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Abstract

Markovian systems with multiple interacting subsystems under the influence of a control
unit are considered. The state spaces of the subsystems are countably infinite, whereas that
of the control unit is finite. A recent infinite level-dependent quasi-birth-and-death model
for such systems is extended by facilitating the automatic representation and generation of
the nonzero blocks in its underlying infinitesimal generator matrix with sums of Kronecker
products. Experiments are performed on systems of stochastic chemical kinetics having
two or more countably infinite state space subsystems. Results indicate that, even though
more memory is consumed, there are many cases where a matrix-analytic solution coupled
with Lyapunov theory yields a faster and more accurate steady-state measure compared
to that obtained with simulation.
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1. Introduction

We consider Markovian systems with interacting subsystems under the influence of a control
unit. The state space is countably infinite and n-dimensional with nI countably infinite state
variables and nF finite state variables, where nI ≥ 2, nF ≥ 0, and n = nI + nF. Throughout
the paper, we omit the word state and simply refer to the state variables as variables. The nI
countably infinite variables are used to represent the interacting nI subsystems and the nF finite
variables are associated with the control unit. When the control unit does not exist, we have
n = nI. The state space of variable i in the n-dimensional state space is denoted by Si and
Si ⊆ Z+ for i = 1, . . . , n. Without loss of generality, let us assume that the first nI indices are
assigned to the interacting subsystems. Hence, Si is countably infinite for i = 1, . . . , nI and
finite for i = nI + 1, . . . , n.

We let S be the state space of the underlying time-homogeneous, irreducible, continuous-
time Markov chain (CTMC) [11], [30] corresponding to the system. Clearly, not all states in
the product state space ×n

i=1Si , where ‘×’ is the Cartesian product operator, are necessarily
reachable. However, each state in S is reachable from every other state in S. In many cases, S is
a proper subset of the product state space (i.e. S ⊂ ×n

i=1Si). In this paper we consider ergodic
CTMCs associated with S and investigate the computation of their steady-state probability
measures [11], [30].

Two classes of problems which can be modeled using the described n-dimensional state
representation with nI countably infinite variables come from stochastic chemical kinetics [14],
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[19], [27], [33] and queueing networks [3], [11], [13], [15]. For the former, the nI countably
infinite variables represent the numbers of molecules of each chemical species existing in the
system. For the latter, the nI countably infinite variables represent the occupancies of queues
with unbounded waiting space in the network. For both classes of problems, the remaining nF
finite variables in the n-dimensional state space can be perceived as forming the control unit.
It is the former class of problems we consider in this paper and leave the investigation of the
latter class of problems to another paper.

Recently, in [7] it has been shown that systems of stochastic chemical kinetics can be
modeled as infinite level-dependent quasi-birth-and-death (LDQBD) processes. In particular,
the maximum value among the nI countably infinite variables determines the level number, and
the number of different possibilities for the nI countably infinite variables times the number of
different possibilities for the nF finite variables determines the number of states within a level.
Assuming that the subset of states in S corresponding to level l is denoted by S(l), this yields a
block tridiagonal infinitesimal generator matrix [2], [25]

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1
Q1,0 Q1,1 Q1,2

. . .
. . .

. . .

Ql,l−1 Ql,l Ql,l+1
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)

in which the nonzero blocks at level l are given byQl,l−1 ∈ R
|S(l)|×|S(l−1)|
≥0 ,Ql,l ∈ R

|S(l)|×|S(l)|,
and Ql,l+1 ∈ R

|S(l)|×|S(l+1)|
≥0 . These blocks are generally very sparse and their nonzero entries

may have values depending on the level number. The off-diagonal entries ofQ are nonnegative,
whereas its diagonal entries are negative. Level 0 forms the boundary and has two nonzero
blocks. Clearly, the ordering of states within a level is only fixed up to a permutation. Observe
that transitions are possible only between adjacent levels and the number of states within each
level increases with increasing level number. The latter is due to the increase in the number
of different possibilities for the nI countably infinite variables according to the level definition
being used.

We let X(t) = (X1(t), . . . , Xn(t)) denote the state of the LDQBD process at time t , and let
{X(t), t ≥ 0} be the associated CTMC process. Then the probability that the LDQBD process
is in state x ∈ S at time t is given by Pr{X(t) = x} = Pr{X1(t) = x1, . . . , Xn(t) = xn}, and
its steady-state probability distribution row vector, π := limt→∞ Pr{X(t)}, satisfies πQ = 0
and

∑
x∈S π(x) = 1 [11], [30]. When there is a pure birth process with rates upper bounding

(or a birth-and-death process with birth and death rates respectively upper and lower bounding)
those of the one-dimensional CTMC defined over levels, then relatively simple conditions
related to nonexplosiveness [24] can be utilized to establish the LDQBD process’s ergodicity.
Alternatively, the Lyapunov function methods as discussed in [10] and [32] can be used. It is the
latter approach we follow in this work since by using a judiciously chosen Lyapunov function,
we can also obtain the values of lower and higher level numbers (called low and high,
respectively) as in [7] between which a specified percentage of the steady-state probability
mass lies when the LDQBD process is ergodic. Once these two level numbers are available,
the computation of π follows from a matrix-analytic method [12], [15], [20] proposed in [2].
In this method, first the conditional expected sojourn time matrix at level high, Rhigh, is
computed. Then, by using the recursive relationship

Rl = Ql,l+1(−Ql+1,l+1 − Rl+1Ql+2,l+1)
−1 for l ≥ 0,
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the conditional expected sojourn time matrices between low and high are computed. After
obtaining these matrices, steady-state probability subvectors for levels low to high are
computed by the equation

π(l+1) = π(l)Rl for l ≥ 0,

where π(l) and π(l+1) are the steady-state probability subvectors of levels l and l + 1, respec-
tively. The advantage of this approach compared to approximate methods (including simulation)
lies in the fact that steady-state measures can be computed exactly up to machine precision by
prescribing the difference between high and low sufficiently large.

The motivation for this study is based on the observation that, although it may be relatively
easy to manually enumerate the states and generate the sparse nonzero blocks Ql,l−1, Ql,l ,
Ql,l+1 within each level when nI = 2, the task becomes unmanageable once nI > 2. Hence,
there is a need to be able to do this from the problem specification in an automated manner. We
will see that this problem can be handled smoothly by introducing Kronecker products [3], [4],
[22], [23] to cope with multidimensionality. Yet, an important requirement in this procedure is
to be able to represent only the irreducible set of states associated with the underlying CTMC.
Thanks to hierarchical Markovian models (HMMs) introduced in [3], this second problem can
be solved without much difficulty as well. Armed with a Kronecker-based representation for
infinite LDQBD processes, we finally undertake, possibly for the first time, a comparative study
between stochastic simulation [9] and the matrix-analytic approach.

In the next section we introduce a specification for the class of problems we consider and
build a Kronecker representation of the corresponding sparse nonzero blocks inQ. In the third
section we provide a detailed example showing how this all works in practice. In the same
section we also introduce three- and four-dimensional examples from the same domain. The
fourth section outlines a technique for proving the finiteness of the set of states in which a
specified percentage of the steady-state probability mass lies. Then we report on the results of
numerical experiments with the matrix-analytic approach on the examples introduced earlier
and with simulation. In the fifth section we conclude.

Throughout the paper, all vectors are column vectors except state vectors, consistent with the
conventional definition of state probability vectors as row vectors. We represent by e a column
vector of 1s and by ei the ith column of the identity matrix, I . We denote by diag(a), subdiag(a),
and superdiag(a) matrices with the entries of vector a along their diagonal, subdiagonal, and
superdiagonal, respectively. All other entries of these matrices are 0. A subscript under I is
used to indicate its order. Similarly, the subscriptm×n under a matrix indicates that the matrix
is (m×n). The lengths of the vectors are determined by the context in which they are used and
‘�’ stands for transposition.

2. Kronecker representation

We consider systems of stochastic chemical kinetics defined by a set of J transition classes
over S, and let x = (x1, . . . , xn) ∈ Z

1×n+ denote a state in S.

