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In this paper, we study a multiechelon uncapacitated lot-sizing problem in series (m-ULS), where the output of the
intermediate echelons has its own external demand and is also an input to the next echelon. We propose a polynomial-time
dynamic programming algorithm, which gives a tight, compact extended formulation for the two-echelon case (2-ULS).
Next, we present a family of valid inequalities for m-ULS, show its strength, and give a polynomial-time separation
algorithm. We establish a hierarchy between the alternative formulations for 2-ULS. In particular, we show that our valid
inequalities can be obtained from the projection of the multicommodity formulation. Our computational results show that
this extended formulation is very effective in solving our uncapacitated multi-item two-echelon test problems. In addition,
for capacitated multi-item, multiechelon problems, we demonstrate the effectiveness of a branch-and-cut algorithm using
the proposed inequalities.
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1. Introduction
Managing inventory can be a challenging task for many
enterprises. In particular, this task becomes significantly
more complex for firms with multiechelon supply chains,
where replenishments of inventory located in multiple tiers
must be synchronized. In this paper, we study a multiechelon
lot-sizing problem in series and with intermediate demands,
which arises frequently for many wholesalers, retail chains,
and manufacturers. For example, consider a two-echelon dis-
tribution system for a wholesaler that consists of regional
and forward distribution centers (DCs). The regional DCs
(first echelon) place orders to receive products directly from
suppliers and then ship these products to forward DCs (sec-
ond echelon). The forward DCs fulfill demand for most end-
customers. However, the regional DCs may also ship directly
to some end-customers in close proximity. Similarly, con-
sider a two-echelon distribution system for a multichannel
retailer that consists of DCs and customer-facing stores. The
DCs ship to all stores but may also ship directly to end-
customers who order online. Finally, consider a two-echelon
production system for a vertically integrated manufacturer.
The firm produces a part at the first echelon, which is used at
the second echelon to assemble the final product. In addition,
the same part may also be used to fulfill external demand
from the repair or field service business.

In all these examples, demand is dynamic and time-
varying, and there are economies of scale in production/

shipping of orders. The goal is to determine the production/
order plan over a finite horizon to meet the demand at both
echelons in each period with the minimum total cost, which
includes fixed and variable production/order costs, and vari-
able holding costs at each echelon. This problem can be
seen as a fixed-charge network flow problem on a grid (see
Figure 1).

In a seminal paper on the single-echelon uncapaci-
tated lot-sizing problem (ULS), Wagner and Whitin (1958)
analyze the properties of optimal solutions to ULS,
and propose a polynomial-time algorithm. The running
time was later improved by Aggarwal and Park (1993),
Federgruen and Tzur (1991), Wagelmans et al. (1992).
Krarup and Bilde (1977) give an uncapacitated facility
location extended formulation for ULS and show that the
linear programming (LP) relaxation of this formulation
always has an optimal solution with integer setup vari-
ables. Barany et al. (1984) give a complete linear descrip-
tion of the ULS polyhedron using the so-called 4`1 S5
inequalities. Since then, several extensions of the single-
echelon ULS polyhedron have been considered to incor-
porate backlogging (Pochet and Wolsey 1988, Küçükyavuz
and Pochet 2009), uncertainty in demands (Guan et al.
2006a, b), and production or inventory capacities (Pochet
and Wolsey 1993, Atamtürk and Muñoz 2004, Atamtürk
and Küçükyavuz 2005), among others (see Pochet and
Wolsey 2006 for a review). Belvaux and Wolsey (2000,
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Figure 1. Two-echelon, four-period uncapacitated lot-
sizing network.

(1, 1) (4, 1)(3, 1)(2, 1)

(1, 2)
s1

2

s1
1

s2
2

s2
1

s3
2

s3
1

d4
2

d4
1

d3
2

d3
1

d2
2

d2
1

d1
2

d1
1

x4
2

x3
2x2

2x1
2

x1
1 x2

1 x3
1 x4

1

(4, 2)(3, 2)(2, 2)

2001) and Wolsey (2002) illustrate the utility of valid
inequalities and reformulations for fundamental lot-sizing
problems in solving more complex practical problems.

Multiechelon lot-sizing problems have been considered
primarily under the assumption that there is demand only at
the final echelon. We refer to these problems as m-ULS-F,
where m is the number of echelons. Zangwill (1969) pro-
poses an O4mn45 dynamic programming algorithm for
m-ULS-F and van Hoesel et al. (2005) show that for m= 2,
this algorithm runs in O4n35 time, where n is the length of
the finite planning horizon. Love (1972) shows that if the
production costs are nonincreasing over time and the hold-
ing costs are nondecreasing over echelons, then there exists
an optimal nested schedule. Exploiting this nested struc-
ture, an O4mn35 algorithm is proposed. Lee et al. (2003)
give an O4n65 algorithm for 2-ULS-F when backlogging is
allowed and there is a stepwise shipment cost between the
two echelons. Melo and Wolsey (2010) propose a dynamic
programming algorithm with an improved running time,
O4n2 logn5, and a compact tight extended reformulation for
2-ULS-F. For a review of valid inequalities and extended
formulations for m-ULS-F, we refer the reader to Pochet
and Wolsey (2006). An effective heuristic for capacitated
m-ULS-F using strong formulations for each echelon is
proposed in Akartunalı and Miller (2009).

Various heuristic algorithms are proposed for the
more complicated multiechelon lot-sizing problems with
demands in intermediate echelons (see, for example,
Stadtler 2003 and the references therein). However, to the
best of our knowledge, the polyhedral study of serial mul-
tiechelon lot-sizing problems with demands in intermediate
echelons (m-ULS) has received little attention in the litera-
ture. A notable exception is due to Gaglioppa et al. (2008),
who study a multiechelon production planning problem
with complex assembly structures (not necessarily serial),
where intermediate products (subassemblies) have external
demand. They give a polynomial class of echelon inequali-
ties valid for this problem. In contrast, we give an exponen-
tial class of inequalities (with polynomial separation) for
the multiechelon lot-sizing problem in series.

In this paper, we are interested in exact methods for
m-ULS based on its polyhedral characterizations. In §2, we
give an O4n45 dynamic program for 2-ULS. In §3, we pro-
pose valid inequalities for m-ULS and study their strength.
We also give a polynomial-time separation algorithm. In §4,
we establish a hierarchy of alternative extended formu-
lations for 2-ULS and show that our inequalities can be
obtained from the projection of the so-called multicommod-
ity formulation. Our computational results, summarized
in §5, illustrate that the multicommodity formulation is
very effective in solving a difficult class of uncapaci-
tated multi-item, two-echelon lot-sizing problems. In addi-
tion, for capacitated multi-item, multiechelon problems, we
demonstrate the effectiveness of a branch-and-cut algorithm
using the proposed inequalities.

1.1. Mathematical Model

Let di
t ¾ 0 denote the demand in period t at the ith echelon,

and di
tk =

∑k
j=t d

i
j , with di

tk = 0 if t > k. If we order in
period t at echelon i, we incur a fixed cost f i

t and a variable
cost c̃it . Let hi

t denote the unit holding cost at echelon i
at the end of period t. Let xi

t be the order quantity at the
ith echelon in period t, sit be the inventory at echelon i
at the end of period t, yit be the order setup variable at
the ith echelon in period t, where yit = 1 if xi

t > 0; yit = 0
otherwise. Throughout the paper, we let 6i1 j7 denote the
interval 8i1 i+ 11 0 0 0 1 j9 for i¶ j , and 6i1 j7= � for i > j .

Figure 1 depicts a two-echelon four-period uncapacitated
lot-sizing network with demand in both echelons, where
node 4i1 j5 represents echelon j and period i. A natural
formulation of 2-ULS is

min
2
∑

i=1

n
∑

t=1

4f i
t y

i
t + c̃itx

i
t +hi

ts
i
t51 (1)

s.t. s1
t−1 + x1

t = d1
t + x2

t + s1
t t ∈ 611 n71 (2)

s2
t−1 + x2

t = d2
t + s2

t t ∈ 611 n71 (3)

si0 = sin = 0 i ∈ 611271 (4)

x1
t ¶ 4d1

tn +d2
tn5y

1
t t ∈ 611 n71 (5)

x2
t ¶ d2

tny
2
t t ∈ 611 n71 (6)

yit ∈ 80119 t ∈ 611 n71 i ∈ 611271 (7)

xi
t ¾ 0 t ∈ 611 n71 i ∈ 611271 (8)

sit ¾ 0 t ∈ 611 n71 i ∈ 611270 (9)

The objective function (1) is to minimize the sum of fixed
and variable ordering costs and the inventory holding costs.
Constraints (2) and (3) are flow balance equations for the
first and second echelon, respectively. We assume that the
initial and ending inventories at both echelons are 0, as
stated in constraints (4). Note that the assumption that s2

0 = 0
is without loss of generality similar to the single-echelon
case (Pochet and Wolsey 2006). However, for the first ech-
elon, the assumption that s1

0 = 0 is not without loss of
generality. Constraints (5) and (6) are variable upper bound
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constraints that force the binary variables y1
t and y2

t to be 1
if there is a positive order in period t at the first and sec-
ond echelon, respectively. Finally, constraints (7)–(9) are
variable restrictions. The formulation of m-ULS for m¾ 3
follows similarly.

Note that from (2)–(4) the stock variables can be pro-
jected out by letting s1

t =
∑t

j=14x
1
j − x2

j 5 − d1
1t , s2

t =
∑t

j=1 x
2
j − d2

1t for t ∈ 611 n7, and we get an alternative
formulation:

min
2
∑

i=1

n
∑

t=1

4f i
t y

i
t + citx

i
t5−B1

s0t0 (5)–(8)1
n
∑

t=1

x1
t = d1

1n +d2
1n1 (10)

n
∑

t=1

x2
t = d2

1n1 (11)

t
∑

j=1

x2
j ¾ d2

1t t ∈ 611 n71 (12)

t
∑

j=1

x1
j ¾

t
∑

j=1

x2
j +d1

1t t ∈ 611 n71 (13)

where the unit order costs are updated as c1
t = c̃1

t +
∑n

i=t h
1
i , c

2
t = c̃2

t +
∑n

i=t4h
2
i − h1

i 51 for t ∈ 611 n7 and B =
∑n

t=14h
1
td

1
1t + h2

td
2
1t5 is a constant. In the sequel, we drop

the constant term B from the objective function. We also
make a realistic assumption that c̃1 and c̃2 are nonnegative,
and h2

i ¾ h1
i for all i ∈ 611 n7. Thus, c1 and c2 are non-

negative. In addition, we let S denote the set of feasible
solutions to (5)–(8) and (10)–(13).

2. Dynamic Programming Recursion
and Reformulation

In this section, we give a dynamic programming (DP) recur-
sion for 2-ULS that generalizes the algorithm of Zangwill
(1969) by allowing positive demands at the first echelon.
As 2-ULS is a single-source uncapacitated fixed-charge

Figure 2. An optimal solution of a two-echelon, six-period uncapacitated lot-sizing problem.

(1, 1) (4, 1)(3, 1)(2, 1)

(1, 2) (4, 2)(3, 2)(2, 2)

(6, 1)(5, 1)

(6, 2)(5, 2)

network (SSFCN) flow problem, we can apply the well-
known result that the extreme points of SSFCN correspond
to a spanning tree (Zangwill 1968, Veinott 1969) to con-
clude that there exists an optimal basic feasible solution to
2-ULS with sit−1x

i
t = 0 for all t ∈ 611 n7 and i ∈ 61127.

For 1 ¶ i2 ¶ j2 ¶ n, we define 411 i2111 j25 as a regener-
ation interval if s1

i2
= s2

j2
= 0, x1

1 = d1
1i2

+ d2
1j2

, and s1
i > 0

or d1
i+11 i2

= 0 for i ∈ 611 i2 − 17. Similarly, for 2 ¶ i1 ¶ i2 ¶
j2 ¶ n, we define 4i11 i21 j11 j25 as a regeneration interval, if
for i1 ¶ j1 ¶ j2, we have s1

i1−1 = s1
i2

= s2
j1−1 = s2

j2
= 0, x1

i1
=

d1
i1i2

+ d2
j1j2

, and s1
i > 0 or d1

i+11 i2
= 0 for i ∈ 6i11 i2 − 17, or

for j1 = j2 +1, we have s1
i1−1 = s1

i2
= 0, x1

i1
= d1

i1i2
, and s1

i > 0
or d1

i+11 i2
= 0 for i ∈ 6i11 i2 − 17. In addition, we define an

interval 4j11 j25 with 1 ¶ j1 ¶ j2 ¶ n, s2
j1−1 = s2

j2
= 0, x2

j1
=

d2
j1j2

, and s2
j > 0 or d2

j+11 j2
= 0 for j ∈ 6j11 j2 − 17 as a

regeneration subinterval for the second echelon. A regener-
ation interval can contain several regeneration subintervals
or no regeneration subinterval (when j1 = j2 + 1). In the lat-
ter case, the value of j2 is equal to that of the preceding
regeneration interval. For example, in Figure 2, 411311155,
441416155, and 451616165 are regeneration intervals, 41125,
43155, and 46165 are regeneration subintervals. The regen-
eration interval 411311155 contains the regeneration subin-
tervals 41125 and 43155. However, the regeneration interval
441416155 contains no regeneration subinterval. The span-
ning tree property of SSFCN implies that there exists an
optimal basic feasible solution that is a concatenation of
regeneration intervals.

Let G4i21 j25, 1 ¶ i2 ¶ j2 ¶ n, denote the minimum cost
of satisfying the demand in periods 1 to i2 at the first echelon
and the demand in periods 1 to j2 at the second echelon.
In addition, let H4j11 j25, 1 ¶ j1 ¶ n + 1, 0 ¶ j2 ¶ n be
the minimum cost to satisfy the demand in periods j1 to j2

at the second echelon, where H4j11 j25 = 0 if j1 > j2. For
1 ¶ i2 ¶ j2 ¶ n, consider the forward recursions:

G4i21 j25

= min



















min
2¶i1¶i2

i1¶j1¶j2+1

{

G4i1 − 11 j1 − 15+ f 1
i1

+ c1
i1
d1
i1i2

+ c1
i1
d2
j1j2

+H4j11 j25
}

1

f 1
1 + c1

1d
1
1i2

+ c1
1d

2
1j2

+H411 j251

(14)
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where for 1 ¶ j1 ¶ j2 ¶ n,

H4j11 j25= min
j1¶j3¶j2

{

H4j11 j3 − 15+ f 2
j3

+ c2
j3
d2
j3j2

}

0 (15)

The minimum total cost over the entire planning horizon
for the original problem is given by G4n1n5−B.

Proposition 1. The dynamic program given by the recur-
sions (14) and (15) solves 2-ULS in O4n45 time.

Proof. Note that the recursion (14) evaluates the mini-
mum cost to satisfy the demand in periods 1 to i2 at the
first echelon and the demand in periods 1 to j2 at the
second echelon such that the last regeneration interval is
4i11 i21 j11 j25. Similarly, the recursion (15) calculates the
minimum cost to satisfy the demand in periods j1 to j2 at
the second echelon such that the last regeneration subin-
terval is 4j31 j25. As a result, G4n1n5 − B gives the opti-
mal objective function value to 2-ULS and is calculated in
O4n45 time. �

In the special case that the intermediate demands at the
first echelon are zero, we can drop the index i2 in the
recursion (14). Then the resulting recursions for G4j25 and
H4j11 j25 are identical to the dynamic programming recur-
sions in Melo and Wolsey (2010).

We note that using the approach proposed by Eppen and
Martin (1987) and Martin (1987), we can obtain a tight
extended formulation for 2-ULS based on the proposed
DP. This formulation has O4n45 variables and O4n45 con-
straints, including nonnegativities.

3. Valid Inequalities
In this section, we give valid inequalities for 2-ULS.

3.1. Two-Echelon Inequalities

We define �4T 1k5 as the set of consecutive elements in
set T starting from k, where if k 6∈ T 1�4T 1 k5= �. In other
words, if k ∈ T , then �4T 1k5 = 6k1 k′7 ⊆ T , for some k′

such that k′ + 1 6∈ T .

Theorem 2. For 0 ¶ k¶ l¶ n, let T1 ⊆ 611 k7, 6k+ 11 l7⊆
T2 ⊆ 611 l7 and T3 ⊆ T2. Then the two-echelon inequality

∑

j∈611k7\T1

x1
j +

∑

j∈T1

�jy
1
j +

∑

j∈T2\T3

x2
j +

∑

j∈T3

�jy
2
j ¾d1

1k+d2
1l (16)

is valid for S, where �j =
∑

i∈�4T21 j5
d2
i and �j = d1

jk +

d2
jl −�j .

Proof. We prove the validity of inequality (16) considering
two cases.

(1) If y1
j = 0 for all j ∈ T1, then x1

j = 0 for all j ∈ T1. Let
i1 2= min8i ∈ T2\T32 x

2
i > 01 i ¾ k + 19; if 8i ∈ T2\T32 x

2
i >

01 i ¾ k + 19 = �, then let i1 2= l + 1. Let i2 2= min8i ∈

T32 x
2
i > 01 i ¾ k + 19; if 8i ∈ T32 x

2
i > 01 i ¾ k + 19 = �,

then let i2 2= l+ 1. Note that i1 6= i2 unless i1 = i2 = l+ 1.

• If i1 > i2, then
∑

j∈611 k7\T1
x1
j ¾ d1

1k + d2
11 i2−1 and

�i2
y2
i2

= �i2
= d2

i2l
. Summing these two inequalities up,

we get
∑

j∈611 k7\T1

x1
j +�i2

y2
i2
¾ d1

1k +d2
1l0

• If i1 < i2, then
∑

j∈611 k7\T1
x1
j +

∑

j∈6i11 i2−17\T3
x2
j ¾

d1
1k + d2

11 i2−1 and �i2
y2
i2

= d2
i2l
y2
i2

. Summing these two
inequalities up, we get
∑

j∈611 k7\T1

x1
j +

∑

j∈6i11 i2−17\T3

x2
j +�i2

y2
i2
¾ d1

1k +d2
1l0

Note that 46i11 i2 − 17\T35⊆ 4T2\T35.
• If i1 = i2 = l+ 1, then

∑

j∈611 k7\T1
x1
j ¾ d1

1k +d2
1l.

Because all terms on the left-hand side of inequality (16)
are nonnegative, inequality (16) is valid if y1

j = 0 for all
j ∈ T1.

(2) If there exists j ∈ T1 such that y1
j = 1, then let j1 2=

min8j ∈ T12 y
1
j = 19.

(a) If j1 6∈ T2, then
∑

j∈611 k7\T1
x1
j ¾ d1

11 j1−1 +d2
11 j1−1 and

�j1
y1
j1

=�j1
= d1

j1k
+d2

j1l
. Summing them up, we get

∑

j∈611 k7\T1

x1
j +�j1

y1
j1
¾ d1

1k +d2
1l0

(b) If j1 ∈ T2, then let v 2= max8j ∈ �4T21 j159.
(i) If x2

j = 0 for all j ∈ �4T21 j15, then
∑

j∈611 k7\T1
x1
j ¾ d1

11 j1−1 + d2
1v and �j1

y1
j1

= �j1
= d1

j1k
+

d2
v+11 l. Summing these two inequalities up, we get
∑

j∈611 k7\T1

x1
j +�j1

y1
j1
¾ d1

1k +d2
1l0

(ii) If there exists j ∈ �4T21 j15 such that x2
j > 0,

then let j2 2= min8j ∈ �4T21 j152 x
2
j > 09.

• If j2 ∈ T3, then
∑

j∈611 k7\T1
x1
j ¾ d1

11 j1−1 + d2
11 j2−1,

�j1
y1
j1

= �j1
= d1

j1k
+ d2

v+11 l and �j2
y2
j2

= �j2
= d2

j2v
. Sum-

ming them up, we get
∑

j∈611 k7\T1

x1
j +�j1

y1
j1

+�j2
y2
j2
¾ d1

1k +d2
1l0

• If j2 ∈ T2\T3, then consider the following two cases:
— If 8j ∈ 6j2 + 11 v7 ∩ T32 x2

j > 09 6= �, then let
j3 2= min8j ∈ 6j2 +11 v7∩T32 x

2
j > 09. Then

∑

j∈611 k7\T1
x1
j +

∑

j∈6j21 j3−17\T3
x2
j ¾ d1

11 j1−1 + d2
11 j3−1, �j1

y1
j1

= �j1
= d1

j1k
+

d2
v+11 l and �j3

y2
j3

= d2
j3v

. Summing them up, we get
∑

j∈611 k7\T1

x1
j +�j1

y1
j1

+
∑

j∈6j21 j3−17\T3

x2
j +�j3

y2
j3
¾ d1

1k +d2
1l0

Note that 46j21 j3 − 17\T35⊆ 4T2\T35.
— If 8j ∈ 6j2 + 11 v7 ∩ T32 x2

j > 09 = �, then
∑

j∈611 k7\T1
x1
j +

∑

j∈6j21 v7\T3
x2
j ¾ d1

11 j1−1 + d2
1v and �j1

y1
j1

=

�j1
= d1

j1k
+d2

v+11 l. Summing them up, we get
∑

j∈611 k7\T1

x1
j +�j1

y1
j1

+
∑

j∈6j21 v7\T3

x2
j ¾ d1

1k +d2
1l0

Note that 46j21 v7\T35⊆ 4T2\T35.
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Because all terms on the left-hand side of inequality (16)
are nonnegative, inequality (16) is valid if there exists
j ∈ T1 such that y1

j > 0.
Hence, the inequality (16) is valid. �
An alternative proof can be obtained by using the dicut

collection inequalities of Rardin and Wolsey (1993). We
provide the precise correspondence between the simple
dicut collection inequalities and the two-echelon inequali-
ties in Corollary 9.

Example 1. To illustrate the two-echelon inequalities, con-
sider a four-period problem as shown in Figure 1 with
d1
i = d2

i = 1 for i ∈ 61147. For k = 2 and l = 3, we have
x1

1 + 3y1
2 + x2

3 ¾ 5 where T1 = 829, T2 = 839, T3 = �. For
k = l = 3, we have x1

1 + 4y1
2 + y1

3 + x2
3 ¾ 6, where T1 =

82139, T2 = 839, T3 = �, and x1
1 + 4y1

2 + y1
3 + y2

3 ¾ 6, where
T1 = 82139, T2 = 839, T3 = 839. For k = 3 and l = 4, we
have x1

1 + 4y1
2 + 3y1

3 + x2
2 + x2

4 ¾ 7, where T1 = 82139, T2 =

82149, T3 = �, and x1
1 + 4y1

2 + 3y1
3 + y2

2 + x2
4 ¾ 7, where

T1 = 82139, T2 = 82149, T3 = 829.
Note that for k = 0, we have T1 = �, T2 = 611 l7 and

T3 ⊆ T2, so inequality (16) is equivalent to the 4`1 S5
inequality of Barany et al. (1984) for the second echelon
only, where `= l and T3 = S. For example,

x2
1 + x2

2 + y2
3 ¾ 3 (17)

is the 4`1 S5 inequality for the second echelon only, with
` = 3 and S = 839. In addition, for l = n, T2 = 611 n7,
T3 = �, inequality (16) is equivalent to the 4`1 S5 inequal-
ity of Barany et al. (1984) for the first echelon only, where
`= k and T1 = S. For example,

x1
1 + x1

2 + y1
3 ¾ 3 (18)

is the 4`1 S5 inequality for the first echelon only, with `= 3,
S = 839. As a result, single echelon 4`1 S5 inequalities are
valid for 2-ULS, and they are subsumed by the two-echelon
inequalities.

Also, for k = l and T2 = �, inequality (16) is equiva-
lent to the 4`1 S5 inequality for the aggregation of the two
echelons. For example,

x1
1 + x1

2 + 2y1
3 ¾ 6 (19)

is the 4`1 S5 inequality for the aggregation of the two ech-
elons with `= 3, S = 839.

Using a similar argument, we can show that the two-
echelon inequalities obtained by aggregating the demands
in echelons 6m11m27 (echelon 1) and those in 6m2 + 11m37
(echelon 2) for 1 ¶ m1 ¶ m2 < m3 ¶ m, are valid for
m-ULS for any m¾ 2. For example, for a four-period five-
echelon lot-sizing problem with unit demands in all eche-
lons, letting m1 = 11m2 = 21m3 = 4:

x1
1 + 8y1

2 + 6y1
3 + x3

2 + x3
4 ¾ 14 (20)

is a valid two-echelon inequality where k = 3, l = 4, T1 =

82139, T2 = 82149 and T3 = �.

3.2. Facet Conditions

Next we give necessary and sufficient conditions for two-
echelon inequalities (16) to be facet-defining for conv4S5.
We assume that d1 and d2 are positive for ease of exposi-
tion. Note that under this assumption, y1

1 = y2
1 = 1. Denote

a feasible point in conv4S5 as 4x11y11x21y25.
The dimension of conv4S5 is 4n − 4 for d1 > 0 and

d2 > 0 (see Appendix A).

Proposition 3. For d1 > 0 and d2 > 0, inequality (16) is
facet-defining for conv4S5 if and only if

(1) 1 6∈ T1;
(2) 1 6∈ T2 if k 6= 0;
(3) 1 6∈ T3 if k = 0;
(4) k 6= 1;
(5) if k = 0, l = n, then �T3� = 1;
(6) for every j ∈ T2 ∩ 621 k7, there exists i ∈ T1 such that

j ∈ �4T21 i5;
(7) if 2 ¶ k¶ l = n with T3 6= �, then T3 ∩6k+11 n7= �

and for each j ∈ T3 ∩ 621 k7, there exists j∗ ∈ 6j +11 k7 such
that j∗ 6∈ T2;

(8) if 2 ¶ k ¶ l < n, then there exists j ∈ 6p11 k7 such
that j 6∈ T2;

(9) if k = l = n, then either T2 = � with �T1� = 1, or
T2 6= � is a consecutive set with p2 = p1 and 6p11w17 ⊆

T2 = 6p11w27⊆ 6p11 n7;
(10) if k 6= 0, then T1 6= �; if k = 0, then T3 6= �;

where

p1 2= min8j ∈ T191 w1 2= max8j ∈ T191

p2 2= min8j ∈ T291 and w2 2= max8j ∈ T290

Proof. See Appendix B. �
Using the facet conditions, we see that 4`1 S5 inequali-

ties for the second echelon only and for the aggregation of
two echelons are facet-defining for 2-ULS problem, such as
inequalities (17) and (19). But 4`1 S5 inequality for the first
echelon only, such as inequality (18), is not facet-defining
because it violates facet condition (2).

Based on our experiments with PORTA (Christof and
Löbel 2008), in a three-period two-echelon lot-sizing prob-
lem with unit demands in both echelons, all facets of the
convex hull of 2-ULS solutions are defined by the two-
echelon inequalities. However, in a four-period problem
with unit demands in both echelons, 65 out of the 81 facets
are defined by the two-echelon inequalities. Four out of
these 65 facets are 4`1 S5 inequalities for the aggregation of
the first and second echelons, and 4 out of these 65 facets
are 4`1 S5 inequalities for the second echelon only.

3.3. Separation

Proposition 4. Given a fractional point 4x11y11x21y25 ∈

�4n, there is an O4n45 algorithm to find the most violated
inequality (16), if any.

Proof. As stated earlier, when k = 0, two-echelon inequal-
ities are 4`1 S5 inequalities of Barany et al. (1984) for
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Figure 3. Separation network for two-echelon inequal-
ity (16) with k = 4.

2 3 41� 2� 3� 4� 5

the second echelon, which have an O4n logn5 separation
algorithm (c.f., Pochet and Wolsey 2006). When k = 1,
the two-echelon inequalities are not facet-defining due to
facet condition (4). Next, for given k and l such that
2 ¶ k¶ l¶ n, we give an O4n25 algorithm that minimizes
the left-hand side of inequality (16). Note that for a given
k and l, the right-hand side of inequality (16) is fixed, so
this algorithm maximizes the violation, if any.

Note that by definition, 6k + 11 l7 ⊆ T2. To minimize
∑

j∈T2∩6k+11 l7\T3
x2
j +

∑

j∈T3∩6k+11 l7�jy
2
j , let T3 ∩ 6k + 11 l7 2=

8j ∈ 6k+ 11 l72 x2
j ¾ d2

jly
2
j 9. This takes O4n5 time. Now we

need to determine the sets T11 T2 ∩ 611 k7 and T3 ∩ 611 k7.
Note that the coefficients of the variables in T1 depend
on the choice of T2, because they contain the term �j =
∑

i∈�4T21 j5
d2
i .

Consider a shortest-path network G= 4V 1A5. For exam-
ple, Figure 3 is the shortest path network for separating
a two-echelon inequality (16) with k = 4. The node set
is V = 81′9 ∪ 8i2 i ∈ 621 k + 179 ∪ 8i′2 i ∈ 621 k79, where
4k + 15 is the sink node. Node i′ represents i 6∈ T2 and
node i represents i ∈ T2. By definition, we know that if
k 6= l, then 4k+ 15 ∈ T2. From the facet conditions, we
know that 1 6∈ T2. The arc set is A= 84i′1 i+152 i ∈ 611 k79∪
84i′1 4i + 15′52 i ∈ 611 k − 179 ∪ 84i1 4v + 15′52 i ∈ 621
k− 171 v ∈ 6i1 k− 179∪ 84i1 4k+ 1552 i ∈ 621 k79.

(1) A shortest path visiting the arc 4i′1 i+15 for i ∈ 611 k7
implies that to minimize the left-hand side of inequality
(16), we let i 6∈ T2 and 4i + 15 ∈ T2. The cost on this arc
is c̄i′1 i+1 = min8x1

i 1 4d
1
ik + d2

il5y
1
i 9. Note that when i 6∈ T2,

�i = d1
ik + d2

il. Therefore, if x1
i ¶ 4d1

ik + d2
il5y

1
i , then we let

i 6∈ T1, else we let i ∈ T1.
(2) A shortest path visiting the arc 4i′1 4i + 15′5 for i ∈

611 k − 17 implies that to minimize the left-hand side of
inequality (16), we let i 6∈ T2 and 4i+ 15 6∈ T2. The cost on
this arc is c̄i′1 4i+15′ = min8x1

i 1 4d
1
ik + d2

il5y
1
i 9. If x1

i ¶ 4d1
ik +

d2
il5y

1
i , then we let i 6∈ T1, else we let i ∈ T1.

(3) A shortest-path visiting the arc 4i1 4v + 15′5 for i ∈

621 k − 17 and v ∈ 6i1 k − 17 represents 6i1 v7 ⊆ T2 and
4i− 15 6∈ T2 and 4v+ 15 6∈ T2. As a result, �4T21 j5 = 6j1 v7
for all j ∈ 6i1 v7, and the decision on which elements to
include in T1 ∩ 6i1 v7 can be made easily as the coefficients
�j depend on �4T21 j5. The cost on this arc is c̄i1 4v+15′ =
∑v

t=i min8x1
t 1 4d

1
tk + d2

4v+151 l5y
1
t 9 +

∑v
t=i min8x2

t 1 d
2
tvy

2
t 9. As

before, if x1
i ¶ 4d1

ik + d2
4v+151 l5y

1
i , then we let i 6∈ T1; else,

we let i ∈ T1. Similarly, if x2
i ¶ d2

ivy
2
i , then we let i ∈ T2\T3;

else, we let i ∈ T3.

(4) A shortest path visiting the arc 4i1 4k + 155 for i ∈

621 k7 represents 6i1 l7⊆ T2, 4i− 15 6∈ T2, and 4k+ 15 ∈ T2 if
k < l. As a result, �4T21 j5= 6j1 l7 for all j ∈ 6i1 k7. Hence,
the cost on this arc is c̄i1 4k+15 =

∑k
t=i min8x1

t 1 d
1
tky

1
t 9 +

∑l
t=i min8x2

t 1 d
2
tly

2
t 9. As before, if x1

i ¶ d1
iky

1
i , then we let

i 6∈ T1; else, we let i ∈ T1. Similarly, if x2
i ¶ d2

ily
2
i , then we

let i ∈ T2\T3; else, we let i ∈ T3.
Note that there are O4n5 nodes and O4n25 arcs in this

network. In addition, G is directed acyclic. Hence, the
shortest-path problem for a given k and l can be solved in
O4n25 time. Overall, this separation algorithm takes O4n45
time considering all k1 l such that 0 ¶ k¶ l¶ n. �

4. Alternative Extended Formulations
for 2-ULS

A tight and compact extended formulation for 2-ULS
can be obtained from the dynamic program given in §2.
However, the size of this formulation is large, and its
projection is nontrivial. In this section, we consider alterna-
tive extended formulations obtained by adapting those for
m-ULS-F from the literature, such as the multicommodity
formulation (Krarup and Bilde 1977, Rardin and Wolsey
1993) and the echelon stock formulation (Wolsey 2002,
Belvaux and Wolsey 2001) (see also Pochet and Wolsey
2006). We establish a hierarchy of formulations by study-
ing their relative strength.

4.1. Multicommodity Formulation

In this section, we propose a multicommodity extended for-
mulation similar to that of Pochet and Wolsey (2006) for
m-ULS-F. Let z11

ut be the order quantity in period u at the
first echelon to satisfy the intermediate demand in period t,
z12
ut be the order quantity in period u at the first echelon to

satisfy the demand at the second echelon in period t, and
z22
ut be the order quantity in period u at the second eche-

lon to satisfy the demand at the second echelon in period t
for 1 ¶ u¶ t ¶ n. Using these additional variables, we can
model 2-ULS as follows:

min
2
∑

i=1

n
∑

t=1

4f i
t y

i
t + citx

i
t51

s.t.
t
∑

u=1

z11
ut = d1

t t ∈ 611 n71 (21)

t
∑

u=1

z12
ut = d2

t t ∈ 611 n71 (22)

t
∑

u=1

z22
ut = d2

t t ∈ 611 n71 (23)

j
∑

u=1

z12
ut ¾

j
∑

u=1

z22
ut t ∈ 611 n71 j ∈ 611 t71 (24)

d1
t y

1
u ¾ z11

ut t ∈ 611 n71 u ∈ 611 t71 (25)

d2
t y

1
u ¾ z12

ut t ∈ 611 n71 u ∈ 611 t71 (26)
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d2
t y

2
u ¾ z22

ut t ∈ 611 n71 u ∈ 611 t71 (27)

x1
t =

n
∑

v=t

4z11
tv + z12

tv 5 t ∈ 611 n71 (28)

x2
t =

n
∑

v=t

z22
tv t ∈ 611 n71 (29)

z11
ut 1 z

12
ut 1 z

22
ut ¾ 0 t ∈ 611 n71 u ∈ 611 t71 (30)

yit ∈ 80119 t ∈ 611 n71 i ∈ 611270 (31)

Here constraints (21)–(24) ensure that the demand is satis-
fied on time. In particular, constraints (24) enforce that the
order quantity at the second echelon until period j to sat-
isfy the second echelon demand in period t cannot be larger
than the order quantity at the first echelon until period j to
satisfy the second echelon demand in period t. Constraints
(25)–(27) ensure that there are no orders in periods with
no order setup. Constraints (28) and (29) relate the values
of the order variables in the natural formulation with the
additional variables in the extended formulation. We refer
to the formulation (21)–(31) as the multicommodity (MC)
formulation.

4.1.1. Comparison of MC Formulation with the
Natural Formulation Strengthened with Two-Echelon
Inequalities. Here we prove that the LP relaxation of MC
formulation is at least as strong as the natural formulation
strengthened with two-echelon inequalities. It is easy to
see that the constraints of the natural formulation (5)–(8),
(10)–(13) are implied by MC formulation. Next, we show
that the two-echelon inequalities are implied by MC for-
mulation. To do this, we study the projection of the feasible
set of MC formulation onto the space of order and setup
variables.

Note that because c1 and c2 are nonnegative, equality
(22) for a given t can be relaxed as

∑t
u=1 z

12
ut ¾ d2

t , which is
implied by equality (23) for that t and inequality (24) for
j = t. We associate dual variables �1

t , �
2
t , �jt , �

11
ut , �12

ut , �22
ut ,

�1
t , and �2

t to constraints (21) and (23)–(29), respectively.
From Farkas’ lemma, for a given 4x11y11x21y25 satisfying
these constraints, the LP relaxation of MC formulation has
a solution if and only if
n
∑

t=1

�1
t x

1
t +

n
∑

t=1

�2
t x

2
t +

n
∑

u=1

n
∑

t=u

4�11
ut d

1
t +�12

ut d
2
t 5y

1
u

+

n
∑

u=1

n
∑

t=u

�22
ut d

2
t y

2
u ¾

n
∑

t=1

4d1
t �

1
t +d2

t �
2
t 5 (32)

for all 4�11�21 �111 �121 �221�11�21 �5 satisfying

�11
ut +�1

u ¾ �1
t 1 ¶ u¶ t ¶ n1 (33)

�12
ut +�1

u ¾
t
∑

j=u

�jt 1 ¶ u¶ t ¶ n1 (34)

�22
ut +�2

u ¾ �2
t −

t
∑

j=u

�jt 1 ¶ u¶ t ¶ n0 (35)

�11
ut 1 �

12
ut 1 �

22
ut 1 �ut ¾ 0 1 ¶ u¶ t ¶ n0

Proposition 5. If a projection inequality (32) defined by a
nonnegative extreme ray (�1, �2, �11, �12, �22, �1, �21 �)
of the projection cone with equal positive entries is not
dominated, then it has the following form:

∑

u∈S1

x1
u+

∑

u∈S2

x2
u+

∑

u∈A1\S1

�̂uy
1
u+

∑

u∈A2\S2

�̂uy
2
u¾d1

1t1 +d2
1t21 (36)

where 0 ¶ t1 ¶ t2 ¶ n, A1 = 611 t17, A2 = 611 t27, S1 ⊆ A1,
S2 ⊆A2, j415 ∈ 60117, j4t+15 ∈ 8j4t51 t+19 for all t ∈A2,
t ¶ n−1, j4t5¶ t1 for t ∈A2, �̂u = d1

ut1 +
∑

t∈A22 u¶j4t5 d
2
t for

u ∈ A1\S1 and �̂u =
∑

t∈A22 j4t5<u¶t d
2
t for u ∈ A2\S2, where

j4t5 is the largest index j ∈ 611 t7 with positive �jt (if none
exists, then j4t5= 0).

Proof. See Appendix C.

Proposition 6. If a projection inequality (32) defined by a
nonnegative extreme ray of the projection cone with equal
positive entries is not dominated, then it is a two-echelon
inequality (16).

Proof. Let 0 ¶ t1 ¶ t2 ¶ n, A1 = 611 t17, A2 = 611 t27,
S1 ⊆ A1, S2 ⊆ A2, j415 ∈ 60117, j4t + 15 ∈ 8j4t51 t + 19 for
all t ∈ A2, t ¶ n − 1, j4t5 ¶ t1 for t ∈ A2, �̂u = d1

ut1 +
∑

t∈A22 u¶j4t5 d
2
t for u ∈ A1\S1 and �̂u =

∑

t∈A22 j4t5<u¶t d
2
t for

u ∈A2\S2.
Define k = t1, l = t2, and C = 8t ∈ 611 k72 j4t5 6= t9. Let

T2 = C ∪ 6k + 11 l7. As j4t5 ¶ t1 for t ∈ A2, T2 = 8t ∈ A2:
j4t5 6= t9. Let T1 =A1\S1 and T3 ⊆A2\S2.

Let u ∈ A2\S2. If u 6∈ T2, then �u = 0 = �̂u and we let
u ∈ T3. If u ∈ T2, then j4u5 < u. Now

�u =
∑

t∈�4T21 u5

d2
t =

∑

t∈A22 u¶t1j4t5=j4u5

d2
t =

∑

t∈A22 j4t5<u¶t

d2
t = �̂u1

and we let u ∈ T3.
Let u ∈ T1 =A1\S1. Then �u = d1

uk +d2
ul −

∑

t∈�4T21 u5
d2
t .

If u 6∈ T2, then j4u5 = u, and for all t ∈ A2 with t ¾ u,
we have j4t5¾ j4u5. Hence

∑

t∈A22 u¶j4t5 d
2
t = d2

ul and �u =

d1
uk + d2

ul = �̂u. If u ∈ T2, then j4u5 6= u. Let u′ be the
smallest index greater than u with j4u′5 = u′. We have
∑

t∈A22 u¶j4t5 d
2
t = d2

u′1l. This is the same as d2
ul − d2

u1u′−1 =
∑

t∈�4T21 u5
d2
t . Hence �u = �̂u.

The resulting two-echelon inequality is
∑

u∈S1

x1
u +

∑

u∈S22 j4u56=u

x2
u +

∑

u∈T1

�̂uy
1
u +

∑

u∈T3

�̂uy
2
u ¾ d1

1t1 +d2
1t2

and dominates the projection inequality if there exists u ∈

S2 with j4u5= u. �
Proposition 7. Inequalities (16) can be obtained by pro-
jecting the MC formulation onto the 4x11y11x21y25 space.

Proof. Consider the two-echelon inequality (16) defined
by 0 ¶ k ¶ l ¶ n, T1 ⊆ 611 k7, 6k + 11 l7 ⊆ T2 ⊆ 611 l7,
C = T2 ∩ 611 k7, and T3 ⊆ T2. Let T2 =

⋃r
s=1 T

s
2 where

T s
2 is a maximal consecutive component, i.e., T s

2 = 6a4s51
b4s57 ⊆ T2 with a4s5 − 1 6∈ T2 and b4s5 + 1 6∈ T2 for each
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s = 11 0 0 0 1 r and r is the number of maximal consecutive
components comprising T2.

Now define t1 = k, t2 = l, A1 = 611 k7, A2 = 611 l7, S1 =

611 k7\T1, S2 = T2\T3 and j4t5 = t for t ∈ 611 k7\C and
j4t5= a4s5− 1 if t ∈ T s

2 for s = 11 0 0 0 1 r .
For u ∈ A1\S1, �̂u = d1

ut1 +
∑

t∈A22 u¶j4t5 d
2
t = d1

uk +
∑

t∈611 k7\C2u¶t d
2
t +

∑r
s=1

∑

t∈T s
2 2 u¶a4s5−1 d

2
t . If u 6∈ T2, then

∑

t∈611 k7\C2u¶t d
2
t +

∑r
s=1

∑

t∈T s
2 2 u¶a4s5−1 d

2
t = d2

ul. If u ∈ T2,
let s̄ be the interval that u falls into, i.e., u ∈ T s̄

2 . Then
∑

t∈611 k7\C2u¶t d
2
t +

∑r
s=1

∑

t∈T s
2 2 u¶a4s5−1 d

2
t = d2

b4s̄5+11 l. In both

cases, �̂u =�u.
Let u ∈A2\S2. Then

�̂u =
∑

t∈A22 j4t5<u¶t

d2
t =

∑

t∈611 k7\C2 j4t5<u¶t

d2
t +

r
∑

s=1

∑

t∈T s
2 2 j4t5<u¶t

d2
t

=
∑

t∈611 k7\C2 t<u¶t

d2
t +

r
∑

s=1

∑

t∈T s
2 2 a4s5−1<u¶t

d2
t 0

Observe that
∑

t∈611 k7\C2 t<u¶t d
2
t = 0. If u 6∈ T2, then

r
∑

s=1

∑

t∈T s
2 2 a4s5−1<u¶t

d2
t = 00

If u ∈ T2, then
∑r

s=1

∑

t∈T s
2 2 a4s5−1<u¶t d

2
t = d2

b4s̄5+11 l, where s̄

is the interval that u falls into. Hence, �̂u = 0 if u 6∈ T2 and
�̂u = �u if u ∈ T2.

As a result, the projection inequality for these choices is
the same as the two-echelon inequality (16). �

Using the Propositions (6) and (7), we have the following
theorem.

Theorem 8. The formulation obtained by adding the pro-
jection inequalities (32) corresponding to the nonnega-
tive extreme rays with equal positive entries has the same
strength as the formulation obtained by adding all two-
echelon inequalities (16).

Rardin and Wolsey (1993) give a class of dicut collection
inequalities for single-source uncapacitated fixed-charge
networks, which are obtained by projecting the multi-
commodity extended formulation to the original space.
Dicut collection inequalities are written implicitly as a
function of a collection of dicuts in a graph. Therefore,
there are no known explicit conditions for dicut collec-
tion inequalities to be facet-defining, and as a result, many
of these inequalities are dominated. In addition, there are
no known combinatorial separation algorithms for these
inequalities.

Corollary 9. Two-echelon inequalities are special cases
of dicut collection inequalities.

Proof. This follows from Theorem 8. Here we give
the dicut collection that corresponds to the two-echelon
inequalities. For t ∈ 611 n7 and i ∈ 61127, â i

t is a collection
of variables such that removing the arcs corresponding to

these variables will disconnect the flows from source node
to nodes 4t1 i5 in the single-source network depicted in Fig-
ure 1. To yield the two-echelon inequality 4T11 T21 T31 k1 l5,
the required dicut collection â = 8â 1

t 9t∈611 n7 ∪ 8â 2
t 9t∈611 n7 has

each â
j
t as a singleton 8Q

j
t 9 for t ∈ 611 n7 and j ∈ 61127.

We define �−14T 1 ·5 as the inverse function of �4T 1 ·5, i.e.,
t ∈ �4T 1 i5 if and only if i ∈ �−14T 1 t5. Then the dicut col-
lection that gives the two-echelon inequality is

• For t ∈ 611 k7, â 1
t = 8Q1

t 9 = 8x1
i 2 i ∈ 611 t7\T19 ∪ 8y1

i 2
i ∈ 611 t7∩ T19.

• For t ∈ 611 l7, â 2
t = 8Q2

t 9 = 8x1
i 2 i ∈ 611 t7\T19 ∪ 8x2

i 2
i ∈ 611 t7 ∩ 4T2\T359 ∪ 8y1

i 2 i y �−14T21 t51 i ∈ 611 t7 ∩ T19 ∪

8y2
i 2 i ∈ �−14T21 t5∩ T39.
• For t ∈ 6k+ 11 n7, â 1

t = �.
• For t ∈ 6l+ 11 n7, â 2

t = �.
We refer the reader to Rardin and Wolsey (1993) for further
details on the dicut collection inequalities. �

Nevertheless, as two-echelon inequalities are in closed
form, we are able to show that they are facet-defining under
certain conditions (Proposition 3) and give a combinatorial
separation algorithm for them (Proposition 4).

Example 1 (Continued). Based on our experiments with
PORTA (Christof and Löbel 2008), the LP relaxation of
MC formulation is not tight for 2-ULS with more than
three periods. Consider the four-period 2-ULS problem
with d1 = d2 = 411111115. As stated before, 65 out of
81 facets are defined by two-echelon inequalities. Besides
these 65 facets, 3 out of the 16 remaining facets are defined
by the projection of MC formulation. For example, x1

1 +

x1
2 + 2y1

3 − x2
2 − 2y2

2 ¾ 6 is a projection inequality, but it is
clearly not a two-echelon inequality because of the nega-
tive coefficients of x2

2 and y2
2 . Thus, the MC formulation

is strictly contained in the natural formulation with two-
echelon inequalities.

Let h1 = h2 = 401010105, f 1 = 401212125, f 2 = 40121
0105, c1 = 481716155, c2 = 401012125. The solution to the
linear relaxation of the MC formulation is x1 = 4312051
105115, x2 = 41051105100510055, y1 = 411005100510055,
y2 = 41100511115. Because binary variables y1 and y2

are fractional at the optimal solution, the MC formula-
tion is not tight in this example. So we conclude that
the exact DP-based formulation is stronger than the MC
formulation.

4.2. Echelon Stock Reformulation

Pochet and Wolsey (2006) derive an alternative formulation
for m-ULS-F using the so-called “echelon stock variables.”
Here we adapt this formulation to our problem. The first
echelon stock variable e1

t = s1
t + s2

t is the total inventory
at the first echelon at the end of period t, and the second
echelon stock variable e2

t = s2
t is the total inventory at the

second echelon at the end of period t. Using these variables,
we obtain the following model:

min
2
∑

i=1

n
∑

t=1

4f i
t y

i
t + citx

i
t51
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s.t. (5)–(8)1

e1
t−1 + x1

t = d1
t +d2

t + e1
t t ∈ 611 n71

e2
t−1 + x2

t = d2
t + e2

t t ∈ 611 n71

ei0 = ein = 0 i ∈ 611271

e1
t ¾ e2

t t ∈ 611 n71

eit ¾ 0 t ∈ 611 n71 i ∈ 611270

4.2.1. Comparison of the Natural Formulation
Strengthened with Two-Echelon Inequalities and the
Echelon Stock Reformulation with 4`1 S5 Inequalities.
The echelon stock reformulation has the same linear
programming relaxation bound as the natural formulation.
However, if we consider the variables and the constraints
associated with a given echelon, then we have the same
structure as that of ULS. Now, we can generate 4`1 S5-
inequalities for each echelon. Let ` ∈ 611 n7, L = 611 `7,
and S ⊆ L. The first echelon 4`1 S5-inequality is

∑

j∈S

x1
j ¶

∑

j∈S

4d1
j` +d2

j`5y
1
j + e1

`1

which is the same as

d1
1` +d2

1` ¶
∑

j∈S

4d1
j` +d2

j`5y
1
j +

∑

j∈L\S

x1
j (37)

after substituting e1
` =

∑`
j=1 x

1
j − d1

1` − d2
1`. Similarly, the

second echelon 4`1 S5-inequality is

d2
1` ¶

∑

j∈S

d2
j`y

2
j +

∑

j∈L\S

x2
j 0 (38)

We refer to inequalities (37) and (38) as echelon stock
inequalities.

Proposition 10. The natural formulation with two-
echelon inequalities is stronger than the echelon stock
reformulation with echelon stock inequalities.

Proof. Let ` ∈ 611 n7, L= 611 `7, and S ⊆ L. If we let k =

l = `, T1 = S, T2 = T3 = �, then the two-echelon inequality
(16) simplifies to

∑

j∈L\S

x1
j +

∑

j∈S

4d1
j` +d2

j`5y
1
j ¾ d1

1` +d2
1`1

which is the same as the echelon stock inequality (37).
Also, if we let k = 0, l = `, T1 = �, T2 = 611 l7, T3 = S,

inequality (16) is the same as inequality (38). Thus, the nat-
ural formulation with two-echelon inequalities is stronger
than the echelon stock reformulation with the echelon stock
inequalities. �

4.3. Hierarchy of Formulations

A formulation of a mixed-integer program is formally
defined as the polyhedron given by the linear program-
ming relaxation of its constraints (Definition 1.2 of Wolsey
1998). From §§2, 3, 4.1, and 4.2, we establish a hierar-
chy of formulations for 2-ULS, in its natural space, from
stronger to weaker as: projection of the DP-based exact
extended formulation; projection of the MC formulation;
natural formulation with two-echelon inequalities (16); ech-
elon stock formulation with echelon stock inequalities; nat-
ural formulation. Also, the inclusion in each case is strict.
For example, we know that not all projection inequalities
of MC formulation are two-echelon inequalities (16).

5. Computations
In this section, we report our computational experiments
with a class of multi-item, multiechelon lot-sizing problems
with mode constraints. In these problems, we have n time
periods, m echelons, and r items. The mode constraints
allow at most � orders to be placed in each period and
each echelon. Let M i

at be the order capacity of item a at
echelon i in period t, 1 ¶ i¶m, 1 ¶ a¶ r , and 1 ¶ t ¶ n.
Let d̂i

at be the demand of item a in period t at echelon i,
1 ¶ i¶m, 1 ¶ a¶ r , 1 ¶ t ¶ n. Define d̂i

aut 2=
∑t

j=u d̂
i
aj .

Let xi
at denote the total order quantity of item a in

period t at echelon i, 1 ¶ i ¶ m, 1 ¶ a ¶ r , 1 ¶ t ¶ n.
The mixed-integer programming formulation of capacitated
multi-item lot-sizing problem with mode constraint is as
follows:

min
r
∑

a=1

m
∑

i=1

n
∑

t=1

4f i
aty

i
at + ciatx

i
at51

s0t0
n
∑

t=1

xi
at =

m
∑

j=i

d̂
j
a1n 1 ¶ i¶m1 1 ¶ a¶ r1

t
∑

j=1

xi
aj ¾

t
∑

j=1

xi+1
aj + d̂i

a1t

1 ¶ i¶m− 11 1 ¶ a¶ r1 1 ¶ t ¶ n1
t
∑

j=1

xm
aj ¾ d̂m

a1t 1 ¶ t ¶ n1 1 ¶ a¶ r1

xi
at ¶M i

aty
i
at 1 ¶ i¶m1 1 ¶ a¶ r1 1 ¶ t ¶ n1

r
∑

a=1

yiat ¶ � 1 ¶ t ¶ n1 1 ¶ i¶m1

xi
at ¾ 0 1 ¶ i¶m1 1 ¶ t ¶ n1 1 ¶ a¶ r1

yiat ∈ 80119 1 ¶ i¶m1 1 ¶ t ¶ n1 1 ¶ a¶ r0

Let z
ij
aut denote the order quantity of item a in period u

at echelon i to satisfy the demand in period t at eche-
lon j , 1 ¶ i ¶ j ¶m, 1 ¶ u¶ t ¶ n, 1 ¶ a¶ r . The multi-
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commodity formulation of capacitated multi-item lot-sizing
problem with mode constraint is as follows:

min
r
∑

a=1

m
∑

i=1

n
∑

t=1

4f i
aty

i
at + ciatx

i
at51

s0t
t
∑

u=1

zijaut = d̂j
at 1 ¶ i¶ j ¶m1 1 ¶ a¶ r1 1 ¶ t ¶ n1

k
∑

u=1

zijaut ¾
k
∑

u=1

z
4i+15j
aut

1 ¶ i < j ¶m1 1 ¶ a¶ r1 1 ¶ k¶ t ¶ n1

xi
au =

m
∑

j=i

n
∑

t=u

zijaut 1 ¶ i¶m11 ¶ a¶ r1 1 ¶ u¶ n1

zijaut¶ d̂j
aty

i
au 1¶ i¶ j¶m11¶a¶r11¶u¶ t¶n1

xi
at ¶M i

aty
i
at 1 ¶ i¶m1 1 ¶ a¶ r1 1 ¶ t ¶ n1

r
∑

a=1

yiat ¶ � 1 ¶ i¶m1 1 ¶ t ¶ n1

ziaut ¾ 0 1 ¶ i¶m1 1 ¶ a¶ r1 1 ¶ u¶ t ¶ n1

xi
at ¾ 0 1 ¶ i¶m1 1 ¶ a¶ r1 1 ¶ t ¶ n1

yiat ∈ 80119 1 ¶ i¶m1 1 ¶ a¶ r1 1 ¶ t ¶ n0

We conduct all the experiments on a 1-GHz dual-
core AMD Opteron(tm) processor 1218 with 2 GB RAM.
We use IBM ILOG CPLEX 12.0 as the MIP solver.

5.1. Strength of Alternative Formulations for
Uncapacitated Multi-Item Two-Echelon
Instances

In this subsection, we investigate the strength of alternative
formulations and cuts. We limit ourselves to uncapacitated
instances with 30 periods and 2 echelons, where M i

at =
∑m

j=i d̂
j
atn for 1 ¶ i¶m, 1 ¶ t ¶ n, 1 ¶ a¶ r . The variable

costs of the first and second echelons are generated using

Table 1. Gaps for different formulations and valid inequalities for uncapacitated two-echelon multi-item lot-sizing
problems.

CPX 2ULS ES
NF MCF

n0m0r0�0� Gap (%) Gap (%) Cuts Gap (%) Cuts Gap (%) Cuts Gap (%)

30.2.5.2.500 25040 3066 11108 0042 5199002 4041 1163700 0
30.2.5.3.500 27052 4031 11506 0062 5149808 4034 1140804 0
30.2.10.3.500 25026 4063 20808 0042 13136708 4096 4118802 0
30.2.10.5.500 25061 2094 22306 0031 11156304 4069 2189406 0
30.2.5.2.1000 18071 4071 6206 0016 3160804 5030 1127902 0
30.2.5.3.1000 22021 4022 7502 0033 2186808 5084 94108 0
30.2.10.3.1000 17093 5039 12704 0011 7181008 5034 3163106 0
30.2.10.5.1000 18080 3083 12708 0 6149708 5055 2124604 0
30.2.5.2.2500 4046 0048 3400 0 1174008 0023 68508 0
30.2.5.3.2500 7008 0007 3708 0 1121308 0045 47506 0
30.2.10.3.2500 3090 1038 7508 0 4191002 0027 2119500 0
30.2.10.5.2500 4050 0003 6708 0 3179106 0002 1132804 0

a discrete uniform distribution in the interval 601507 and
6011007, respectively. Unit inventory costs of the both ech-
elons are generated using a discrete uniform distribution in
the interval 60167. Let � be the ratio of fixed and unit order
costs. For various values of r , �, and �, we generate five
instances and report the averages in Table 1.

For each formulation, we report the average percentage
duality gap (rounded to two significant digits) and the aver-
age number of cuts added (if applicable). First, we solve
the LP relaxations of the natural and multicommodity for-
mulations, which we refer to as NF and MCF, respec-
tively. The gap reported for NF and MCF is calculated
as 100 × 4zub − zlb5/zub, where zub is objective func-
tion value of the optimal solution and zlb is the optimal
value of the initial LP relaxation. The MCF is very strong
and has zero gap for all the instances considered, whereas
the initial gap of NF can be as high as 25%. Next, we
solve NF by letting CPLEX generate its cuts and report the
root gap and the average number of cuts generated before
branching. The root gap is calculated similarly by letting
zlb be the optimal value of the LP relaxation strength-
ened by cutting planes. We refer to the natural formula-
tion with CPLEX cuts as CPX. We observe that CPLEX
can close a big portion of the gap. Finally, using cutting
plane algorithms, we solve the LP relaxations of the natural
formulation strengthened with the two-echelon inequalities
(referred to as 2ULS) and the echelon stock formulation
with echelon stock inequalities (referred to as ES). We can
see that the echelon stock inequalities reduce the duality
gap significantly but the remaining gaps are slightly higher
than those with CPLEX cuts. The two-echelon inequalities,
however, close almost all the gap, with the average gap
being below 0.5%. This comparison shows that using two-
echelon inequalities, we obtain a formulation that is almost
as strong as the multicommodity formulation and signif-
icantly stronger than the formulation obtained by adding
only the echelon stock inequalities. Because our goal in
this experiment is to test the strength of 2ULS empirically,
we do not report the solution times. The exact separation
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of the two-echelon inequalities can be quite time consum-
ing in practice due to its O4n45 time complexity. In the
next subsection, we employ a heuristic separation to make
2ULS practicable.

In our computational experience, MCF is also highly
effective in solving uncapacitated multi-item lot-sizing
instances for more echelons with 2 ¶m ¶ 5. However, in
the next subsection, we show that for capacitated instances
a branch-and-cut algorithm using our proposed inequalities
is more effective than the MCF formulation.

5.2. Effectiveness of Two-Echelon Inequalities for
Capacitated Multi-Item Multiechelon
Instances

In this subsection, we test the multicommodity formu-
lation and three alternative branch-and-cut methods on
capacitated multi-item, multiechelon lot-sizing problem
with mode constraints:

Algorithm 1. Multicommodity formulation with all
CPLEX cuts (denoted by MCF).

Algorithm 2. Echelon stock formulation with echelon
stock inequalities (37)–(38) and all CPLEX cuts (denoted
by ES).

Algorithm 3. Natural formulation with a subset of two-
echelon inequalities and all CPLEX cuts (denoted by
2ULS).

Algorithm 4. Natural formulation with all CPLEX cuts
(denoted by CPX).

Note that echelon stock inequalities are special cases of
two-echelon inequalities. We impose an hour time limit for
all algorithms.

In 2ULS, we generate a subset of the violated two-
echelon inequalities at the root node only. We add all
violated echelon stock inequalities for a single echelon
obtained by aggregating the echelons 6m11m7 for m1 ∈

611m7. To apply the two-echelon inequalities in the multi-
echelon setting, we aggregate echelons 6m11m27 and treat
as echelon 1, and we aggregate echelons 6m2 + 11m37 and
treat as echelon 2, for certain choices of m11m21m3, where
1 ¶ m1 ¶ m2 < m3 ¶ m. In particular, we consider only
the facet-defining two-echelon inequalities for the follow-
ing cases:

(a) echelons 6m11m − 17 aggregated as echelon 1 and
6m1m7 aggregated as echelon 2 (i.e., m2 =m− 11m3 =m)
for all k1 l with 2 ¶ k < l = n,

(b) echelon m1 used as echelon 1 and 6m1 +11m7 aggre-
gated as echelon 2 (i.e., m2 =m11m3 =m) for all k1 l with
k = l = n.
We add all the cuts aggressively, and we force CPLEX to
start branching if the improvement of lower bound at the
root node is less than 0.01% after adding all cuts generated
in one iteration.

In our experimental setup, the demands, fixed costs, vari-
able costs, and holding cost of each item in each echelon
and each period are generated using a discrete uniform dis-
tribution in the intervals 601507, 6110001210007, 601207, and
60167, respectively. The capacity M i

at is set to be 3�d̂i
a1n/n�

for i ∈ 611m7, a ∈ 611 r7, and t ∈ 611 n7.
We report our results in Table 2 for various settings

n0m0r0�. For each setting, we generate five instances and
report the averages. In column RGap(noint), we report
the average percentage integrality gap at the root node
just before branching, which is 100 × 4zub − zrb5/zub,
where zub is objective function value of the best inte-
ger solution obtained within time limit and zrb is the
best lower bound obtained at the root node. The num-
ber of instances without integer solutions obtained within
time limit is given in parentheses in cases where not all
five instances are solved with integer solutions. In column
GClos(noint), we report the average percentage closure
of the integrality gap at the root node before branching,
which is 100 × 4zrb − zlb5/4zub − zlb5, and in paran-
theses, we give the number of instances with no feasible
integer solutions obtained within time limit. In columns
EGap(noint), we report the average percentage end gap
at termination output by CPLEX, which is 100 × 4zub −

zbest5/zub, where zbest is the best lower bound available
within time limit, and the number of instances without inte-
ger solutions obtained within the time limit in parentheses.
Columns Time(unslvd) report the average solution time in
seconds and the number of unsolved instances in paren-
theses in cases where not all five instances are solved to
optimality within time limit. Columns Nodes(nobr) report
the average number of branch-and-cut tree nodes explored
and the number of instances without branching in paren-
theses in cases where not all five instances start branching.
In columns Cuts, we report the average number of CPLEX
cuts and user inequalities (echelon stock inequalities for ES
and two-echelon inequalities for 2-ULS) added separately.

The branch-and-cut method with the MC formulation
was not able to obtain any integer feasible solutions for any
of the five instances from 30.5.5.3 setting within an hour.
Therefore, the gap closure and the end gap for the MC for-
mulation is not calculated. Also, for all five instances from
20.5.5.3 and 30.5.3.2 settings, the MC formulation was not
able to start branching, although it was able to solve the
initial LP relaxation, add CPLEX default cuts at the root
node and even obtained integer feasible solutions in all
but one instance of the 30.5.3.2 setting. These experiments
demonstrate that the MC formulation might not scale up
for capacitated problems as the number of echelons, items
or periods increase. Overall, two-echelon inequalities are
the most effective method in obtaining optimal solutions
in shortest time, or solutions with the smallest end gaps
within an hour.

6. Conclusions
In this paper, we studied an m-echelon lot-sizing prob-
lem with intermediate demands (m-ULS). We gave a
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Table 2. Comparison of MCF and alternative branch-and-cut methods for capacitated multi-item, multiechelon lot-sizing
problems.

Cuts
GClos Time Nodes EGap

n0m0r0� Alg. RGap (noint) (unslvd) (nobr) CPLEX User (noint)

20.2.5.3 MCF 1019% 47011% ¾3,600 36134404 11183002 0 0064%
ES 0037% 91085% 63.75 8109804 89800 38406 0
2ULS 0037% 92001% 46.80 4115506 1114808 20102 0
CPX 0044% 90038% 49.29 4199404 1129502 0 0

20.3.3.2 MCF 1018% 45080% 530.52 (4) 15127002 4167804 0 0076%
ES 0064% 86020% 111.26 10100700 1100404 12806 0
2ULS 0060% 87019% 102.37 7149606 1117202 16708 0
CPX 0071% 84072% 146.92 11110604 1109706 0 0

20.5.3.2 MCF 1072% 29078% ¾3,600 15604 8502 0 1068%
ES 0085% 82013% 3,243.24 (4) 56142506 1197008 17306 0010%
2ULS 0073% 84043% 2,205.35 (3) 38165406 1189602 24808 0006%
CPX 0095% 80000% ¾3,600 67166100 2114508 0 0018%

20.5.5.3 MCF 3078% 10078% ¾3,600 − (5) 6804 0 3078%
ES 1016% 78007% ¾3,600 23112604 2194902 34508 0074%
2ULS 1014% 78079% ¾3,600 28119302 2188608 48802 0074%
CPX 1043% 73071% ¾3,600 30151306 3138908 0 1002%

20.3.10.5 MCF 4.21% (1) 14.04% (1) ¾3,600 21234 445 22708 0 3.35% (1)
ES 0069% 85006% ¾3,600 24169504 3143208 43702 0043%
2ULS 0061% 86068% ¾3,600 24101400 3130804 56106 0037%
CPX 0079% 82095% ¾3,600 25143104 3188102 0 0054%

30.2.5.3 MCF 1043% 29058% ¾3,600 27130100 5152908 0 1021%
ES 0061% 81065% 562.37 (4) 1126194604 1176902 24002 0014%
2ULS 0054% 83061% 468.12 (4) 1127146804 1175406 26704 0012%
CPX 0068% 79029% 903.38 (4) 1155166406 2102702 0 0017%

30.3.3.2 MCF 1077% 19078% ¾3,600 11185302 2110002 0 1053%
ES 0086% 76061% 1,925.4 (3) 86146204 1143902 19100 0030%
2ULS 0082% 77064% 1,353.1 (3) 72118102 1169206 22404 0030%
CPX 0096% 73094% 1,795.25 (4) 1122108408 1192304 0 0035%

30.5.3.2 MCF 2.96% (1) 9.01% (1) ¾3,600 −(5) 5608 0 2.96% (1)
ES 1021% 69011% ¾3,600 31120100 2194508 24902 0088%
2ULS 1012% 71004% ¾3,600 21173900 2186608 32802 0084%
CPX 1031% 66025% ¾3,600 25116206 4137708 0 0095%

30.5.5.3 MCF −(5) −(5) ¾3,600 8700 13104 0 −(5)
ES 1.73% (2) 60.21% (2) ¾3,600 19190406 4137204 43204 1.54% (2)
2ULS 1.19% (2) 69.03% (2) ¾3,600 17180308 4101108 56600 1.04% (2)
CPX 2045% 51038% ¾3,600 30127702 4141802 0 2027%

30.3.10.5 MCF 3.76% (2) 6.15% (2) ¾3,600 −(5) 14800 0 3.76% (2)
ES 1.77% (2) 58.98% (2) ¾3,600 16160002 4170300 63404 1.63% (2)
2ULS 1.93% (2) 57.06% (2) ¾3,600 11179904 4136208 73508 1.83% (2)
CPX 2.87% (3) 46.50% (3) ¾3,600 20184606 5105204 0 2.75% (3)

polynomial-time dynamic program, which implies a tight
and compact extended formulation to solve 2-ULS. In addi-
tion, we presented a class of valid inequalities for m-ULS,
which are separable in polynomial time. Our computational
experience with these inequalities demonstrate the effec-
tiveness of these inequalities for multi-item, multiechelon
instances. We conjecture that these inequalities are enough
to give the convex hull of solutions to 2-ULS for n = 3.
However, they are not enough to give the convex hull for
n > 3. In addition, we compared the theoretical strength
of alternative formulations such as the multicommodity
and echelon stock reformulations, and established a hierar-
chy between them. Finally, we presented our computational

experiments with the multicommodity formulation and our
valid inequalities. The multicommodity formulation per-
forms extremely well for uncapacitated problems and the
branch and cut algorithm outperforms the multicommodity
formulation when capacity constraints are introduced.

Appendix A. Dimension of conv4S5

Let �i
j ∈�4n and eij ∈�4n, j ∈ 611 n7, i ∈ 81129, be the unit vectors

corresponding to the variables xij and yij . The component of �i
j ,

which has the same position with xij in the feasible solution, is 1;
all other components of �i

j are 0. The component of eij , which has
the same position with yij in the feasible solution, is 1; all other
components of eij are 0.
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Proposition 11. The dimension of conv4S5 is 4n− 4 if d1 > 0
and d2 > 0.

Proof. Because there are 4n variables and 4 linearly independent
equalities (10), (11), y1

1 = 1, y2
1 = 1, the dimension of conv4S5

is at most 4n − 4. Then, consider the following 4n − 3 points:
û0 = 4d1

1n + d2
1n5�

1
1 + e1

1 + d2
1n�

2
1 + e2

1 , and for j ∈ 621 n7, û1
j =

û0 + e1
j , û2

j = û0 + e2
j , ũ1

j = û1
j − ��1

1 + ��1
j , ũ2

j = û2
j − ��2

1 + ��2
j ,

where 0 < � < min8di
j 2 j ∈ 611 k71 i ∈ 811299. It is easy to see that

these 4n−3 points are affinely independent and the dimension of
conv4S5 is at least 4n− 4. Hence, the dimension of conv4S5 is
4n− 4. �

Appendix B. Proof of Proposition 3

Proposition 3. For d1 > 0 and d2 > 0, inequality (16) is facet-
defining for conv4S5 if and only if

(1) 1 6∈ T1;
(2) 1 6∈ T2 if k 6= 0;
(3) 1 6∈ T3 if k = 0;
(4) k 6= 1;
(5) if k = 0, l = n, then �T3� = 1;
(6) for every j ∈ T2 ∩ 621 k7, there exists i ∈ T1 such that j ∈

�4T21 i5;
(7) if 2 ¶ k ¶ l = n with T3 6= �, then T3 ∩ 6k + 11 n7 = �

and for each j ∈ T3 ∩ 621 k7, there exists j∗ ∈ 6j + 11 k7 such that
j∗ 6∈ T2;

(8) if 2 ¶ k ¶ l < n, then there exists j ∈ 6p11 k7 such that
j 6∈ T2;

(9) if k = l = n, then T1 6= � and either T2 = � with �T1� = 1,
or T2 6= � is a consecutive set with p2 = p1 and 6p11w17 ⊆ T2 =

6p11w27⊆ 6p11 n7;
(10) if k 6= 0, then T1 6= �; if k = 0, then T3 6= �.

Proof.
Necessity. For simplicity, we denote the two-echelon inequality

(16) with the particular choice of T1, T2, T3, k, l, by (T1, T2, T3,
k, l). Note that 4x11y11x21y25¾ 0.

(1) Suppose that 1 ∈ T1. Because y1
1 = 1, xij ¾ 0 and yij ¾ 0

for j ∈ 611 n7, i ∈ 81129, then the two-echelon inequality (T1, T2,
T3, k, l) is dominated by the inequality y1

1 ¾ 1 and two-echelon
inequality (�, �4T2115, �4T2115∩ T3, 0, max8j2 j ∈ �4T21159).

(2) Suppose that 1 6∈ T1 and 1 ∈ T2 with k 6= 0. Because x2
1 > 0

and y2
1 = 1, the two-echelon inequality (T1, T2, T3, k, l) is domi-

nated by the two-echelon inequality (T1, T2\819, T3\819, k, l).
(3) Note that if k = 0, then T1 = � and T2 = 611 l7. Suppose 1 ∈

T3. Then the two-echelon inequality (�, T2, T3, 0, l) is dominated
by the inequality y2

1 ¾ 1.
(4) By facet conditions (1)–(2) and the fact that x1

1 ¾ d1
1 , if

k = 1, then the two-echelon inequality (�, T2, T3, 1, l) is domi-
nated by the two-echelon inequality (�, T2, T3, 0, l).

(5) Suppose that k = 0, l = n. In this case, T2 = 611 n7. If
T3 = �, then the face defined by two-echelon inequality (�, T2,
�, 0, n) is equivalent to the flow balance equation (11), so it is
not proper. If �T3�> 1, then the two-echelon inequality (�, T2, T3,
0, n) is dominated by the two-echelon inequalities (�, T2, 8j9, 0,
n), j ∈ T3. Note that when T3 = 8j9 for some j ∈ 611 n7, the two-
echelon inequality (�, T2, T3, 0, n) is equivalent to the variable
upper-bound constraint x2

j ¶ d2
jny

2
j given by (6).

(6) Suppose that there exists j ∈ T2 such that j 6∈ �4T21 i5 for
all i ∈ T1, then the two-echelon inequality (T1, T2, T3, k, l) is dom-
inated by the two-echelon inequality (T1, T2\8j9, T3\8j9, k, l).

(7) Suppose that 2 ¶ k ¶ l = n and T3 6= �. If there exists
j ∈ T3 ∩ 621 k7 such that 6j + 11 k7 ⊆ T2, or there exists j ∈ T3 ∩

6k + 11 n7, then the two-echelon inequality (T1, T2, T3, k, n) is
dominated by the two-echelon inequality (T1, T2, T3\8j9, k, n)
and inequality x2

j ¶ d2
jny

2
j .

(8) Suppose that k ¶ l < n and 6p11 k7 ⊆ T2. Note that in this
case, the coefficients �j , j ∈ T1 of the two-echelon inequality
(T1, T2, T3, k, l) are the same with the coefficients �j , j ