition E3→E2 because this
is the only one allowed at that value of V2. The NDC
regime disappears at V2 ∼ 2.2 because another electron

 0
 4
 8
 12
 16
 20

En
erg

y

(a)

 0  1  2  3  4  5  6
 1.75

 1.8

 1.85

 1.9

 1.95

 2

 0
 2
 4
 6
 8
 10
 12

En
erg

y

(b)

 0  1  2  3  4  5  6
 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0
 4
 8
 12
 16
 20

En
erg

y

(c)

 0  1  2  3  4  5  6
-1.05

-1
-0.95
-0.9

-0.85
-0.8

-0.75
-0.7

-0.65

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

Bias

En
erg

y

(d)

 0  1  2  3  4  5  6
 1.5

 1.6

 1.7

 1.8

 1.9

 2

Fig. 3: (Color online) (a)–(c) Relevant regions of the density
of states for the passive dot in configuration B (µ0 = 2.25).
(d) The upper level is populated in configuration A even if it is
located above the chemical potential of the leads. In this case
µ0 = 1. Other parameters are as in fig. 2.

enters the bias window of the active dot and the drag
effect is enhanced. By further increasing V2 the middle
level is almost emptied because, on the one hand, it
provides electrons into the leads and, on the other hand,
the transferred energy exceeds the gap E2−E3. Next, at
V2 = 3 it is possible to excite electrons from the lowest
level directly into the leads and consequently the DOS in
fig. 3(c) decreases even more. As expected, the transition
E1→E3 is also allowed; this is confirmed by the slight
increase in the DOS in fig. 3(a) and in the occupation
number in fig. 2(b). The shifts toward lower energies
noticed in the DOS are a consequence of the charge sensing
effect: as the occupation numbers of the levels in QD2
decrease from 1 to 1/2 the (upward) Hartree shift they
generate in QD1 decreases.
The differences between the drag currents of the

two configurations are also explained by considering the
sequence of transitions induced by the interdot interaction.
In configuration A electrons from the lowest level (which
in this case is located around E1 =−0.9) can escape
into the leads if V2 = 2 because the chemical potential
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Fig. 4: (Color online) Drag current in configuration A for
different values of the coupling strength VR1 and VL1. The
regions of negative differential conductance are suppressed at
VR1 = 0.5. This means that the interdot transitions are less
important and that electrons rather tunnel out in the leads.
Other parameters are U = 0.15, kT = 0.001.

of the leads is µ0 = 1. As we have seen, this process is not
allowed in configuration B until V2 = 3. Figure 3(d) shows
the DOS of the passive dot in configuration A for energies
above the chemical potential of the leads. One can easily
observe that the highest level is populated at large values
of the bias, because of the transitions E1→E3. We have
found similar results for other values of the chemical
potential and of the interaction strength.
The numerical results in fig. 2(a) clearly show that the

inelastic scattering generates a positive Coulomb drag.
This is not a universal feature as negative Coulomb drag
has been reported in several experiments [28–30]. In these
cases the mechanism seem to be quite different from the
one we study here, since one varies a magnetic field that
induces fluctuations in the charge density. Nevertheless, in
quantum dot systems the configuration details can lead to
rectification effects that in the problem at hand would add
another asymmetry to the effective Coulomb asymmetry.
We present in fig. 4 results for asymmetric coupling to the
leads. We consider two asymmetric configurations: VL1 =
0.5, VR1 = 0.25 and VL1 = 0.25, VR1 = 0.5 and compare
them with the symmetric case VL1 = VR1 = 0.25. For both
cases the drag current is still positive but its amplitude is
very sensitive to the asymmetry of the coupling. Clearly
the drag current increases when VL1 increases; in contrast,
it decreases when VR1 increases. These data suggest that
the asymmetry of the coupling works against the Coulomb
driving when the coupling to the right lead increases. We
propose the following physical picture behind these results.
As we have shown, the mechanism of the Coulomb drag
gives a net current which flows from the left lead towards
the sample JL1 > 0, or equivalently, from the sample
towards the right lead. This means that the in-tunneling
current from the left lead J inL1 exceeds the out-tunneling
current JoutL1 . Similarly, J

