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Abstract

Systems of stochastic chemical kinetics are modeled as infinite level-dependent quasi-
birth-and-death (LDQBD) processes. For these systems, in contrast to many other
applications, levels have an increasing number of states as the level number increases
and the probability mass may reside arbitrarily far away from lower levels. Ideas from
Lyapunov theory are combined with existing matrix-analytic formulations to obtain
accurate approximations to the stationary probability distribution when the infinite
LDQBD process is ergodic. Results of numerical experiments on a set of problems
are provided.
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1. Introduction

We consider systems of stochastic chemical kinetics [3], [15], [19], [21], [24], [25], [31]
described by continuous-time Markov chains (CTMCs) with infinite multidimensional state
spaces. A state is a vector whose components represent the numbers of molecules of each
chemical species present in the system. State transitions correspond to chemical reactions.
According to the reaction stoichiometry, transitions are represented by a state change vector
and state-dependent transition rates, which are multivariate polynomials in the state variables.
Assuming that the CTMC is ergodic, our goal is to approximate its stationary distribution.

If the state space can be partitioned into disjoint levels, consecutively numbered such that
transitions are only possible between states belonging to the same or adjacent levels, then
the CTMC is said to be a quasi-birth-and-death (QBD) process and its generator matrix is
block tridiagonal [16, pp. 129–130], [20, pp. 81–83]. In the case of level-dependent QBD
(LDQBD) processes, the transition rates may depend on the level. Applying suitable state
space truncation and augmentation procedures [10], [17], [30], [32], the stationary distribution
of infinite LDQBD processes can be approximated by matrix-analytic methods [1], [4], [9],
[14].
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In this paper we first show how systems of stochastic chemical kinetics can be modeled as
infinite LDQBD processes. The state variables that take infinitely many values determine the
level numbers, whereas those that take finitely many values correspond to control (or phase)
and determine the number of states within each level. In particular, the mild condition, which
states that the maximum-valued infinite state variable in any state does not change by more than
one through any transition in these systems, enables the maximum value among the infinite
state variables to be the level number. Since the state vector holds only a finite number of
state variables, even when there are no finite state variables, the states within each level are
well defined and finite in this representation. To the best of our knowledge, this is the first
representation of levels in infinite LDQBD processes using multiple state variables.

For these systems, in contrast to many other applications, levels have an increasing number
of states as the level number increases and the probability mass may reside arbitrarily far
away from lower levels. These make the LDQBD model both interesting and challenging to
work with. The difficulty in computing the stationary probability distribution by the method
introduced in [4] lies in the need to determine a sufficiently high level number, denoted by
high in this contribution, from level 0 up to which most of the probability mass is located.
Finding high requires matrix-analytic computations and can be very time consuming, since a
matrix recording conditional expected sojourn times in states at level high+1 per unit sojourn
in states at level high must be computed with a certain tolerance on accuracy.

With the help of a suitably chosen Lyapunov function [11], [29], we show that the value
of high can be obtained easily for a specified percentage of the stationary probability mass,
thereby circumventing the need to do extensive computations. For the specified percentage, it
may very well be the case that the lower level number, denoted by low in this contribution,
which bounds the stationary probability mass from below, is larger than 0. Hence, the proposed
technique guarantees the existence of the specified percentage of the stationary probability mass
between levels low and high inclusive, low being obtained as a byproduct of the analysis
which yields high. In practice, the percentage of the mass that lies in the finite subset of states
between levels low and high may be much larger since the levels taken into consideration
depend on the tightness of the particular Lyapunov function used. We remark that the tolerance
on the accuracy of the matrix of conditional expected sojourn times does not provide such a
guarantee [4].

Having obtained the pair (low,high), an approximation to the matrix of conditional
expected sojourn times at level high + 1 must be determined. As indicated in [4], this is
a chore in itself and can be quite time consuming. Once this matrix is available, the matrices of
conditional expected sojourn times at lower level numbers down to low+1 are computed using
an already existing recurrence. Thereafter, a linear matrix equation for the boundary level low
is solved to obtain the subvector of the stationary distribution associated with level low. The
remaining stationary subvectors up to level high are computed recursively by vector-matrix
multiplications using the subvector obtained for the current level and the matrix of conditional
expected sojourn times available for the next level. We remark that all nonzero blocks in the
block tridiagonal form used in the respective computations are sparse with nonzero entries
having well-defined values and row/column indices for a given ordering of states. Hence,
each nonzero block can be generated as a sparse matrix whenever needed and used only once
during the computational procedure. Furthermore, the accuracy of the computed solution can
be assessed by the norm of the residual vector.

Results of numerical experiments we provide on a set of problems from the literature suggest,
among a number of alternative approaches, that the zero matrix as an approximation to the matrix
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of conditional expected sojourn times at level high + 1 [1], [14] fares very well in terms of
accuracy. The solution is obtained rapidly with a residual norm in the order of 10−16 when the
stationary probability mass is located in lower level numbers. We remark that the largest linear
system solved has as many equations and unknowns as the number of states in level high.
Besides, we pay special attention to a stable implementation and exploit two ideas. The first
is to use the Grassmann–Taksar–Heyman (GTH) idea of employing solely positive floating-
point arithmetic [13] in solving linear systems which involve M-matrices [5]. The second is
to drop all nonzeros less than a specified threshold in matrices obtained during intermediate
computations. Numerical experiments suggest that the latter idea is generally as good as the
former and results in a faster solver. Even when the GTH idea is not used (except when solving
the boundary system of equations), dropping nonzeros less than 10−16 from matrices results in
almost no loss of accuracy in the solution compared to the solution obtained without dropping;
in almost all cases both solutions are accurate to a residual norm in the order of 10−16.

In the next section we introduce systems of stochastic chemical kinetics using a finite set of
transition classes and show how they can be modeled as infinite LDQBD processes. Therein
we have a running example and two other examples from the literature, each different than
the others. In Section 3 we show how the pair of levels (low,high), between which a
specified percentage of the stationary probability mass lies, can be computed using suitably
chosen Lyapunov functions. In Section 4 we review an existing matrix-analytic method for
LDQBD processes and discuss how the stationary distribution can be computed accurately
when (low,high) is available. In Section 5, results of numerical experiments are provided
on the examples introduced before together with an assessment of the overall technique. In
Section 6, we conclude.

Throughout the paper, vectors associated with states are row vectors, consistent with the
conventional definition of state probability vectors; otherwise, all vectors are column vectors.
We represent by e a column vector of 1s and by ei the ith column of the identity matrix, I . The
lengths of the vectors are determined by the context in which they are used.

2. Infinite LDQBD processes

Let x = (x1, x2, . . . , xn) denote the state vector of a system of stochastic chemical kinetics
with n components, where xi ∈ Si is the state and Si ⊆ Z+ is the state space of the ith
component for i = 1, 2, . . . , n. Furthermore, let ×n

i=1Si be the product state space, where
‘×’ is the Cartesian product operator, and let S be the state space of the associated irreducible
time-homogeneous CTMC {X(t), t ≥ 0}. We remark that X(t) = (X1(t), X2(t), . . . , Xn(t)),
Pr{X(t) = x} = Pr{X1(t) = x1, X2(t) = x2, . . . , Xn(t) = xn}, and that each state in S is
reachable from every other state in S. However, note that S ⊆ ×n

i=1Si ⊆ Z
1×n+ , and while S

may be equal to Z
1×n+ in some problems, it will be only a subset of Z

1×n+ in others. In any case,
if there is at least one component among the n with a state space of Z+, then the underlying
CTMC has an infinite state space. Let nI denote the number of components with infinite state
spaces. Without loss of generality, let |Si | = ∞ for i = 1, 2, . . . , nI and |Si | < ∞ for
i = nI + 1, nI + 2, . . . , n. In other words, each of the first nI variables of the state vector can
take infinitely many values, whereas each of the last n−nI variables of the state vector can take
only finitely many values; the latter can be perceived as related to controlling the system. In
this contribution, systems of stochastic chemical kinetics for which 2 ≤ nI ≤ n are considered.

It is convenient to represent the evolution of a system of stochastic chemical kinetics by a set
of transition classes. A transition class φ is a pair (α, v), where α : S → R≥0 is a function that
determines the transition rate in each state and v ∈ Z

1×n is a state change vector that determines
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Table 1: Transition classes of the gene expression model.

j φj αj (x) v(j)

1 (α1, v
(1)) λ e�

1

2 (α2, v
(2)) µx1 e�

2

3 (α3, v
(3)) δ1x1 −e�

1

4 (α4, v
(4)) δ2x2 −e�

2

the successor state of the transition. Thus, if x ∈ S and α(x) > 0, then there is a transition
from state x with rate α(x) to state x + v ≥ 0. It is assumed that v has at least one nonzero
entry and that α(x) is a multivariate polynomial in the state variables xi for i = 1, 2, . . . , n.

Now, let the system of stochastic chemical kinetics under study be represented by � =
{φ1, φ2, . . . , φJ }, a set of J transition classes φj = (αj , v

(j)) with state change vectors v(j) for
j = 1, 2, . . . , J . We assume that the CTMC associated with the system under study is ergodic.
In the next section, we show how this can be verified by a suitably chosen Lyapunov function.
When X is ergodic, its infinite infinitesimal generator matrix, Q, up to an ordering of its states
has off-diagonal and diagonal entries defined respectively by

Q(x, y) =
∑

j such that y=x+v(j)

αj (x) and Q(x, x) = −
∑
y 	=x

Q(x, y) for x ∈ S, (1)

and a positive stationary probability distribution π such that πQ = 0 and πe = 1. The sum
in the expression for Q(x, y) indicates that there may be multiple state change vectors which
yield the same successor state y given the current state x. Since J is finite, Q in (1) is sparse
and has a finite number of nonzeros in each row and column, although supx∈S |Q(x, x)| may
be infinitely large due to the way in which α(x) is defined.

Example 1. (Gene expression.) Let us consider a system of stochastic chemical kinetics
modeling the biological process associated with a gene expression [27] through the transition
classes in Table 1. Here, n = 2, x = (x1, x2), S1 = S2 = Z+, nI = 2, J = 4,
and λ, µ, δ1, δ2 ∈ R>0. Furthermore, S = S1 × S2 = Z

1×2+ . Observe that the states of the
underlying infinite CTMC can be ordered as (0, 0), (0, 1), (1, 1), (1, 0), (0, 2), (1, 2), (2, 2),
(2, 1), (2, 0), . . . , and these states can be partitioned into consecutive levels of subsets S(l)

for l ∈ Z+ in which states (0, l), (1, l), . . . , (l, l), . . . , (l, 1), (l, 0) belong to S(l), the subset
corresponding to level l ∈ Z+ and having (2l + 1) states.

More formally, the subset of states corresponding to level l ∈ Z+ is defined as

S(l) = {x ∈ S | max(x1, x2, . . . , xnI
) = l}, S =

∞⋃
l=0

S(l),

S(l) ∩ S(k) = ∅ for l 	= k.

(2)

The justification for the maximum function follows from the observation that the maximum-
valued state variable among x1, x2, . . . , xnI

in any state x ∈ S does not change by more than
one through any transition due to the particular form of the state change vectors in the transition
classes. Since n is finite, even when n = nI , the states within each level are well defined and
finite in this representation. Now, we relate this to an infinite LDQBD process.
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An infinite infinitesimal generator matrix of the block tridiagonal form

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1
Q1,0 Q1,1 Q1,2

. . .
. . .

. . .

Ql,l−1 Ql,l Ql,l+1
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(3)

is said to correspond to an infinite LDQBD process. The nonzero blocks at level l are given by

Ql,l−1 ∈ R
|S(l)|×|S(l−1)|
≥0 , Ql,l ∈ R

|S(l)|×|S(l)|, and Ql,l+1 ∈ R
|S(l)|×|S(l+1)|
≥0 ; (some of) their entries

depend on the level number l. Note that only the diagonal entries in Ql,l are negative. Level 0
is the boundary level and has two nonzero blocks. There are an infinite number of levels, and
transitions from level l are either to states within itself, to states in level l − 1, or to states in
level l + 1. Clearly, the ordering of states within a level is only fixed up to a permutation.

In the following, we assume that Q in (3) is irreducible. This is a natural assumption since
S is defined to include only states reachable from each other; however, it is also a consequence
of our ergodicity assumption and implies that Ql,l−1 and Ql,l+1 are nonnegative rectangular
matrices and −Ql,l is a nonsingular M-matrix [2, pp. 132–164], [23, pp. 45–46]. Recall that
an M-matrix is any square matrix A of the form A = τI − B with τ > 0 and B ≥ 0 for which
τ ≥ ρ(B). Here, ρ(B) is the spectral radius of B, that is, the maximum magnitude of B’s
eigenvalues. The nonsingularity of −Ql,l follows from the fact that it has a positive diagonal,
nonpositive off-diagonal entries, and nonnegative row sums with at least one positive row sum
(this last property is a result of the irreducibility of Q). Being a nonsingular M-matrix, its
inverse is nonnegative, that is, −Q−1

l,l ≥ 0 for l ∈ Z+.

Example 2. (Example 1 continued: gene expression.) For our particular example, with the
ordering of states within levels as described, Q0,0 = (−λ), Q0,1 = λe�

3 , and, for l > 0,

Ql,l−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0,l−1) · · · (l−1,l−1) · · · (l−1,0)

(0,l) lδ2
...

. . .

(l−1,l) lδ2

(l,l)

(l,l−1) lδ1
...

. . .

(l,0) lδ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2l+1)×(2l−1)

,

Ql,l =

(0,l)

(1,l)

...
(l−1,l)

(l,l)

(l,l−1)

...
(l,1)

(l,0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ λ
δ1 ∗ λ

. . .
. . .

. . .

(l − 1)δ1 ∗ λ
lδ1 ∗ lδ2

lµ ∗ (l − 1)δ2
. . .

. . .
. . .

lµ ∗ δ2
lµ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2l+1)×(2l+1)

,
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Ql,l+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0,l+1) (1,l+1) · · · (l,l+1) (l+1,l+1) (l+1,l) · · · (l+1,0)

(0,l)

(1,l) µ

...
. . .

(l,l) lµ λ

...
. . .

(l,0) λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2l+1)×(2l+3)

.

Now, we introduce two other examples from the literature.

Example 3. (Toggle switch.) Let us consider a system of stochastic chemical kinetics modeling
the biological process associated with a toggle switch [8] through the transition classes in
Table 2. Here, n = 4, x = (x1, x2, x3, x4), S1 = S2 = Z+, S3 = S4 = {0, 1}, nI = 2, J = 8,
and λ1, λ2, δ1, δ2, β0, β1 ∈ R>0. Furthermore, S = ×4

i=1Si . The states of the underlying
infinite CTMC can be ordered as (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0),
(0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1), (1, 0, 0, 0),
(1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1), . . . , and can be partitioned into consecutive levels of subsets
S(l) for l ∈ Z+ in which states (0, l, x3, x4), (1, l, x3, x4), . . . , (l, l, x3, x4), . . . , (l, 1, x3, x4),
(l, 0, x3, x4) belong to S(l) having 8l + 4 states. We remark that we again have a definition of
levels as in (2).

Example 4. (Exclusive switch.) Let us consider a system of stochastic chemical kinetics
modeling the biological process associated with an exclusive switch [18] through the transition
classes in Table 3. Here, n = 5, x = (x1, x2, x3, x4, x5), S1 = S2 = Z+, S3 = S4 =
S5 = {0, 1}, nI = 2, J = 10, and p, d, b, u ∈ R>0. Furthermore, S = S1 × S2 ×
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}⊂ ×5

i=1Si . The states of the underlying infinite CTMC can be or-
dered as (0, 0, 0, 0, 1), (0, 0, 0, 1, 0), (0, 0, 1, 0, 0), (0, 1, 0, 0, 1), (0, 1, 0, 1, 0), (0, 1, 1, 0, 0),
(1, 1, 0, 0, 1), (1, 1, 0, 1, 0), (1, 1, 1, 0, 0), (1, 0, 0, 0, 1), (1, 0, 0, 1, 0), (1, 0, 1, 0, 0), . . . ,
and can be partitioned into consecutive levels of subsets S(l) for l ∈ Z+ in which states
(0, l, x3, x4, x5), (1, l, x3, x4, x5), . . . , (l, l, x3, x4, x5), . . . , (l, 1, x3, x4, x5), (l, 0, x3, x4, x5)

Table 2: Transition classes of the toggle switch model.

j φj αj (x) v(j)

1 (α1, v
(1)) λ1(1 − x4) e�

1

2 (α2, v
(2)) δ1x1 −e�

1

3 (α3, v
(3)) β0x1(1 − x3) (−e1 + e3)

�

4 (α4, v
(4)) β1x3 (e1 − e3)

�

5 (α5, v
(5)) λ2(1 − x3) e�

2

6 (α6, v
(6)) δ2x2 −e�

2

7 (α7, v
(7)) β0x2(1 − x4) (−e2 + e4)

�

8 (α8, v
(8)) β1x4 (e2 − e4)

�
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Table 3: Transition classes of the exclusive switch model.

j φj αj (x) v(j)

1 (α1, v
(1)) px3(1 − x4)(1 − x5) e�

1

2 (α2, v
(2)) px3(1 − x4)(1 − x5) e�

2

3 (α3, v
(3)) dx1 −e�

1

4 (α4, v
(4)) dx2 −e�

2

5 (α5, v
(5)) bx1x3(1 − x4)(1 − x5) (−e1 − e3 + e4)

�

6 (α6, v
(6)) bx2x3(1 − x4)(1 − x5) (−e2 − e3 + e5)

�

7 (α7, v
(7)) u(1 − x3)x4(1 − x5) (e1 + e3 − e4)

�

8 (α8, v
(8)) u(1 − x3)(1 − x4)x5 (e2 + e3 − e5)

�

9 (α9, v
(9)) p(1 − x3)x4(1 − x5) e�

1

10 (α10, v
(10)) p(1 − x3)(1 − x4)x5 e�

2

belong to S(l) having 6l + 3 states. We remark that we again have a definition of levels as in
(2). However, in this case (x3, x4, x5) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)} ⊂ S3 ×S4 ×S5. That is,
the values the last three state variables take are mutually exclusive. Note that the state change
vectors in this model are not unique.

We remark that all three examples are different from each other in that they respectively have
two, four, and five variables in the state vector only, the first two of which take values in the set
of nonnegative integers. The first example does not have any state variables for control, whereas
the second and third examples have two and three state variables for control, respectively. The
second and the third examples are different from each other in that the two control variables in
the former represent four distinct possibilities, whereas the three control variables in the latter
represent only three distinct possibilities. Hence, the state space of the exclusive switch model
is a proper subset of its product state space.

We have not specified the blocks in the block tridiagonal form corresponding to the second
and third examples due to space limitations. However, observe that all nonzero blocks are
sparse with nonzero entries having well-defined values and row/column indices for a given
ordering of states. Hence, each block can be generated as a sparse matrix whenever needed.

3. Lyapunov bounds

The LDQBD process {X(t), t ≥ 0} is ergodic if and only if there exists a function g : S →
R≥0, called a Lyapunov function, that guarantees the ergodicity of X as well as a finite attractor
set C ⊂ S [29]. More precisely, g and C meet the conditions

(i) (d/dt) E[g(X(t)) | X(t) = x] ≤ −γ for all x ∈ S \ C,

(ii) (d/dt) E[g(X(t)) | X(t) = x] < ∞ for all x ∈ C, and

(iii) {x ∈ S | g(x) ≤ r} is finite for all r < ∞
for some γ > 0.
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The value d(x) = (d/dt) E[g(X(t)) | X(t) = x] is called the drift in state x and is given by

d(x) =
J∑

j=1

αj (x)(g(x + v(j)) − g(x)). (4)

Observe that, with a slight abuse of the functional notation introduced earlier, g(x) and d(x)

for all x ∈ S can be written in the form of row vectors g ∈ R
1×|S| and d ∈ R

1×|S|, respectively.
Then (4) can be expressed in matrix-vector form as

d� = Qg�, (5)

assuming the same ordering of states for the vectors g and d as in Q.
Now, we derive a nontrivial upper bound on the stationary probability mass that resides

outside the set C by a scaling of g with c+γ , where c = supx∈S d(x) and γ is as in condition (i).
Note that conditions (i) and (ii) imply that c < ∞. We define g∗(x) = g(x)/(c + γ ) and
d∗(x) = (d/dt) E[g∗(X(t)) | X(t) = x]. This yields

d∗(x) = d(x)

c + γ
≤ c

c + γ
− χC̄(x) (6)

for x ∈ S, where χC̄(x) = 1 if x ∈ S \ C and 0 if x ∈ C. Since X is ergodic and Q has a finite
number of nonzeros in each row and column, it follows from (5) that πd� = πQg� = 0 and
π(d∗)� = πQ(g∗)� = 0. Together with (6) we get

∑
x∈S\C

π(x) ≤ c

c + γ
.

We remark that c > 0. This is so because π is positive, d contains at least one negative entry
due to condition (i), and πd� = 0. These together imply at least one positive entry in d. Since
γ > 0 and c > 0, this gives a nontrivial upper bound on the stationary probability of being in
S \ C, and, therefore, the stationary probability mass inside C must be at least 1 − c/(c + γ ).

Given a Lyapunov function g that satisfies condition (iii) and c = supx∈S d(x) < ∞, an
upper bound ε ∈ (0, 1) can be a priori specified as ε = c/(c + γ ). Then γ = c/ε − c, and this
yields the set

C = {x ∈ S | d∗(x) > ε − 1},
because the condition d∗(x) > ε − 1 is equivalent to d(x) > −γ . If C is finite, the
aforementioned conditions above are fulfilled and

∑
x∈C π(x) ≥ 1 − ε.

Here, we are interested in determining the pair of level numbers, (low, high), of the
LDQBD process such that the states between levels low and high inclusively encompass C.
Thus, we have

low = min{l ∈ Z+ | S(l) ∩ C 	= ∅} and high = max{l ∈ Z+ | S(l) ∩ C 	= ∅},
and the finite set

⋃
low≤l≤high S(l) contains at least 1 − ε of the stationary probability mass.

Example 5. (Example 1 continued: gene expression.) We first consider the function

g(x1, x2) = max(x1, x2).
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A few moments of reflection reveal that it does not guarantee the ergodicity of the LDQBD
process, because, when x1 = x2, from (4), the drift is d(x1, x2) = λ + µx1, and d(x1, x2)

increases as x1 increases.
The function g(x1, x2) = x1 + x2 works only if µ < δ1, because from (4) the drift is

d(x1, x2) = λ + µx1 − δ1x1 − δ2x2. If µ ≥ δ1 then d(x1, x2) is positive for infinitely many
states.

On the other hand, the function

g(x1, x2) = 2µx1

δ1
+ x2

is suitable, since from (4) the drift is

d(x1, x2) = 2λµ

δ1
− µx1 − δ2x2,

and d(x1, x2) decreases as x1 and x2 increase.
In the following, we use two subscripts to indicate the example number and the parameter

set, respectively, and report the values of c and γ with two decimal digits of precision after the
decimal point.

Parameter set 1. Let λ = µ = δ2 = 0.05 and δ1 = 0.005. Then

d1,1(x1, x2) = 1 − 0.05x1 − 0.05x2,

implying that d1,1(x1, x2) ≤ 1 with equality attained at (0, 0). Hence, c1,1 = 1. When ε = 0.1,
we obtain γ1,1 = 9, and C1,1 = {(x1, x2) | d1,1(x1, x2) ≥ −9} for which (low,high) =
(0, 200).

Parameter set 2. Now, let us consider the same model with the parameters λ = 60, µ =
δ2 = 0.01, and δ1 = 0.2. Even though the Lyapunov function g(x1, x2) = 2µx1/δ1 +x2 would
work, we use the function

g1,2(x1, x2) = (x1 − 300)2 + (x2 − 300)2.

The reason is that g1,2(x) measures the squared distance of x to x∗ = (300, 300), which is
the equilibrium point of the mean field of the underlying CTMC. That is, we have g1,2(x) =
‖x − x∗‖2

2, the squared Euclidean norm of x − x∗.
More precisely, from Propositions 2.2 and 2.3 of [7], we derive

d

dt
E[X1(t)] = λ − δ1 E[X1(t)],

d

dt
E[X2(t)] = µ E[X1(t)] − δ2 E[X2(t)].

Setting the left-hand side of the system of differential equations to 0 yields the equilibrium
point x∗ = (λ/δ1, λµ/δ1δ2).

For parameter set 2, x∗ = (300, 300), and, from (4), the drift with respect to g1,2(x1, x2) is
given by

d1,2(x1, x2) = −0.4x2
1 + 0.02x1x2 + 234.21x1 − 0.02x2

2 + 6.01x2 − 35 940.
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Using Geobound (see http://alma.cs.uni-saarland.de/?page_id=74), we obtain c1,2 = 126.03.
Furthermore, we remark that the drift is positive in only finitely many states. When ε = 0.05,
we obtain γ1,2 = 2394.58. Thus, the set

C1,2 = {(x1, x2) | d1,2(x1, x2) ≥ −2394.58}

contains at least 95% of the stationary probability mass. Using the level definition in (2), we
obtain (low,high) = (221, 657).

Example 6. (Example 3 continued: toggle switch.) We consider the parameters λ1 = λ2 = 6,
δ1 = δ2 = 0.4, β0 = 1, and β1 = 0.5. Similar to the gene expression model, we then estimate
the location of attractor points by computing the equilibrium point x∗ = (x∗

1 , x∗
2 , x∗

3 , x∗
4 ) of the

mean-field equation as

0 = 6(1 − x∗
4 ) − 0.4x∗

1 − x1(1 − x∗
3 ) + 0.5x∗

3 ,

0 = 6(1 − x∗
3 ) − 0.4x∗

2 − x∗
2 (1 − x∗

4 ) + 0.5x∗
4 ,

0 = x∗
1 (1 − x∗

3 ) − 0.5x∗
3 ,

0 = x∗
2 (1 − x∗

4 ) − 0.5x∗
4 .

This yields x∗
1 = x∗

2 = 5
2 and x∗

3 = x∗
4 = 5

6 . We remark that this is only a rough estimate of
E[X(t)] when t approaches ∞ [7]. We again choose the Lyapunov function as g2,1(x) =
‖x − x∗‖2

2. With g2,1(x), from (4) we get the drift function

d2,1(x1, x2, x3, x4) = 2x2
1x3 − 2.8x2

1 − 13
3 x1x3 − 12x1x4 + 296

15 x1 + 2x2
2x4 − 2.8x2

2

− 13
3 x2x4 − 12x2x3 + 296

15 x2 + 67
3 x3 + 67

3 x4 − 48.

Using Geobound, we obtain the global maximum c2,1 = 53.79. Note that d2,1(x) is positive for
only a finite number of states, because, for each positive term in d2,1(x), there is a negative term
with higher order. This can be easily verified by considering all four possibilities for (x3, x4).
For ε = 0.05, we compute γ2,1 = 1021.92. This yields a set C2,1 with (low,high) = (0, 46).
Note that the Lyapunov function g2,1(x) yields tighter bounds than, for instance, g(x) = ‖x‖2

2
or g(x) = x1 +x2 +x3 +x4. The reason is that, in the latter case we measure the distance from
the origin, but the states with high stationary probability are also located around (x1, x2) =
(14, 0) and (x1, x2) = (0, 14). For example, g(x) = x1 + x2 + x3 + x4 yields the pair
(low,high) = (0, 599).

Example 7. (Example 4 continued: exclusive switch.) Parameter set 1. We choose the
parameters p = 0.05, d = 0.005, b = 0.01, and u = 0.008. For the Lyapunov function
g3,1(x) = ‖x‖2

2, we get the drift

d3,1(x1, x2, x3, x4, x5) = −0.02x2
1x3 − 0.01x2

1 + 0.11x1x3 + 0.116x1x4 + 0.005x1

− 0.02x2
2x3 − 0.01x2

2 + 0.11x2x3 + 0.116x2x5 + 0.005x2

+ 0.042x3 + 0.058.

By checking all valid combinations of x3, x4, x5 ∈ {0, 1}, it is possible to verify that the drift
is positive for only finitely many states. We compute the global maximum c3,1 = 0.42 using
Geobound. For ε = 0.05, we get γ3,1 = 8.07 and (low,high) = (0, 35).
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Parameter set 2. Now we choose p = 0.5, d = 0.005, b = 0.000 01, and u = 0.008, and
consider the Lyapunov function

g3,2(x1, x2, x3, x4, x5) = ∥∥(100, 80) − (x1, x2)
∥∥2

2

∥∥(80, 100) − (x1, x2)
∥∥2

2.

The corresponding drift has as its maximum c3,2 = 1.55 × 105, again computed using
Geobound. For ε = 0.05, we obtain γ3,2 = 2.94 × 106 and (low,high) = (1, 206), while
ε = 0.1 yields γ3,2 = 1.39 × 107 and (low,high) = (13, 189). Since the number of states
per level increases with the level number, the tight bounds of (13, 189) are computationally
more attractive. Furthermore, experiments we report later show that including levels beyond
189 does not improve accuracy in this example.

4. Matrix-analytic computations

Our objective is to compute the stationary probability distribution

π = (π(0), π(1), . . . , π(l), . . . )

of the ergodic infinite LDQBD process partitioned conformally with its underlying infinitesimal
generator matrix Q in (3). Thus, we seek the unique positive solution to πQ = 0 subject to
πe = 1.

In our setting, we are given the pair (low,high), and the task amounts to obtaining the matrix

subsequence R̃l ∈ R
|S(l)|×|S(l+1)|
≥0 that approximates Rl for l ∈ {low,low + 1, . . . ,high}.

Here, the entry Rl(x, y) is the expected sojourn time in state y ∈ S(l+1) at level l + 1 per unit
sojourn in state x ∈ S(l) at level l before returning to level l, given the process started in state
x at level l. We remark that Rl (and, therefore, R̃l) is nonnegative and rectangular. Hence, the
behavior of its largest singular value, denoted by σ1(Rl) for l ∈ {low,low + 1, . . . ,high}
is likely to provide insight regarding the behavior of the stationary probability distribution of
the system under study. Recall that the singular values of a real rectangular matrix C are the
square roots of the eigenvalues of C�C, which is symmetric positive definite and, therefore,
has positive real eigenvalues (see, for instance, [12, pp. 410–411, 427]).

Given the approximations R̃l , we can obtain approximations π̃ (l) ∈ R
1×|S(l)|
≥0 of π(l) by using

the boundary condition

π̃ (low)(Qlow,low + R̃lowQlow+1,low) = 0 (7)

and the recurrence
π̃ (l+1) = π̃ (l)R̃l

subject to (π̃ (low), π̃ (low+1), . . . , π̃ (high))e = 1 [4]. We assume that π̃ (l) = 0 for l 	∈ {low,

low+ 1, . . . ,high} since the stationary probability mass of these levels is at most ε.
When the infinite LDQBD process is ergodic, the sequence of Rl matrices for l > 0 is given

by

Rl =
∞∑

k=0

U
(k)
l

k−1∏
m=0

D
(k−1−m)

l+2k−m , (8)

where
U

(0)
l = Ql,l+1(−Ql+1,l+1)

−1, D
(0)
l+2 = Ql+2,l+1(−Ql+1,l+1)

−1, (9)
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and, for k > 0,

U
(k)
l = U

(k−1)
l U

(k−1)

l+2k−1(I − U
(k−1)

l+2k D
(k−1)

l+3.2k−1 − D
(k−1)

l+2k U
(k−1)

l+2k−1)
−1,

D
(k)

l+2k+1 = D
(k−1)

l+2k+1D
(k−1)

l+3.2k−1(I − U
(k−1)

l+2k D
(k−1)

l+3.2k−1 − D
(k−1)

l+2k U
(k−1)

l+2k−1)
−1 (10)

are pairs of nonnegative matrices [4] defined recursively. The pair in (9) for k = 0 supplies the

boundary conditions with U
(0)
l ∈ R

|S(l)|×|S(l+1)|
≥0 , D

(0)
l+2 ∈ R

|S(l+2)|×|S(l+1)|
≥0 , and the pair in (10)

for k > 0 satisfies U
(k)
l ∈ R

|S(l)|×|S(l+2k)|
≥0 , D

(k)

l+2k+1 ∈ R
|S(l+2k+1)|×|S(l+2k)|
≥0 . Note that the inverse

matrices in (9) and (10) are the same, and each can be obtained once and used in the other [28].
The kth term in (8) calculates the expected sojourn times at level l + 1 for sample paths that

go to levels between l − 1 + 2k and l − 1 + 2k+1 [22]. Hence, if the infinite sum in (8) is
truncated using K ≥ 0 as the upper limit, as in

R
(K)
l =

K∑
k=0

U
(k)
l

k−1∏
m=0

D
(k−1−m)

l+2k−m , (11)

then only sample paths below level l − 1 + 2K+1 are considered. Note that, for K = 0,
R

(0)
l = U

(0)
l , which is nonzero and nonnegative. Furthermore, R

(K+1)
l ≥ R

(K)
l since U

(k)
l ≥ 0

and D
(k−1−m)

l+2k−m ≥ 0 for 0 ≤ k ≤ K , 0 ≤ m < k. This also follows from the physical
interpretations of R

(K+1)
l and R

(K)
l .

As pointed out in [4], rather than (8), we can equivalently use

R̃l = Ql,l+1(−Ql+1,l+1 − R̃l+1Ql+2,l+1)
−1 for low ≤ l < high (12)

if there is an accurate R̃high to start with.
There are various approaches for obtaining R̃high given high.

(A1) As in [4], it is possible to try to compute a value for K in (11) by considering an increasing
number of terms until the maximum entry in absolute value in the difference between two
consecutive approximations is less than a specified tolerance, say 10−10. That is, K is
chosen as the smallest positive integer which satisfies max(R

(K)
high − R

(K−1)
high ) < 10−10,

and then R̃high is set to R
(K)
high.

(A2) A simpler approach is to limit the number of terms in (11) to five or six, that is, to use
R

(4)
high or R

(5)
high as R̃high [4]. In either case, the maximum entry in absolute value

in the difference between the last two approximations (that is, max(R
(4)
high − R

(3)
high)

or max(R
(5)
high − R

(4)
high), respectively) can be used as an indication of the error in the

approximation, although it does not provide any guarantees.

(A3) An alternative discussed in [1] and [14] is to let R̃high be the zero matrix. The existence
of R̃high−1 in (12) is guaranteed by the fact that −Qhigh,high is a nonsingular M-matrix.
However, it is not clear how much approximation error is incurred with this approach.

(A4) One variation on (A3) is to add Qhigh,high+1e to the last column of Qhigh,high during
the computation of R̃high−1 in (12). However, this is known not to be optimal in some
cases [32].

In any case, the important thing is to have a measure against which these approaches can be
compared. To this end, ‖π̃Q‖∞, the infinity norm of the residual vector corresponding to
the approximate stationary distribution π̃ obtained with the respective approach, emerges as a
convenient measure.
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Now, we turn to implementation issues and remark that the computation of R̃l in (12) and
π̃low in (7) are prone to inaccuracies. The inaccuracy of the former stems from the possibility
that matrices whose inverses appear in (12) are close to being singular in machine precision.
Note that in exact arithmetic these matrices should be nonsingular. The inaccuracy of the latter
is somewhat different and more serious in that (Qlow,low + R̃lowQlow+1,low) in (7) must be
singular in exact arithmetic for π̃low to be nonnegative since the right-hand side is 0. Now we
have the possibility that a matrix, which must be singular, is nonsingular in machine precision.

The remedy for both of these situations is to employ the GTH idea of using only positive
floating-point arithmetic as discussed in [5]. The fix for the former kind of problem is
straightforward. The matrix to be inverted can be factorized using the GTH idea since its
inverse should be nonnegative. Then a linear system with right-hand side I should be solved
for the matrix to be inverted. The fix for the latter kind of problem when low = 0 is similar.
However, for the case low > 0, it is not so obvious; but, we have observed that not augmenting
Qlow,low in any way (similar to Qhigh,high) yields the best accuracy.

5. Numerical results

All numerical experiments are carried out on an Intel® Core™2 Duo T7700 at 2.4 GHz with
2 GB main memory, except those with the second parameter set of the gene expression model
which are carried out on an Intel Core i7 at 2.8 GHz with 8 GB main memory since they cannot
be solved with 2 GB. Approaches (A1), (A2), (A3), and (A4) are implemented in MATLAB®

and the code is available online at http://www.cs.bilkent.edu.tr/∼tugrul/software.html.
In the tables, the first two columns give the values of ε and the corresponding (low, high)

pair for the particular Lyapunov function devised in Section 3. We remark that (1 − ε)× 100 is
a lower bound on the percentage of the stationary probability mass that lies between levels low
and high inclusive. Column ‘Approach’ indicates the approach used in the solution procedure.
A threshold of 1e−16 beside the name of the approach indicates that nonzero entries less than
10−16 in all intermediate matrices are dropped. Column ‘Tsetup’ lists the time in seconds to
compute R̃high and column ‘Tsolve’ lists the time in seconds to solve the problem using the
method discussed in the previous section with the particular approach. The sum of the values
in columns Tsetup and Tsolve is the total solution time. Column ‘Res’ gives the infinity norm of
the residual vector (i.e. Res = ‖π̃Q‖∞). Note that the value in column Tsetup can be larger
than 0 only for approaches (A1) and (A2), and Tsolve includes the time to compute the value
in column Res. Finally, the last column gives Tol, which is equal to max(R

(4)
high − R

(3)
high) for

(A2). Since (A2) does not yield competitive total solution times compared to (A3), we have not
experimented with (A1) at all. It is expected for the total solution time with (A1) to be larger
than that of (A2) since its Tsetup is almost always costlier. The results with (A4) are the same
as those for (A3) and, therefore, are not reported. Since solving (12) using the GTH idea has
not improved accuracy of the solutions, we do not report results with GTH.

5.1. Gene expression

Parameter set 1. With a lower bound of 90% on the stationary probability mass, (low,

high) = (0, 200) and a residual norm in the order of 10−17 is obtained in about 13 seconds
using (A3) (see Table 4). The LDQBD process restricted to levels (0, 200) has 40 401 states.
Observe that the marginal stationary probability across levels is maximized at level 10 (see
Figure 1(a)), whereas the marginal stationary probability across the infinite state variables
is maximized at level 9 (see Figure 1(b)). The maximum singular value of the matrices of
conditional expected sojourn times appears at level 0 in Figure 1(c). We remark that there is
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Table 4: Results for the gene expression model with parameter set 1: (λ, µ, δ1, δ2) = (0.05, 0.05, 0.005,

0.05) and g1,1(x1, x2) = 2µx1/δ1 + x2.

ε (low, high) Approach Tsetup (s) Tsolve (s) Res Tol

1e−1 (0, 200) (A2) 286 12 6e−17 2e−3
(A2), 1e−16 19 5 6e−17 2e−3

(A3) 0 13 6e−17
(A3), 1e−16 0 9 6e−17
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Figure 1: Plots for the gene expression model with parameter set 1: (λ, µ, δ1, δ2) = (0.05, 0.05, 0.005,

0.05) and (low,high) = (0, 200).

no need to consider a smaller ε since the solution already has a residual norm in the order of
10−17 for ε = 0.1

Parameter set 2. With a lower bound of 95% on the stationary probability mass, (low,
high) = (221, 657) and a residual norm in the order of 10−13 is obtained in about 41 minutes
using (A3) (see Table 5). The LDQBD process restricted to levels (221, 657) has 384 123
states. Observe that the marginal stationary probability across levels is maximized at level 308
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Table 5: Results for the gene expression model with parameter set 2: (λ, µ, δ1, δ2) = (60, 0.01, 0.2,

0.01) and g1,2(x1, x2) = (x1 − 300)2 + (x2 − 300)2.

ε (low,high) Approach Tsetup (s) Tsolve (s) Res Tol

1e−1 (245, 552) (A2) 2859 1078 3e−8 2e−4
(A2), 1e−16 236 1202 3e−8 2e−4

(A3) 0 1059 3e−8
(A3), 1e−16 0 1098 3e−8

5e−2 (221, 657) (A2) 3687 2463 2e−13 1e−4
(A2), 1e−16 350 2557 2e−13 1e−4

(A3) 0 2442 2e−13
(A3), 1e−16 0 2484 2e−13
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Figure 2: Plots for the gene expression model with parameter set 2: (λ, µ, δ1, δ2) = (60, 0.01, 0.2, 0.01)

and (low,high) = (221, 657).

(see Figure 2(a)), whereas the marginal stationary probability across the infinite state variables
is maximized at level 520 (see Figure 2(b)). The maximum singular value of the matrices of
conditional expected sojourn times appears at level 221 in Figure 2(c). In order to see the effect
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of using low = 0 on accuracy without changing the value of high, we have carried out an
additional experiment on the same platform. The results show that a residual norm in the order
of 10−14 is obtained with (low,high) = (0, 552) using (A3). This indicates that accuracy
improves considerably if lower levels are taken into account.

5.2. Toggle switch

With a lower bound of 99% on the stationary probability mass, (low,high) = (0, 91) and
a residual norm in the order of 10−16 is obtained in 9 seconds using (A3) (see Table 6). The
LDQBD process restricted to levels (0, 91) has 33 856 states. In this problem, there is a slight
loss of accuracy when entries less than 10−16 in intermediate matrices are dropped. Observe
that the marginal stationary probability across levels is maximized at level 3 (see Figure 3(a)),
whereas the marginal stationary probability across the infinite state variables is maximized at
level 1 (see Figure 3(b)). The maximum singular value of the matrices of conditional expected
sojourn times appears at level 0 in Figure 3(c).

5.3. Exclusive switch

Parameter set 1. With a lower bound of 99% on the stationary probability mass, (low,

high) = (0, 71) and a residual norm in the order of 10−18 is obtained in 2 seconds using
(A3) (see Table 7). The LDQBD process restricted to levels (0, 71) has 15 552 states. Observe
that the marginal stationary probability across levels is maximized at level 9 (see Figure 4(a)),
whereas the marginal stationary probability across the infinite state variables is maximized at
level 10 (see Figure 4(b)). The maximum singular value of the matrices of conditional expected
sojourn times appears at level 0 in Figure 4(c).

Parameter set 2. With a lower bound of 90% on the stationary probability mass, (low,

high) = (13, 189) and a residual norm in the order of 10−17 is obtained in about 1.5 minutes
using (A3) (see Table 8). The LDQBD process restricted to levels (13, 189) has 103 293 states.
Observe that the marginal stationary probability across levels is maximized at level 102 (see
Figure 5(a)), whereas the marginal stationary probability across the infinite state variables is
maximized at level 110 (see Figure 5(b)). The maximum singular value of the matrices of
conditional expected sojourn times appears at level 27 in Figure 5(c).

Table 6: Results for the toggle switch model with (λ1, λ2, δ1, δ2, β0, β1) = (6, 6, 0.4, 0.4, 1, 0.5) and
g2,1(x1, x2, x3, x4) = (x1 − 5

2 )2 + (x2 − 5
2 )2 + (x3 − 5

6 )2 + (x4 − 5
6 )2.

ε (low,high) Approach Tsetup (s) Tsolve (s) Res Tol

1e−1 (0, 35) (A2) 52 0 3e−6 4e−8
(A2), 1e−16 10 1 3e−6 4e−8

(A3) 0 0 3e−6
(A3), 1e−16 0 1 3e−6

5e−2 (0, 46) (A2) 88 1 4e−11 1e−9
(A2), 1e−16 13 3 4e−11 1e−9

(A3) 0 1 5e−11
(A3), 1e−16 0 3 5e−11

1e−2 (0, 91) (A2) 675 9 8e−17 8e−14
(A2), 1e−16 63 28 1e−15 8e−14

(A3) 0 9 8e−17
(A3), 1e−16 0 27 1e−15
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Figure 3: Plots for the toggle switch model with (λ1, λ2, δ1, δ2, β0, β1) = (6, 6, 0.4, 0.4, 1, 0.5) and
(low,high) = (0, 91).

Table 7: Results for the exclusive switch model with parameter set 1: (p, d, b, u) = (0.05, 0.005, 0.01,

0.008) and g3,1(x1, x2, x3, x4, x5) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 .

ε (low,high) Approach Tsetup (s) Tsolve (s) ‖π̃Q‖∞ Tol

1e−1 (0, 26) (A2) 13 0 2e−7 3e−9
(A2), 1e−16 6 0 2e−7 3e−9

(A3) 0 0 2e−7
(A3), 1e−16 0 0 2e−7

5e−2 (0, 35) (A2) 22 0 7e−12 8e−11
(A2), 1e−16 6 0 7e−12 8e−11

(A3) 0 0 7e−12
(A3), 1e−16 0 0 7e−12

1e−2 (0, 71) (A2) 111 2 3e−18 5e−15
(A2), 1e−16 14 7 2e−18 5e−15

(A3) 0 2 3e−18
(A3), 1e−16 0 7 2e−18
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Figure 4: Plots for the exclusive switch model with parameter set 1: (p, d, b, u) = (0.05, 0.005, 0.01,

0.008) and (low,high) = (0, 71).

Table 8: Results for the exclusive switch model with parameter set 2: (p, d, b, u) = (0.5, 0.005,

0.000 01, 0.008) and g3,2(x1, x2, x3, x4, x5) = ((x1 − 100)2 + (x2 − 80)2)((x1 − 80)2 + (x2 − 100)2).

ε (low,high) Approach Tsetup (s) Tsolve (s) ‖π̃Q‖∞ Tol

1e−1 (13, 189) (A2) 2 047 83 5e−18 6e−6
(A2), 1e−16 122 354 5e−18 6e−6

(A3) 0 87 1e−17
(A3), 1e−16 0 305 1e−17

5e−2 (1, 206) (A2) 2 915 145 3e−17 2e−6
(A2), 1e−16 144 534 4e−17 2e−6

(A3) 0 140 3e−17
(A3), 1e−16 0 471 4e−17

5.4. Discussion

With the proposed approach, five problems are solved. In two problems, low > 0 is used.
In problems where the stationary probability mass is located at lower level numbers (such as
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Figure 5: Plots for the exclusive switch model with parameter set 2: (p, d, b, u) = (0.5, 0.005, 0.000 01,

0.008) and (low,high) = (13, 189).

around level 3 for the toggle switch model and around level 9 for the first parameter set of the
exclusive switch model), the solution is obtained within some number of seconds with approach
(A3). The solution time depends on the value of high and the sizes of the blocks close to
level high, and, thus, the number of states residing between levels 0 and high. On the other
hand, when the stationary probability mass is located relatively far away from lower levels as
in the gene expression model or the second parameter set of the exclusive switch model (these
three problems have their stationary probability masses located around levels 96, 308, and 102,
respectively), a solution takes longer. Note that in these three problems, even though a much
larger value of ε is used compared to those of the other two problems for similar residual norms,
much larger sets of states end up being analyzed. The solution time of the second problem is
about 40 minutes with (A3) and much larger than that of the first problem, which is about 3
minutes with (A3), due to the necessity to consider the much larger blocks at level numbers
between 221 and 657. We note that the value of max(R

(4)
high − R

(3)
high) for the (A2) approach is

not indicative of the quality of the obtained solution. On the other hand, the level number where
the largest singular values of the approximate matrices of conditional expected sojourn times is
maximized, generally turns out to be close to where the marginal stationary probability across
levels for the same problem is maximized. Finally, it is observed clearly that (A3) provides
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the best overall approach from a computational perspective to handle the approximation to the
matrix of conditional expected sojourn times at level high + 1, and that dropping nonzero
entries less than 10−16 from matrices does not have an adverse effect on accuracy, but is likely
to help with memory requirements.

Recently a method that computes componentwise bounds on the stationary probability distri-
bution of Markov population models was proposed [6]. The work in this paper is complementary
to that in several ways. Although both techniques use a suitable Lyapunov function to locate a
finite subset of states where a specified percentage of the stationary probability mass resides,
the technique proposed in this paper for the LDQBD model requires a larger finite subset of
states with which to work than the technique in [6] for the same percentage. This clearly implies
larger memory requirements. However, it results in a rapid solution with a sufficiently small
residual norm when a relatively large percentage of the probability mass is located in relatively
small level numbers. Note that the largest linear system solved has as many equations and
unknowns as the number of states in level high. On the contrary, the computation of bounds
with comparable accuracy with the bounding technique in [6] would require a finite subset of
states with at least comparable size to those that lie between levelslow and high to be explored
and a system of linear equations with coefficient matrix incident on this relatively larger subset
to be solved for multiple right-hand sides. Although there is no duplication of work when the
coefficient matrix is relatively small to be factorized and a direct solution method employed, the
nonzero entries of the same coefficient matrix will be used over and over again when the finite
subset is relatively large to warrant the use of an iterative method in the solution procedure [26,
pp. 121–230].

6. Conclusion

We have shown how stochastic chemical kinetic systems can be modeled as infinite LDQBD
processes and how their stationary distribution can be approximated by matrix-analytic meth-
ods. The major novelties of our contribution are the use of LDQBD processes for stochastic
chemical kinetics, the way of defining the levels, and the application of Lyapunov functions for
determining truncation levels such that the maximum approximation error due to state space
truncation can be prescribed.

The level definition is a key issue in LDQBD modeling. In many applications of QBD
processes, such as queueing models for computer and communication systems, the level of
a state is usually defined through only one single component of the multidimensional state
space in that the value of that component determines the level number. Often the notion of a
QBD process is even restricted to two-dimensional state spaces. But actually the only essential
feature to render matrix-analytic methods possible is the block tridiagonality of the generator
matrix. We define the levels as subsets of the state space such that the level number of a state
is determined by a (simple) function of the values of all components of the state variable. This
enables us to consider infinite state spaces of potentially arbitrary dimension.

In order to cope with the infinite state space with regard to numerically approximating
the stationary distribution, Lyapunov functions were obtained such that the state space can
be truncated accordingly. The corresponding bounds provided by these Lyapunov functions
guarantee that at most a prespecified (small) probability mass lies in the truncated parts of the
state space. Once the state space has been truncated, matrix-analytic methods can be applied.
Numerical results demonstrated that our approach yields accurate, computationally efficient,
and numerically stable approximations to the stationary distribution.
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A couple of interesting issues for further research arise. In our examples, the maximum of
the state variables that may take infinitely many values defines the level number. This may not
work in general and other definitions may be reasonable as well. In any case, it is clear that
the level can be defined much more flexibly than usually done in previous QBD applications.
Our approach similarly applies to Markovian queueing networks. In many regards these are
often even simpler than systems of stochastic chemical kinetics. In particular, except for cases
with batch arrivals, batch services, or generalized queueing concepts like G-networks, state
transitions in the underlying CTMC typically correspond to arrivals, departures, or moves of
single customers. Therefore, the definition of the level as the maximum of state variables seems
to be quite generally applicable in the queueing context.

One crucial point that deserves further investigation is the derivation of suitable Lyapunov
functions. It is not difficult to find Lyapunov functions that guarantee the ergodicity of the
LDQBD process, but the corresponding bounds on the stationary distribution may be loose. It
is common that the derivation of Lyapunov functions is mainly done by hand or by using insights
of the specific model under consideration. However, this particularly hampers the application
by practitioners. Clearly, a systematic scheme for obtaining Lyapunov functions that provide
tight bounds for a given model would be highly desirable. First steps towards automated
computation of the required bounds are made with the Geobound tool (see http://alma.cs.uni-
saarland.de/?page_id=74), but more work needs to be done.
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