

Operations Research

Publication details, including instructions for authors and subscription information: http:// pubsonline.informs.org

A Polyhedral Study of Multiechelon Lot Sizing with Intermediate Demands

Minjiao Zhang, Simge Küçükyavuz, Hande Yaman,

To cite this article:

Minjiao Zhang, Simge Küçükyavuz, Hande Yaman, (2012) A Polyhedral Study of Multiechelon Lot Sizing with Intermediate Demands. Operations Research 60(4):918-935. http:// dx. doi. org/ 10.1287/ opre.1120.1058

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article's accuracy, completeness, merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or support of claims made of that product, publication, or service.

Copyright ©2012,INFORMS
Please scroll down for article-it is on subsequent pages

informs

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http:// www. informs.org

A Polyhedral Study of Multiechelon Lot Sizing with Intermediate Demands

Minjiao Zhang, Simge Küçükyavuz
Department of Integrated Systems Engineering, The Ohio State University, Columbus, Ohio 43210
\{zhang.769@osu.edu, kucukyavuz.2@osu.edu\}

Hande Yaman
Department of Industrial Engineering, Bilkent University, Ankara, Turkey, hyaman@bilkent.edu.tr

Abstract

In this paper, we study a multiechelon uncapacitated lot-sizing problem in series (m-ULS), where the output of the intermediate echelons has its own external demand and is also an input to the next echelon. We propose a polynomial-time dynamic programming algorithm, which gives a tight, compact extended formulation for the two-echelon case (2-ULS). Next, we present a family of valid inequalities for m-ULS, show its strength, and give a polynomial-time separation algorithm. We establish a hierarchy between the alternative formulations for 2-ULS. In particular, we show that our valid inequalities can be obtained from the projection of the multicommodity formulation. Our computational results show that this extended formulation is very effective in solving our uncapacitated multi-item two-echelon test problems. In addition, for capacitated multi-item, multiechelon problems, we demonstrate the effectiveness of a branch-and-cut algorithm using the proposed inequalities.

Subject classifications: lot sizing; multiechelon; facets; extended formulation; fixed-charge networks. Area of review: Optimization.
History: Received May 2011; revisions received August 2011, December 2011, February 2012; accepted February 2012.
Published online in Articles in Advance July 24, 2012.

1. Introduction

Managing inventory can be a challenging task for many enterprises. In particular, this task becomes significantly more complex for firms with multiechelon supply chains, where replenishments of inventory located in multiple tiers must be synchronized. In this paper, we study a multiechelon lot-sizing problem in series and with intermediate demands, which arises frequently for many wholesalers, retail chains, and manufacturers. For example, consider a two-echelon distribution system for a wholesaler that consists of regional and forward distribution centers (DCs). The regional DCs (first echelon) place orders to receive products directly from suppliers and then ship these products to forward DCs (second echelon). The forward DCs fulfill demand for most endcustomers. However, the regional DCs may also ship directly to some end-customers in close proximity. Similarly, consider a two-echelon distribution system for a multichannel retailer that consists of DCs and customer-facing stores. The DCs ship to all stores but may also ship directly to endcustomers who order online. Finally, consider a two-echelon production system for a vertically integrated manufacturer. The firm produces a part at the first echelon, which is used at the second echelon to assemble the final product. In addition, the same part may also be used to fulfill external demand from the repair or field service business.

In all these examples, demand is dynamic and timevarying, and there are economies of scale in production/
shipping of orders. The goal is to determine the production/ order plan over a finite horizon to meet the demand at both echelons in each period with the minimum total cost, which includes fixed and variable production/order costs, and variable holding costs at each echelon. This problem can be seen as a fixed-charge network flow problem on a grid (see Figure 1).

In a seminal paper on the single-echelon uncapacitated lot-sizing problem (ULS), Wagner and Whitin (1958) analyze the properties of optimal solutions to ULS, and propose a polynomial-time algorithm. The running time was later improved by Aggarwal and Park (1993), Federgruen and Tzur (1991), Wagelmans et al. (1992). Krarup and Bilde (1977) give an uncapacitated facility location extended formulation for ULS and show that the linear programming (LP) relaxation of this formulation always has an optimal solution with integer setup variables. Barany et al. (1984) give a complete linear description of the ULS polyhedron using the so-called (ℓ, S) inequalities. Since then, several extensions of the singleechelon ULS polyhedron have been considered to incorporate backlogging (Pochet and Wolsey 1988, Küçükyavuz and Pochet 2009), uncertainty in demands (Guan et al. 2006a, b), and production or inventory capacities (Pochet and Wolsey 1993, Atamtürk and Muñoz 2004, Atamtürk and Küçükyavuz 2005), among others (see Pochet and Wolsey 2006 for a review). Belvaux and Wolsey (2000,

Figure 1. Two-echelon, four-period uncapacitated lotsizing network.

2001) and Wolsey (2002) illustrate the utility of valid inequalities and reformulations for fundamental lot-sizing problems in solving more complex practical problems.

Multiechelon lot-sizing problems have been considered primarily under the assumption that there is demand only at the final echelon. We refer to these problems as m-ULS-F, where m is the number of echelons. Zangwill (1969) proposes an $O\left(m n^{4}\right)$ dynamic programming algorithm for m-ULS-F and van Hoesel et al. (2005) show that for $m=2$, this algorithm runs in $O\left(n^{3}\right)$ time, where n is the length of the finite planning horizon. Love (1972) shows that if the production costs are nonincreasing over time and the holding costs are nondecreasing over echelons, then there exists an optimal nested schedule. Exploiting this nested structure, an $O\left(m n^{3}\right)$ algorithm is proposed. Lee et al. (2003) give an $O\left(n^{6}\right)$ algorithm for 2-ULS-F when backlogging is allowed and there is a stepwise shipment cost between the two echelons. Melo and Wolsey (2010) propose a dynamic programming algorithm with an improved running time, $O\left(n^{2} \log n\right)$, and a compact tight extended reformulation for 2-ULS-F. For a review of valid inequalities and extended formulations for m-ULS-F, we refer the reader to Pochet and Wolsey (2006). An effective heuristic for capacitated m-ULS-F using strong formulations for each echelon is proposed in Akartunalı and Miller (2009).

Various heuristic algorithms are proposed for the more complicated multiechelon lot-sizing problems with demands in intermediate echelons (see, for example, Stadtler 2003 and the references therein). However, to the best of our knowledge, the polyhedral study of serial multiechelon lot-sizing problems with demands in intermediate echelons (m-ULS) has received little attention in the literature. A notable exception is due to Gaglioppa et al. (2008), who study a multiechelon production planning problem with complex assembly structures (not necessarily serial), where intermediate products (subassemblies) have external demand. They give a polynomial class of echelon inequalities valid for this problem. In contrast, we give an exponential class of inequalities (with polynomial separation) for the multiechelon lot-sizing problem in series.

In this paper, we are interested in exact methods for m-ULS based on its polyhedral characterizations. In $\S 2$, we give an $O\left(n^{4}\right)$ dynamic program for 2-ULS. In $\S 3$, we propose valid inequalities for m-ULS and study their strength. We also give a polynomial-time separation algorithm. In §4, we establish a hierarchy of alternative extended formulations for 2-ULS and show that our inequalities can be obtained from the projection of the so-called multicommodity formulation. Our computational results, summarized in §5, illustrate that the multicommodity formulation is very effective in solving a difficult class of uncapacitated multi-item, two-echelon lot-sizing problems. In addition, for capacitated multi-item, multiechelon problems, we demonstrate the effectiveness of a branch-and-cut algorithm using the proposed inequalities.

1.1. Mathematical Model

Let $d_{t}^{i} \geqslant 0$ denote the demand in period t at the i th echelon, and $d_{t k}^{i}=\sum_{j=t}^{k} d_{j}^{i}$, with $d_{t k}^{i}=0$ if $t>k$. If we order in period t at echelon i, we incur a fixed cost f_{t}^{i} and a variable cost \tilde{c}_{t}^{i}. Let h_{t}^{i} denote the unit holding cost at echelon i at the end of period t. Let x_{t}^{i} be the order quantity at the i th echelon in period t, s_{t}^{i} be the inventory at echelon i at the end of period t, y_{t}^{i} be the order setup variable at the i th echelon in period t, where $y_{t}^{i}=1$ if $x_{t}^{i}>0 ; y_{t}^{i}=0$ otherwise. Throughout the paper, we let $[i, j]$ denote the interval $\{i, i+1, \ldots, j\}$ for $i \leqslant j$, and $[i, j]=\varnothing$ for $i>j$.

Figure 1 depicts a two-echelon four-period uncapacitated lot-sizing network with demand in both echelons, where node (i, j) represents echelon j and period i. A natural formulation of 2-ULS is

$$
\begin{array}{ll}
\min & \sum_{i=1}^{2} \sum_{t=1}^{n}\left(f_{t}^{i} y_{t}^{i}+\tilde{c}_{t}^{i} x_{t}^{i}+h_{t}^{i} s_{t}^{i}\right), \\
\text { s.t. } & s_{t-1}^{1}+x_{t}^{1}=d_{t}^{1}+x_{t}^{2}+s_{t}^{1} \quad t \in[1, n], \\
& s_{t-1}^{2}+x_{t}^{2}=d_{t}^{2}+s_{t}^{2} \quad t \in[1, n], \\
& s_{0}^{i}=s_{n}^{i}=0 \quad i \in[1,2], \\
& x_{t}^{1} \leqslant\left(d_{t n}^{1}+d_{t n}^{2}\right) y_{t}^{1} \quad t \in[1, n], \\
& x_{t}^{2} \leqslant d_{t n}^{2} y_{t}^{2} \quad t \in[1, n], \\
& y_{t}^{i} \in\{0,1\} \quad t \in[1, n], i \in[1,2], \\
& x_{t}^{i} \geqslant 0 \quad t \in[1, n], i \in[1,2] \\
& s_{t}^{i} \geqslant 0 \quad t \in[1, n], i \in[1,2] . \tag{9}
\end{array}
$$

The objective function (1) is to minimize the sum of fixed and variable ordering costs and the inventory holding costs. Constraints (2) and (3) are flow balance equations for the first and second echelon, respectively. We assume that the initial and ending inventories at both echelons are 0 , as stated in constraints (4). Note that the assumption that $s_{0}^{2}=0$ is without loss of generality similar to the single-echelon case (Pochet and Wolsey 2006). However, for the first echelon, the assumption that $s_{0}^{1}=0$ is not without loss of generality. Constraints (5) and (6) are variable upper bound
constraints that force the binary variables y_{t}^{1} and y_{t}^{2} to be 1 if there is a positive order in period t at the first and second echelon, respectively. Finally, constraints (7)-(9) are variable restrictions. The formulation of m-ULS for $m \geqslant 3$ follows similarly.

Note that from (2)-(4) the stock variables can be projected out by letting $s_{t}^{1}=\sum_{j=1}^{t}\left(x_{j}^{1}-x_{j}^{2}\right)-d_{1 t}^{1}, s_{t}^{2}=$ $\sum_{j=1}^{t} x_{j}^{2}-d_{1 t}^{2}$ for $t \in[1, n]$, and we get an alternative formulation:

$$
\begin{array}{ll}
\min & \sum_{i=1}^{2} \sum_{t=1}^{n}\left(f_{t}^{i} y_{t}^{i}+c_{t}^{i} x_{t}^{i}\right)-B \\
\text { s.t. } & (5)-(8), \\
& \sum_{t=1}^{n} x_{t}^{1}=d_{1 n}^{1}+d_{1 n}^{2}, \\
& \sum_{t=1}^{n} x_{t}^{2}=d_{1 n}^{2}, \\
& \sum_{j=1}^{t} x_{j}^{2} \geqslant d_{1 t}^{2} \quad t \in[1, n], \\
& \sum_{j=1}^{t} x_{j}^{1} \geqslant \sum_{j=1}^{t} x_{j}^{2}+d_{1 t}^{1} \quad t \in[1, n], \tag{13}
\end{array}
$$

where the unit order costs are updated as $c_{t}^{1}=\tilde{c}_{t}^{1}+$ $\sum_{i=t}^{n} h_{i}^{1}, c_{t}^{2}=\tilde{c}_{t}^{2}+\sum_{i=t}^{n}\left(h_{i}^{2}-h_{i}^{1}\right)$, for $t \in[1, n]$ and $B=$ $\sum_{t=1}^{n}\left(h_{t}^{1} d_{1 t}^{1}+h_{t}^{2} d_{1 t}^{2}\right)$ is a constant. In the sequel, we drop the constant term B from the objective function. We also make a realistic assumption that \tilde{c}^{1} and \tilde{c}^{2} are nonnegative, and $h_{i}^{2} \geqslant h_{i}^{1}$ for all $i \in[1, n]$. Thus, c^{1} and c^{2} are nonnegative. In addition, we let \mathscr{S} denote the set of feasible solutions to (5)-(8) and (10)-(13).

2. Dynamic Programming Recursion and Reformulation

In this section, we give a dynamic programming (DP) recursion for 2-ULS that generalizes the algorithm of Zangwill (1969) by allowing positive demands at the first echelon. As 2-ULS is a single-source uncapacitated fixed-charge
network (SSFCN) flow problem, we can apply the wellknown result that the extreme points of SSFCN correspond to a spanning tree (Zangwill 1968, Veinott 1969) to conclude that there exists an optimal basic feasible solution to 2-ULS with $s_{t-1}^{i} x_{t}^{i}=0$ for all $t \in[1, n]$ and $i \in[1,2]$.

For $1 \leqslant i_{2} \leqslant j_{2} \leqslant n$, we define $\left(1, i_{2}, 1, j_{2}\right)$ as a regeneration interval if $s_{i_{2}}^{1}=s_{j_{2}}^{2}=0, x_{1}^{1}=d_{1 i_{2}}^{1}+d_{1_{j_{2}}}^{2}$, and $s_{i}^{1}>0$ or $d_{i+1, i_{2}}^{1}=0$ for $i \in\left[1, i_{2}-1\right]$. Similarly, for $2 \leqslant i_{1} \leqslant i_{2} \leqslant$ $j_{2} \leqslant n$, we define $\left(i_{1}, i_{2}, j_{1}, j_{2}\right)$ as a regeneration interval, if for $i_{1} \leqslant j_{1} \leqslant j_{2}$, we have $s_{i_{1}-1}^{1}=s_{i_{2}}^{1}=s_{j_{1}-1}^{2}=s_{j_{2}}^{2}=0, x_{i_{1}}^{1}=$ $d_{i_{1} i_{2}}^{1}+d_{j_{1} j_{2}}^{2}$, and $s_{i}^{1}>0$ or $d_{i+1, i_{2}}^{1}=0$ for $i \in\left[i_{1}, i_{2}-1\right]$, or for $j_{1}=j_{2}+1$, we have $s_{i_{1}-1}^{1}=s_{i_{2}}^{1}=0, x_{i_{1}}^{1}=d_{i_{1} i_{2}}^{1}$, and $s_{i}^{1}>0$ or $d_{i+1, i_{2}}^{1}=0$ for $i \in\left[i_{1}, i_{2}-1\right]$. In addition, we define an interval $\left(j_{1}, j_{2}\right)$ with $1 \leqslant j_{1} \leqslant j_{2} \leqslant n, s_{j_{1}-1}^{2}=s_{j_{2}}^{2}=0, x_{j_{1}}^{2}=$ $d_{j_{1} j_{2}}^{2}$, and $s_{j}^{2}>0$ or $d_{j+1, j_{2}}^{2}=0$ for $j \in\left[j_{1}, j_{2}-1\right]$ as a regeneration subinterval for the second echelon. A regeneration interval can contain several regeneration subintervals or no regeneration subinterval (when $j_{1}=j_{2}+1$). In the latter case, the value of j_{2} is equal to that of the preceding regeneration interval. For example, in Figure 2, (1, 3, 1, 5), $(4,4,6,5)$, and $(5,6,6,6)$ are regeneration intervals, $(1,2)$, $(3,5)$, and $(6,6)$ are regeneration subintervals. The regeneration interval $(1,3,1,5)$ contains the regeneration subintervals $(1,2)$ and $(3,5)$. However, the regeneration interval $(4,4,6,5)$ contains no regeneration subinterval. The spanning tree property of SSFCN implies that there exists an optimal basic feasible solution that is a concatenation of regeneration intervals.

Let $G\left(i_{2}, j_{2}\right), 1 \leqslant i_{2} \leqslant j_{2} \leqslant n$, denote the minimum cost of satisfying the demand in periods 1 to i_{2} at the first echelon and the demand in periods 1 to j_{2} at the second echelon. In addition, let $H\left(j_{1}, j_{2}\right), 1 \leqslant j_{1} \leqslant n+1,0 \leqslant j_{2} \leqslant n$ be the minimum cost to satisfy the demand in periods j_{1} to j_{2} at the second echelon, where $H\left(j_{1}, j_{2}\right)=0$ if $j_{1}>j_{2}$. For $1 \leqslant i_{2} \leqslant j_{2} \leqslant n$, consider the forward recursions:

$$
\begin{align*}
& G\left(i_{2}, j_{2}\right) \\
& \quad=\min \left\{\begin{array}{l}
\min _{\substack{2 \leqslant i_{1} \leqslant i_{2} \\
i_{1} \leqslant j_{1} \leqslant j_{2}+1}}\left\{G\left(i_{1}-1, j_{1}-1\right)+f_{i_{1}}^{1}+c_{i_{1}}^{1} d_{i_{1} i_{2}}^{1}\right. \\
\left.+c_{i_{1}}^{1} d_{j_{1} j_{2}}^{2}+H\left(j_{1}, j_{2}\right)\right\}, \\
f_{1}^{1}+c_{1}^{1} d_{1 i_{2}}^{1}+c_{1}^{1} d_{1 j_{2}}^{2}+H\left(1, j_{2}\right),
\end{array}\right. \tag{14}
\end{align*}
$$

Figure 2. An optimal solution of a two-echelon, six-period uncapacitated lot-sizing problem.

where for $1 \leqslant j_{1} \leqslant j_{2} \leqslant n$,
$H\left(j_{1}, j_{2}\right)=\min _{j_{1} \leqslant j_{3} \leqslant j_{2}}\left\{H\left(j_{1}, j_{3}-1\right)+f_{j_{3}}^{2}+c_{j_{3}}^{2} d_{j_{3} j_{2}}^{2}\right\}$.
The minimum total cost over the entire planning horizon for the original problem is given by $G(n, n)-B$.
Proposition 1. The dynamic program given by the recursions (14) and (15) solves 2-ULS in $O\left(n^{4}\right)$ time.
Proof. Note that the recursion (14) evaluates the minimum cost to satisfy the demand in periods 1 to i_{2} at the first echelon and the demand in periods 1 to j_{2} at the second echelon such that the last regeneration interval is $\left(i_{1}, i_{2}, j_{1}, j_{2}\right)$. Similarly, the recursion (15) calculates the minimum cost to satisfy the demand in periods j_{1} to j_{2} at the second echelon such that the last regeneration subinterval is $\left(j_{3}, j_{2}\right)$. As a result, $G(n, n)-B$ gives the optimal objective function value to 2 -ULS and is calculated in $O\left(n^{4}\right)$ time.

In the special case that the intermediate demands at the first echelon are zero, we can drop the index i_{2} in the recursion (14). Then the resulting recursions for $G\left(j_{2}\right)$ and $H\left(j_{1}, j_{2}\right)$ are identical to the dynamic programming recursions in Melo and Wolsey (2010).

We note that using the approach proposed by Eppen and Martin (1987) and Martin (1987), we can obtain a tight extended formulation for 2-ULS based on the proposed DP. This formulation has $O\left(n^{4}\right)$ variables and $O\left(n^{4}\right)$ constraints, including nonnegativities.

3. Valid Inequalities

In this section, we give valid inequalities for 2-ULS.

3.1. Two-Echelon Inequalities

We define $\beta(T, k)$ as the set of consecutive elements in set T starting from k, where if $k \notin T, \beta(T, k)=\varnothing$. In other words, if $k \in T$, then $\beta(T, k)=\left[k, k^{\prime}\right] \subseteq T$, for some k^{\prime} such that $k^{\prime}+1 \notin T$.

Theorem 2. For $0 \leqslant k \leqslant l \leqslant n$, let $T_{1} \subseteq[1, k],[k+1, l] \subseteq$ $T_{2} \subseteq[1, l]$ and $T_{3} \subseteq T_{2}$. Then the two-echelon inequality
$\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1}+\sum_{j \in T_{1}} \phi_{j} y_{j}^{1}+\sum_{j \in T_{2} \backslash T_{3}} x_{j}^{2}+\sum_{j \in T_{3}} \psi_{j} y_{j}^{2} \geqslant d_{1 k}^{1}+d_{1 l}^{2}$
is valid for \mathscr{S}, where $\psi_{j}=\sum_{i \in \beta\left(T_{2}, j\right)} d_{i}^{2}$ and $\phi_{j}=d_{j k}^{1}+$ $d_{j l}^{2}-\psi_{j}$.
Proof. We prove the validity of inequality (16) considering two cases.
(1) If $y_{j}^{1}=0$ for all $j \in T_{1}$, then $x_{j}^{1}=0$ for all $j \in T_{1}$. Let $i_{1}:=\min \left\{i \in T_{2} \backslash T_{3}: x_{i}^{2}>0, i \geqslant k+1\right\}$; if $\left\{i \in T_{2} \backslash T_{3}: x_{i}^{2}>\right.$ $0, i \geqslant k+1\}=\varnothing$, then let $i_{1}:=l+1$. Let $i_{2}:=\min \{i \in$ $\left.T_{3}: x_{i}^{2}>0, i \geqslant k+1\right\}$; if $\left\{i \in T_{3}: x_{i}^{2}>0, i \geqslant k+1\right\}=\varnothing$, then let $i_{2}:=l+1$. Note that $i_{1} \neq i_{2}$ unless $i_{1}=i_{2}=l+1$.

- If $i_{1}>i_{2}$, then $\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1} \geqslant d_{1 k}^{1}+d_{1, i_{2}-1}^{2}$ and $\psi_{i_{2}} y_{i_{2}}^{2}=\psi_{i_{2}}=d_{i_{2} l}^{2}$. Summing these two inequalities up, we get
$\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1}+\psi_{i_{2}} y_{i_{2}}^{2} \geqslant d_{1 k}^{1}+d_{1 l}^{2}$.
- If $i_{1}<i_{2}$, then $\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1}+\sum_{j \in\left[i_{1}, i_{2}-1\right] \backslash T_{3}} x_{j}^{2} \geqslant$ $d_{1 k}^{1}+d_{1, i_{2}-1}^{2}$ and $\psi_{i_{2}} y_{i_{2}}^{2}=d_{i_{2}}^{2} y_{i_{2}}^{2}$. Summing these two inequalities up, we get
$\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1}+\sum_{j \in\left[i_{1}, i_{2}-1\right] \backslash T_{3}} x_{j}^{2}+\psi_{i_{2}} y_{i_{2}}^{2} \geqslant d_{1 k}^{1}+d_{1 l}^{2}$.
Note that $\left(\left[i_{1}, i_{2}-1\right] \backslash T_{3}\right) \subseteq\left(T_{2} \backslash T_{3}\right)$.
- If $i_{1}=i_{2}=l+1$, then $\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1} \geqslant d_{1 k}^{1}+d_{1 l}^{2}$.

Because all terms on the left-hand side of inequality (16) are nonnegative, inequality (16) is valid if $y_{j}^{1}=0$ for all $j \in T_{1}$.
(2) If there exists $j \in T_{1}$ such that $y_{j}^{1}=1$, then let $j_{1}:=$ $\min \left\{j \in T_{1}: y_{j}^{1}=1\right\}$.
(a) If $j_{1} \notin T_{2}$, then $\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1} \geqslant d_{1, j_{1}-1}^{1}+d_{1, j_{1}-1}^{2}$ and $\phi_{j_{1}} y_{j_{1}}^{1}=\phi_{j_{1}}=d_{j_{1} k}^{1}+d_{j_{1} l}^{2}$. Summing them up, we get
$\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1}+\phi_{j_{1}} y_{j_{1}}^{1} \geqslant d_{1 k}^{1}+d_{1 l}^{2}$.
(b) If $j_{1} \in T_{2}$, then let $v:=\max \left\{j \in \beta\left(T_{2}, j_{1}\right)\right\}$.
(i) If $x_{j}^{2}=0$ for all $j \in \beta\left(T_{2}, j_{1}\right)$, then $\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1} \geqslant d_{1, j_{1}-1}^{1}+d_{1 v}^{2}$ and $\phi_{j_{1}} y_{j_{1}}^{1}=\phi_{j_{1}}=d_{j_{1} k}^{1}+$ $d_{v+1, l}^{2}$. Summing these two inequalities up, we get
$\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1}+\phi_{j_{1}} y_{j_{1}}^{1} \geqslant d_{1 k}^{1}+d_{1 l}^{2}$.
(ii) If there exists $j \in \beta\left(T_{2}, j_{1}\right)$ such that $x_{j}^{2}>0$, then let $j_{2}:=\min \left\{j \in \beta\left(T_{2}, j_{1}\right): x_{j}^{2}>0\right\}$.

- If $j_{2} \in T_{3}$, then $\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1} \geqslant d_{1, j_{1}-1}^{1}+d_{1, j_{2}-1}^{2}$, $\phi_{j_{1}} y_{j_{1}}^{1}=\phi_{j_{1}}=d_{j_{1} k}^{1}+d_{v+1, l}^{2}$ and $\psi_{j_{2}} y_{j_{2}}^{2}=\psi_{j_{2}}=d_{j_{2} v}^{2}$. Summing them up, we get
$\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1}+\phi_{j_{1}} y_{j_{1}}^{1}+\psi_{j_{2}} y_{j_{2}}^{2} \geqslant d_{1 k}^{1}+d_{1 l}^{2}$.
- If $j_{2} \in T_{2} \backslash T_{3}$, then consider the following two cases:
- If $\left\{j \in\left[j_{2}+1, v\right] \cap T_{3}: x_{j}^{2}>0\right\} \neq \varnothing$, then let $j_{3}:=\min \left\{j \in\left[j_{2}+1, v\right] \cap T_{3}: x_{j}^{2}>0\right\}$. Then $\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1}+$ $\sum_{j \in\left[j_{2}, j_{3}-1\right] \backslash T_{3}} x_{j_{2}}^{2} \geqslant d_{1, j_{1}-1}^{1}+d_{1, j_{3}-1}^{2}, \phi_{j_{1}} y_{j_{1}}^{1}=\phi_{j_{1}}=d_{j_{1} k}^{1}+$ $d_{v+1, l}^{2}$ and $\psi_{j_{3}} y_{j_{3}}^{2}=d_{j_{3} v}^{2}$. Summing them up, we get
$\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1}+\phi_{j_{1}} y_{j_{1}}^{1}+\sum_{j \in\left[j_{2}, j_{3}-1\right] \backslash T_{3}} x_{j}^{2}+\psi_{j_{3}} y_{j_{3}}^{2} \geqslant d_{1 k}^{1}+d_{1 l}^{2}$.
Note that $\left(\left[j_{2}, j_{3}-1\right] \backslash T_{3}\right) \subseteq\left(T_{2} \backslash T_{3}\right)$.
- If $\left\{j \in\left[j_{2}+1, v\right] \cap T_{3}: x_{j}^{2}>0\right\}=\varnothing$, then $\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1}+\sum_{j \in\left[j_{2}, v\right] \backslash T_{3}} x_{j}^{2} \geqslant d_{1, j_{1}-1}^{1}+d_{1 v}^{2}$ and $\phi_{j_{1}} y_{j_{1}}^{1}=$ $\phi_{j_{1}}=d_{j_{1} k}^{1}+d_{v+1, l}^{2}$. Summing them up, we get
$\sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1}+\phi_{j_{1}} y_{j_{1}}^{1}+\sum_{j \in\left[j_{2}, v\right] \backslash T_{3}} x_{j}^{2} \geqslant d_{1 k}^{1}+d_{1 l}^{2}$.
Note that $\left(\left[j_{2}, v\right] \backslash T_{3}\right) \subseteq\left(T_{2} \backslash T_{3}\right)$.

Because all terms on the left-hand side of inequality (16) are nonnegative, inequality (16) is valid if there exists $j \in T_{1}$ such that $y_{j}^{1}>0$.

Hence, the inequality (16) is valid.
An alternative proof can be obtained by using the dicut collection inequalities of Rardin and Wolsey (1993). We provide the precise correspondence between the simple dicut collection inequalities and the two-echelon inequalities in Corollary 9.

Example 1. To illustrate the two-echelon inequalities, consider a four-period problem as shown in Figure 1 with $d_{i}^{1}=d_{i}^{2}=1$ for $i \in[1,4]$. For $k=2$ and $l=3$, we have $x_{1}^{1}+3 y_{2}^{1}+x_{3}^{2} \geqslant 5$ where $T_{1}=\{2\}, T_{2}=\{3\}, T_{3}=\varnothing$. For $k=l=3$, we have $x_{1}^{1}+4 y_{2}^{1}+y_{3}^{1}+x_{3}^{2} \geqslant 6$, where $T_{1}=$ $\{2,3\}, T_{2}=\{3\}, T_{3}=\varnothing$, and $x_{1}^{1}+4 y_{2}^{1}+y_{3}^{1}+y_{3}^{2} \geqslant 6$, where $T_{1}=\{2,3\}, T_{2}=\{3\}, T_{3}=\{3\}$. For $k=3$ and $l=4$, we have $x_{1}^{1}+4 y_{2}^{1}+3 y_{3}^{1}+x_{2}^{2}+x_{4}^{2} \geqslant 7$, where $T_{1}=\{2,3\}, T_{2}=$ $\{2,4\}, T_{3}=\varnothing$, and $x_{1}^{1}+4 y_{2}^{1}+3 y_{3}^{1}+y_{2}^{2}+x_{4}^{2} \geqslant 7$, where $T_{1}=\{2,3\}, T_{2}=\{2,4\}, T_{3}=\{2\}$.

Note that for $k=0$, we have $T_{1}=\varnothing, T_{2}=[1, l]$ and $T_{3} \subseteq T_{2}$, so inequality (16) is equivalent to the (ℓ, S) inequality of Barany et al. (1984) for the second echelon only, where $\ell=l$ and $T_{3}=S$. For example,
$x_{1}^{2}+x_{2}^{2}+y_{3}^{2} \geqslant 3$
is the (ℓ, S) inequality for the second echelon only, with $\ell=3$ and $S=\{3\}$. In addition, for $l=n, T_{2}=[1, n]$, $T_{3}=\varnothing$, inequality (16) is equivalent to the (ℓ, S) inequality of Barany et al. (1984) for the first echelon only, where $\ell=k$ and $T_{1}=S$. For example,
$x_{1}^{1}+x_{2}^{1}+y_{3}^{1} \geqslant 3$
is the (ℓ, S) inequality for the first echelon only, with $\ell=3$, $S=\{3\}$. As a result, single echelon (ℓ, S) inequalities are valid for 2-ULS, and they are subsumed by the two-echelon inequalities.

Also, for $k=l$ and $T_{2}=\varnothing$, inequality (16) is equivalent to the (ℓ, S) inequality for the aggregation of the two echelons. For example,
$x_{1}^{1}+x_{2}^{1}+2 y_{3}^{1} \geqslant 6$
is the (ℓ, S) inequality for the aggregation of the two echelons with $\ell=3, S=\{3\}$.

Using a similar argument, we can show that the twoechelon inequalities obtained by aggregating the demands in echelons $\left[m_{1}, m_{2}\right.$] (echelon 1) and those in $\left[m_{2}+1, m_{3}\right]$ (echelon 2) for $1 \leqslant m_{1} \leqslant m_{2}<m_{3} \leqslant m$, are valid for m-ULS for any $m \geqslant 2$. For example, for a four-period fiveechelon lot-sizing problem with unit demands in all echelons, letting $m_{1}=1, m_{2}=2, m_{3}=4$:
$x_{1}^{1}+8 y_{2}^{1}+6 y_{3}^{1}+x_{2}^{3}+x_{4}^{3} \geqslant 14$
is a valid two-echelon inequality where $k=3, l=4, T_{1}=$ $\{2,3\}, T_{2}=\{2,4\}$ and $T_{3}=\varnothing$.

3.2. Facet Conditions

Next we give necessary and sufficient conditions for twoechelon inequalities (16) to be facet-defining for $\operatorname{conv}(\mathscr{S})$. We assume that $\mathbf{d}^{\mathbf{1}}$ and $\mathbf{d}^{\mathbf{2}}$ are positive for ease of exposition. Note that under this assumption, $y_{1}^{1}=y_{1}^{2}=1$. Denote a feasible point in $\operatorname{conv}(\mathscr{S})$ as $\left(\mathbf{x}^{1}, \mathbf{y}^{1}, \mathbf{x}^{2}, \mathbf{y}^{2}\right)$.

The dimension of $\operatorname{conv}(\mathscr{S})$ is $4 n-4$ for $\mathbf{d}^{\mathbf{1}}>\mathbf{0}$ and $\mathbf{d}^{\mathbf{2}}>\mathbf{0}$ (see Appendix A).
Proposition 3. For $\mathbf{d}^{\mathbf{1}}>\mathbf{0}$ and $\mathbf{d}^{\mathbf{2}}>\mathbf{0}$, inequality (16) is facet-defining for $\operatorname{conv}(\mathscr{S})$ if and only if
(1) $1 \notin T_{1}$;
(2) $1 \notin T_{2}$ if $k \neq 0$;
(3) $1 \notin T_{3}$ if $k=0$;
(4) $k \neq 1$;
(5) if $k=0, l=n$, then $\left|T_{3}\right|=1$;
(6) for every $j \in T_{2} \cap[2, k]$, there exists $i \in T_{1}$ such that $j \in \beta\left(T_{2}, i\right)$;
(7) if $2 \leqslant k \leqslant l=n$ with $T_{3} \neq \varnothing$, then $T_{3} \cap[k+1, n]=\varnothing$ and for each $j \in T_{3} \cap[2, k]$, there exists $j^{*} \in[j+1, k]$ such that $j^{*} \notin T_{2}$;
(8) if $2 \leqslant k \leqslant l<n$, then there exists $j \in\left[p^{1}, k\right]$ such that $j \notin T_{2}$;
(9) if $k=l=n$, then either $T_{2}=\varnothing$ with $\left|T_{1}\right|=1$, or $T_{2} \neq \varnothing$ is a consecutive set with $p^{2}=p^{1}$ and $\left[p^{1}, w^{1}\right] \subseteq$ $T_{2}=\left[p^{1}, w^{2}\right] \subseteq\left[p^{1}, n\right] ;$
(10) if $k \neq 0$, then $T_{1} \neq \varnothing$; if $k=0$, then $T_{3} \neq \varnothing$;
where
$p^{1}:=\min \left\{j \in T_{1}\right\}, \quad w^{1}:=\max \left\{j \in T_{1}\right\}$,
$p^{2}:=\min \left\{j \in T_{2}\right\}, \quad$ and $\quad w^{2}:=\max \left\{j \in T_{2}\right\}$.
Proof. See Appendix B.
Using the facet conditions, we see that (ℓ, S) inequalities for the second echelon only and for the aggregation of two echelons are facet-defining for 2-ULS problem, such as inequalities (17) and (19). But (ℓ, S) inequality for the first echelon only, such as inequality (18), is not facet-defining because it violates facet condition (2).

Based on our experiments with PORTA (Christof and Löbel 2008), in a three-period two-echelon lot-sizing problem with unit demands in both echelons, all facets of the convex hull of 2-ULS solutions are defined by the twoechelon inequalities. However, in a four-period problem with unit demands in both echelons, 65 out of the 81 facets are defined by the two-echelon inequalities. Four out of these 65 facets are (ℓ, S) inequalities for the aggregation of the first and second echelons, and 4 out of these 65 facets are (ℓ, S) inequalities for the second echelon only.

3.3. Separation

Proposition 4. Given a fractional point $\left(\mathbf{x}^{\mathbf{1}}, \mathbf{y}^{\mathbf{1}}, \mathbf{x}^{\mathbf{2}}, \mathbf{y}^{\mathbf{2}}\right) \in$ $\mathbb{R}^{4 n}$, there is an $O\left(n^{4}\right)$ algorithm to find the most violated inequality (16), if any.

Proof. As stated earlier, when $k=0$, two-echelon inequalities are (ℓ, S) inequalities of Barany et al. (1984) for

Figure 3. Separation network for two-echelon inequality (16) with $k=4$.

the second echelon, which have an $O(n \log n)$ separation algorithm (c.f., Pochet and Wolsey 2006). When $k=1$, the two-echelon inequalities are not facet-defining due to facet condition (4). Next, for given k and l such that $2 \leqslant k \leqslant l \leqslant n$, we give an $O\left(n^{2}\right)$ algorithm that minimizes the left-hand side of inequality (16). Note that for a given k and l, the right-hand side of inequality (16) is fixed, so this algorithm maximizes the violation, if any.

Note that by definition, $[k+1, l] \subseteq T_{2}$. To minimize $\sum_{j \in T_{2} \cap[k+1, l] \backslash T_{3}} x_{j}^{2}+\sum_{j \in T_{3} \cap[k+1, l]} \psi_{j} y_{j}^{2}$, let $T_{3} \cap[k+1, l]:=$ $\left\{j \in[k+1, l]: x_{j}^{2} \geqslant d_{j l}^{2} y_{j}^{2}\right\}$. This takes $O(n)$ time. Now we need to determine the sets $T_{1}, T_{2} \cap[1, k]$ and $T_{3} \cap[1, k]$. Note that the coefficients of the variables in T_{1} depend on the choice of T_{2}, because they contain the term $\psi_{j}=$ $\sum_{i \in \beta\left(T_{2}, j\right)} d_{i}^{2}$.

Consider a shortest-path network $G=(V, A)$. For example, Figure 3 is the shortest path network for separating a two-echelon inequality (16) with $k=4$. The node set is $V=\left\{1^{\prime}\right\} \cup\{i: i \in[2, k+1]\} \cup\left\{i^{\prime}: i \in[2, k]\right\}$, where $(k+1)$ is the sink node. Node i^{\prime} represents $i \notin T_{2}$ and node i represents $i \in T_{2}$. By definition, we know that if $k \neq l$, then $(k+1) \in T_{2}$. From the facet conditions, we know that $1 \notin T_{2}$. The arc set is $A=\left\{\left(i^{\prime}, i+1\right): i \in[1, k]\right\} \cup$ $\left\{\left(i^{\prime},(i+1)^{\prime}\right): i \in[1, k-1]\right\} \cup\left\{\left(i,(v+1)^{\prime}\right): i \in[2\right.$, $k-1], v \in[i, k-1]\} \cup\{(i,(k+1)): i \in[2, k]\}$.
(1) A shortest path visiting the arc $\left(i^{\prime}, i+1\right)$ for $i \in[1, k]$ implies that to minimize the left-hand side of inequality (16), we let $i \notin T_{2}$ and $(i+1) \in T_{2}$. The cost on this arc is $\bar{c}_{i^{\prime}, i+1}=\min \left\{x_{i}^{1},\left(d_{i k}^{1}+d_{i l}^{2}\right) y_{i}^{1}\right\}$. Note that when $i \notin T_{2}$, $\phi_{i}=d_{i k}^{1}+d_{i l}^{2}$. Therefore, if $x_{i}^{1} \leqslant\left(d_{i k}^{1}+d_{i l}^{2}\right) y_{i}^{1}$, then we let $i \notin T_{1}$, else we let $i \in T_{1}$.
(2) A shortest path visiting the arc $\left(i^{\prime},(i+1)^{\prime}\right)$ for $i \in$ [$1, k-1$] implies that to minimize the left-hand side of inequality (16), we let $i \notin T_{2}$ and $(i+1) \notin T_{2}$. The cost on this arc is $\bar{c}_{i^{\prime},(i+1)^{\prime}}=\min \left\{x_{i}^{1},\left(d_{i k}^{1}+d_{i l}^{2}\right) y_{i}^{1}\right\}$. If $x_{i}^{1} \leqslant\left(d_{i k}^{1}+\right.$ $\left.d_{i l}^{2}\right) y_{i}^{1}$, then we let $i \notin T_{1}$, else we let $i \in T_{1}$.
(3) A shortest-path visiting the $\operatorname{arc}\left(i,(v+1)^{\prime}\right)$ for $i \in$ [2,k-1] and $v \in[i, k-1]$ represents $[i, v] \subseteq T_{2}$ and $(i-1) \notin T_{2}$ and $(v+1) \notin T_{2}$. As a result, $\beta\left(T_{2}, j\right)=[j, v]$ for all $j \in[i, v]$, and the decision on which elements to include in $T_{1} \cap[i, v]$ can be made easily as the coefficients ϕ_{j} depend on $\beta\left(T_{2}, j\right)$. The cost on this arc is $\bar{c}_{i,(v+1)^{\prime}}=$ $\sum_{t=i}^{v} \min \left\{x_{t}^{1},\left(d_{t k}^{1}+d_{(v+1), l}^{2}\right) y_{t}^{1}\right\}+\sum_{t=i}^{v} \min \left\{x_{t}^{2}, d_{t v}^{2} y_{t}^{2}\right\}$. As before, if $x_{i}^{1} \leqslant\left(d_{i k}^{1}+d_{(v+1), l}^{2}\right) y_{i}^{1}$, then we let $i \notin T_{1}$; else, we let $i \in T_{1}$. Similarly, if $x_{i}^{2} \leqslant d_{i v}^{2} y_{i}^{2}$, then we let $i \in T_{2} \backslash T_{3}$; else, we let $i \in T_{3}$.
(4) A shortest path visiting the $\operatorname{arc}(i,(k+1))$ for $i \in$ $[2, k]$ represents $[i, l] \subseteq T_{2},(i-1) \notin T_{2}$, and $(k+1) \in T_{2}$ if $k<l$. As a result, $\beta\left(T_{2}, j\right)=[j, l]$ for all $j \in[i, k]$. Hence, the cost on this arc is $\bar{c}_{i,(k+1)}=\sum_{t=i}^{k} \min \left\{x_{t}^{1}, d_{t k}^{1} y_{t}^{1}\right\}+$ $\sum_{t=i}^{l} \min \left\{x_{t}^{2}, d_{t l}^{2} y_{t}^{2}\right\}$. As before, if $x_{i}^{1} \leqslant d_{i k}^{1} y_{i}^{1}$, then we let $i \notin T_{1}$; else, we let $i \in T_{1}$. Similarly, if $x_{i}^{2} \leqslant d_{i l}^{2} y_{i}^{2}$, then we let $i \in T_{2} \backslash T_{3}$; else, we let $i \in T_{3}$.

Note that there are $O(n)$ nodes and $O\left(n^{2}\right)$ arcs in this network. In addition, G is directed acyclic. Hence, the shortest-path problem for a given k and l can be solved in $O\left(n^{2}\right)$ time. Overall, this separation algorithm takes $O\left(n^{4}\right)$ time considering all k, l such that $0 \leqslant k \leqslant l \leqslant n$.

4. Alternative Extended Formulations for 2-ULS

A tight and compact extended formulation for 2-ULS can be obtained from the dynamic program given in $\S 2$. However, the size of this formulation is large, and its projection is nontrivial. In this section, we consider alternative extended formulations obtained by adapting those for m-ULS-F from the literature, such as the multicommodity formulation (Krarup and Bilde 1977, Rardin and Wolsey 1993) and the echelon stock formulation (Wolsey 2002, Belvaux and Wolsey 2001) (see also Pochet and Wolsey 2006). We establish a hierarchy of formulations by studying their relative strength.

4.1. Multicommodity Formulation

In this section, we propose a multicommodity extended formulation similar to that of Pochet and Wolsey (2006) for m-ULS-F. Let $z_{u t}^{11}$ be the order quantity in period u at the first echelon to satisfy the intermediate demand in period t, $z_{u t}^{12}$ be the order quantity in period u at the first echelon to satisfy the demand at the second echelon in period t, and $z_{u t}^{22}$ be the order quantity in period u at the second echelon to satisfy the demand at the second echelon in period t for $1 \leqslant u \leqslant t \leqslant n$. Using these additional variables, we can model 2-ULS as follows:

$$
\begin{align*}
\min & \sum_{i=1}^{2} \sum_{t=1}^{n}\left(f_{t}^{i} y_{t}^{i}+c_{t}^{i} x_{t}^{i}\right), \\
\text { s.t. } & \sum_{u=1}^{t} z_{u t}^{11}=d_{t}^{1} \quad t \in[1, n], \tag{21}\\
& \sum_{u=1}^{t} z_{u t}^{12}=d_{t}^{2} \quad t \in[1, n], \tag{22}\\
& \sum_{u=1}^{t} z_{u t}^{22}=d_{t}^{2} \quad t \in[1, n], \tag{23}\\
& \sum_{u=1}^{j} z_{u t}^{12} \geqslant \sum_{u=1}^{j} z_{u t}^{22} \quad t \in[1, n], j \in[1, t], \tag{24}\\
& d_{t}^{1} y_{u}^{1} \geqslant z_{u t}^{11} \quad t \in[1, n], u \in[1, t], \tag{25}\\
& d_{t}^{2} y_{u}^{1} \geqslant z_{u t}^{12} \quad t \in[1, n], u \in[1, t], \tag{26}
\end{align*}
$$

$$
\begin{align*}
& d_{t}^{2} y_{u}^{2} \geqslant z_{u t}^{22} \quad t \in[1, n], u \in[1, t], \tag{27}\\
& x_{t}^{1}=\sum_{v=t}^{n}\left(z_{t v}^{11}+z_{t v}^{12}\right) \quad t \in[1, n], \tag{28}\\
& x_{t}^{2}=\sum_{v=t}^{n} z_{t v}^{22} \quad t \in[1, n], \tag{29}\\
& z_{u t}^{11}, z_{u t}^{12}, z_{u t}^{22} \geqslant 0 \quad t \in[1, n], u \in[1, t], \tag{30}\\
& y_{t}^{i} \in\{0,1\} \quad t \in[1, n], i \in[1,2] . \tag{31}
\end{align*}
$$

Here constraints (21)-(24) ensure that the demand is satisfied on time. In particular, constraints (24) enforce that the order quantity at the second echelon until period j to satisfy the second echelon demand in period t cannot be larger than the order quantity at the first echelon until period j to satisfy the second echelon demand in period t. Constraints (25)-(27) ensure that there are no orders in periods with no order setup. Constraints (28) and (29) relate the values of the order variables in the natural formulation with the additional variables in the extended formulation. We refer to the formulation (21)-(31) as the multicommodity (MC) formulation.
4.1.1. Comparison of MC Formulation with the Natural Formulation Strengthened with Two-Echelon Inequalities. Here we prove that the LP relaxation of MC formulation is at least as strong as the natural formulation strengthened with two-echelon inequalities. It is easy to see that the constraints of the natural formulation (5)-(8), (10)-(13) are implied by MC formulation. Next, we show that the two-echelon inequalities are implied by MC formulation. To do this, we study the projection of the feasible set of MC formulation onto the space of order and setup variables.

Note that because c^{1} and c^{2} are nonnegative, equality (22) for a given t can be relaxed as $\sum_{u=1}^{t} z_{u t}^{12} \geqslant d_{t}^{2}$, which is implied by equality (23) for that t and inequality (24) for $j=t$. We associate dual variables $\alpha_{t}^{1}, \alpha_{t}^{2}, \rho_{j t}, \gamma_{u t}^{11}, \gamma_{u t}^{12}, \gamma_{u t}^{22}$, σ_{t}^{1}, and σ_{t}^{2} to constraints (21) and (23)-(29), respectively. From Farkas' lemma, for a given $\left(\mathbf{x}^{1}, \mathbf{y}^{\mathbf{1}}, \mathbf{x}^{\mathbf{2}}, \mathbf{y}^{\mathbf{2}}\right)$ satisfying these constraints, the LP relaxation of MC formulation has a solution if and only if

$$
\begin{align*}
& \sum_{t=1}^{n} \sigma_{t}^{1} x_{t}^{1}+\sum_{t=1}^{n} \sigma_{t}^{2} x_{t}^{2}+\sum_{u=1}^{n} \sum_{t=u}^{n}\left(\gamma_{u t}^{11} d_{t}^{1}+\gamma_{u t}^{12} d_{t}^{2}\right) y_{u}^{1} \\
& \quad+\sum_{u=1}^{n} \sum_{t=u}^{n} \gamma_{u t}^{22} d_{t}^{2} y_{u}^{2} \geqslant \sum_{t=1}^{n}\left(d_{t}^{1} \alpha_{t}^{1}+d_{t}^{2} \alpha_{t}^{2}\right) \tag{32}
\end{align*}
$$

for all $\left(\sigma^{1}, \sigma^{2}, \gamma^{11}, \gamma^{12}, \gamma^{22}, \alpha^{1}, \alpha^{2}, \rho\right)$ satisfying
$\gamma_{u t}^{11}+\sigma_{u}^{1} \geqslant \alpha_{t}^{1} \quad 1 \leqslant u \leqslant t \leqslant n$,
$\gamma_{u t}^{12}+\sigma_{u}^{1} \geqslant \sum_{j=u}^{t} \rho_{j t} \quad 1 \leqslant u \leqslant t \leqslant n$,
$\gamma_{u t}^{22}+\sigma_{u}^{2} \geqslant \alpha_{t}^{2}-\sum_{j=u}^{t} \rho_{j t} \quad 1 \leqslant u \leqslant t \leqslant n$.

Proposition 5. If a projection inequality (32) defined by a nonnegative extreme ray $\left(\sigma^{1}, \sigma^{2}, \gamma^{11}, \gamma^{12}, \gamma^{22}, \alpha^{1}, \alpha^{2}, \rho\right)$ of the projection cone with equal positive entries is not dominated, then it has the following form:
$\sum_{u \in S_{1}} x_{u}^{1}+\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \in A_{1} \backslash S_{1}} \hat{\phi}_{u} y_{u}^{1}+\sum_{u \in A_{2} \backslash S_{2}} \hat{\psi}_{u} y_{u}^{2} \geqslant d_{1 t^{1}}^{1}+d_{1 t^{2}}^{2}$,
where $0 \leqslant t^{1} \leqslant t^{2} \leqslant n, A_{1}=\left[1, t^{1}\right], A_{2}=\left[1, t^{2}\right], S_{1} \subseteq A_{1}$, $S_{2} \subseteq A_{2}, j(1) \in[0,1], j(t+1) \in\{j(t), t+1\}$ for all $t \in A_{2}$, $t \leqslant n-1, j(t) \leqslant t^{1}$ for $t \in A_{2}, \hat{\phi}_{u}=d_{u t^{1}}^{1}+\sum_{t \in A_{2}: u \leqslant j(t)} d_{t}^{2}$ for $u \in A_{1} \backslash S_{1}$ and $\hat{\psi}_{u}=\sum_{t \in A_{2}: j(t)<u \leqslant t} d_{t}^{2}$ for $u \in A_{2} \backslash S_{2}$, where $j(t)$ is the largest index $j \in[1, t]$ with positive $\rho_{j t}$ (if none exists, then $j(t)=0)$.
Proof. See Appendix C.
Proposition 6. If a projection inequality (32) defined by a nonnegative extreme ray of the projection cone with equal positive entries is not dominated, then it is a two-echelon inequality (16).
Proof. Let $0 \leqslant t^{1} \leqslant t^{2} \leqslant n, A_{1}=\left[1, t^{1}\right], A_{2}=\left[1, t^{2}\right]$, $S_{1} \subseteq A_{1}, S_{2} \subseteq A_{2}, j(1) \in[0,1], j(t+1) \in\{j(t), t+1\}$ for all $t \in A_{2}, t \leqslant n-1, j(t) \leqslant t^{1}$ for $t \in A_{2}, \hat{\phi}_{u}=d_{u t^{1}}^{1}+$ $\sum_{t \in A_{2}: u \leqslant j(t)} d_{t}^{2}$ for $u \in A_{1} \backslash S_{1}$ and $\hat{\psi}_{u}=\sum_{t \in A_{2}: j(t)<u \leqslant t} d_{t}^{2}$ for $u \in A_{2} \backslash S_{2}$.

Define $k=t^{1}, l=t^{2}$, and $C=\{t \in[1, k]: j(t) \neq t\}$. Let $T_{2}=C \cup[k+1, l]$. As $j(t) \leqslant t^{1}$ for $t \in A_{2}, T_{2}=\left\{t \in A_{2}\right.$: $j(t) \neq t\}$. Let $T_{1}=A_{1} \backslash S_{1}$ and $T_{3} \subseteq A_{2} \backslash S_{2}$.

Let $u \in A_{2} \backslash S_{2}$. If $u \notin T_{2}$, then $\psi_{u}=0=\hat{\psi}_{u}$ and we let $u \in T_{3}$. If $u \in T_{2}$, then $j(u)<u$. Now
$\psi_{u}=\sum_{t \in \beta\left(T_{2}, u\right)} d_{t}^{2}=\sum_{t \in A_{2}: u \leqslant t, j(t)=j(u)} d_{t}^{2}=\sum_{t \in A_{2}: j(t)<u \leqslant t} d_{t}^{2}=\hat{\psi}_{u}$,
and we let $u \in T_{3}$.
Let $u \in T_{1}=A_{1} \backslash S_{1}$. Then $\phi_{u}=d_{u k}^{1}+d_{u l}^{2}-\sum_{t \in \beta\left(T_{2}, u\right)} d_{t}^{2}$. If $u \notin T_{2}$, then $j(u)=u$, and for all $t \in A_{2}$ with $t \geqslant u$, we have $j(t) \geqslant j(u)$. Hence $\sum_{t \in A_{2}: u \leqslant j(t)} d_{t}^{2}=d_{u l}^{2}$ and $\phi_{u}=$ $d_{u k}^{1}+d_{u l}^{2}=\hat{\phi}_{u}$. If $u \in T_{2}$, then $j(u) \neq u$. Let u^{\prime} be the smallest index greater than u with $j\left(u^{\prime}\right)=u^{\prime}$. We have $\sum_{t \in A_{2}: u \leqslant j(t)} d_{t}^{2}=d_{u^{\prime}, l}^{2}$. This is the same as $d_{u l}^{2}-d_{u, u^{\prime}-1}^{2}=$ $\sum_{t \in \beta\left(T_{2}, u\right)} d_{t}^{2}$. Hence $\phi_{u}=\hat{\phi}_{u}$.

The resulting two-echelon inequality is
$\sum_{u \in S_{1}} x_{u}^{1}+\sum_{u \in S_{2}: j(u) \neq u} x_{u}^{2}+\sum_{u \in T_{1}} \hat{\phi}_{u} y_{u}^{1}+\sum_{u \in T_{3}} \hat{\psi}_{u} y_{u}^{2} \geqslant d_{1 t^{1}}^{1}+d_{1 t^{2}}^{2}$
and dominates the projection inequality if there exists $u \in$ S_{2} with $j(u)=u$.
Proposition 7. Inequalities (16) can be obtained by projecting the MC formulation onto the $\left(\mathbf{x}^{\mathbf{1}}, \mathbf{y}^{\mathbf{1}}, \mathbf{x}^{\mathbf{2}}, \mathbf{y}^{\mathbf{2}}\right)$ space.
Proof. Consider the two-echelon inequality (16) defined by $0 \leqslant k \leqslant l \leqslant n, T_{1} \subseteq[1, k],[k+1, l] \subseteq T_{2} \subseteq[1, l]$, $C=T_{2} \cap[1, k]$, and $T_{3} \subseteq T_{2}$. Let $T_{2}=\bigcup_{s=1}^{r} T_{2}^{s}$ where T_{2}^{s} is a maximal consecutive component, i.e., $T_{2}^{s}=[a(s)$, $b(s)] \subseteq T_{2}$ with $a(s)-1 \notin T_{2}$ and $b(s)+1 \notin T_{2}$ for each
$s=1, \ldots, r$ and r is the number of maximal consecutive components comprising T_{2}.

Now define $t^{1}=k, t^{2}=l, A_{1}=[1, k], A_{2}=[1, l], S_{1}=$ $[1, k] \backslash T_{1}, S_{2}=T_{2} \backslash T_{3}$ and $j(t)=t$ for $t \in[1, k] \backslash C$ and $j(t)=a(s)-1$ if $t \in T_{2}^{s}$ for $s=1, \ldots, r$.

For $u \in A_{1} \backslash S_{1}, \hat{\phi}_{u}=d_{u t^{1}}^{1}+\sum_{t \in A_{2}: u \leqslant j(t)} d_{t}^{2}=d_{u k}^{1}+$ $\sum_{t \in[1, k] \backslash C: u \leqslant t} d_{t}^{2}+\sum_{s=1}^{r} \sum_{t \in T_{2}^{s}: u \leqslant a(s)-1} d_{t}^{2}$. If $u \notin T_{2}$, then $\sum_{t \in[1, k] \backslash C: u \leqslant t} d_{t}^{2}+\sum_{s=1}^{r} \sum_{t \in T_{2}^{s}: u \leqslant a(s)-1} d_{t}^{2}=d_{u l}^{2}$. If $u \in T_{2}$, let \bar{s} be the interval that u falls into, i.e., $u \in T_{2}^{\bar{s}}$. Then $\sum_{t \in[1, k] \backslash C: u \leqslant t} d_{t}^{2}+\sum_{s=1}^{r} \sum_{t \in T_{2}^{s}: u \leqslant a(s)-1} d_{t}^{2}=d_{b(\bar{s})+1, l}^{2}$. In both cases, $\hat{\phi}_{u}=\phi_{u}$.

Let $u \in A_{2} \backslash S_{2}$. Then

$$
\begin{aligned}
\hat{\psi}_{u} & =\sum_{t \in A_{2}: j(t)<u \leqslant t} d_{t}^{2}=\sum_{t \in[1, k] \backslash C: j(t)<u \leqslant t} d_{t}^{2}+\sum_{s=1}^{r} \sum_{t \in T_{2}^{s}: j(t)<u \leqslant t} d_{t}^{2} \\
& =\sum_{t \in[1, k] \backslash C: t<u \leqslant t} d_{t}^{2}+\sum_{s=1}^{r} \sum_{t \in T_{2}^{s}: a(s)-1<u \leqslant t} d_{t}^{2} .
\end{aligned}
$$

Observe that $\sum_{t \in[1, k] \backslash C: t<u \leqslant t} d_{t}^{2}=0$. If $u \notin T_{2}$, then
$\sum_{s=1}^{r} \sum_{t \in T_{2}^{s}: a(s)-1<u \leqslant t} d_{t}^{2}=0$.
If $u \in T_{2}$, then $\sum_{s=1}^{r} \sum_{t \in T_{2}^{s}: a(s)-1<u \leqslant t} d_{t}^{2}=d_{b(\bar{s})+1, l}^{2}$, where \bar{s} is the interval that u falls into. Hence, $\hat{\psi}_{u}=0$ if $u \notin T_{2}$ and $\hat{\psi}_{u}=\psi_{u}$ if $u \in T_{2}$.

As a result, the projection inequality for these choices is the same as the two-echelon inequality (16).

Using the Propositions (6) and (7), we have the following theorem.

Theorem 8. The formulation obtained by adding the projection inequalities (32) corresponding to the nonnegative extreme rays with equal positive entries has the same strength as the formulation obtained by adding all twoechelon inequalities (16).

Rardin and Wolsey (1993) give a class of dicut collection inequalities for single-source uncapacitated fixed-charge networks, which are obtained by projecting the multicommodity extended formulation to the original space. Dicut collection inequalities are written implicitly as a function of a collection of dicuts in a graph. Therefore, there are no known explicit conditions for dicut collection inequalities to be facet-defining, and as a result, many of these inequalities are dominated. In addition, there are no known combinatorial separation algorithms for these inequalities.
Corollary 9. Two-echelon inequalities are special cases of dicut collection inequalities.

Proof. This follows from Theorem 8. Here we give the dicut collection that corresponds to the two-echelon inequalities. For $t \in[1, n]$ and $i \in[1,2], \Gamma_{t}^{i}$ is a collection of variables such that removing the arcs corresponding to
these variables will disconnect the flows from source node to nodes (t, i) in the single-source network depicted in Figure 1 . To yield the two-echelon inequality $\left(T_{1}, T_{2}, T_{3}, k, l\right)$, the required dicut collection $\Gamma=\left\{\Gamma_{t}^{1}\right\}_{t \in[1, n]} \cup\left\{\Gamma_{t}^{2}\right\}_{t \in[1, n]}$ has each Γ_{t}^{j} as a singleton $\left\{Q_{t}^{j}\right\}$ for $t \in[1, n]$ and $j \in[1,2]$. We define $\beta^{-1}(T, \cdot)$ as the inverse function of $\beta(T, \cdot)$, i.e., $t \in \beta(T, i)$ if and only if $i \in \beta^{-1}(T, t)$. Then the dicut collection that gives the two-echelon inequality is

- For $t \in[1, k], \Gamma_{t}^{1}=\left\{Q_{t}^{1}\right\}=\left\{x_{i}^{1}: i \in[1, t] \backslash T_{1}\right\} \cup\left\{y_{i}^{1}:\right.$ $\left.i \in[1, t] \cap T_{1}\right\}$.
- For $t \in[1, l], \Gamma_{t}^{2}=\left\{Q_{t}^{2}\right\}=\left\{x_{i}^{1}: i \in[1, t] \backslash T_{1}\right\} \cup\left\{x_{i}^{2}\right.$: $\left.i \in[1, t] \cap\left(T_{2} \backslash T_{3}\right)\right\} \cup\left\{y_{i}^{1}: i \notin \beta^{-1}\left(T_{2}, t\right), i \in[1, t] \cap T_{1}\right\} \cup$ $\left\{y_{i}^{2}: i \in \beta^{-1}\left(T_{2}, t\right) \cap T_{3}\right\}$.
- For $t \in[k+1, n], \Gamma_{t}^{1}=\varnothing$.
- For $t \in[l+1, n], \Gamma_{t}^{2}=\varnothing$.

We refer the reader to Rardin and Wolsey (1993) for further details on the dicut collection inequalities.

Nevertheless, as two-echelon inequalities are in closed form, we are able to show that they are facet-defining under certain conditions (Proposition 3) and give a combinatorial separation algorithm for them (Proposition 4).
Example 1 (Continued). Based on our experiments with PORTA (Christof and Löbel 2008), the LP relaxation of MC formulation is not tight for 2-ULS with more than three periods. Consider the four-period 2-ULS problem with $d^{1}=d^{2}=(1,1,1,1)$. As stated before, 65 out of 81 facets are defined by two-echelon inequalities. Besides these 65 facets, 3 out of the 16 remaining facets are defined by the projection of MC formulation. For example, $x_{1}^{1}+$ $x_{2}^{1}+2 y_{3}^{1}-x_{2}^{2}-2 y_{2}^{2} \geqslant 6$ is a projection inequality, but it is clearly not a two-echelon inequality because of the negative coefficients of x_{2}^{2} and y_{2}^{2}. Thus, the MC formulation is strictly contained in the natural formulation with twoechelon inequalities.

Let $h^{1}=h^{2}=(0,0,0,0), f^{1}=(0,2,2,2), f^{2}=(0,2$, $0,0), c^{1}=(8,7,6,5), c^{2}=(0,0,2,2)$. The solution to the linear relaxation of the MC formulation is $x^{1}=(3,2.5$, $1.5,1), x^{2}=(1.5,1.5,0.5,0.5), y^{1}=(1,0.5,0.5,0.5)$, $y^{2}=(1,0.5,1,1)$. Because binary variables y^{1} and y^{2} are fractional at the optimal solution, the MC formulation is not tight in this example. So we conclude that the exact DP-based formulation is stronger than the MC formulation.

4.2. Echelon Stock Reformulation

Pochet and Wolsey (2006) derive an alternative formulation for m-ULS-F using the so-called "echelon stock variables." Here we adapt this formulation to our problem. The first echelon stock variable $e_{t}^{1}=s_{t}^{1}+s_{t}^{2}$ is the total inventory at the first echelon at the end of period t, and the second echelon stock variable $e_{t}^{2}=s_{t}^{2}$ is the total inventory at the second echelon at the end of period t. Using these variables, we obtain the following model:
$\min \sum_{i=1}^{2} \sum_{t=1}^{n}\left(f_{t}^{i} y_{t}^{i}+c_{t}^{i} x_{t}^{i}\right)$,

$$
\begin{array}{ll}
\text { s.t. } & (5)-(8), \\
& e_{t-1}^{1}+x_{t}^{1}=d_{t}^{1}+d_{t}^{2}+e_{t}^{1} \quad t \in[1, n], \\
e_{t-1}^{2}+x_{t}^{2}=d_{t}^{2}+e_{t}^{2} \quad t \in[1, n], \\
e_{0}^{i}=e_{n}^{i}=0 \quad i \in[1,2], \\
e_{t}^{1} \geqslant e_{t}^{2} \quad t \in[1, n], \\
e_{t}^{i} \geqslant 0 \quad t \in[1, n], i \in[1,2] .
\end{array}
$$

4.2.1. Comparison of the Natural Formulation Strengthened with Two-Echelon Inequalities and the Echelon Stock Reformulation with (ℓ, S) Inequalities. The echelon stock reformulation has the same linear programming relaxation bound as the natural formulation. However, if we consider the variables and the constraints associated with a given echelon, then we have the same structure as that of ULS. Now, we can generate (ℓ, S) inequalities for each echelon. Let $\ell \in[1, n], L=[1, \ell]$, and $S \subseteq L$. The first echelon (ℓ, S)-inequality is
$\sum_{j \in S} x_{j}^{1} \leqslant \sum_{j \in S}\left(d_{j \ell}^{1}+d_{j \ell}^{2}\right) y_{j}^{1}+e_{\ell}^{1}$,
which is the same as
$d_{1 \ell}^{1}+d_{1 \ell}^{2} \leqslant \sum_{j \in S}\left(d_{j \ell}^{1}+d_{j \ell}^{2}\right) y_{j}^{1}+\sum_{j \in L \backslash S} x_{j}^{1}$
after substituting $e_{\ell}^{1}=\sum_{j=1}^{\ell} x_{j}^{1}-d_{1 \ell}^{1}-d_{1 \ell}^{2}$. Similarly, the second echelon (ℓ, S)-inequality is
$d_{1 \ell}^{2} \leqslant \sum_{j \in S} d_{j \ell}^{2} y_{j}^{2}+\sum_{j \in L \backslash S} x_{j}^{2}$.
We refer to inequalities (37) and (38) as echelon stock inequalities.

Proposition 10. The natural formulation with twoechelon inequalities is stronger than the echelon stock reformulation with echelon stock inequalities.

Proof. Let $\ell \in[1, n], L=[1, \ell]$, and $S \subseteq L$. If we let $k=$ $l=\ell, T_{1}=S, T_{2}=T_{3}=\varnothing$, then the two-echelon inequality (16) simplifies to
$\sum_{j \in L \backslash S} x_{j}^{1}+\sum_{j \in S}\left(d_{j \ell}^{1}+d_{j \ell}^{2}\right) y_{j}^{1} \geqslant d_{1 \ell}^{1}+d_{1 \ell}^{2}$,
which is the same as the echelon stock inequality (37).
Also, if we let $k=0, l=\ell, T_{1}=\varnothing, T_{2}=[1, l], T_{3}=S$, inequality (16) is the same as inequality (38). Thus, the natural formulation with two-echelon inequalities is stronger than the echelon stock reformulation with the echelon stock inequalities.

4.3. Hierarchy of Formulations

A formulation of a mixed-integer program is formally defined as the polyhedron given by the linear programming relaxation of its constraints (Definition 1.2 of Wolsey 1998). From $\S \S 2,3,4.1$, and 4.2 , we establish a hierarchy of formulations for 2-ULS, in its natural space, from stronger to weaker as: projection of the DP-based exact extended formulation; projection of the MC formulation; natural formulation with two-echelon inequalities (16); echelon stock formulation with echelon stock inequalities; natural formulation. Also, the inclusion in each case is strict. For example, we know that not all projection inequalities of MC formulation are two-echelon inequalities (16).

5. Computations

In this section, we report our computational experiments with a class of multi-item, multiechelon lot-sizing problems with mode constraints. In these problems, we have n time periods, m echelons, and r items. The mode constraints allow at most κ orders to be placed in each period and each echelon. Let $M_{a t}^{i}$ be the order capacity of item a at echelon i in period $t, 1 \leqslant i \leqslant m, 1 \leqslant a \leqslant r$, and $1 \leqslant t \leqslant n$. Let $\hat{d}_{a t}^{i}$ be the demand of item a in period t at echelon i, $1 \leqslant i \leqslant m, 1 \leqslant a \leqslant r, 1 \leqslant t \leqslant n$. Define $\hat{d}_{a u t}^{i}:=\sum_{j=u}^{t} \hat{d}_{a j}^{i}$.

Let $x_{a t}^{i}$ denote the total order quantity of item a in period t at echelon $i, 1 \leqslant i \leqslant m, 1 \leqslant a \leqslant r, 1 \leqslant t \leqslant n$. The mixed-integer programming formulation of capacitated multi-item lot-sizing problem with mode constraint is as follows:

$$
\begin{array}{ll}
\min & \sum_{a=1}^{r} \sum_{i=1}^{m} \sum_{t=1}^{n}\left(f_{a t}^{i} y_{a t}^{i}+c_{a t}^{i} x_{a t}^{i}\right), \\
\text { s.t. } \sum_{t=1}^{n} x_{a t}^{i}=\sum_{j=i}^{m} \hat{d}_{a 1 n}^{j} \quad 1 \leqslant i \leqslant m, 1 \leqslant a \leqslant r, \\
& \sum_{j=1}^{t} x_{a j}^{i} \geqslant \sum_{j=1}^{t} x_{a j}^{i+1}+\hat{d}_{a 1 t}^{i} \\
& 1 \leqslant i \leqslant m-1,1 \leqslant a \leqslant r, 1 \leqslant t \leqslant n, \\
& \sum_{j=1}^{t} x_{a j}^{m} \geqslant \hat{d}_{a 1 t}^{m} \quad 1 \leqslant t \leqslant n, 1 \leqslant a \leqslant r, \\
& x_{a t}^{i} \leqslant M_{a t}^{i} y_{a t}^{i} \quad 1 \leqslant i \leqslant m, 1 \leqslant a \leqslant r, 1 \leqslant t \leqslant n, \\
& \sum_{a=1}^{r} y_{a t}^{i} \leqslant \kappa \quad 1 \leqslant t \leqslant n, 1 \leqslant i \leqslant m, \\
& x_{a t}^{i} \geqslant 0 \quad 1 \leqslant i \leqslant m, 1 \leqslant t \leqslant n, 1 \leqslant a \leqslant r, \\
& y_{a t}^{i} \in\{0,1\} \quad 1 \leqslant i \leqslant m, 1 \leqslant t \leqslant n, 1 \leqslant a \leqslant r .
\end{array}
$$

Let $z_{\text {aut }}^{i j}$ denote the order quantity of item a in period u at echelon i to satisfy the demand in period t at echelon $j, 1 \leqslant i \leqslant j \leqslant m, 1 \leqslant u \leqslant t \leqslant n, 1 \leqslant a \leqslant r$. The multi-
commodity formulation of capacitated multi-item lot-sizing problem with mode constraint is as follows:

$$
\begin{array}{ll}
\min & \sum_{a=1}^{r} \sum_{i=1}^{m} \sum_{t=1}^{n}\left(f_{a t}^{i} y_{a t}^{i}+c_{a t}^{i} x_{a t}^{i}\right), \\
\text { s.t } \sum_{u=1}^{t} z_{a u t}^{i j}=\hat{d}_{a t}^{j} \quad 1 \leqslant i \leqslant j \leqslant m, 1 \leqslant a \leqslant r, 1 \leqslant t \leqslant n, \\
& \sum_{u=1}^{k} z_{a u t}^{i j} \geqslant \sum_{u=1}^{k} z_{a u t}^{(i+1) j} \\
1 \leqslant i<j \leqslant m, 1 \leqslant a \leqslant r, 1 \leqslant k \leqslant t \leqslant n, \\
& x_{a u}^{i}=\sum_{j=i}^{m} \sum_{t=u}^{n} z_{a u t}^{i j} \quad 1 \leqslant i \leqslant m, 1 \leqslant a \leqslant r, 1 \leqslant u \leqslant n, \\
& z_{a u t}^{i j} \leqslant \hat{d}_{a t}^{j} y_{a u}^{i} \quad 1 \leqslant i \leqslant j \leqslant m, 1 \leqslant a \leqslant r, 1 \leqslant u \leqslant t \leqslant n, \\
& x_{a t}^{i} \leqslant M_{a t}^{i} y_{a t}^{i} \quad 1 \leqslant i \leqslant m, 1 \leqslant a \leqslant r, 1 \leqslant t \leqslant n, \\
& \sum_{a=1}^{r} y_{a t}^{i} \leqslant \kappa \quad 1 \leqslant i \leqslant m, 1 \leqslant t \leqslant n, \\
& z_{a u t}^{i} \geqslant 0 \quad 1 \leqslant i \leqslant m, 1 \leqslant a \leqslant r, 1 \leqslant u \leqslant t \leqslant n, \\
& x_{a t}^{i} \geqslant 0 \quad 1 \leqslant i \leqslant m, 1 \leqslant a \leqslant r, 1 \leqslant t \leqslant n, \\
& y_{a t}^{i} \in\{0,1\} \quad 1 \leqslant i \leqslant m, 1 \leqslant a \leqslant r, 1 \leqslant t \leqslant n .
\end{array}
$$

We conduct all the experiments on a $1-\mathrm{GHz}$ dualcore AMD Opteron(tm) processor 1218 with 2 GB RAM. We use IBM ILOG CPLEX 12.0 as the MIP solver.

5.1. Strength of Alternative Formulations for Uncapacitated Multi-Item Two-Echelon Instances

In this subsection, we investigate the strength of alternative formulations and cuts. We limit ourselves to uncapacitated instances with 30 periods and 2 echelons, where $M_{a t}^{i}=$ $\sum_{j=i}^{m} \hat{d}_{\text {atn }}^{j}$ for $1 \leqslant i \leqslant m, 1 \leqslant t \leqslant n, 1 \leqslant a \leqslant r$. The variable costs of the first and second echelons are generated using
a discrete uniform distribution in the interval $[0,50]$ and [0,100], respectively. Unit inventory costs of the both echelons are generated using a discrete uniform distribution in the interval $[0,6]$. Let δ be the ratio of fixed and unit order costs. For various values of r, κ, and δ, we generate five instances and report the averages in Table 1.

For each formulation, we report the average percentage duality gap (rounded to two significant digits) and the average number of cuts added (if applicable). First, we solve the LP relaxations of the natural and multicommodity formulations, which we refer to as NF and MCF, respectively. The gap reported for NF and MCF is calculated as $100 \times(\mathrm{zub}-\mathrm{zlb}) / \mathrm{zub}$, where zub is objective function value of the optimal solution and zlb is the optimal value of the initial LP relaxation. The MCF is very strong and has zero gap for all the instances considered, whereas the initial gap of NF can be as high as 25%. Next, we solve NF by letting CPLEX generate its cuts and report the root gap and the average number of cuts generated before branching. The root gap is calculated similarly by letting zlb be the optimal value of the LP relaxation strengthened by cutting planes. We refer to the natural formulation with CPLEX cuts as CPX. We observe that CPLEX can close a big portion of the gap. Finally, using cutting plane algorithms, we solve the LP relaxations of the natural formulation strengthened with the two-echelon inequalities (referred to as 2ULS) and the echelon stock formulation with echelon stock inequalities (referred to as ES). We can see that the echelon stock inequalities reduce the duality gap significantly but the remaining gaps are slightly higher than those with CPLEX cuts. The two-echelon inequalities, however, close almost all the gap, with the average gap being below 0.5%. This comparison shows that using twoechelon inequalities, we obtain a formulation that is almost as strong as the multicommodity formulation and significantly stronger than the formulation obtained by adding only the echelon stock inequalities. Because our goal in this experiment is to test the strength of 2ULS empirically, we do not report the solution times. The exact separation

Table 1. Gaps for different formulations and valid inequalities for uncapacitated two-echelon multi-item lot-sizing problems.

п.т.r.к. δ	$\begin{gathered} \text { NF } \\ \text { Gap (\%) } \end{gathered}$	CPX		2ULS		ES		$\begin{aligned} & \text { MCF } \\ & \text { Gap (\%) } \end{aligned}$
		Gap (\%)	Cuts	Gap (\%)	Cuts	Gap (\%)	Cuts	
30.2.5.2.500	25.40	3.66	111.8	0.42	5,990.2	4.41	1,637.0	0
30.2.5.3.500	27.52	4.31	115.6	0.62	5,498.8	4.34	1,408.4	0
30.2.10.3.500	25.26	4.63	208.8	0.42	13,367.8	4.96	4,188.2	0
30.2.10.5.500	25.61	2.94	223.6	0.31	11,563.4	4.69	2,894.6	0
30.2.5.2.1000	18.71	4.71	62.6	0.16	3,608.4	5.30	1,279.2	0
30.2.5.3.1000	22.21	4.22	75.2	0.33	2,868.8	5.84	941.8	0
30.2.10.3.1000	17.93	5.39	127.4	0.11	7,810.8	5.34	3,631.6	0
30.2.10.5.1000	18.80	3.83	127.8	0	6,497.8	5.55	2,246.4	0
30.2.5.2.2500	4.46	0.48	34.0	0	1,740.8	0.23	685.8	0
30.2.5.3.2500	7.08	0.07	37.8	0	1,213.8	0.45	475.6	0
30.2.10.3.2500	3.90	1.38	75.8	0	4,910.2	0.27	2,195.0	0
30.2.10.5.2500	4.50	0.03	67.8	0	3,791.6	0.02	1,328.4	0

of the two-echelon inequalities can be quite time consuming in practice due to its $O\left(n^{4}\right)$ time complexity. In the next subsection, we employ a heuristic separation to make 2ULS practicable.

In our computational experience, MCF is also highly effective in solving uncapacitated multi-item lot-sizing instances for more echelons with $2 \leqslant m \leqslant 5$. However, in the next subsection, we show that for capacitated instances a branch-and-cut algorithm using our proposed inequalities is more effective than the MCF formulation.

5.2. Effectiveness of Two-Echelon Inequalities for Capacitated Multi-Item Multiechelon Instances

In this subsection, we test the multicommodity formulation and three alternative branch-and-cut methods on capacitated multi-item, multiechelon lot-sizing problem with mode constraints:

Algorithm 1. Multicommodity formulation with all CPLEX cuts (denoted by MCF).

Algorithm 2. Echelon stock formulation with echelon stock inequalities (37)-(38) and all CPLEX cuts (denoted by ES).

Algorithm 3. Natural formulation with a subset of twoechelon inequalities and all CPLEX cuts (denoted by 2ULS).

Algorithm 4. Natural formulation with all CPLEX cuts (denoted by CPX).

Note that echelon stock inequalities are special cases of two-echelon inequalities. We impose an hour time limit for all algorithms.

In 2ULS, we generate a subset of the violated twoechelon inequalities at the root node only. We add all violated echelon stock inequalities for a single echelon obtained by aggregating the echelons $\left[m_{1}, m\right.$] for $m_{1} \in$ $[1, m]$. To apply the two-echelon inequalities in the multiechelon setting, we aggregate echelons $\left[m_{1}, m_{2}\right.$] and treat as echelon 1 , and we aggregate echelons $\left[m_{2}+1, m_{3}\right]$ and treat as echelon 2, for certain choices of m_{1}, m_{2}, m_{3}, where $1 \leqslant m_{1} \leqslant m_{2}<m_{3} \leqslant m$. In particular, we consider only the facet-defining two-echelon inequalities for the following cases:
(a) echelons [$m_{1}, m-1$] aggregated as echelon 1 and [m, m] aggregated as echelon 2 (i.e., $m_{2}=m-1, m_{3}=m$) for all k, l with $2 \leqslant k<l=n$,
(b) echelon m_{1} used as echelon 1 and $\left[m_{1}+1, m\right]$ aggregated as echelon 2 (i.e., $m_{2}=m_{1}, m_{3}=m$) for all k, l with $k=l=n$.
We add all the cuts aggressively, and we force CPLEX to start branching if the improvement of lower bound at the root node is less than 0.01% after adding all cuts generated in one iteration.

In our experimental setup, the demands, fixed costs, variable costs, and holding cost of each item in each echelon and each period are generated using a discrete uniform distribution in the intervals $[0,50],[1,000,2,000],[0,20]$, and $[0,6]$, respectively. The capacity $M_{a t}^{i}$ is set to be $3\left\lceil\hat{d}_{a 1 n}^{i} / n\right\rceil$ for $i \in[1, m], a \in[1, r]$, and $t \in[1, n]$.

We report our results in Table 2 for various settings n.m.r.к. For each setting, we generate five instances and report the averages. In column RGap(noint), we report the average percentage integrality gap at the root node just before branching, which is $100 \times(z u b-z r b) / z u b$, where zub is objective function value of the best integer solution obtained within time limit and zrb is the best lower bound obtained at the root node. The number of instances without integer solutions obtained within time limit is given in parentheses in cases where not all five instances are solved with integer solutions. In column GClos(noint), we report the average percentage closure of the integrality gap at the root node before branching, which is $100 \times(\mathrm{zrb}-\mathrm{zlb}) /(\mathrm{zub}-\mathrm{zlb})$, and in parantheses, we give the number of instances with no feasible integer solutions obtained within time limit. In columns EGap(noint), we report the average percentage end gap at termination output by CPLEX, which is $100 \times($ zub zbest)/zub, where zbest is the best lower bound available within time limit, and the number of instances without integer solutions obtained within the time limit in parentheses. Columns Time(unslvd) report the average solution time in seconds and the number of unsolved instances in parentheses in cases where not all five instances are solved to optimality within time limit. Columns Nodes(nobr) report the average number of branch-and-cut tree nodes explored and the number of instances without branching in parentheses in cases where not all five instances start branching. In columns Cuts, we report the average number of CPLEX cuts and user inequalities (echelon stock inequalities for ES and two-echelon inequalities for 2-ULS) added separately.

The branch-and-cut method with the MC formulation was not able to obtain any integer feasible solutions for any of the five instances from 30.5.5.3 setting within an hour. Therefore, the gap closure and the end gap for the MC formulation is not calculated. Also, for all five instances from 20.5.5.3 and 30.5.3.2 settings, the MC formulation was not able to start branching, although it was able to solve the initial LP relaxation, add CPLEX default cuts at the root node and even obtained integer feasible solutions in all but one instance of the 30.5.3.2 setting. These experiments demonstrate that the MC formulation might not scale up for capacitated problems as the number of echelons, items or periods increase. Overall, two-echelon inequalities are the most effective method in obtaining optimal solutions in shortest time, or solutions with the smallest end gaps within an hour.

6. Conclusions

In this paper, we studied an m-echelon lot-sizing problem with intermediate demands (m-ULS). We gave a

Table 2. Comparison of MCF and alternative branch-and-cut methods for capacitated multi-item, multiechelon lot-sizing problems.

n.m.r.к	Alg.	RGap	GClos (noint)	Time (unslvd)	Nodes (nobr)	Cuts		EGap (noint)
						CPLEX	User	
20.2.5.3	MCF	1.19\%	47.11\%	$\geqslant 3,600$	36,344.4	11,830.2	0	0.64\%
	ES	0.37\%	91.85\%	63.75	8,098.4	898.0	384.6	0
	2ULS	0.37\%	92.01\%	46.80	4,155.6	1,148.8	201.2	0
	CPX	0.44\%	90.38\%	49.29	4,994.4	1,295.2	0	0
20.3.3.2	MCF	1.18\%	45.80\%	530.52 (4)	15,270.2	4,678.4	0	0.76\%
	ES	0.64\%	86.20\%	111.26	10,007.0	1,004.4	128.6	0
	2ULS	0.60\%	87.19\%	102.37	7,496.6	1,172.2	167.8	0
	CPX	0.71\%	84.72\%	146.92	11,106.4	1,097.6	0	0
20.5.3.2	MCF	1.72\%	29.78\%	$\geqslant 3,600$	156.4	85.2	0	1.68\%
	ES	0.85\%	82.13\%	3,243.24 (4)	56,425.6	1,970.8	173.6	0.10\%
	2ULS	0.73\%	84.43\%	2,205.35 (3)	38,654.6	1,896.2	248.8	0.06\%
	CPX	0.95\%	80.00\%	$\geqslant 3,600$	67,661.0	2,145.8	0	0.18\%
20.5.5.3	MCF	3.78\%	10.78\%	$\geqslant 3,600$	- (5)	68.4	0	3.78\%
	ES	1.16\%	78.07\%	$\geqslant 3,600$	23,126.4	2,949.2	345.8	0.74\%
	2ULS	1.14\%	78.79\%	$\geqslant 3,600$	28,193.2	2,886.8	488.2	0.74\%
	CPX	1.43\%	73.71\%	$\geqslant 3,600$	30,513.6	3,389.8	0	1.02\%
20.3.10.5	MCF	4.21\% (1)	14.04\% (1)	$\geqslant 3,600$	2,234 (4)	227.8	0	3.35\% (1)
	ES	0.69\%	85.06\%	$\geqslant 3,600$	24,695.4	3,432.8	437.2	0.43\%
	2ULS	0.61\%	86.68\%	$\geqslant 3,600$	24,014.0	3,308.4	561.6	0.37\%
	CPX	0.79\%	82.95\%	$\geqslant 3,600$	25,431.4	3,881.2	0	0.54\%
30.2.5.3	MCF	1.43\%	29.58\%	$\geqslant 3,600$	27,301.0	5,529.8	0	1.21\%
	ES	0.61\%	81.65\%	562.37 (4)	1,26,946.4	1,769.2	240.2	0.14\%
	2ULS	0.54\%	83.61\%	468.12 (4)	1,27,468.4	1,754.6	267.4	0.12\%
	CPX	0.68\%	79.29\%	903.38 (4)	1,55,664.6	2,027.2	0	0.17\%
30.3.3.2	MCF	1.77\%	19.78\%	$\geqslant 3,600$	11,853.2	2,100.2	0	1.53\%
	ES	0.86\%	76.61\%	1,925.4 (3)	86,462.4	1,439.2	191.0	0.30\%
	2ULS	0.82\%	77.64\%	1,353.1 (3)	72,181.2	1,692.6	224.4	0.30\%
	CPX	0.96\%	73.94\%	1,795.25 (4)	1,22,084.8	1,923.4	0	0.35\%
30.5.3.2	MCF	2.96\% (1)	9.01\% (1)	$\geqslant 3,600$	-(5)	56.8	0	2.96\% (1)
	ES	1.21\%	69.11\%	$\geqslant 3,600$	31,201.0	2,945.8	249.2	0.88\%
	2ULS	1.12\%	71.04\%	$\geqslant 3,600$	21,739.0	2,866.8	328.2	0.84\%
	CPX	1.31\%	66.25\%	$\geqslant 3,600$	25,162.6	4,377.8	0	0.95\%
30.5.5.3	MCF	-(5)	-(5)	$\geqslant 3,600$	87.0	131.4	0	-(5)
	ES	1.73\% (2)	60.21\% (2)	$\geqslant 3,600$	19,904.6	4,372.4	432.4	1.54\% (2)
	2ULS	1.19\% (2)	69.03\% (2)	$\geqslant 3,600$	17,803.8	4,011.8	566.0	1.04\% (2)
	CPX	2.45\%	51.38\%	$\geqslant 3,600$	30,277.2	4,418.2	0	2.27\%
30.3.10.5	MCF	3.76\% (2)	6.15\% (2)	$\geqslant 3,600$	-(5)	148.0	0	3.76\% (2)
	ES	1.77\% (2)	58.98\% (2)	$\geqslant 3,600$	16,600.2	4,703.0	634.4	1.63\% (2)
	2ULS	1.93\% (2)	57.06\% (2)	$\geqslant 3,600$	11,799.4	4,362.8	735.8	1.83\% (2)
	CPX	2.87\% (3)	46.50\% (3)	$\geqslant 3,600$	20,846.6	5,052.4	0	2.75\% (3)

polynomial-time dynamic program, which implies a tight and compact extended formulation to solve 2 -ULS. In addition, we presented a class of valid inequalities for m-ULS, which are separable in polynomial time. Our computational experience with these inequalities demonstrate the effectiveness of these inequalities for multi-item, multiechelon instances. We conjecture that these inequalities are enough to give the convex hull of solutions to 2 -ULS for $n=3$. However, they are not enough to give the convex hull for $n>3$. In addition, we compared the theoretical strength of alternative formulations such as the multicommodity and echelon stock reformulations, and established a hierarchy between them. Finally, we presented our computational
experiments with the multicommodity formulation and our valid inequalities. The multicommodity formulation performs extremely well for uncapacitated problems and the branch and cut algorithm outperforms the multicommodity formulation when capacity constraints are introduced.

Appendix A. Dimension of $\operatorname{conv}(\mathscr{S})$

Let $\eta_{j}^{i} \in \mathbb{B}^{4 n}$ and $e_{j}^{i} \in \mathbb{B}^{4 n}, j \in[1, n], i \in\{1,2\}$, be the unit vectors corresponding to the variables x_{j}^{i} and y_{j}^{i}. The component of η_{j}^{i}, which has the same position with x_{j}^{i} in the feasible solution, is 1 ; all other components of η_{j}^{i} are 0 . The component of e_{j}^{i}, which has the same position with y_{j}^{i} in the feasible solution, is 1 ; all other components of e_{j}^{i} are 0 .

Proposition 11. The dimension of $\operatorname{conv}(\mathscr{S})$ is $4 n-4$ if $\mathbf{d}^{\mathbf{1}}>\mathbf{0}$ and $\mathbf{d}^{2}>\mathbf{0}$.

Proof. Because there are $4 n$ variables and 4 linearly independent equalities (10), (11), $y_{1}^{1}=1, y_{1}^{2}=1$, the dimension of $\operatorname{conv}(\mathscr{S})$ is at most $4 n-4$. Then, consider the following $4 n-3$ points: $\hat{u}_{0}=\left(d_{1 n}^{1}+d_{1 n}^{2}\right) \eta_{1}^{1}+e_{1}^{1}+d_{1 n}^{2} \eta_{1}^{2}+e_{1}^{2}$, and for $j \in[2, n], \hat{u}_{j}^{1}=$ $\hat{u}_{0}+e_{j}^{1}, \hat{u}_{j}^{2}=\hat{u}_{0}+e_{j}^{2}, \tilde{u}_{j}^{1}=\hat{u}_{j}^{1}-\epsilon \eta_{1}^{1}+\epsilon \eta_{j}^{1}, \tilde{u}_{j}^{2}=\hat{u}_{j}^{2}-\epsilon \eta_{1}^{2}+\epsilon \eta_{j}^{2}$, where $0<\epsilon<\min \left\{d_{j}^{i}: j \in[1, k], i \in\{1,2\}\right\}$. It is easy to see that these $4 n-3$ points are affinely independent and the dimension of $\operatorname{conv}(\mathscr{S})$ is at least $4 n-4$. Hence, the dimension $\operatorname{of} \operatorname{conv}(\mathscr{S})$ is $4 n-4$.

Appendix B. Proof of Proposition 3

Proposition 3. For $\mathbf{d}^{\mathbf{1}}>\mathbf{0}$ and $\mathbf{d}^{\mathbf{2}}>\mathbf{0}$, inequality (16) is facetdefining for $\operatorname{conv}(\mathcal{S})$ if and only if
(1) $1 \notin T_{1}$;
(2) $1 \notin T_{2}$ if $k \neq 0$;
(3) $1 \notin T_{3}$ if $k=0$;
(4) $k \neq 1$;
(5) if $k=0, l=n$, then $\left|T_{3}\right|=1$;
(6) for every $j \in T_{2} \cap[2, k]$, there exists $i \in T_{1}$ such that $j \in$ $\beta\left(T_{2}, i\right)$;
(7) if $2 \leqslant k \leqslant l=n$ with $T_{3} \neq \varnothing$, then $T_{3} \cap[k+1, n]=\varnothing$ and for each $j \in T_{3} \cap[2, k]$, there exists $j^{*} \in[j+1, k]$ such that $j^{*} \notin T_{2}$;
(8) if $2 \leqslant k \leqslant l<n$, then there exists $j \in\left[p^{1}, k\right]$ such that $j \notin T_{2}$;
(9) if $k=l=n$, then $T_{1} \neq \varnothing$ and either $T_{2}=\varnothing$ with $\left|T_{1}\right|=1$, or $T_{2} \neq \varnothing$ is a consecutive set with $p^{2}=p^{1}$ and $\left[p^{1}, w^{1}\right] \subseteq T_{2}=$ $\left[p^{1}, w^{2}\right] \subseteq\left[p^{1}, n\right] ;$
(10) if $k \neq 0$, then $T_{1} \neq \varnothing$; if $k=0$, then $T_{3} \neq \varnothing$.

Proof.
Necessity. For simplicity, we denote the two-echelon inequality (16) with the particular choice of $T_{1}, T_{2}, T_{3}, k, l$, by $\left(T_{1}, T_{2}, T_{3}\right.$, $k, l)$. Note that $\left(\mathbf{x}^{1}, \mathbf{y}^{1}, \mathbf{x}^{2}, \mathbf{y}^{2}\right) \geqslant \mathbf{0}$.
(1) Suppose that $1 \in T_{1}$. Because $y_{1}^{1}=1, x_{j}^{i} \geqslant 0$ and $y_{j}^{i} \geqslant 0$ for $j \in[1, n], i \in\{1,2\}$, then the two-echelon inequality $\left(T_{1}, T_{2}\right.$, $\left.T_{3}, k, l\right)$ is dominated by the inequality $y_{1}^{1} \geqslant 1$ and two-echelon inequality $\left(\varnothing, \beta\left(T_{2}, 1\right), \beta\left(T_{2}, 1\right) \cap T_{3}, 0, \max \left\{j: j \in \beta\left(T_{2}, 1\right)\right\}\right)$.
(2) Suppose that $1 \notin T_{1}$ and $1 \in T_{2}$ with $k \neq 0$. Because $x_{1}^{2}>0$ and $y_{1}^{2}=1$, the two-echelon inequality $\left(T_{1}, T_{2}, T_{3}, k, l\right)$ is dominated by the two-echelon inequality $\left(T_{1}, T_{2} \backslash\{1\}, T_{3} \backslash\{1\}, k, l\right)$.
(3) Note that if $k=0$, then $T_{1}=\varnothing$ and $T_{2}=[1, l]$. Suppose $1 \in$ T_{3}. Then the two-echelon inequality $\left(\varnothing, T_{2}, T_{3}, 0, l\right)$ is dominated by the inequality $y_{1}^{2} \geqslant 1$.
(4) By facet conditions (1)-(2) and the fact that $x_{1}^{1} \geqslant d_{1}^{1}$, if $k=1$, then the two-echelon inequality $\left(\varnothing, T_{2}, T_{3}, 1, l\right)$ is dominated by the two-echelon inequality $\left(\varnothing, T_{2}, T_{3}, 0, l\right)$.
(5) Suppose that $k=0, l=n$. In this case, $T_{2}=[1, n]$. If $T_{3}=\varnothing$, then the face defined by two-echelon inequality (\varnothing, T_{2}, $\varnothing, 0, n$) is equivalent to the flow balance equation (11), so it is not proper. If $\left|T_{3}\right|>1$, then the two-echelon inequality $\left(\varnothing, T_{2}, T_{3}\right.$, $0, n)$ is dominated by the two-echelon inequalities $\left(\varnothing, T_{2},\{j\}, 0\right.$, n), $j \in T_{3}$. Note that when $T_{3}=\{j\}$ for some $j \in[1, n]$, the twoechelon inequality ($\varnothing, T_{2}, T_{3}, 0, n$) is equivalent to the variable upper-bound constraint $x_{j}^{2} \leqslant d_{j n}^{2} y_{j}^{2}$ given by (6).
(6) Suppose that there exists $j \in T_{2}$ such that $j \notin \beta\left(T_{2}, i\right)$ for all $i \in T_{1}$, then the two-echelon inequality $\left(T_{1}, T_{2}, T_{3}, k, l\right)$ is dominated by the two-echelon inequality $\left(T_{1}, T_{2} \backslash\{j\}, T_{3} \backslash\{j\}, k, l\right)$.
(7) Suppose that $2 \leqslant k \leqslant l=n$ and $T_{3} \neq \varnothing$. If there exists $j \in T_{3} \cap[2, k]$ such that $[j+1, k] \subseteq T_{2}$, or there exists $j \in T_{3} \cap$ $[k+1, n]$, then the two-echelon inequality $\left(T_{1}, T_{2}, T_{3}, k, n\right)$ is dominated by the two-echelon inequality $\left(T_{1}, T_{2}, T_{3} \backslash\{j\}, k, n\right)$ and inequality $x_{j}^{2} \leqslant d_{j n}^{2} y_{j}^{2}$.
(8) Suppose that $k \leqslant l<n$ and $\left[p^{1}, k\right] \subseteq T_{2}$. Note that in this case, the coefficients $\phi_{j}, j \in T_{1}$ of the two-echelon inequality $\left(T_{1}, T_{2}, T_{3}, k, l\right)$ are the same with the coefficients $\phi_{j}, j \in T_{1}$ of the two-echelon inequality $\left(T_{1}, T_{2} \cup[l+1, n], \varnothing, k, n\right)$. Then the two-echelon inequality $\left(T_{1}, T_{2}, T_{3}, k, l\right)$ is dominated by the twoechelon inequalities $\left(T_{1}, T_{2} \cup[l+1, n], \varnothing, k, n\right)$ and $(\varnothing,[1, l]$, $\left.T_{3}, 0, l\right)$, because the sum of inequalities $\left(T_{1}, T_{2} \cup[l+1, n], \varnothing\right.$, $k, n)$ and $\left(\varnothing,[1, l], T_{3}, 0, l\right)$ is equal to the sum of two-echelon inequality $\left(T_{1}, T_{2}, T_{3}, k, l\right)$ and flow balance equation (11).
(9) It is easy to see that for $k=l=n$, we cannot have $T_{1}=\varnothing$ in a facet-defining inequality. Suppose that $k=l=n$ and $T_{2}=\varnothing$. If $\left|T_{1}\right|>1$, then the two-echelon inequality $\left(T_{1}, \varnothing, \varnothing, n, n\right)$ is dominated by the two-echelon inequalities $(\{j\}, \varnothing, \varnothing, n, n)$, $j \in T_{1}$. Next, suppose that $k=l=n, T_{2} \neq \varnothing, w^{1} \leqslant w^{2}$ and there exists $j \in\left[p^{1}, w^{2}\right]$ such that $j \notin T_{2}$. Let $j^{\prime}=\min \left\{j \in\left[p^{1}, w^{2}\right]\right.$, $\left.j \notin T_{2}\right\}$.

- If $j^{\prime} \in T_{1}$, then the two-echelon inequality $\left(T_{1}, T_{2}, T_{3}, n, n\right)$ is dominated by the two-echelon inequalities $\left(T_{1} \cap\left[1, j^{\prime}-1\right], T_{2} \cap\right.$ $\left.\left[1, j^{\prime}-1\right], T_{3} \cap\left[1, j^{\prime}-1\right], n, n\right),\left(T_{1} \cap\left[j^{\prime}+1, n\right], T_{2} \cap\left[j^{\prime}+1, n\right]\right.$, $\left.T_{3} \cap\left[j^{\prime}+1, n\right], n, n\right)$, and $\left(\left\{j^{\prime}\right\}, \varnothing, \varnothing, n, n\right)$.
- If $j^{\prime} \notin T_{1}$, then the two-echelon inequality $\left(T_{1}, T_{2}, T_{3}\right.$, $n, n)$ is dominated by the two-echelon inequalities $\left(T_{1} \cap\left[1, j^{\prime}-1\right]\right.$, $\left.T_{2} \cap\left[1, j^{\prime}-1\right], T_{3} \cap\left[1, j^{\prime}-1\right], n, n\right)$ and $\left(T_{1} \cap\left[j^{\prime}+1, n\right], T_{2} \cap\right.$ $\left.\left[j^{\prime}+1, n\right], T_{3} \cap\left[j^{\prime}+1, n\right], n, n\right)$.
- If $j^{\prime}>w^{1}$, then the two-echelon inequality $\left(T_{1}, T_{2}, T_{3}, n, n\right)$ is dominated by the two-echelon inequality $\left(T_{1}, T_{2} \cap\left[1, j^{\prime}-1\right]\right.$, $\left.T_{3} \cap\left[1, j^{\prime}-1\right], n, n\right)$.

Lastly, suppose that $k=l=n, T_{2} \neq \varnothing$ and $w^{1}>w^{2}$. Let $j^{\prime \prime}:=$ $\min \left\{j \in T_{1}: j>w^{2}\right\}$. Then the two-echelon inequality $\left(T_{1}, T_{2}, T_{3}\right.$, n, n) is dominated by the two-echelon inequality ($T_{1} \cap\left[1, j^{\prime \prime}-\right.$ 1], $\left.T_{2}, T_{3}, n, n\right)$. Note that if $T_{3} \neq \varnothing$, then $w^{2}<n$ by facet condition (7).
(10) Suppose that $k \neq 0$ and $T_{1}=\varnothing$. It is easy to see that if $k=l=n$, then we cannot have $T_{1}=\varnothing$ in a facetdefining inequality. Therefore, we assume that $k<n$. Then the two-echelon inequality $\left(\varnothing, T_{2}, T_{3}, k, l\right)$ is dominated by two-echelon inequality $\left(\{k+1\}, T_{2}, T_{3}, k+1, \max \{l, k+1\}\right)$ and inequality $y_{k+1}^{1} \leqslant 1$. Suppose that $k=0$ and $T_{3}=\varnothing$. From facet condition (5), we must have $l<n$ in this case. Note that for $k=0, T_{2}$ is a consecutive set $[1, l]$ by its definition in Theorem 2. Then the two-echelon inequality $\left(\varnothing, T_{2}, \varnothing, 0, l\right)$ is dominated by two-echelon inequality $\left(\varnothing,[1, n],[1, n] \backslash T_{2}, 0, n\right)$ and inequalities $y_{j}^{2} \leqslant 1$ for $j \in[1, n] \backslash T_{2}$.

Sufficiency. To prove sufficiency, we exhibit $4 n-4$ affinely independent points on the face defined by inequality (16). First, note that if $k=0$, the two-echelon inequalities are equivalent to (ℓ, S) inequalities for the second echelon, which have been proved to be facet-defining for the convex hull of solutions to ULS by Barany et al. (1984), when $1 \notin T_{3}$ (facet condition (3)). The dimension of the convex hull of ULS with positive demand is $2 n-2$. Then there exist $2 n-2$ affinely independent points $\left(\mathbf{x}^{2}, \mathbf{y}^{2}\right)=a_{j} \in \mathbb{R}_{+}^{2 n}, j=1, \ldots, 2 n-2$ on the face defined by the (ℓ, S) inequality. We can expand these $2 n-2$ points to $4 n-$ 4 affinely independent points $\left(\mathbf{x}^{\mathbf{1}}, \mathbf{y}^{1}, \mathbf{x}^{2}, \mathbf{y}^{2}\right) \in \mathbb{R}_{+}^{4 n}$ for 2-ULS, by letting $\hat{a}_{2 j-1}=\left(d_{1 n}^{1}+d_{1 n}^{2}\right) \eta_{1}^{1}+e_{j}^{1}+\tilde{a}_{j}$ and $\hat{a}_{2 j}=\left(d_{1 n}^{1}+\right.$ $\left.d_{1 n}^{2}-d_{j}^{1}\right) \eta_{1}^{1}+d_{j}^{1} \eta_{j}^{1}+e_{j}^{1}+\tilde{a}_{j}$, where $\tilde{a}_{j}=\left(0, \ldots, 0, a_{j}\right) \in \mathbb{R}_{+}^{4 n}$.

It is easy to see that for $j \in[2, n]$, the points $\left\{\hat{a}_{i}\right\}_{i=1}^{4 n-4}$ are in $\operatorname{conv}(\mathscr{S})$ and affinely independent. Thus, the inequalities (16) are facet-defining for 2-ULS when $k=0$.

From facet condition (4), we have $k \neq 1$ for the two-echelon inequality to be facet-defining. So we assume $k \geqslant 2$ in the rest of the proof. Note, from facet condition (10), that $T_{1} \neq \varnothing$ in this case. By facet condition (6), we define $g(j):=\max \left\{i \in T_{1}: j \in \beta\left(T_{2}, i\right)\right\}$ for $j \in T_{2} \cap[2, k]$. In addition, let $r(j)=\max \left\{i \in \beta\left(T_{2}, j\right)\right\}$ if $\beta\left(T_{2}, j\right) \neq \varnothing$, and $r(j)=j-1$, otherwise.

Consider the point
$u_{0}=\left(d_{1 k}^{1}+d_{1 l}^{2}\right) \eta_{1}^{1}+e_{1}^{1}+\left(d_{k+1, n}^{1}+d_{l+1, n}^{2}\right) \eta_{k+1}^{1}$
$+e_{k+1}^{1}+d_{1 l}^{2} \eta_{1}^{2}+e_{1}^{2}+d_{l+1, n}^{2} \eta_{l+1}^{2}+e_{l+1}^{2}$,
on the face defined by the two-echelon inequality (16). Based on u_{0}, we can generate $4 n-4$ points as follows.

For $j \in[k+2, n]$, consider the points
$u_{j}^{1}= \begin{cases}u_{0}+\left(d_{j n}^{1}+d_{l+1, n}^{2}\right) \eta_{j}^{1}-\left(d_{j n}^{1}+d_{l+1, n}^{2}\right) \eta_{k+1}^{1}+e_{j}^{1} \\ & \text { if } j \in[k+2, \min \{l+1, n\}], \\ u_{0}+d_{j n}^{1} \eta_{j}^{1}-d_{j n}^{1} \eta_{k+1}^{1}+e_{j}^{1} & \text { if } j \in[l+2, n],\end{cases}$
and $\bar{u}_{j}^{1}=u_{0}+e_{j}^{1}$.
For $j \in[l+2, n]$, consider the points $u_{j}^{2}=u_{0}+d_{j n}^{2} \eta_{j}^{2}-$ $d_{j n}^{2} \eta_{l+1}^{2}+e_{j}^{2}$ and $\bar{u}_{j}^{2}=u_{0}+e_{j}^{2}$.
For $j \in[2, k] \backslash T_{1}$, consider the points $u_{j}^{1}=u_{0}+d_{j k}^{1} \eta_{j}^{1}-d_{j k}^{1} \eta_{1}^{1}+$ e_{j}^{1} and $\bar{u}_{j}^{1}=u_{0}+e_{j}^{1}$.

For $j \in T_{1}$, note that either $r(j)<k$ or $r(j)=l$. Also note that $j \neq 1$ from facet condition (1). Consider the points
$u_{j}^{1}=\left\{\begin{array}{cl}u_{0}+\phi_{j} \eta_{j}^{1}-\phi_{j} \eta_{1}^{1}-d_{r(j)+1, l}^{2} \eta_{1}^{2}+d_{r(j)+1, l}^{2} \eta_{r(j)+1}^{2} \\ +e_{j}^{1}+e_{r(j)+1}^{2} & \text { if } r(j)<k, \\ u_{0}+\phi_{j} \eta_{j}^{1}-\phi_{j} \eta_{1}^{1}+e_{j}^{1} & \text { if } r(j)=l,\end{array}\right.$
and
$\bar{u}_{j}^{1}=\left\{\begin{array}{c}u_{j}^{1}+\epsilon \eta_{j}^{1}-\epsilon \eta_{k+1}^{1} \quad \text { if } k<l=n \text { or } k \leqslant l<n, \\ u_{j}^{1}+d_{w^{2}}^{2} \eta_{j}^{1}-d_{w^{2}}^{2} \eta_{1}^{1}-d_{w^{2}}^{2} \eta_{1}^{2}+d_{w^{2}}^{2} \eta_{w^{2}}^{2}+e_{w^{2}}^{2} \\ \text { if } k=l=n, T_{2} \neq \varnothing, w^{2} \in T_{3}, \\ u_{j}^{1}+\epsilon \eta_{j}^{1}-\epsilon \eta_{1}^{1}-\epsilon \eta_{1}^{2}+\epsilon \eta_{w^{2}}^{2}+e_{w^{2}}^{2} \\ \quad \text { if } k=l=n, T_{2} \neq \varnothing, w^{2} \in T_{2} \backslash T_{3},\end{array}\right.$
where $0<\epsilon<d_{k+1}^{1}$ if $k \leqslant l<n ; 0<\epsilon<d_{w^{2}}^{2}$ if $k=l=n$ and $T_{2} \neq \varnothing$. Note that for $k=l=n$, if $T_{3} \neq \varnothing$, then $j \leqslant w^{2}<k=n$ from facet condition (9).

For $j \in[2, l] \backslash T_{2}$, consider the points $u_{j}^{1}=u_{0}+d_{j l}^{2} \eta_{j}^{2}-d_{j l}^{2} \eta_{1}^{2}+$ e_{j}^{2} and $\bar{u}_{j}^{1}=u_{0}+e_{j}^{2}$.

For $j \in T_{3}$, by facet conditions (7) and (8), for $j \in T_{3} \cap[2, k]$, either $r(j)<k$ or $r(j)=l$. Consider the following points:

$$
u_{j}^{2}=\left\{\begin{array}{c}
u_{0}+\left(\phi_{g(j)}+d_{j, r(j)}^{2}\right) \eta_{g(j)}^{1}-\left(\phi_{g(j)}+d_{j, r(j)}^{2}\right) \eta_{1}^{1}-d_{j l}^{2} \eta_{1}^{2} \\
+d_{j, r(j)}^{2} \eta_{j}^{2}+d_{r(j)+1, l}^{2} \eta_{r(j)+1}^{2}+e_{g(j)}^{1}+e_{j}^{2}+e_{r(j)+1}^{2} \\
\text { if } j \in T_{3} \cap[2, k], r(j)<k, \\
u_{0}+\left(\phi_{g(j)}+d_{j l}^{2}\right) \eta_{g(j)}^{1}-\left(\phi_{g(j)}+d_{j l}^{2}\right) \eta_{1}^{1} \\
-d_{j l}^{2} \eta_{1}^{2}+d_{j l}^{2} \eta_{j}^{2}+e_{g(j)}^{1}+e_{j}^{2} \\
\text { if } j \in T_{3} \cap[2, k], r(j)=l, \\
u_{0}-d_{j l}^{2} \eta_{1}^{1}-d_{j l}^{2} \eta_{1}^{2}+d_{j l}^{2} \eta_{k+1}^{1}+d_{j l}^{2} \eta_{j}^{2}+e_{j}^{2} \\
\text { if } j \in T_{3} \cap[k+1, l] .
\end{array}\right.
$$

$$
\bar{u}_{j}^{2}= \begin{cases}u_{j}^{2}+\epsilon \eta_{j}^{2}-\epsilon \eta_{r(j)+1}^{2} & \text { if } j \in T_{3} \cap[2, k], r(j)<k, \\ u_{j}^{2}+\epsilon \eta_{g(j)}^{1}+\epsilon \eta_{j}^{2}-\epsilon \eta_{l+1}^{2}-\epsilon \eta_{k+1}^{1} \\ u_{j}^{2}+\epsilon \eta_{j}^{2}-\epsilon \eta_{l+1}^{2} & \text { if } j \in T_{3} \cap[2, k], r(j)=l, \\ \text { if } j \in T_{3} \cap[k+1, l],\end{cases}
$$

where $0<\epsilon<d_{r(j)+1}^{2}$ if $j \in T_{3} \cap[2, k], r(j)<k ; 0<\epsilon<d_{l+1}^{2}$ if $j \in T_{3} \cap[2, k], r(j)=l$, or $j \in T_{3} \cap[k+1, l]$. Note that $j \neq 1$ from facet condition (2).

For $j \in T_{2} \backslash T_{3}$, consider the points

$$
u_{j}^{2}=\left\{\begin{array}{c}
u_{0}+\left(\phi_{g(j)}+d_{j, r(j)}^{2}\right) \eta_{g(j)}^{1}-\left(\phi_{g(j)}+d_{j, r(j)}^{2}\right) \eta_{1}^{1}-d_{j l}^{2} \eta_{1}^{2} \\
+d_{j, r(j)}^{2} \eta_{j}^{2}+d_{r(j)+1, l}^{2} \eta_{r(j)+1}^{2}+e_{g(j)}^{1}+e_{j}^{2}+e_{r(j)+1}^{2} \\
\text { if } j \in\left(T_{2} \backslash T_{3}\right) \cap[2, k], r(j)<k, \\
u_{0}+\left(\phi_{g(j)}+d_{j l}^{2}\right) \eta_{g(j)}^{1}-\left(\phi_{g(j)}+d_{j l}^{2}\right) \eta_{1}^{1} \\
-d_{j l}^{2} \eta_{1}^{2}+d_{j l}^{2} \eta_{j}^{2}+e_{g(j)}^{1}+e_{j}^{2} \\
\text { if } j \in\left(T_{2} \backslash T_{3}\right) \cap[2, k], r(j)=l, \\
u_{0}-d_{j l}^{2} \eta_{1}^{1}-d_{j l}^{2} \eta_{1}^{2}+d_{j l}^{2} \eta_{k+1}^{1}+d_{j l}^{2} \eta_{j}^{2}+e_{j}^{2} \\
\text { if } j \in\left(T_{2} \backslash T_{3}\right) \cap[k+1, l],
\end{array}\right.
$$

and $\bar{u}_{j}^{2}=u_{0}+e_{j}^{2}$. Note that $j \neq 1$ from facet condition (2) and if $j \in\left(T_{2} \backslash T_{3}\right) \cap[k+1, l]$, then $r(j)=l$.
(1) If $l \neq n$, three more points, u_{k+1}^{1}, u_{l+1}^{1} and \bar{u}_{l+1}^{1}, are to be considered. Let $\bar{q}:=\max \left\{j \in\left[p^{1}, k\right]: j \notin T_{2}\right\}$ and $q:=\max \left\{j \in T_{1}\right.$: $j \leqslant \bar{q}\}$. By facet condition (8), \bar{q} exists.
(a) If $k=l<n$.

$$
\begin{aligned}
u_{k+1}^{1}= & u_{0}+\left(\phi_{q}+d_{k+1}^{1}+d_{k+1}^{2}\right) \eta_{q}^{1}-\phi_{q} \eta_{1}^{1}-d_{r(q)+1, k}^{2} \eta_{1}^{2} \\
& +d_{r(q)+1, k}^{2} \eta_{r(q)+1}^{2}-\left(d_{k+1, n}^{1}+d_{k+1, n}^{2}\right) \eta_{k+1}^{1} \\
& -d_{k+2, n}^{2} \eta_{k+1}^{2}+\left(d_{k+2, n}^{1}+d_{k+2, n}^{2}\right) \eta_{k+2}^{1}+d_{k+2, n}^{2} \eta_{k+2}^{2} \\
& +e_{q}^{1}+e_{r(q)+1}^{2}-e_{k+1}^{1}+e_{k+2}^{1}+e_{k+2}^{2}, \\
u_{l+1}^{2}= & u_{0}+\left(\phi_{q}+d_{l+1}^{2}\right) \eta_{q}^{1}-\phi_{q} \eta_{1}^{1}-d_{r(q)+1, l}^{2} \eta_{1}^{2} \\
& +d_{r(q)+1, l+1}^{2} \eta_{r(q)+1}^{2}-d_{l+1}^{2} \eta_{k+1}^{1}-d_{l+1, n}^{2} \eta_{l+1}^{2} \\
& +d_{l+2, n}^{2} \eta_{l+2}^{2}+e_{q}^{1}+e_{r(q)+1}^{2}-e_{l+1}^{2}+e_{l+2}^{2}, \\
\bar{u}_{l+1}^{2}= & u_{l+1}^{2}+e_{l+1}^{2} .
\end{aligned}
$$

(b) If $k<l<n$.

$$
\begin{aligned}
u_{k+1}^{1}= & u_{0}+\left(\phi_{q}+d_{k+1}^{1}\right) \eta_{q}^{1}-\phi_{q} \eta_{1}^{1}-d_{r(q)+1, l}^{2} \eta_{1}^{2} \\
& +d_{r(q)+1, l}^{2} \eta_{r(q)+1}^{2}-\left(d_{k+1, n}^{1}+d_{l+1, n}^{2}\right) \eta_{k+1}^{1} \\
& +\left(d_{k+2, n}^{1}+d_{l+1, n}^{2}\right) \eta_{k+2}^{1}+e_{q}^{1}+e_{r(q)+1}^{2}-e_{k+1}^{1}+e_{k+2}^{1} \\
u_{l+1}^{2}= & u_{0}+\left(\phi_{q}+d_{l+1}^{2}\right) \eta_{q}^{1}-\phi_{q} \eta_{l}^{1}-d_{r(q)+1, l}^{2} \eta_{1}^{2} \\
& +d_{r(q)+1, l+1}^{2} \eta_{r(q)+1}^{2}-d_{l+1}^{2} \eta_{k+1}^{1}-d_{l+1, n}^{2} \eta_{l+1}^{2} \\
& +d_{l+2, n}^{2} \eta_{l+2}^{2}+e_{q}^{1}+e_{r(q)+1}^{2}-e_{l+1}^{2}+e_{l+2}^{2} \\
\bar{u}_{l+1}^{2}= & u_{k+1}^{1}+e_{l+1}^{1} .
\end{aligned}
$$

(2) If $k<l=n$, one more point u_{k+1}^{1} is to be considered.

$$
\begin{aligned}
u_{k+1}^{1}= & u_{0}+\left(\phi_{w^{1}}+d_{k+1}^{1}\right) \eta_{w^{1}}^{1}-\phi_{w^{1}} \eta_{1}^{1}-d_{r\left(w^{1}\right)+1, n}^{2} \eta_{1}^{2} \\
& +d_{r\left(w^{1}\right)+1, n}^{2} \eta_{r\left(w^{1}\right)+1}^{2}-d_{k+1, n}^{1} \eta_{k+1}^{1}+d_{k+2, n}^{1} \eta_{k+2}^{1} \\
& +e_{w^{1}}^{1}+e_{r\left(w^{1}\right)+1}^{1}-e_{k+1}^{1}+e_{k+2}^{1} .
\end{aligned}
$$

RIGHTSLINK

Next, for the case of $k=l=n$ with $\left|T_{1}\right|=1\left(T_{1}=\left\{p^{1}\right\}\right)$, we show that the $4 n-4$ points $\left\{u_{0},\left\{u_{j}^{1}, \bar{u}_{j}^{1}, u_{j}^{2}, \bar{u}_{j}^{2}\right\}_{j \in[2, n]} \backslash\left\{\bar{u}_{p^{1}}^{1}\right\}\right\}$ are affinely independent. For all other cases, we show that the $4 n-4$ points $\left\{u_{0},\left\{u_{j}^{1}, \bar{u}_{j}^{1}, u_{j}^{2}, \bar{u}_{j}^{2}\right\}_{j \in[2, n]} \backslash\left\{\bar{u}_{k+1}^{1}\right\}\right\}$ are affinely independent.

We assume that the $4 n-4$ points associated with a particular choice of $\left(T_{1}, T_{2}, T_{3}, k, l\right)$ lie on the hyperplane $\sum_{j=1}^{n}\left(\lambda_{j}^{1} x_{j}^{1}+\right.$ $\left.\lambda_{j}^{2} x_{j}^{2}+\theta_{j}^{1} y_{j}^{1}+\theta_{j}^{2} y_{j}^{2}\right)=\pi_{0}$.
(1) For the case of $k=l=n$ with $T_{2}=\varnothing$, by facet condition (9), we have $\left|T_{1}\right|=1$. Comparing u_{0} with \bar{u}_{j}^{1} for $j \in[2, n] \backslash T_{1}$ and \bar{u}_{i}^{2} for $i \in[2, n]$, we get $\theta_{j}^{1}=\theta_{i}^{2}=0$ for $j \in[2, n] \backslash T_{1}$ and $i \in[2, n]$. Comparing u_{j}^{1} and \bar{u}_{j}^{1} for $j \in[2, n] \backslash T_{1}$, we get $\lambda_{1}^{1}=\lambda_{j}^{1}$ for $j \in[2, n] \backslash T_{1}$. Similarly, $\lambda_{1}^{2}=\lambda_{j}^{2}$ for $j \in[2, n]$. Comparing u_{0} and $u_{j}^{1}, j \in T_{1}$, we get $\theta_{j}^{1}=\phi_{j}\left(\lambda_{1}^{1}-\lambda_{j}^{1}\right)$.
(2) Now consider the cases $k=l=n$ with $T_{2} \neq \varnothing$, or $k<$ $l=n$, or $k \leqslant l<n$. Comparing u_{0} with \bar{u}_{j}^{1} for $j \in\left([2, k] \backslash T_{1}\right) \cup$ $[k+2, n]$ and \bar{u}_{i}^{2} for $i \in\left([2, l] \backslash T_{3}\right) \cup[l+2, n]$, we get $\theta_{j}^{1}=\theta_{i}^{2}=$ 0 for $j \in\left([2, k] \backslash T_{1}\right) \cup[k+2, n]$ and $i \in\left([2, l] \backslash T_{3}\right) \cup[l+2, n]$. Comparing u_{0} with \bar{u}_{j}^{2} for $j \in[k+2, n]$, we get $\lambda_{k+1}^{1}=\lambda_{j}^{1}$ for $j \in[k+2, n]$. Similarly, we have $\lambda_{l+1}^{2}=\lambda_{j}^{2}$ for $j \in[l+2, n]$; $\lambda_{1}^{1}=\lambda_{j}^{1}$ for $j \in[2, k] \backslash T_{1} ; \lambda_{1}^{2}=\lambda_{j}^{2}$ for $j \in[2, l] \backslash T_{2}$. If $k<n$, comparing u_{j}^{1} and \bar{u}_{j}^{1} for $j \in T_{1}$, we get $\lambda_{j}^{1}=\lambda_{k+1}^{1}$ for $j \in T_{1}$ with $k<n$. Comparing u_{k+1}^{1} and u_{q}^{1}, we get $\theta_{k+1}^{1}=0$. Comparing u_{l+1}^{2} and \bar{u}_{l+1}^{2}, we get $\theta_{l+1}^{2}=0$. Hence, we have $\theta_{j}^{1}=\theta_{i}^{2}=0$ for $j \in$ $[2, n] \backslash T_{1}, i \in[2, n] \backslash T_{3}$. For $j \in T_{1}$, comparing u_{0} and u_{j}^{1}, we get $\theta_{j}^{1}=\phi_{j}\left(\lambda_{1}^{1}-\lambda_{j}^{1}\right)$ for $j \in T_{1}$. Then, comparing \bar{u}_{j}^{1} for all $j \in T_{1}$, we get $\lambda_{j}^{1}=\lambda_{p^{1}}^{1}$ for $j \in T_{1} \cup[k+1, n]$. Comparing u_{j}^{2} and \bar{u}_{j}^{2} for $j \in\left(T_{2} \backslash T_{3}\right) \cap[k+1, l], u_{j}^{2}$ and $\bar{u}_{g(j)}^{1}$ for $j \in\left(T_{2} \backslash T_{3}\right) \cap[2, k]$, we get $\lambda_{j}^{2}=\lambda_{1}^{1}+\lambda_{1}^{2}-\lambda_{p^{1}}^{1}$ for $j \in T_{2} \backslash T_{3}$. Comparing u_{j}^{2} and \bar{u}_{j}^{2} for $j \in T_{3}$, u_{l+1}^{2} and u_{q}^{1}, we get $\lambda_{j}^{2}=\lambda_{1}^{2}$ for $j \in\left([2, n] \backslash T_{2}\right) \cup T_{3}$. Finally, comparing u_{j}^{2} and $u_{g(j)}^{1}$ for $j \in T_{3}$, we get $\theta_{j}^{2}=\psi_{j}\left(\lambda_{1}^{1}-\lambda_{p^{1}}^{1}\right)$. Finally, from u_{0}, we get $\pi_{0}=\left(d_{1 k}^{1}+d_{1 l}^{2}\right) \lambda_{1}^{1}+d_{1 l}^{2} \lambda_{1}^{2}+d_{k+1, n}^{1} \lambda_{k+1}^{1}+$ $d_{l+1, n}^{2} \lambda_{l+1}^{2}+\theta_{1}^{1}+\theta_{1}^{2}$.

Therefore, the hyperplane is of the form

$$
\begin{aligned}
& \lambda_{1}^{1} \sum_{j \in[1, k] \backslash T_{1}} x_{j}^{1}+\lambda_{p^{1}}^{1} \sum_{j \in T_{1} \cup[k+1, n]} x_{j}^{1}+\lambda_{1}^{2} \sum_{j \in\left(\left[1, n \backslash \backslash T_{2}\right) \cup T_{3}\right.} x_{j}^{2} \\
& \quad+\left(\lambda_{1}^{1}+\lambda_{1}^{2}-\lambda_{p^{1}}^{1}\right) \sum_{j \in T_{2} \backslash T_{3}} x_{j}^{2}+\theta_{1}^{1} y_{1}^{1}+\theta_{1}^{2} y_{1}^{2} \\
& \quad+\left(\lambda_{1}^{1}-\lambda_{p^{1}}^{1}\right)\left(\sum_{j \in T_{1}} \phi_{j} y_{j}^{1}+\psi_{j} \sum_{j \in T_{3}} y_{j}^{2}\right) \\
& =\left(d_{1 k}^{1}+d_{1 l}^{2}\right) \lambda_{1}^{1}+d_{1 l}^{2} \lambda_{1}^{2}+d_{k+1, n}^{1} \lambda_{k+1}^{1} \\
& \quad+d_{l+1, n}^{2} \lambda_{l+1}^{2}+\theta_{1}^{1}+\theta_{1}^{2} .
\end{aligned}
$$

Hence these points define the two-echelon inequality (16) up to a multiple θ_{1}^{1} of $y_{1}^{1}=1$; a multiple θ_{2}^{1} of $y_{1}^{2}=1$; a multiple $\lambda_{p^{1}}^{1}$ of $\sum_{i=1}^{n} x_{i}^{1}=d_{1 n}^{1}$; and a multiple λ_{1}^{2} of $\sum_{i=1}^{n} x_{i}^{2}=d_{1 n}^{2}$. In addition, if $k=0$, then by facet condition (10), $T_{3} \neq \varnothing$, and by facet condition (3), $1 \notin T_{3}$, thus the point $\left(d_{1 n}^{1}+d_{1 n}^{2}\right) \eta_{1}^{1}+d_{1 n}^{2} \eta_{1}^{2}+e_{1}^{1}+e_{1}^{2}+$ $\sum_{j \in T_{3}} e_{j}^{2}$ is not on the face defined by the two-echelon inequality. If $k=l=n$, by facet conditions (1) and (10), $1 \notin T_{1} \neq \varnothing$, then the point $\left(d_{1 n}^{1}+d_{1 n}^{2}\right) \eta_{1}^{1}+d_{1 n}^{2} \eta_{1}^{2}+e_{1}^{1}+e_{1}^{2}+\sum_{j \in T_{1}} e_{j}^{1}$ is not on the face defined by the two-echelon inequality. For other cases, we have $1 \leqslant k<n$ or $1 \leqslant l<n$, and the point $\left(d_{1 n}^{1}+d_{1 n}^{2}\right) \eta_{1}^{1}+d_{1 n}^{2} \eta_{1}^{2}+$ $e_{1}^{1}+e_{1}^{2}$ is not on the face defined by the two-echelon inequality. Hence, the face is proper.

Appendix C. Proof of Proposition 5

We prove a series of lemmas to prove Proposition 5. Lemmas (12) and (13) characterize the nonnegative extreme rays of the projection cone defined by constraints (33)-(35), where each component is either 0 or 1. Lemmas (14)-(18) give conditions under which such an inequality is a nondominated inequality (32).
Lemma 12. Let ($\sigma^{1}, \sigma^{2}, \gamma^{11}, \gamma^{12}, \gamma^{22}, \alpha^{1}, \alpha^{2}, \rho$) be a nonnegative extreme ray of the projection cone. Then $\gamma_{u t}^{11}=\left(\alpha_{t}^{1}-\sigma_{u}^{1}\right)^{+}$, $\gamma_{u t}^{12}=\left(\sum_{j=u}^{t} \rho_{j t}-\sigma_{u}^{1}\right)^{+}$and $\gamma_{u t}^{22}=\left(\alpha_{t}^{2}-\sum_{j=u}^{t} \rho_{j t}-\sigma_{u}^{2}\right)^{+}$for $1 \leqslant u \leqslant t \leqslant n$.

Let ($\sigma^{1}, \sigma^{2}, \gamma^{11}, \gamma^{12}, \gamma^{22}, \alpha^{1}, \alpha^{2}, \rho$) be a nonnegative extreme ray of the projection cone such that the entries are equal to 0 or 1 . Let $A_{1}=\left\{t \in[1, n]: \alpha_{t}^{1}=1\right\}, S_{1}=\left\{u \in[1, n]: \sigma_{u}^{1}=1\right\}, A_{2}=$ $\left\{t \in[1, n]: \alpha_{t}^{2}=1\right\}, S_{2}=\left\{u \in[1, n]: \sigma_{u}^{2}=1\right\}, G_{11}=\{(u, t): 1 \leqslant$ $\left.u \leqslant t \leqslant n, \gamma_{u t}^{11}=1\right\}, G_{12}=\left\{(u, t): 1 \leqslant u \leqslant t \leqslant n, \gamma_{u t}^{12}=1\right\}, G_{22}=$ $\left\{(u, t): 1 \leqslant u \leqslant t \leqslant n, \gamma_{u t}^{22}=1\right\}$, and for $t \in[1, n], R=\{(j, t): 1 \leqslant$ $\left.j \leqslant t \leqslant n, \rho_{j t}=1\right\}$. Lemma 12 implies that $(u, t) \in G_{11}$ if and only if $1 \leqslant u \leqslant t \leqslant n, t \in A_{1}$ and $u \notin S_{1}$.

Lemma 13. Let ($\sigma^{1}, \sigma^{2}, \gamma^{11}, \gamma^{12}, \gamma^{22}, \alpha^{1}, \alpha^{2}, \rho$) be a nonnegative extreme ray of the projection cone such that the entries are equal to 0 or 1 . Then for each $t \in[1, n]$, we must have $\mid R \cap\{(j, t)$: $1 \leqslant j \leqslant t\} \mid \leqslant 1$. Let $j(t) \in[0, t]$ for $t \in[1, n]$, then $R=\{(j(t), t)$: $j(t) \neq 0, t \in[1, n]\}$.
Proof. Let $\omega=\left(\sigma^{1}, \sigma^{2}, \gamma^{11}, \gamma^{12}, \gamma^{22}, \alpha^{1}, \alpha^{2}, \rho\right)$ be a nonnegative extreme ray of the projection cone such that the entries are equal to 0 or 1 . Let $\epsilon>0$ be a very small number and consider the following rays $\hat{\omega}=\left(\hat{\sigma}^{1}, \hat{\sigma}^{2}, \hat{\gamma}^{11}, \hat{\gamma}^{12}, \hat{\gamma}^{22}, \hat{\alpha}^{1}, \hat{\alpha}^{2}, \hat{\rho}\right)$ and $\tilde{\omega}=\left(\tilde{\sigma}^{1}, \tilde{\sigma}^{2}, \tilde{\gamma}^{11}, \tilde{\gamma}^{12}, \tilde{\gamma}^{22}, \tilde{\alpha}^{1}, \tilde{\alpha}^{2}, \tilde{\rho}\right)$ where $\hat{\alpha}_{t}^{1}=\alpha_{t}^{1}+\epsilon, \tilde{\alpha}_{t}^{1}=$ $\alpha_{t}^{1}-\epsilon$ for $t \in A^{1}, \hat{\alpha}_{t}^{1}=\alpha_{t}^{1}=\tilde{\alpha}_{t}^{1}=0$ for $t \in[1, n] \backslash A^{1}, \hat{\alpha}_{t}^{2}=\alpha_{t}^{2}+\epsilon$, $\tilde{\alpha}_{t}^{2}=\alpha_{t}^{2}-\epsilon$ for $t \in A^{2}, \hat{\alpha}_{t}^{2}=\alpha_{t}^{2}=\tilde{\alpha}_{t}^{2}=0$ for $t \in[1, n] \backslash A^{2}, \hat{\sigma}_{t}^{1}=$ $\sigma_{t}^{1}+\epsilon, \tilde{\sigma}_{t}^{1}=\sigma_{t}^{1}-\epsilon$ for $t \in S^{1}, \hat{\sigma}_{t}^{1}=\sigma_{t}^{1}=\tilde{\sigma}_{t}^{1}=0$ for $t \in[1, n] \backslash S^{1}$, $\hat{\sigma}_{t}^{2}=\sigma_{t}^{2}+\epsilon, \tilde{\sigma}_{t}^{2}=\sigma_{t}^{2}-\epsilon$ for $t \in S^{2}$ and $\hat{\sigma}_{t}^{2}=\sigma_{t}^{2}=\tilde{\sigma}_{t}^{2}=0$ for $t \in[1, n] \backslash S^{2}$. For $t \in[1, n]$, define $j(t)$ to be the largest index j with $\rho_{j t}=1$ (if none exists, then let $j(t)=0$). Let $\hat{\rho}_{j t}=\tilde{\rho}_{j t}=\rho_{j t}$ for all j and t such that $j \neq j(t)$ and $\hat{\rho}_{j(t), t}=\rho_{j(t), t}+\epsilon$ and $\tilde{\rho}_{j(t), t}=\rho_{j(t), t}-\epsilon$ for $t \in[1, n]$. For $1 \leqslant u \leqslant t \leqslant n, \hat{\gamma}_{u t}^{11}=\gamma_{u t}^{11}+\epsilon$, $\tilde{\gamma}_{u t}^{11}=\gamma_{u t}^{11}-\epsilon$ if $(u, t) \in G_{11}, \hat{\gamma}_{u t}^{11}=\gamma_{u t}^{11}=\tilde{\gamma}_{u t}^{11}=0$ otherwise, $\hat{\gamma}_{u t}^{12}=$ $\gamma_{u t}^{12}+\epsilon, \tilde{\gamma}_{u t}^{12}=\gamma_{u t}^{12}-\epsilon$ if $(u, t) \in G_{12}, \hat{\gamma}_{u t}^{12}=\gamma_{u t}^{12}=\tilde{\gamma}_{u t}^{12}=0$ otherwise, $\hat{\gamma}_{u t}^{22}=\gamma_{u t}^{22}+\epsilon, \tilde{\gamma}_{u t}^{22}=\gamma_{u t}^{22}-\epsilon$ if $(u, t) \in G_{22}$, and $\hat{\gamma}_{u t}^{22}=\gamma_{u t}^{22}=$ $\tilde{\gamma}_{u t}^{22}=0$ otherwise. Now, these two rays $\hat{\omega}$ and $\tilde{\omega}(\hat{\omega} \neq \tilde{\omega} \neq \omega)$ are in the projection cone and we have $\omega=\hat{\omega} / 2+\tilde{\omega} / 2$. As ω is an extreme ray, both rays $\hat{\omega}$ and $\tilde{\omega}$ should be multiples of it. Therefore, we cannot have $\hat{\rho}_{j t}=\tilde{\rho}_{j t}=1$ for any $j<j(t)$. Hence $|R \cap\{(j, t): 1 \leqslant j \leqslant t\}| \leqslant 1$ for all $t \in[1, n]$.

As a result, we can conclude that $(u, t) \in G_{12}$ if and only if $1 \leqslant u \leqslant t \leqslant n, u \leqslant j(t)$ and $u \notin S_{1}$ and $(u, t) \in G_{22}$ if and only if $1 \leqslant u \leqslant t \leqslant n, t \in A_{2}, u \notin S_{2}$ and $u>j(t)$.

The projection inequalities corresponding to the nonnegative extreme rays with equal positive entries are of the form

$$
\begin{align*}
& \sum_{u \in S_{1}} x_{u}^{1}+\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \notin S_{1}}\left(\sum_{t:(u, t) \in G_{11}} d_{t}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}\right) y_{u}^{1} \\
& \quad+\sum_{u \notin S_{2}} \sum_{t:(u, t) \in G_{22}} d_{t}^{2} y_{u}^{2} \geqslant \sum_{t \in A_{1}} d_{t}^{1}+\sum_{t \in A_{2}} d_{t}^{2} \tag{C1}
\end{align*}
$$

It is easy to see that it is of no use to make $j(t)>0$ for $t \notin A_{2}$. So we are interested in the case with $j(t)=0$ for $t \notin A_{2}$.

Let $t^{i}=\max _{t \in A_{i}}$ if $A_{i} \neq \varnothing$, and $t^{i}=0$ otherwise, for $i=1,2$.

Lemma 14. If $A_{1} \neq \varnothing$ and there exists $\hat{t}<t^{1}$ with $\hat{t} \notin A_{1}$, then inequality (C1) is dominated by other inequalities (C1).

Proof. Suppose that $A_{1} \neq \varnothing$ and there exists $\hat{t}<t^{1}$ with $\hat{t} \notin A_{1}$. Then we would like to show that the projection inequality defined by sets $\left(A_{1}, A_{2}, S_{1}, S_{2}, R, G_{11}, G_{12}, G_{22}\right)$ is dominated. Consider the projection inequalities (C 1$)$ for sets $\left(A_{1}^{1}, A_{2}, S_{1}, S_{2}, R, G_{11}^{1}\right.$, $\left.G_{12}, G_{22}\right)$ and $\left(A_{1}^{2}, A_{2}, S_{1}, S_{2}, R, G_{11}^{2}, G_{12}, G_{22}\right)$ where $A_{1}^{1}=$ $A_{1} \cup\{\hat{t}\}, A_{1}^{2}=A_{1} \backslash\left\{t^{1}\right\}, G_{11}^{1}=G_{11} \cup\left\{(u, \hat{t}): u \notin S_{1}, u \leqslant \hat{t}\right\}$ and $G_{11}^{2}=G_{11} \backslash\left\{\left(u, t^{1}\right): u \notin S_{1}, u \leqslant t^{1}\right\}$. The first inequality is

$$
\begin{aligned}
& \sum_{u \in S_{1}} x_{u}^{1}+\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \notin S_{1}}\left(\sum_{t:(u, t) \in G_{11}} d_{t}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}\right) y_{u}^{1} \\
& \quad+\sum_{u \notin S_{2}} \sum_{t:(u, t) \in G_{22}} d_{t}^{2} y_{u}^{2} \\
& \quad \geqslant
\end{aligned}
$$

and the second inequality is

$$
\begin{aligned}
& \sum_{u \in S_{1}} x_{u}^{1}+\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \notin S_{1}}\left(\sum_{t:(u, t) \in G_{11}} d_{t}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}\right) y_{u}^{1} \\
& \quad+\sum_{u \notin S_{2}} \sum_{t:(u, t) \in G_{22}} d_{t}^{2} y_{u}^{2} \\
& \quad \geqslant \sum_{t \in A_{1}} d_{t}^{1}+\sum_{t \in A_{2}} d_{t}^{2}-d_{t^{1}}^{1}\left(1-\sum_{u \notin S_{1}, u \leqslant t^{1}} y_{u}^{1}\right) .
\end{aligned}
$$

Multiplying the first inequality with $d_{t^{1}}^{1}$, the second with $d_{\hat{t}}^{1}$, and dividing the sum by $d_{t^{1}}^{1}+d_{\hat{t}}^{1}$, we obtain

$$
\begin{aligned}
& \sum_{u \in S_{1}} x_{u}^{1}+\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \notin S_{1}}\left(\sum_{t:(u, t) \in G_{11}} d_{t}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}\right) y_{u}^{1} \\
& \quad+\sum_{u \notin S_{2}} \sum_{t:(u, t) \in G_{22}} d_{t}^{2} y_{u}^{2} \\
& \geqslant
\end{aligned}
$$

As $t^{1}>\hat{t}$, we have $\sum_{u \notin S_{1}, u \leqslant t^{1}} y_{u}^{1} \geqslant \sum_{u \notin S_{1}, u \leqslant t} y_{u}^{1}$. As a result, the above inequality dominates the projection inequality for $\left(A_{1}, A_{2}, S_{1}, S_{2}, R, G_{11}, G_{12}, G_{22}\right)$.

Lemma 15. If $A_{2} \neq \varnothing$ and there exists $\hat{t}<t^{2}$ with $\hat{t} \notin A_{2}$, then inequality (C 1) is dominated by other inequalities (C 1).

Proof. Consider the projection inequality defined by sets ($A_{1}, A_{2}, S_{1}, S_{2}, R, G_{11}, G_{12}, G_{22}$) and suppose that $A_{2} \neq \varnothing$ and there exists $\hat{t}<t^{2}$ with $\hat{t} \notin A_{2}$.

Let $A_{2}^{1}=A_{2} \cup\{\hat{t}\}, A_{2}^{2}=A_{2} \backslash\left\{t^{2}\right\}, R^{1}=R \cup\left\{\left(\min \left\{j\left(t^{2}\right), \hat{t}\right\}, \hat{t}\right)\right\}$, $R^{2}=R \backslash\left\{\left(j\left(t^{2}\right), t^{2}\right)\right\}, G_{12}^{1}=G_{12} \cup\left\{(u, \hat{t}): u \leqslant \hat{t},\left(u, t^{2}\right) \in G_{12}\right\}$, $G_{22}^{1}=G_{22} \cup\left\{(u, \hat{t}): u \leqslant \hat{t},\left(u, t^{2}\right) \in G_{22}\right\}, G_{12}^{2}=G_{12} \backslash\left\{\left(u, t^{2}\right):\right.$ $\left.u \leqslant t^{2}\right\}, \quad G_{22}^{2}=G_{22} \backslash\left\{\left(u, t^{2}\right): u \leqslant t^{2}\right\}$. First observe that sets $\left(A_{1}, A_{2}^{1}, S_{1}, S_{2}, R^{1}, G_{11}, G_{12}^{1}, G_{22}^{1}\right)$ and $\left(A_{1}, A_{2}^{2}, S_{1}, S_{2}, R^{2}\right.$,
$G_{11}, G_{12}^{2}, G_{22}^{2}$) give valid projection inequalities. The projection inequality for ($A_{1}, A_{2}^{1}, S_{1}, S_{2}, R^{1}, G_{11}, G_{12}^{1}, G_{22}^{1}$) is

$$
\begin{aligned}
& \sum_{u \in S_{1}} x_{u}^{1}+\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \notin S_{1}}\left(\sum_{t:(u, t) \in G_{11}} d_{t}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}\right) y_{u}^{1} \\
& +\sum_{u \notin S_{2}} \sum_{t:(u, t) \in G_{22}} d_{t}^{2} y_{u}^{2} \\
& \geqslant \sum_{t \in A_{1}} d_{t}^{1}+\sum_{t \in A_{2}} d_{t}^{2} \\
& +d_{\hat{t}}^{2}\left(1-\sum_{u:\left(u, t^{2}\right) \in G_{12}, u \leqslant \hat{t}} y_{u}^{1}-\sum_{u:\left(u, t^{2}\right) \in G_{22}, u \leqslant \hat{t}} y_{u}^{2}\right),
\end{aligned}
$$

and the projection inequality for $\left(A_{1}, A_{2}^{2}, S_{1}, S_{2}, R^{2}, G_{11}\right.$, $\left.G_{12}^{2}, G_{22}^{2}\right)$ is

$$
\begin{aligned}
\sum_{u \in S_{1}} x_{u}^{1} & +\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \notin S_{1}}\left(\sum_{t:(u, t) \in G_{11}} d_{t}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}\right) y_{u}^{1} \\
& +\sum_{u \notin S_{2}} \sum_{t:(u, t) \in G_{22}} d_{t}^{2} y_{u}^{2} \\
\geqslant & \sum_{t \in A_{1}} d_{t}^{1}+\sum_{t \in A_{2}} d_{t}^{2} \\
& \quad-d_{t^{2}}^{2}\left(1-\sum_{u:\left(u, t^{2}\right) \in G_{12}, u \leqslant t^{2}} y_{u}^{1}-\sum_{u:\left(u, t^{2}\right) \in G_{22}, u \leqslant t^{2}} y_{u}^{2}\right) .
\end{aligned}
$$

Again, multiplying the first inequality with $d_{t^{2}}^{2}$, the second with $d_{\hat{t}}^{2}$, and dividing the sum by $d_{t^{2}}^{2}+d_{\hat{t}}^{2}$, we obtain

$$
\begin{aligned}
& \sum_{u \in S_{1}} x_{u}^{1}+\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \notin S_{1}}\left(\sum_{t:(u, t) \in G_{11}} d_{t}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}\right) y_{u}^{1} \\
& \quad+\sum_{u \notin S_{2}} \sum_{t:(u, t) \in G_{22}} d_{t}^{2} y_{u}^{2} \\
& \geqslant \sum_{t \in A_{1}} d_{t}^{1}+\sum_{t \in A_{2}} d_{t}^{2} \\
& \quad+\frac{d_{\hat{t}}^{2} d_{t^{2}}^{2}}{d_{\hat{t}}^{2}+d_{t^{2}}^{2}}\left(\sum_{u:\left(u, t^{2}\right) \in G_{12}, u \leqslant t^{2}} y_{u}^{1}+\sum_{u:\left(u, t^{2}\right) \in G_{22}, u \leqslant t^{2}} y_{u}^{2}\right. \\
& \left.\quad-\sum_{u:\left(u, t^{2}\right) \in G_{12}, u \leqslant \hat{t}} y_{u}^{1}-\sum_{u:\left(u, t^{2}\right) \in G_{22}, u \leqslant t} y_{u}^{2}\right) .
\end{aligned}
$$

As

$$
\begin{aligned}
& \sum_{u:\left(u, t^{2}\right) \in G_{12}, u \leqslant t^{2}} y_{u}^{1}+\sum_{u:\left(u, t^{2}\right) \in G_{22}, u \leqslant t^{2}} y_{u}^{2}-\sum_{u:\left(u, t^{2}\right) \in G_{12}, u \leqslant \hat{t}} y_{u}^{1} \\
& \quad-\sum_{u:\left(u, t^{2}\right) \in G_{22}, u \leqslant \hat{t}} y_{u}^{2}
\end{aligned}
$$

is nonnegative, the above inequality dominates the projection inequality (C1) for ($A_{1}, A_{2}, S_{1}, S_{2}, R, G_{11}, G_{12}, G_{22}$).

These two lemmas imply that undominated projection inequalities have sets A_{1} and A_{2} of the form $A_{1}=\left[1, t^{1}\right]$ and $A_{2}=\left[1, t^{2}\right]$.

Lemma 16. If $t^{1}>t^{2}$, then inequality (C 1) is dominated by other inequalities (C1).

Proof. Consider the projection inequality defined by sets (A_{1}, A_{2}, $S_{1}, S_{2}, R, G_{11}, G_{12}, G_{22}$) with $t^{1}>t^{2}$.

The projection inequality for ($A_{1}^{1}, A_{2}, S_{1}, S_{2}, R, G_{11}^{1}, G_{12}, G_{22}$), where $A_{1}^{1}=A_{1} \backslash\left\{t^{1}\right\}, G_{11}^{1}=G_{11} \backslash\left\{\left(u, t^{1}\right): u \notin S_{1}, u \leqslant t^{1}\right\}$, is

$$
\begin{aligned}
& \sum_{u \in S_{1}} x_{u}^{1}+\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \notin S_{1}}\left(\sum_{t:(u, t) \in G_{11}} d_{t}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}\right) y_{u}^{1} \\
&+\sum_{u \notin \mathcal{S}_{2}: t(u, t) \in G_{22}} d_{t}^{2} y_{u}^{2} \\
& \geqslant \sum_{t \in A_{1}} d_{t}^{1}+\sum_{t \in A_{2}} d_{t}^{2}-d_{t^{1}}^{1}\left(1-\sum_{u \notin S_{1}, u \leqslant 1} y_{u}^{1}\right) .
\end{aligned}
$$

The projection inequality for $\left(A_{1}, A_{2}^{1}, S_{1}, S_{2}, R^{1}, G_{11}, G_{12}^{1}, G_{22}\right)$ where $A_{2}^{1}=A_{2} \cup\left\{t^{2}+1\right\}, R^{1}=R \cup\left\{\left(t^{2}+1, t^{2}+1\right)\right\}$ and $G_{12}^{1}=$ $G_{12} \cup\left\{\left(u, t^{2}+1\right): u \notin S_{1}, u \leqslant t^{2}+1\right\}$ is

$$
\begin{aligned}
& \sum_{u \in S_{1}} x_{u}^{1}+\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \notin S_{1}}\left(\sum_{t:(u, t) \in G_{11}} d_{t}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}\right) y_{u}^{1} \\
& \quad+\sum_{u \notin S_{2}} \sum_{t:(u, t) \in G_{22}} d_{t}^{2} y_{u}^{2} \\
& \geqslant \\
& \geqslant \sum_{t \in A_{1}} d_{t}^{1}+\sum_{t \in A_{2}} d_{t}^{2}+d_{t^{2}+1}^{2}\left(1-\sum_{u \notin S_{1}, u \leqslant t^{2}+1} y_{u}^{1}\right) .
\end{aligned}
$$

Now, we multiply the first inequality with $d_{t^{2}+1}^{2}$, the second inequality with $d_{t^{1}}^{1}$, add them up, and divide by $d_{t^{2}+1}^{2}+d_{t^{1}}^{1}$ to obtain

$$
\begin{aligned}
& \sum_{u \in \mathcal{S}_{1}} x_{u}^{1}+\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \notin S_{1}}\left(\sum_{t:(u, t) \in G_{11}} d_{t}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}\right) y_{u}^{1} \\
& \quad+\sum_{u \notin S_{2}: t(u, t) \in G_{22}} d_{t}^{2} y_{u}^{2} \\
& \geqslant
\end{aligned}
$$

This inequality dominates the projection inequality for $\left(A_{1}, A_{2}\right.$, $\left.S_{1}, S_{2}, R, G_{11}, G_{12}, G_{22}\right)$ since $\sum_{u \notin S_{1}, u \leqslant t^{1}} y_{u}^{1}-\sum_{u \notin S_{1}, u \leqslant t^{2}+1} y_{u}^{1}$ $\geqslant 0$.

Now we limit our investigation to the projection inequalities defined by sets A_{1} and A_{2} of the form $A_{1}=\left[1, t^{1}\right]$ and $A_{2}=\left[1, t^{2}\right]$ with $t^{2} \geqslant t^{1} \geqslant 0$. Note that if S_{1} or S_{2} has an element larger than t^{2}, then the resulting inequality is dominated. Hence, $S_{1} \subseteq A_{2}$ and $S_{2} \subseteq A_{2}$. The projection inequalities under consideration have the form

where $\hat{\phi}_{u}=d_{u t^{1}}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}=d_{u t^{1}}^{1}+\sum_{t \in A_{2}: u \leqslant j(t)} d_{t}^{2}$ for $u \in$ $A_{2} \backslash S_{1}$ and $\hat{\psi}_{u}=\sum_{t:(u, t) \in G_{22}} d_{t}^{2}=\sum_{t \in A_{2}: j(t)<u \leqslant t} d_{t}^{2}$ for $u \in A_{2} \backslash S_{2}$.
Lemma 17. If there exists $\hat{t} \in A_{2}$ with $j(\hat{t})>t^{1}$, then inequality (C2) is dominated by other inequalities (C2).

Proof. If there exists $\hat{t} \in A_{2}$ with $j(\hat{t})>t^{1}$, then consider the projection inequalities defined by $\left(A_{1}^{1}, A_{2}, S_{1}, S_{2}, R\right.$, $G_{11}^{1}, G_{12}, G_{22}$), where $A_{1}^{1}=A_{1} \cup\{j(\hat{t})\}$ and $G_{11}^{1}=G_{11} \cup$ $\left\{(u, j(\hat{t})): u \notin S_{1}, u \leqslant j(\hat{t})\right\}$ and $\left(A_{1}, A_{2}^{1}, S_{1}, S_{2}, R^{1}, G_{11}\right.$, $\left.G_{12}^{1}, \quad G_{22}^{1}\right)$, where $A_{2}^{1}=A_{2} \backslash\{\hat{t}\}, \quad R^{1}=R \backslash\left\{(j(\hat{t}), \hat{t}\}, \quad G_{12}^{1}=\right.$ $G_{12} \backslash\left\{(u, \hat{t}): u \notin S_{1}, u \leqslant \hat{t}\right\}$ and $G_{22}^{1}=G_{22} \backslash\left\{(u, \hat{t}): u \notin S_{2}, u \leqslant \hat{t}\right\}$. These inequalities are

$$
\begin{aligned}
& \sum_{u \in S_{1}} x_{u}^{1}+\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \notin S_{1}}\left(\sum_{t:(u, t) \in G_{11}} d_{t}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}\right) y_{u}^{1} \\
& \quad+\sum_{u \notin S_{2}} \sum_{t:(u, t) \in G_{22}} d_{t}^{2} y_{u}^{2} \\
& \geqslant \\
& \geqslant \sum_{t \in A_{1}} d_{t}^{1}+\sum_{t \in A_{2}} d_{t}^{2}+d_{j(t)}^{1}\left(1-\sum_{u \notin S_{1}, u \leqslant j(t)} y_{u}^{1}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{u \in S_{1}} x_{u}^{1}+\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \notin S_{1}}\left(\sum_{t:(u, t) \in G_{11}} d_{t}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}\right) y_{u}^{1} \\
& \quad+\sum_{u \notin S_{2}: t:(u, t) \in G_{22}} d_{t}^{2} y_{u}^{2} \\
& \geqslant
\end{aligned}
$$

We multiply the first inequality with $d_{\hat{t}}^{2}$, the second inequality with $d_{j(\hat{t})}^{1}$, add them and divide by $d_{j(\hat{t})}^{1}+d_{\hat{t}}^{2}$ to obtain

$$
\begin{aligned}
\sum_{u \in S_{1}} x_{u}^{1} & +\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \notin S_{1}}\left(\sum_{t:(u, t) \in G_{11}} d_{t}^{1}+\sum_{t:(u, t) \in G_{12}} d_{t}^{2}\right) y_{u}^{1} \\
& +\sum_{u \notin S_{2}} \sum_{t:(u, t) \in G_{22}} d_{t}^{2} y_{u}^{2} \\
\geqslant & \sum_{t \in A_{1}} d_{t}^{1}+\sum_{t \in A_{2}} d_{t}^{2}+\frac{d_{j(\hat{t})}^{1} d_{\hat{t}}^{2}}{d_{j(\hat{t})}^{1}+d_{\hat{t}}^{2}} \\
& \cdot\left(-\sum_{u \notin S_{1}, u \leqslant j(\hat{t})} y_{u}^{1}+\sum_{u:(u, \hat{t}) \in G_{12}} y_{u}^{1}+\sum_{u:\left(u, t^{2}\right) \in G_{22}} y_{u}^{2}\right)
\end{aligned}
$$

Now because $\left\{u:(u, \hat{t}) \in G_{12}\right\}=\left\{u \notin S_{1}: u \leqslant j(\hat{t})\right\}$,

$$
\begin{aligned}
& -\sum_{u \notin S_{1}, u \leqslant j(\hat{t})} y_{u}^{1}+\sum_{u:(u, \hat{t}) \in G_{12}} y_{u}^{1}+\sum_{u:\left(u, t^{2}\right) \in G_{22}} y_{u}^{2} \\
& \quad=\sum_{u:\left(u, t^{2}\right) \in G_{22}} y_{u}^{2} \geqslant 0 .
\end{aligned}
$$

Hence, this inequality dominates the projection inequality (C2) for $\left(A_{1}, A_{2}, S_{1}, S_{2}, R, G_{11}, G_{12}, G_{22}\right)$.

If $j(t) \leqslant t^{1}$ for all $t \in A_{2}$, then for $u \in A_{2} \backslash A_{1}, \hat{\phi}_{u}=0$. Hence the projection inequality (C2) simplifies to inequality (36) with $\hat{\phi}_{u}=d_{u t^{1}}^{1}+\sum_{t \in A_{2}: u \leqslant j(t)} d_{t}^{2}$ for $u \in A_{1} \backslash S_{1}$ and $\hat{\psi}_{u}=$ $\sum_{t \in A_{2}: j(t)<u \leqslant t} d_{t}^{2}$ for $u \in A_{2} \backslash S_{2}$. Finally, observe that if there exists $u \in S_{1}$ with $u>t^{1}$, as $j(t) \leqslant t^{1}$ for all $t \in A_{2}$, removing u from S_{1} yields a stronger inequality. As a result, the interesting projection inequalities are defined by $0 \leqslant t^{1} \leqslant t^{2} \leqslant n, A_{1}=\left[1, t^{1}\right]$, $A_{2}=\left[1, t^{2}\right], S_{1} \subseteq A_{1}, S_{2} \subseteq A_{2}$ and $j(t) \in\left[0, \min \left\{t, t^{1}\right\}\right]$ for $t \in A_{2}$.
Lemma 18. In a nondominated projection inequality (36), $j(1) \in$ $[0,1]$ and $j(t+1) \in\{j(t), t+1\}$ for all $t \in A_{2}$ with $t \leqslant n-1$.

Proof. Suppose that $0 \leqslant t^{1} \leqslant t^{2} \leqslant n, \quad A_{1}=\left[1, t^{1}\right], \quad A_{2}=\left[1, t^{2}\right]$, $S_{1} \subseteq A_{1}$ and $S_{2} \subseteq A_{2}$ are given. Define
$\Gamma(t, j)=\sum_{u \in A_{1} \backslash S_{1}: u \leqslant j} y_{u}^{1}+\sum_{u \in A_{2} \backslash S_{2}: j<u \leqslant t} y_{u}^{2}$.
Then the left-hand side of inequality (C2) is equal to $\sum_{u \in S_{1}} x_{u}^{1}+$ $\sum_{u \in S_{2}} x_{u}^{2}+\sum_{u \in A_{1} \backslash S_{1}} d_{u t}^{1} y_{u}^{1}+\sum_{t \in A_{2}} d_{t}^{2} \Gamma(t, j(t))$. So for a given vector $\left(\mathbf{x}^{1}, \mathbf{y}^{1}, \mathbf{x}^{2}, \mathbf{y}^{2}\right)$ and fixed A_{1}, A_{2}, S_{1}, and S_{2}, the best $j(t)$ choices are those with minimum $\Gamma(t, j(t))$ values for each $t \in A_{2}$. Now let $t \in A_{2}$ with $t \leqslant n-1$ and observe that for a given $j \in$ $[0, t], \Gamma(t+1, j)=\Gamma(t, j)+\sum_{u \in A_{2} \backslash S_{2}: u=t+1} y_{u}^{2}$. This implies that $\arg \min _{j \in[0, t]} \Gamma(t+1, j)=\arg \min _{j \in[0, t]} \Gamma(t, j)$. Hence $j(t+1) \in$ $\{j(t), t+1\}$.

Acknowledgments

The authors thank the two referees for their constructive comments that improved this paper. Minjiao Zhang and Simge Küçükyavuz are supported, in part, by the National Science Foundation [NSF-CMMI Grant 0917952].

References

Aggarwal A, Park J (1993) Improved algorithms for economic lot size problems. Oper. Res. 41(3):549-571.
Akartunalı K, Miller A (2009) A heuristic approach for big bucket multi-level production planning problems. Eur. J. Oper. Res. 193(2):396-411.
Atamtürk A, Küçükyavuz S (2005) Lot sizing with inventory bounds and fixed costs: Polyhedral study and computation. Oper. Res. 53(4):711-730.
Atamtürk A, Muñoz JC (2004) A study of the lot-sizing polytope. Math. Programming 99(3):443-465.
Barany I, van Roy T, Wolsey L (1984) Uncapacitated lot-sizing: The convex hull of solutions. Math. Programming Stud. 22:32-43.
Belvaux G, Wolsey L (2000) Bc-prod: A specialized branch-and-cut system for lot-sizing problems. Management Sci. 46(5):724-738.
Belvaux G, Wolsey L (2001) Modeling practical lot-sizing problems as mixed-integer programs. Management Sci. 47(7):993-1007.
Christof T, Löbel A (2008) PORTA—A polyhedron transformation algorithm. Version 1.4.1. http://typo.zib.de/opt-long_projects/Software/ Porta/.
Eppen GD, Martin RK (1987) Solving multi-item capacitated lot-sizing problems with variable definition. Oper. Res. 35(6):832-848.
Federgruen A, Tzur M (1991) A simple forward algorithm to solve general dynamic lot sizing models with n periods in $O(n \log n)$ or $O(n)$ time. Management Sci. 37(8):909-925.
Gaglioppa F, Miller LA, Benjaafar S (2008) Multitask and multistage production planning and scheduling for process industries. Oper. Res. 56(4):1010-1025.
Guan Y, Ahmed S, Nemhauser GL, Miller AJ (2006a) A branch-and-cut algorithm for the stochastic uncapacitated lot-sizing problem. Math. Programming 105(1):55-84.
Guan Y, Miller AJ, Ahmed S, Nemhauser GL (2006b) On formulations of the stochastic uncapacitated lot-sizing problem. Oper. Res. Lett. 34(3):241-250.
Krarup K, Bilde O (1977) Plant location, set covering and economic lotsizes: An $O(m n)$ algorithm for structured problems. Collatz L, eds.

Optimierung bei Graphentheoretischen und Ganzzahligen Probleme (Birkhauser Verlag, Basel, Switzerland), 155-180.
Küçükyavuz S, Pochet Y (2009) Uncapacitated lot sizing with backlogging: The convex hull. Math. Programming 118(1):151-175.
Lee C, Çetinkaya S, Jaruphongsa W (2003) A dynamic model for inventory lot sizing and outbound shipment scheduling at a third-party warehouse. Oper. Res. 51(5):735-747.
Love S (1972) A facilities in series inventory model with nested schedules. Management Sci. 18(5):327-338.
Martin R (1987) Generating alternative mixed-integer programming models using variable redefinition. Oper. Res. 35(6):820-831.
Melo R, Wolsey L (2010) Uncapacitated two-level lot-sizing. Oper. Res. Lett. 38(4):241-245.
Pochet Y, Wolsey L (1988) Lot-size models with backlogging: Strong reformulations and cutting planes. Math. Programming 40(1): 317-335.
Pochet Y, Wolsey L (2006) Production Planning by Mixed Integer Programming (Springer-Verlag).
Pochet Y, Wolsey LA (1993) Lot-sizing with constant batches: Formulation and valid inequalities. Math. Oper. Res. 18(4):767-785.
Rardin R, Wolsey L (1993) Valid inequalities and projecting the multicommodity extended formulation for uncapacitated fixed charge network flow problems. Eur. J. Oper. Res. 71(1):95-109.
Stadtler H (2003) Multilevel lot sizing with setup times and multiple constrained resources: Internally rolling schedules with lot-sizing windows. Oper. Res. 51(3):487-502.
van Hoesel S, Romeijn HE, Morales DR, Wagelmans A (2005) Integrated lot sizing in serial supply chains with production capacities. Management Sci. 51(11):1706-1719.
Veinott AF (1969) Minimum concave-cost solution of Leontief substitution models of multi-facility inventory systems. Oper. Res. 17(2):262-291.
Wagelmans A, Van Hoesel S, Kolen A (1992) Economic lot sizing: An $O(n \log n)$ algorithm that runs in linear time in the Wagner-Whitin case. Oper. Res. 40(1):S145-S156.
Wagner H, Whitin T (1958) Dynamic version of the economic lot size problem. Management Sci. 5(1):89-96.
Wolsey L (2002) Solving multi-item lot-sizing problems with an MIP solver using classification and reformulation. Management Sci. 48(12):1587-1602.
Wolsey LA (1998) Integer Programming (John Wiley and Sons, New York).
Zangwill W (1969) A backlogging model and a multiechelon model of a dynamic economic lot size production system—A network approach. Management Sci. 15(9):506-527.
Zangwill WI (1968) Minimum concave cost flows in certain networks. Management Sci. 14(7):429-450.

Minjiao Zhang is a Ph.D. candidate in the Integrated Systems Engineering Department at the Ohio State University. She received her M.S. in operations research from the Ohio State University. Her research interests include mixed-integer programming, stochastic programming, and large-scale optimization.

Simge Küçükyavuz is an assistant professor in the Integrated Systems Engineering Department at the Ohio State University. She received her M.S. and Ph.D. degrees from the University of California, Berkeley. Her research interests include mixed-integer programming, stochastic optimization, and their applications.

Hande Yaman is an associate professor of industrial engineering at Bilkent University. Her research interests are in polyhedral approaches for integer programming, with applications in production planning, logistics, and network design.