out
R1 exceeds J

in
R1. We recall that

in the Keldysh formalism one computes net steady-state
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Fig. 5: (Color online) The current through the passive dot
in configuration B as a functions of the bias V2 at different
temperatures. Passive dot in configuration B. VL1 = VR1 = 0.25,
U = 0.1.

currents, that is JL1 =−JR1 = JoutR1 +J inR1. The Coulomb
drag is controlled on one hand by the interdot interaction
and by the applied bias on the active dot. On the other
hand, by increasing VL1 more electrons can enter the dot
from the left lead, J inL1 increases and since it has the same
sign as the Coulomb drag the latter will increase as well.
In contrast, when VR1 increases from 0.25 to 0.5 electrons
enter more easily from the right lead and the in-tunneling
current increases. But J inR1 flows against the Coulomb drag
and then the net current decreases as well.
Note that in all cases the drag appears at the same value

of V2 since J2 depends very weakly on VL/R,1 (that is, the
jumps between the steps in J2 are stable against VL/R,1).
In a recent experiment of Khrapai et al. [31] a counterflow
of electrons was obtained in Coulomb-coupled quantum
point contacts; the authors suggested that this feature
relies on the acoustic phonons predominantly generated
in the drain lead of the active system. In the present
approach the role of the acoustic phonons in the leads is
not included so we are not able to reproduce their result.
Note however that the quantum point constrictions used
in their experiment are not set in the Coulomb blockade
so the physics could be very different.
As for the temperature effects we find that if kT �U

there are no significant changes in the drag current. In
contrast, when kT ∼U the onset of the drag current is
not steep and its slope softens as kT increases. This
happens because at higher temperatures the steps in the
I-V curve of the active dot are no longer well defined.
Electrons can enter the bias window before the levels
align with the chemical potential of the right lead. The
NDC regions become also flat, and the difference between
local minima and maxima in the drag current decreases.
We understand these features considering the smearing
of the Fermi function, i.e., electrons incident from the
left lead are more likely to have lower energy such that
the momentum transferred to the passive dot decreases.
Temperature effect on the current through the passive dot
is illustrated in fig. 5 for configuration B.
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When QD1 is submitted to a bias while QD2 becomes
the passive system we obtain similar results; this is a
reminiscence of the Onsager relation (see, e.g., [19]).
By taking a lattice constant of few nms and by using the

electron effective mass in GaAs for the hopping parameter
tD = �

2/2m∗a2, we find that the drag current reaches
tenths of µA for a bias less than 1V. These parameters
are clearly in the experimental range [28,32]. We would
like to point out that the configurations A and B we have
discussed here can be met in experiments: by looking at
Coulomb diamonds characterizing the passive system one
infers information about its spectral structure (location of
levels, level spacing, detuning for double dots etc.) and
then a specific configuration is chosen for the transport
setup.

Conclusions. – We have presented theoretical calcula-
tions supporting the existence of a positive Coulomb drag
effect in parallel quantum dots. The intradot transitions
become possible when the transferred energy matches the
level spacing and compete with the drag effect. In this
regime the current in the passive dot decreases with the
bias. We showed that in the PQD system the level struc-
ture determines the behavior of the drag current. This is
clearly not the case in larger systems where the spectrum
is dense and the coupling to the leads is not weak3. The
interdot distance in PQD system is very small so that the
Coulomb drag effect should be easier to observe in trans-
port measurements with such structures. Since Coulomb
drag measurements in 1D wires with embedded dots were
already reported [28] and bilayer systems of self-assembled
quantum dots are being currently studied [32] we hope the
present calculation will motivate further experiments.
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