Definition 1. A transition class j ∈ {1, . . . , J } is a pair (ψ(j)
∏n
i=1 h

(j,i)(xi), v(j)), where
ψ(j) ∈ R>0, h(j,i)(xi) : Si → R≥0, and v(j) ∈ Z

1×n are respectively its state-independent
transition rate, its state-dependent transition rate for variable i ∈ {1, . . . , n}, and its state
change vector. The first element of the pair,

αj (x) := ψ(j)
n∏
i=1

h(j,i)(xi),
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specifies the transition rate from state x ∈ S to state (x + v(j)) ∈ S. The second element of the
pair, v(j) ∈ Z

1×n, specifies the successor state of the transition, where v(j)i denotes the change
in variable i due to transition class j .

The following definition associates nI transition rate matrices with each transition class in
Definition 1.

Definition 2. The transition rate matrix of the countably infinite variable i ∈ {1, . . . , nI} for
transition class j ∈ {1, . . . , J }, denoted by Z(j,i) ∈ R

|Si |×|Si |
≥0 , is given entrywise as

Z(j,i)(xi, yi) =
{
h(j,i)(xi) if yi = xi + v

(j)
i ,

0 otherwise,
for xi, yi ∈ Si .

Note that in Definition 2, only countably infinite variables are considered. We also define
transition rate matrices for finite variables. However, for each transition class, we prefer to
define a combined transition rate matrix for all finite variables since we have observed that in
practice |Si | for i = nI + 1, . . . , n is very small. Now, let S̄ denote the set of states which finite
variables can take. Then, S̄ ⊆ ×n

i=nI+1Si .

Definition 3. When n > nI, the combined transition rate matrix of finite variables for transition

class j ∈ {1, . . . , J }, denoted by Z̄(j) ∈ R
|S̄|×|S̄|
≥0 , is given entrywise as

Z̄(j)((xnI+1, . . . , xn), (ynI+1, . . . , yn))

=

⎧⎪⎨
⎪⎩

n∏
i=nI+1

h(j,i)(xi) if (ynI+1, . . . , yn) = (xnI+1, . . . , xn)+ (v
(j)
nI+1, . . . , v

(j)
n ),

0 otherwise,

for (xnI+1, . . . , xn), (ynI+1, . . . , yn) ∈ S̄. When n = nI, it is assumed that |S̄| = 1 and
Z̄(j) = (1).

We are interested in obtaining a Kronecker representation for the nonzero blocks ofQ from
the state-independent transition rates and the transition rate matrices of Definitions 2 and 3. To
this end, let us start by formally defining S(l).

Definition 4. The subset of states corresponding to level l ∈ Z+ is given by

S(l) = {x ∈ S | max(x1, . . . , xnI) = l},
so that S = ⋃∞

l=0 S(l).

The maximum function is justified by observing that the maximum-valued variable among
x1, . . . , xnI in any state x ∈ S changes by at most one through any transition due to the particular
form of the state change vectors v(j) in the transition classes for systems of stochastic chemical
kinetics. Observe that S(l) ∩ S(k) = ∅ holds for l 
= k, where l, k ∈ Z+.

For each level l, the values a variable can take depend on the values of other variables.
Therefore, first we define a partition of the values a countably infinite variable can take where
there is no such dependency in a way similar to HMMs in [3]. Then we introduce a partition
of S(l) in Definition 4 based on the partitions of countably infinite variables defined before.
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Definition 5. Let

S(l,u)i =

⎧⎪⎨
⎪⎩

{xi | 0 ≤ xi ≤ l − 1} if i < u,

{l} if i = u,

{xi | 0 ≤ xi ≤ l} if i > u,

for i, u ∈ {1, . . . , nI}.

Then partition u ∈ {1, . . . , nI} of S(l), denoted by S(l,u), is given by

S(l,u) =
{
x ∈ S(l)

∣∣∣∣ (x1, . . . , xnI) ∈
nI×
i=1

S(l,u)i and (xnI+1, . . . , xn) ∈ S̄

}
,

so that S(l) = ⋃nI
u=1 S(l,u). Without loss of generality, the partitions S(l,u) are assumed to be

ordered within S(l) according to the increasing partition index, u.

Observe that S(l,u) ∩ S(l,w) = ∅ for u 
= w, where u,w ∈ {1, . . . , nI} and l > 0. For given
level l ∈ Z+ and noting that n ≥ nI ≥ 2, by Definition 5 we have

|S(l,u)| = (l + 1)nI−u(l)u−1|S̄| for u ∈ {1, . . . , nI}.
Then the number of states in level l can be obtained as

|S(l)| =
nI∑
u=1

|S(l,u)| = |S̄|((l + 1)nI − (l)nI), (2)

which implies that the number of states at level l ∈ Z+ is O(lnI−1).
Now, we are in a position to introduce the Kronecker representation of nonzero blocks inQ

following the partitions of the subset of states at each level given by Definition 5.

Definition 6. The nonzero blocksQ0,0,Q0,1,Q1,0, andQl,m for l > 0 andm ∈ {l−1, l, l+1}
are respectively (1 × 1), (1 × nI), (nI × 1), and (nI × nI) block matrices as in

Q0,0 =
(
Q
(1,1)
0,0

)
, Q0,1 =

(
Q
(1,1)
0,1 · · · Q

(1,nI)
0,1

)
,

Q1,0 =

⎛
⎜⎜⎝
Q
(1,1)
1,0
...

Q
(nI,1)
1,0

⎞
⎟⎟⎠ , Ql,m =

⎛
⎜⎜⎝
Q
(1,1)
l,m · · · Q

(1,nI)
l,m

...
. . .

...

Q
(nI,1)
l,m · · · Q

(nI,nI)
l,m

⎞
⎟⎟⎠ .

Furthermore, the blocks ofQl,m can be written in terms of state-independent transition rates
and transition rate matrices as in

Q
(u,w)
l,m =

⎧⎪⎪⎨
⎪⎪⎩
Q̃
(u,w)
l,m − diag

( l+1∑
m′=l−1

nI∑
w′=1

Q̃
(u,w′)
l,m′ e

)
if u = w and l = m,

Q̃
(u,w)
l,m otherwise,

for l, m, u,w ≥ 0, where

Q̃
(u,w)
l,m =

J∑
j=1

ψ(j)
(( nI⊗

i=1

Z(j,i)(S(l,u)i ,S(m,w)i )

)
⊗ Z̄(j)

)

and Z(j,i)(S(l,u)i ,S(m,w)i ) denotes the submatrix of Z(j,i) incident on row indices in S(l,u)i and
column indices in S(m,w)i . The first summation in diag should have a starting index of 0 rather
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than −1 for the equation of the block Q(1,1)
0,0 , and the second summation in diag should have

an ending index of 1 rather than nI for the equation of the blocks Q(1,1)
1,1 , . . . ,Q

(nI,nI)
1,1 when

m′ = l − 1.

In the next section we introduce four examples we will be using in the experiments. Due
to space limitations, we provide the nonzero blocks of Q and the Kronecker representation of
their subblocks for one example only. To that end, we choose the three-dimensional example
since it indicates how the approach applies in higher dimensions, yet its subblocks can still be
written in a readable form. Kronecker representation of subblocks of nonzero blocks for all
examples can be found in [21].

3. Examples

Example 1. (Gene expression.) Consider a system of stochastic chemical kinetics modeling
the biological process associated with a gene expression [31]. The transition classes of this
example are given in Table 1. Here, n = nI = 2, nF = 0, x = (x1, x2), J = 4, and λ, µ, δ1,
δ2 ∈ R>0. Hence, we have S1 = S2 = Z+, |S̄| = 1, and S = S1 × S2 = Z

1×2+ . Note that (2)
implies 2l + 1 states at level l ∈ Z+.

The transition rate matrices of the model from Table 1 and Definition 2 are obtained as

Z(1,2) = Z(3,2) = Z(4,1) = I∞, Z(1,1) = Z(2,2) = superdiag((1, 1, . . . )�),
Z(2,1) = diag((0, 1, . . . )�), Z(3,1) = Z(4,2) = subdiag((1, 2, . . . )�).

Next, the state space partitions from Definition 5 are computed as

S(l,1)1 = {l}, S(l,1)2 = {0, . . . , l}, S(l,2)1 = {0, . . . , l − 1}, S(l,2)2 = {l},
and, therefore,

S(l,1) = S(l,1)1 × S(l,1)2 = {(l, 0), . . . , (l, l)},
S(l,2) = S(l,2)1 × S(l,2)2 = {(0, l), . . . , (l − 1, l)}.

Finally, since nI = 2, from Table 1 and Definition 6, the nonzero blocksQ0,0, Q0,1, Q1,0, and
Ql,m for l > 0 and m ∈ {l − 1, l, l + 1} are respectively (1 × 1), (1 × 2), (2 × 1), and (2 × 2)
block matrices.

Example 2. (Metabolite synthesis with two metabolites and one enzyme.) Consider a system
of stochastic chemical kinetics modeling the biological process of metabolite synthesis with
two metabolites and one enzyme [28]. The transition classes of this system are given in Table 2.
Here, n = nI = 3, nF = 0, x = (x1, x2, x3), J = 7, and kA, kB , KI , k2, µ, KR , kEA ∈ R>0.
Hence, we have S1 = S2 = S3 = Z+, |S̄| = 1, and S = S1 × S2 × S3. Note that (2) implies
3l2 + 3l + 1 states at level l ∈ Z+.

Table 1: Transition classes of the gene expression model.

j ψ(j) h(j,1)(x1) h(j,2)(x2) v(j)

1 λ 1 1 e�1
2 µ x1 1 e�2
3 δ1 x1 1 −e�1
4 δ2 1 x2 −e�2
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Table 2: Transition classes of the molecule synthesis model with one enzyme.

j ψ(j) h(j,1)(x1) h(j,2)(x2) h(j,3)(x3) v(j)

1 kAKI
1

x1 +KI
1 x3 e�1

2 kB 1 1 1 e�2
3 k2 x1 x2 1 (−e1 − e2)

�

4 µ x1 1 1 −e�1
5 µ 1 x2 1 −e�2
6 kEAKR

1

x1 +KR
1 1 e�3

7 µ 1 1 x3 −e�3

The transition rate matrices of the model from Table 2 and Definition 2 are obtained as

Z(1,2) = Z(2,1) = Z(2,3) = Z(3,3) = Z(4,2) = Z(4,3) = Z(5,1) = Z(5,3) = Z(6,2)

= Z(7,1) = Z(7,2) = I∞,

Z(1,1) = superdiag

((
1

KI
,

1

1 +KI
, . . .

)�)
,

Z(1,3) = diag((0, 1, . . . )�),
Z(2,2) = Z(6,3) = superdiag((1, 1, . . . )�),

Z(6,1) = diag

((
1

KR
,

1

1 +KR
, . . .

)�)
,

Z(3,1) = Z(3,2) = Z(4,1) = Z(5,2) = Z(7,3) = subdiag((1, 2, . . . )�).

The state space partitions from Definition 5 are computed as

S(l,1)1 = {l}, S(l,1)2 = S(l,1)3 = {0, . . . , l},
S(l,2)1 = {0, . . . , l − 1}, S(l,2)2 = {l}, S(l,2)3 = {0, . . . , l},

S(l,3)1 = S(l,3)2 = {0, . . . , l − 1}, S(l,3)3 = {l},
and, therefore,

S(l,1) =
3×
i=1

S(l,1)i = {(l, 0, 0), . . . , (l, l, l)},

S(l,2) =
3×
i=1

S(l,2)i = {(0, l, 0), . . . , (l − 1, l, l)},

S(l,3) =
3×
i=1

S(l,3)i = {(0, 0, l), . . . , (l − 1, l − 1, l)}.

Finally, since nI = 3, from Table 2 and Definition 6, the nonzero blocks Q0,0, Q0,1, Q1,0,
and Ql,m for l > 0 and m ∈ {l − 1, l, l + 1} are respectively (1 × 1), (1 × 3), (3 × 1), and
(3 × 3) block matrices. The first few nonzero blocks ofQ as flat sparse matrices and blocks of
Ql,l−1, Ql,l , and Ql,l+1 can be found in Appendix A.
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Table 3: Transition classes of the molecule synthesis model with two enzymes.

j ψ(j) h(j,1)(x1) h(j,2)(x2) h(j,3)(x3) h(j,4)(x4) v(j)

1 kAKI
1

x1 +KI
1 x3 1 e�1

2 kBKI 1
1

x2 +KI
1 x4 e�2

3 k2 x1 x2 1 1 (−e1 − e2)
�

4 µ x1 1 1 1 −e�1
5 µ 1 x2 1 1 −e�2
6 kEAKR

1

x1 +KR
1 1 1 e�3

7 kEBKR 1
1

x2 +KR
1 1 e�4

8 µ 1 1 x3 1 −e�3
9 µ 1 1 1 x4 −e�4

Example 3. (Metabolite synthesis with two metabolites and two enzymes.) Consider a system
of stochastic chemical kinetics modeling the biological process of metabolite synthesis with two
metabolites and two enzymes [28]. The transition classes of this system are given in Table 3.
Here, n = nI = 4, nF = 0, x = (x1, x2, x3, x4), J = 9, and kA, kB , KI , k2, µ, KR , kEA ,
kEB ∈ R>0. Hence, we have S1 = S2 = S3 = S4 = Z+, |S̄| = 1, and S = S1 × S2 × S3 × S4.
Note that (2) implies 4l3 + 6l2 + 4l + 1 states at level l ∈ Z+.

The transition rate matrices of the model from Table 3 and Definition 2 are obtained as

Z(1,2) = Z(1,4) = Z(2,1) = Z(2,3) = Z(3,3) = Z(3,4) = Z(4,2) = Z(4,3) = Z(4,4)

= Z(5,1) = Z(5,3) = Z(5,4) = Z(6,2) = Z(6,4) = Z(7,1) = Z(7,3) = Z(8,1)

= Z(8,2) = Z(8,4) = Z(9,1) = Z(9,2) = Z(9,3) = I∞,

Z(1,1) = Z(2,2) = superdiag

((
1

KI
,

1

1 +KI
, . . .

)�)
,

Z(1,3) = Z(2,4) = diag((0, 1, . . . )�),
Z(6,3) = Z(7,4) = superdiag((1, 1, . . . )�),

Z(6,1) = Z(7,2) = diag

((
1

KR
,

1

1 +KR
, . . .

)�)
,

Z(3,1) = Z(3,2) = Z(4,1) = Z(5,2) = Z(8,3) = Z(9,4) = subdiag((1, 2, . . . )�).

The state space partitions from Definition 5 are computed as

S(l,1)1 = {l}, S(l,1)2 = S(l,1)3 = S(l,1)4 = {0, . . . , l},
S(l,2)1 = {0, . . . , l − 1}, S(l,2)2 = {l}, S(l,2)3 = S(l,2)4 = {0, . . . , l},
S(l,3)1 = S(l,3)2 = {0, . . . , l − 1}, S(l,3)3 = {l}, S(l,3)4 = {0, . . . , l},

S(l,4)1 = S(l,4)2 = S(l,4)3 = {0, . . . , l − 1}, S(l,4)4 = {l},
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Table 4: Transition classes of the molecule synthesis model with repressilator.

j ψ(j) h(j,1)(x1) h
(j,2)(x2) h

(j,3)(x3) h
(j,4)(x4) h

(j,5)(x5) h
(j,6)(x6) v(j)

1 λ1 1 1 1 1 1 1 − x6 e�1
2 δ1 x1 1 1 1 1 1 −e�1
3 β0 x1 1 1 1 − x4 1 1 (−e1 + e4)

�

4 β1 1 1 1 x4 1 1 (e1 − e4)
�

5 λ2 1 1 1 1 − x4 1 1 e�2
6 δ2 1 x2 1 1 1 1 −e�2
7 β0 1 x2 1 1 1 − x5 1 (−e2 + e5)

�

8 β1 1 1 1 1 x5 1 (e2 − e5)
�

9 λ3 1 1 1 1 1 − x5 1 e�3
10 δ3 1 1 x3 1 1 1 −e�3
11 β0 1 1 x3 1 1 1 − x6 (−e3 + e6)

�

12 β1 1 1 1 1 1 x6 (e3 − e6)
�

and, therefore,

S(l,1) =
4×
i=1

S(l,1)i = {(l, 0, 0, 0), . . . , (l, l, l, l)},

S(l,2) =
4×
i=1

S(l,2)i = {(0, l, 0, 0), . . . , (l − 1, l, l, l)},

S(l,3) =
4×
i=1

S(l,3)i = {(0, 0, l, 0), . . . , (l − 1, l − 1, l, l)},

S(l,4) =
4×
i=1

S(l,4)i = {(0, 0, 0, l), . . . , (l − 1, l − 1, l − 1, l)}.
Finally, since nI = 4, from Table 3 and Definition 6, the nonzero blocks Q0,0, Q0,1, Q1,0,

and Ql,m for l > 0 and m ∈ {l − 1, l, l + 1} are respectively (1 × 1), (1 × 4), (4 × 1), and
(4 × 4) block matrices.

The following example is different to the first three in that it has a control unit of eight states.

Example 4. (Repressilator.) Consider a system of stochastic chemical kinetics modeling the
biological process of metabolite synthesis with repressilator [18]. The transition classes of
this system are given in Table 4. Here, n = 6, nI = 3, nF = 3, x = (x1, x2, x3, x4, x5, x6),
J = 12, and λ1, λ2, λ3, δ1, δ2, δ3, β0, β1 ∈ R>0. Hence, we have S1 = S2 = S3 = Z+,
S4 = S5 = S6 = {0, 1}, S̄ = S4 × S5 × S6, |S̄| = 8, and S = S1 × S2 × S3 × S̄. Note that (2)
implies 8(3l2 + 3l + 1) states at level l ∈ Z+.

The transition rate matrices of the model from Table 4 and Definition 2 are obtained as

Z(1,2) = Z(1,3) = Z(2,2) = Z(2,3) = Z(3,2) = Z(3,3) = Z(4,2) = Z(4,3) = Z(5,1) = Z(5,3)

= Z(6,1) = Z(6,3) = Z(7,1) = Z(7,3) = Z(8,1) = Z(8,3) = Z(9,1) = Z(9,2) = Z(10,1)

= Z(10,2) = Z(11,1) = Z(11,2) = Z(12,1) = Z(12,2) = I∞,
Z(1,1) = Z(4,1) = Z(5,2) = Z(8,2) = Z(9,3) = Z(12,3) = superdiag((1, 1, . . . )�),
Z(2,1) = Z(3,1) = Z(6,2) = Z(7,2) = Z(10,3) = Z(11,3) = subdiag((1, 2, . . . )�).
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The joint transition rate matrices of the model for finite variables from Table 4 and Definition 3
are obtained as

Z̄(2) = Z̄(6) = Z̄(10) = I2 ⊗ I2 ⊗ I2, Z̄(1) = I2 ⊗ I2 ⊗ diag((1, 0)�),
Z̄(3) = superdiag((1)�)⊗ I2 ⊗ I2, Z̄(4) = subdiag((1)�)⊗ I2 ⊗ I2,

Z̄(5) = diag((1, 0)�)⊗ I2 ⊗ I2, Z̄(7) = I2 ⊗ superdiag((1)�)⊗ I2,

Z̄(8) = I2 ⊗ subdiag((1)�)⊗ I2, Z̄(9) = I2 ⊗ diag((1, 0)�)⊗ I2,

Z̄(11) = I2 ⊗ I2 ⊗ superdiag((1)�), Z̄(12) = I2 ⊗ I2 ⊗ subdiag((1)�).

The state space partitions from Definition 5 are computed as in Example 2, but now we also
have S̄ = {(0, 0, 0), . . . , (1, 1, 1)}, and, therefore,

S(l,1) =
( 3×
i=1

S(l,1)i

)
× S̄ = {(l, 0, 0, 0, 0, 0), . . . , (l, l, l, 1, 1, 1)},

S(l,2) =
( 3×
i=1

S(l,2)i

)
× S̄ = {(0, l, 0, 0, 0, 0), . . . , (l − 1, l, l, 1, 1, 1)},

S(l,3) =
( 3×
i=1

S(l,3)i

)
× S̄ = {(0, 0, l, 0, 0, 0), . . . , (l − 1, l − 1, l, 1, 1, 1)}.

Finally, since nI = 3, from Table 4 and Definition 6, the nonzero blocks Q0,0, Q0,1, Q1,0,
and Ql,m for l > 0 and m ∈ {l − 1, l, l + 1} are respectively (1 × 1), (1 × 3), (3 × 1), and
(3 × 3) block matrices.

In the next section, after briefly recalling how we compute the low and high level numbers
of the LDQBD process between which a specified percentage of the steady-state probability
mass lies, we describe how the simulation is carried out. Then we provide the results of
experiments on the four examples of this section.

4. Numerical results

It has been shown by Tweedie [32] that the LDQBD process is ergodic if and only if there
exists a function g : S → R≥0, called a Lyapunov function, and a finite set C ⊂ S satisfying
the three conditions

(i) d(x) ≤ −γ for all x ∈ S \ C and some γ > 0,

(ii) d(x) < ∞ for all x ∈ C, and

(iii) {x ∈ S | g(x) ≤ r} is finite for all r < ∞,

where

d(x) =
J∑
j=1

αj (x)(g(x + v(j))− g(x)) ∈ R

is called the drift in state x ∈ S.
Assuming that g satisfies condition (iii) and letting c = supx∈S d(x) < ∞, an upper bound

on
∑
x∈S\C π(x) can be a priori specified as ε = c/(c + γ ) ∈ (0, 1), which translates to

γ = c/ε−c and C = {x ∈ S | d(x) > −γ }. In addition, if C is finite then the three conditions
above hold and

∑
x∈C π(x) ≥ 1 − ε.
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In order to determine c, the domain of the search for extrema is restricted to R
1×nI≥0 for infinite

components and S̄ for finite components. All extrema are computed by equating the gradient of
d(x) to 0. In order to determine all local extrema including those located on the boundaries of
the domain, the same system is solved for every projection of d(x) onto each subspace of R

1×nI

by setting all combinations of variables xi for i ∈ {1, . . . , nI} to 0. Since c is the supremum of
the drift function over the state space, S, we compute the drift at the states in the neighborhood
of all extrema and choose its maximum value. Throughout this process, the resulting nonlinear
equation systems are solved using the HOM4PS2-2.0 package [16], an implementation of the
polyhedral homotopy continuation method. For details, see [6].

We compute the pair of level numbers, (low,high), of the LDQBD process such that the
states in levels low to high include all the states in C. In other words, we set

low = min{l ∈ Z+ | S(l) ∩ C 
= ∅} and high = max{l ∈ Z+ | S(l) ∩ C 
= ∅},
and the finite set

⋃
low≤l≤high S(l) contains at least 1 − ε of the steady-state probability. The

number of states lying in levels low to high are given by

N(low,high) =
high∑
l=low

|S̄|((l + 1)nI − (l)nI) = |S̄|((high+ 1)nI − (low)nI).

In order to carry out a fair comparison with simulation, for all examples, we choose the
squared Euclidean norm, that is, g(x) = ∑n

i=1 x
2
i , as the Lyapunov function and set ε = 0.05.

In other words, the results we present with the LDQBD solver [5] developed in MATLAB®

are not fine tuned. In [7], it has already been shown that, for smaller ε, the accuracy of the
computed solution by the matrix-analytic approach improves and eventually reaches that of
machine precision. We do not undertake such a study here due to memory limitations imposed
by the multidimensional models we consider. Given more memory (and time), it is always
possible to obtain more accurate results with the matrix-analytic approach. We will see what
we get with ε = 0.05.

The proof that C is finite (if possible) follows a line of argument which constructively defines
a finite superset of C. After considering the form of the drift functions in our examples due
to the choice of the squared Euclidean norm as the Lyapunov function, we define nI quadratic
polynomials

fi(xi) = a2,ix
2
i + a1,ixi + a0,i with a2,i < 0 for i ∈ {1, . . . , nI}

so as to satisfy

d(x) ≤
nI∑
i=1

fi(xi) for x = (x1, . . . , xn) ∈ S.

Since fi(xi) is concave down for i ∈ {1, . . . , nI} and x ∈ S by construction, the upper bound
on d(x) over S is finite; hence, c = supx∈S d(x) is finite. Now, consider adding a constant
γ ∈ R≥0 to both of sides of the inequality so that

0 < γ + d(x) ≤ γ +
nI∑
i=1

fi(xi), or, equivalently, − γ < d(x) ≤
nI∑
i=1

fi(xi).

The inequality −γ < d(x) holds for some x ∈ S and characterizes the set C. That is,
C = {x ∈ S | d(x) > −γ }. This set clearly is a subset of D = {x ∈ S | − γ <

∑nI
i=1 fi(xi)}
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from the last inequality; hence, we have C ⊆ D . It remains to show that D is finite. But, that
is straightforward, because fi(xi) is concave down and xi ∈ Z+ for i ∈ {1, . . . , nI}.

In the following, we use subscripts as in dp, cp, γp, Cp, fp,i for i ∈ {1, . . . , nI},
(lowp,highp), and Np for Example p ∈ {1, 2, 3, 4}, and report the values of cp and γp
in two decimal digits of precision.

Example 5. (Example 1 continued: gene expression.) We let λ = µ = δ2 = 0.05 and
δ1 = 0.015 be the parameters. Then the drift is given by

d1(x1, x2) = −0.03x2
1 − 0.1x2

2 + 0.1x1x2 + 0.165x1 + 0.05x2 + 0.05.

Finiteness of c1 and C1 can be shown by selecting f1,1(x1) and f1,2(x2) as

f1,1(x1) = −0.001x2
1 + 0.165x1 + 0.05, f1,2(x2) = −0.005x2

2 + 0.05x2.

Note that d1(x1, x2) − f1,1(x1) − f1,2(x2) ≤ 0 can be obtained by rotating the axes and
eliminating the x1x2 term as discussed in [8] and [29]. By using the HOM4PS2-2.0 package,
we obtain the global maximum drift c1 = 1.86. For ε = 0.05, we compute γ1 = 35.25,
(low1,high1) = (0, 105), and N1(0, 105) = 11 236.

Example 6. (Example 2 continued: metabolite synthesis with two metabolites and one
enzyme.) We let kA = kB = 0.3, KI = 16, k2 = 0.05, µ = 0.1, KR = 8, and kEA = 0.02 be
the parameters. Then the drift is given by

d2(x1, x2, x3) = 9.6x1x3 + 4.8x3

x1 + 16
+ 0.32x3 + 0.16

x1 + 8
− 0.1x2

1x2 − 0.1x1x
2
2 + 0.1x1x2

− 0.2x2
1 − 0.2x2

2 − 0.2x2
3 + 0.1x1 + 0.7x2 + 0.1x3 + 0.3.

Finiteness of c2 and C2 can be shown by selecting f2,1(x1), f2,2(x2), and f2,3(x3) as

f2,1(x1) = −0.2x2
1 + 0.1x1 + 0.3,

f2,2(x2) = −0.2x2
2 + 0.7x2,

f2,3(x3) = −0.2x2
3 + 14.82x3 + 0.16.

The HOM4PS2-2.0 package requires the equation systems to consist of polynomials. There-
fore we put the partial derivatives of x1 and x3 over a common denominator. We use the
numerator of the derivative as input since the denominator is always positive for the parameters
chosen. Then we obtain the global maximum drift c2 = 4.63. For ε = 0.05, we compute
γ2 = 87.89, (low2,high2) = (0, 31), and N2(0, 31) = 32 768.

Example 7. (Example 3 continued: metabolite synthesis with two metabolites and two
enzymes.) We let kA = kB = 0.3, KI = 16, k2 = 0.05, µ = 0.2, KR = 8, and
kEA = kEB = 0.02 be the parameters. Then the drift is given by

d3(x1, x2, x3, x4) = 9.6x1x3 + 4.8x3

x1 + 16
+ 0.32x3 + 0.16

x1 + 8
+ 9.6x2x4 + 4.8x4

x2 + 16

+ 0.32x4 + 0.16

x2 + 8
− 0.1x2

1x2 − 0.1x1x
2
2 + 0.1x1x2 − 0.4x2

1

− 0.4x2
2 − 0.4x2

3 − 0.4x2
4 + 0.2x1 + 0.2x2 + 0.2x3 + 0.2x4.
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Finiteness of c3 and C3 can be shown by selecting f3,1(x1), f3,2(x2), f3,3(x3), and f3,4(x4) as

f3,1(x1) = −0.4x2
1 + 0.2x1, f3,2(x2) = −0.4x2

2 + 0.2x2,

f3,3(x3) = −0.4x2
3 + 14.92x3 + 1.6, f3,4(x4) = −0.4x2

4 + 14.92x4 + 1.6.

We proceed as in the previous example and compute the global maximum drift c3 = 0.90. For
ε = 0.05, we obtain γ3 = 17.11, (low3,high3) = (0, 9), and N3(0, 9) = 10 000.

Example 8. (Example 4 continued: repressilator.) We let λ1 = λ2 = λ3 = 1.3, δ1 = δ2 =
δ3 = 0.8, β0 = 1, and β1 = 0.5 be the parameters. Then the drift becomes

d4(x1, x2, x3, x4, x5, x6) = −3.6x2
1 + 2x2

1x4 − x1x4 − 2.6x1x6 + 5.4x1 − 3.6x2
2

+ 2x2
2x5 − x2x5 − 2.6x2x4 + 5.4x2 − 3.6x2

3 + 2x2
3x6

− x3x6 − 2.6x3x5 + 5.4x3 − 1.3x4 − 1.3x5 − 1.3x6 + 3.9.

Finiteness of c4 and C4 can be shown by selecting f4,1(x1), f4,2(x2), and f4,3(x3) as

f4,1(x1) = −1.6x2
1 + 5.4x1 + 1.3,

f4,2(x2) = −1.6x2
2 + 5.4x2 + 1.3,

f4,3(x3) = −1.6x2
3 + 5.4x3 + 1.3,

since x4, x5, and x6 each take values from {0, 1}. Again, by using the HOM4PS2-2.0 package
we obtain the global maximum drift c4 = 9.30. For ε = 0.05, we compute γ4 = 176.7,
(low4,high4) = (0, 12), and N4(0, 12) = 17 576.

The matrix-analytic approach used in the solution process is the one called A3 in [7]. That is,
we start by setting the matrix of conditional expected sojourn times at level high to 0 [1] and
compute the matrices of conditional expected sojourn times at levels l ∈ {low, . . . ,high−1}
recursively. Experiments are performed on an Intel® CoreTM2 Duo 1.83GHz processor having
4 Gigabytes (GB) of main memory. Although it cannot be used to its full extent, the large main
memory is necessary to store the relatively dense matrices of conditional expected sojourn times
at levels l ∈ {low, . . . ,high−1} (see Figure 1 for their nonzero densities in the four examples
and note how dense they become as the level number moves towards low) and the temporary
factors allocated by MATLAB while solving linear systems with coefficient matrices involving
them. The existence of two cores in the CPU is not exploited for parallel computing in the
implementation. Hence, only one of the two cores is busy running the solver in the experiments.

In Table 5, the first two columns give the example name and the corresponding (low,high)
pair for the squared Euclidean norm as the Lyapunov function when we set ε = 0.05. Hence,
95 is a lower bound on the percentage of the steady-state probability mass that lies in levels
l ∈ {low, . . . ,high}. Column ‘Time’ lists the time in seconds to solve the example with the
LDQBD solver [5]. Column ‘Residual’ gives the infinity norm of the residual vector. Column
‘Time’ includes the time to compute the value in column ‘Residual’. Finally, the last column
gives the memory requirement in megabytes (MB) for the solution process associated with the
particular example, excluding that taken by MATLAB itself. In the first two examples, we
obtain a residual in the order of machine precision. In the last two examples, the results are
still good and we have residuals in the order of at least 10−7.
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Figure 1: Nonzero densities in matrices of conditional expected sojourn times at levels
l ∈ {low, . . . ,high} for the four examples.

Table 5: LDQBD solver results.

Time Memory
Example (low,high) (seconds) Residual (MB)

Gene expression (0, 105) 4 2 × 10−17 20
Molecule synthesis (one enzyme) (0, 31) 188 9 × 10−17 667
Molecule synthesis (two enzymes) (0, 9) 55 2 × 10−7 180
Repressilator (0, 12) 133 2 × 10−8 335

Now, let us turn to stochastic simulation [9] and its benchmark implementation StochKit
[26] discussed in [17]. In order to provide confidence intervals, we take 31 sample paths
for each example. Furthermore, it is always an issue when to terminate simulations. To that
end, we terminate the simulation dynamically by comparing the absolute value of the update
on the current mean with a user-specified tolerance as follows. Let the current value of the
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Table 6: StochKit simulation results.

Reaction Time
Example count (seconds) Molecule MeanSK CISK MeanLDQBD RE

Gene expression 2 × 109 324 X1 3.333 34 0.000 95 3.333 33 2 × 10−5

X2 3.333 45 0.001 12 3.333 33 4 × 10−5

Molecule synthesis 4 × 109 784 X1 0.272 58 0.000 14 0.280 97 3 × 10−2

(one enzyme) X2 2.741 06 0.000 32 2.735 46 2 × 10−3

X3 0.194 59 0.000 09 0.194 42 9 × 10−4

Molecule synthesis 7 × 109 1241 X1 0.135 30 0.000 03 0.137 53 2 × 10−2

(two enzymes) X2 0.135 29 0.000 03 0.137 53 2 × 10−2

X3 0.098 60 0.000 01 0.098 58 2 × 10−4

X4 0.098 60 0.000 02 0.098 58 2 × 10−4

Repressilator 4 × 109 761 X1 0.757 08 0.000 23 0.757 01 1 × 10−4

X2 0.757 08 0.000 19 0.757 01 9 × 10−5

X3 0.756 99 0.000 24 0.757 01 2 × 10−5

StochKit (SK) mean for a particular molecule in a sample path be given by

MeanSK(K) =
K∑
k=1

Sk	tk

/ K∑
k=1

	tk,

where 	tk is the exponentially distributed time of transition k, Sk is the state of the molecule
during	tk , andK is the number of transitions taken up to this point. Then the new mean after
transition K + 1 takes place can be written as

MeanSK(K + 1) = MeanSK(K)+ (SK+1 − MeanSK(K))	tK+1

/(
	tK+1 +

K∑
k=1

	tk

)
.

We remark that it is relatively easy to carry out the update on MeanSK(K). And while it is
computed, we can compare the absolute value of the update (that is, the second term) on the
right-hand side of MeanSK(K + 1) with the given tolerance. In our simulations, we have used
10−16 as the tolerance.

In Table 6, the first column gives the example name, the second column gives the total
number of transitions that are taken for the entire course of the simulation (i.e. 31 sample
paths), and column ‘Time’ lists the time in seconds for the simulation to terminate for the
particular example. Column ‘Molecule’ indicates the identity of the molecule whose mean and
confidence interval for a confidence probability of 95% are provided in the next two columns,
named ‘MeanSK’ and ‘CISK’. The mean computed by the LDQBD solution appears in the next
to last column. Finally, in the last column the relative error (RE) in MeanSK,

RE = |MeanLDQBD − MeanSK|
MeanLDQBD

,

is reported.
The memory requirement of the simulation is immaterial and therefore not reported. It is

clear that the results are obtained with a higher accuracy in less time with the LDQBD solver
for the problems considered here.
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5. Conclusion

We have provided a Kronecker representation for the nonzero blocks of the infinitesimal
generator matrix underlying an infinite LDQBD process. The Kronecker representation seems
to be necessary if the problem at hand is multidimensional. Thereafter, we have computed the
mean number of molecules for examples from systems of stochastic chemical kinetics using
the matrix-analytic LDQBD solver and stochastic simulation. The memory requirement of the
LDQBD solver is incomparably large, but the accuracy of the results is much higher and the
time to obtain the solution is much smaller compared to that of simulation. Future work should
concentrate on extending the application domain of the LDQBD solver to queueing networks
and trying to devise a Kronecker-based solver for the systems of linear equations at each level
of the matrix-analytic approach. The latter should make the LDQBD solver even more scalable.

Appendix A

Using (1), Table 2, and Definitions 1 and 4, we obtain the first few nonzero blocks of Q for
Example 2 as flat sparse matrices given by

Q0,0 = ( (0
,
0,

0)

(0, 0, 0) ∗ )
, Q0,1 = ( (1

,
0,

0)
(1
,
0,

1)
(1
,
1,

0)
(1
,
1,

1)

(0
,
1,

0)

(0
,
1,

1)

(0
,
0,

1)

(0, 0, 0) kB kEA
)
,

Q1,0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0
,
0,

0)

(1, 0, 0) µ

(1, 0, 1)

(1, 1, 0) k2
(1, 1, 1)

(0, 1, 0) µ

(0, 1, 1)

(0, 0, 1) µ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Q1,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1
,
0,

0)

(1
,
0,

1)

(1
,
1,

0)

(1
,
1,

1)

(0
,
1,

0)

(0
,
1,

1)

(0
,
0,

1)
(1, 0, 0) ∗ kEAKR

1+KR kB

(1, 0, 1) µ ∗ kB µ

(1, 1, 0) µ ∗ kEAKR

1+KR µ

(1, 1, 1) µ µ ∗ µ k2
(0, 1, 0) ∗ kEA
(0, 1, 1) kA µ ∗ µ

(0, 0, 1) kA kB ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Q1,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2
,
0,

0)

(2
,
0,

1)

(2
,
0,

2)
(2
,
1,

0)

(2
,
1,

1)

(2
,
1,

2)
(2
,
2,

0)
(2
,
2,

1)
(2
,
2,

2)

(0
,
2,

0)

(0
,
2,

1)
(0
,
2,

2)

(1
,
2,

0)

(1
,
2,

1)

(1
,
2,

2)

(0
,
0,

2)

(0
,
1,

2)

(1
,
0,

2)

(1
,
1,

2)

(1, 0, 0)

(1, 0, 1) kAKI
1+KI

kEAKR

1+KR
(1, 1, 0) kB

(1, 1, 1) kAKI
1+KI kB

kEAKR

1+KR
(0, 1, 0) kB
(0, 1, 1) kB kEA
(0, 0, 1) kEA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Q2,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1
,
0,

0)

(1
,
0,

1)

(1
,
1,

0)

(1
,
1,

1)

(0
,
1,

0)

(0
,
1,

1)

(0
,
0,

1)

(2, 0, 0) 2µ
(2, 0, 1) 2µ
(2, 0, 2)

(2, 1, 0) 2k2 2µ
(2, 1, 1) 2k2 2µ
(2, 1, 2)

(2, 2, 0) 4k2
(2, 2, 1) 4k2
(2, 2, 2)

(0, 2, 0) 2µ
(0, 2, 1) 2µ
(0, 2, 2)

(1, 2, 0) 2µ 2k2
(1, 2, 1) 2µ 2k2
(1, 2, 2)

(0, 0, 2) 2µ
(0, 1, 2) 2µ
(1, 0, 2) 2µ
(1, 1, 2) 2µ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and Q2,2 is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(2
,
0,

0)

(2
,
0,

1)

(2
,
0,

2)

(2
,
1,

0)

(2
,
1,

1)

(2
,
1,

2)

(2
,
2,

0)

(2
,
2,

1)

(2
,
2,

2)

(0
,
2,

0)

(0
,
2,

1)

(0
,
2,

2)

(1
,
2,

0)

(1
,
2,

1)

(1
,
2,

2)

(0
,
0,

2)

(0
,
1,

2)

(1
,
0,

2)

(1
,
1,

2)

(2, 0, 0) ∗ kEAKR2+KR kB

(2, 0, 1) µ ∗ kEA
KR

2+KR kB

(2, 0, 2) 2µ ∗ kB 2µ

(2, 1, 0) µ ∗ kEA
KR

2+KR kB

(2, 1, 1) µ µ ∗ kEA
KR

2+KR kB

(2, 1, 2) µ 2µ ∗ kB 2k2 2µ

(2, 2, 0) 2µ ∗ kEA
KR

2+KR 2µ

(2, 2, 1) 2µ µ ∗ kEA
KR

2+KR 2µ

(2, 2, 2) 2µ 2µ ∗ 2µ 4k2
(0, 2, 0) ∗ kEA
(0, 2, 1) µ ∗ kEA

kA
(0, 2, 2) 2µ ∗ 2kA 2µ

(1, 2, 0) µ ∗ kEA
KR

1+KR
(1, 2, 1) kAKI

1+KI µ µ ∗ kEA
KR

1+KR
(1, 2, 2) 2kAKI

1+KI µ 2µ ∗ 2k2 2µ

(0, 0, 2) ∗ kB 2kA
(0, 1, 2) kB µ ∗ 2kA
(1, 0, 2) 2kAKI

1+KI µ ∗ kB

(1, 1, 2) 2kAKI
1+KI kB k2 µ µ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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In particular, the nine blocks associated with Ql,l−1 are obtained as

Q̃
(1,1)
l,l−1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,1)1 ,S(l−1,1)
1 )⊗ Z(j,2)(S(l,1)2 ,S(l−1,1)

2 )⊗ Z(j,3)(S(l,1)3 ,S(l−1,1)
3 )

= k2(l)⊗ subdiag((1, . . . , l)�)(l+1)×l ⊗ diag((1, . . . , 1)�)(l+1)×l
+ µ(l)⊗ diag((1, . . . , 1)�)(l+1)×l ⊗ diag((1, . . . , 1)�)(l+1)×l ,

Q̃
(1,2)
l,l−1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,1)1 ,S(l−1,2)
1 )⊗ Z(j,2)(S(l,1)2 ,S(l−1,2)

2 )⊗ Z(j,3)(S(l,1)3 ,S(l−1,2)
3 )

= 0(l+1)2×(l−1)l ,

Q̃
(1,3)
l,l−1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,1)1 ,S(l−1,3)
1 )⊗ Z(j,2)(S(l,1)2 ,S(l−1,3)

2 )⊗ Z(j,3)(S(l,1)3 ,S(l−1,3)
3 )

= 0(l+1)2×(l−1)2 ,

Q̃
(2,1)
l,l−1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,2)1 ,S(l−1,1)
1 )⊗ Z(j,2)(S(l,2)2 ,S(l−1,1)

2 )⊗ Z(j,3)(S(l,2)3 ,S(l−1,1)
3 )

= µ(0, . . . , 0, 1)�l×1 ⊗ (0, . . . , 0, l)1×l ⊗ diag((1, . . . , 1)�)(l+1)×l ,

Q̃
(2,2)
l,l−1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,2)1 ,S(l−1,2)
1 )⊗ Z(j,2)(S(l,2)2 ,S(l−1,2)

2 )⊗ Z(j,3)(S(l,2)3 ,S(l−1,2)
3 )

= k2subdiag((1, . . . , l − 1)�)l×(l−1) ⊗ (l)⊗ diag((1, . . . , 1)�)(l+1)×l
+ µdiag((1, . . . , 1)�)l×(l−1) ⊗ (l)⊗ diag((1, . . . , 1)�)(l+1)×l ,

Q̃
(2,3)
l,l−1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,2)1 ,S(l−1,3)
1 )⊗ Z(j,2)(S(l,2)2 ,S(l−1,3)

2 )⊗ Z(j,3)(S(l,2)3 ,S(l−1,3)
3 )

= 0l(l+1)×(l−1)2 ,

Q̃
(3,1)
l,l−1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,3)1 ,S(l−1,1)
1 )⊗ Z(j,2)(S(l,3)2 ,S(l−1,1)

2 )⊗ Z(j,3)(S(l,3)3 ,S(l−1,1)
3 )

= µ(0, . . . , 0, 1)�l×1 ⊗ diag((1, . . . , 1)�)l×l ⊗ (0, . . . , 0, l)1×l ,

Q̃
(3,2)
l,l−1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,3)1 ,S(l−1,2)
1 )⊗ Z(j,2)(S(l,3)2 ,S(l−1,2)

2 )⊗ Z(j,3)(S(l,3)3 ,S(l−1,2)
3 )

= µdiag((1, . . . , 1)�)l×(l−1) ⊗ (0, . . . , 0, 1)�l×1 ⊗ (0, . . . , 0, l)1×l ,

Q̃
(3,3)
l,l−1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,3)1 ,S(l−1,3)
1 )⊗ Z(j,2)(S(l,3)2 ,S(l−1,3)

2 )⊗ Z(j,3)(S(l,3)3 ,S(l−1,3)
3 )

= µdiag((1, . . . , 1)�)l×(l−1) ⊗ diag((1, . . . , 1)�)l×(l−1) ⊗ (l);
the nine blocks associated with Ql,l are obtained as

Q̃
(1,1)
l,l =

7∑
j=1

ψ(j)Z(j,1)(S(l,1)1 ,S(l,1)1 )⊗ Z(j,2)(S(l,1)2 ,S(l,1)2 )⊗ Z(j,3)(S(l,1)3 ,S(l,1)3 )

= kB(1)⊗ superdiag((1, . . . , 1)�)(l+1)×(l+1) ⊗ diag((1, . . . , 1)�)(l+1)×(l+1)
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+ µ(1)⊗ subdiag((1, . . . , l)�)(l+1)×(l+1) ⊗ diag((1, . . . , 1)�)(l+1)×(l+1)

+ kEAKR
1

l +KR
(1)⊗ diag((1, . . . , 1)�)(l+1)×(l+1)

⊗ superdiag((1, . . . , 1)�)(l+1)×(l+1)

+ µ(1)⊗ diag((1, . . . , 1)�)(l+1)×(l+1) ⊗ subdiag((1, . . . , l)�)(l+1)×(l+1),

Q̃
(1,2)
l,l =

7∑
j=1

ψ(j)Z(j,1)(S(l,1)1 ,S(l,2)1 )⊗ Z(j,2)(S(l,1)2 ,S(l,2)2 )⊗ Z(j,3)(S(l,1)3 ,S(l,2)3 )

= µ(0, . . . , 0, l)1×l ⊗ (0, . . . , 0, 1)�(l+1)×1 ⊗ diag((1, . . . , 1)�)(l+1)×(l+1),

Q̃
(1,3)
l,l =

7∑
j=1

ψ(j)Z(j,1)(S(l,1)1 ,S(l,3)1 )⊗ Z(j,2)(S(l,1)2 ,S(l,3)2 )⊗ Z(j,3)(S(l,1)3 ,S(l,3)3 )

= k2(0, . . . , 0, l)1×l ⊗ subdiag((1, . . . , l)�)(l+1)×l ⊗ (0, . . . , 0, 1)�(l+1)×1

+ µ(0, . . . , 0, l)1×l ⊗ diag((1, . . . , 1)�)(l+1)×l ⊗ (0, . . . , 0, 1)�(l+1)×1,

Q̃
(2,1)
l,l =

7∑
j=1

ψ(j)Z(j,1)(S(l,2)1 ,S(l,1)1 )⊗ Z(j,2)(S(l,2)2 ,S(l,1)2 )⊗ Z(j,3)(S(l,2)3 ,S(l,1)3 )

= kAKI

(
0, . . . , 0,

1

l − 1 +KI

)�

l×1
⊗ (0, . . . , 0, 1)1×(l+1)

⊗ diag((0, . . . , l)�)(l+1)×(l+1),

Q̃
(2,2)
l,l =

7∑
j=1

ψ(j)Z(j,1)(S(l,2)1 ,S(l,2)1 )⊗ Z(j,2)(S(l,2)2 ,S(l,2)2 )⊗ Z(j,3)(S(l,2)3 ,S(l,2)3 )

= kAKI superdiag

((
1

KI
, . . . ,

1

l − 2 +KI

)�)
l×l

⊗ (1)

⊗ diag((0, . . . , l)�)(l+1)×(l+1)

+ µsubdiag((1, . . . , l − 1)�)l×l ⊗ (1)⊗ diag((1, . . . , 1)�)(l+1)×(l+1)

+ kEAKRdiag

((
1

KR
, . . . ,

1

l − 1 +KR

)�)
l×l

⊗ (1)

⊗ superdiag((1, . . . , 1)�)(l+1)×(l+1)

+ µdiag((1, . . . , 1)�)l×l ⊗ (1)⊗ subdiag((1, . . . , l)�)(l+1)×(l+1),

Q̃
(2,3)
l,l =

7∑
j=1

ψ(j)Z(j,1)(S(l,2)1 ,S(l,3)1 )⊗ Z(j,2)(S(l,2)2 ,S(l,3)2 )⊗ Z(j,3)(S(l,2)3 ,S(l,3)3 )

= k2subdiag((1, . . . , l − 1)�)l×l ⊗ (0, . . . , 0, l)1×l ⊗ (0, . . . , 0, 1)�(l+1)×1

+ µdiag((1, . . . , 1)�)l×l ⊗ (0, . . . , 0, l)1×l ⊗ (0, . . . , 0, 1)�(l+1)×1,

Q̃
(3,1)
l,l =

7∑
j=1

ψ(j)Z(j,1)(S(l,3)1 ,S(l,1)1 )⊗ Z(j,2)(S(l,3)2 ,S(l,1)2 )⊗ Z(j,3)(S(l,3)3 ,S(l,1)3 )

= kAKI

(
0, . . . , 0,

1

l − 1 +KI

)�

l×1
⊗ diag((1, . . . , 1)�)l×(l+1)

⊗ (0, . . . , 0, l)1×(l+1),
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Q̃
(3,2)
l,l =

7∑
j=1

ψ(j)Z(j,1)(S(l,3)1 ,S(l,2)1 )⊗ Z(j,2)(S(l,3)2 ,S(l,2)2 )⊗ Z(j,3)(S(l,3)3 ,S(l,2)3 )

= kBdiag((1, . . . , 1)�)l×l ⊗ (0, . . . , 0, 1)�l×1 ⊗ (0, . . . , 0, 1)1×(l+1),

Q̃
(3,3)
l,l =

7∑
j=1

ψ(j)Z(j,1)(S(l,3)1 ,S(l,3)1 )⊗ Z(j,2)(S(l,3)2 ,S(l,3)2 )⊗ Z(j,3)(S(l,3)3 ,S(l,3)3 )

= kAKI superdiag

((
1

KI
, . . . ,

1

l − 2 +KI

)�)
l×l

⊗ diag((1, . . . , 1)�)l×l ⊗ (l)

+ kBdiag((1, . . . , 1)�)l×l ⊗ superdiag((1, . . . , 1)�)l×l ⊗ (1)

+ k2subdiag((1, . . . , l − 1)�)l×l ⊗ subdiag((1, . . . , l − 1)�)l×l ⊗ (1)

+ µsubdiag((1, . . . , l − 1)�)l×l ⊗ diag((1, . . . , 1)�)l×l ⊗ (1)

+ µdiag((1, . . . , 1)�)l×l ⊗ subdiag((1, . . . , l − 1)�)l×l ⊗ (1);
and the nine blocks associated with Ql,l+1 are obtained as

Q̃
(1,1)
l,l+1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,1)1 ,S(l+1,1)
1 )⊗ Z(j,2)(S(l,1)2 ,S(l+1,1)

2 )⊗ Z(j,3)(S(l,1)3 ,S(l+1,1)
3 )

= kAKI
1

l +KI
(1)⊗ diag((1, . . . , 1)�)(l+1)×(l+2) ⊗ diag((0, . . . , l)�)(l+1)×(l+2),

Q̃
(1,2)
l,l+1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,1)1 ,S(l+1,2)
1 )⊗ Z(j,2)(S(l,1)2 ,S(l+1,2)

2 )⊗ Z(j,3)(S(l,1)3 ,S(l+1,2)
3 )

= kB(0, . . . , 0, 1)1×(l+1) ⊗ (0, . . . , 0, 1)�(l+1)×1 ⊗ diag((1, . . . , 1)�)(l+1)×(l+2),

Q̃
(1,3)
l,l+1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,1)1 ,S(l+1,3)
1 )⊗ Z(j,2)(S(l,1)2 ,S(l+1,3)

2 )⊗ Z(j,3)(S(l,1)3 ,S(l+1,3)
3 )

= kEAKR

(
0, . . . , 0,

1

l +KR

)
1×(l+1)

⊗ diag((1, . . . , 1)�)(l+1)×(l+1)

⊗ (0, . . . , 0, 1)�(l+1)×1,

Q̃
(2,1)
l,l+1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,2)1 ,S(l+1,1)
1 )⊗ Z(j,2)(S(l,2)2 ,S(l+1,1)

2 )⊗ Z(j,3)(S(l,2)3 ,S(l+1,1)
3 )

= 0l(l+1)×(l+2)2 ,

Q̃
(2,2)
l,l+1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,2)1 ,S(l+1,2)
1 )⊗ Z(j,2)(S(l,2)2 ,S(l+1,2)

2 )⊗ Z(j,3)(S(l,2)3 ,S(l+1,2)
3 )

= kBdiag((1, . . . , 1)�)l×(l+1) ⊗ (1)⊗ diag((1, . . . , 1)�)(l+1)×(l+2),

Q̃
(2,3)
l,l+1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,2)1 ,S(l+1,3)
1 )⊗ Z(j,2)(S(l,2)2 ,S(l+1,3)

2 )⊗ Z(j,3)(S(l,2)3 ,S(l+1,3)
3 )

= kEAKRdiag

((
1

KR
, . . . ,

1

l − 1 +KR

)�)
l×(l+1)

⊗ (0, . . . , 0, 1)1×(l+1)

⊗ (0, . . . , 0, 1)�(l+1)×1,
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Q̃
(3,1)
l,l+1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,3)1 ,S(l+1,1)
1 )⊗ Z(j,2)(S(l,3)2 ,S(l+1,1)

2 )⊗ Z(j,3)(S(l,3)3 ,S(l+1,1)
3 )

= 0l2×(l+2)2 ,

Q̃
(3,2)
l,l+1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,3)1 ,S(l+1,2)
1 )⊗ Z(j,2)(S(l,3)2 ,S(l+1,2)

2 )⊗ Z(j,3)(S(l,3)3 ,S(l+1,2)
3 )

= 0l2×(l+1)(l+2),

Q̃
(3,3)
l,l+1 =

7∑
j=1

ψ(j)Z(j,1)(S(l,3)1 ,S(l+1,3)
1 )⊗ Z(j,2)(S(l,3)2 ,S(l+1,3)

2 )⊗ Z(j,3)(S(l,3)3 ,S(l+1,3)
3 )

= kEAKRdiag

((
1

KR
, . . . ,

1

l − 1 +KR

)�)
l×(l+1)

⊗ diag((1, . . . , 1)�)l×(l+1) ⊗ (1).
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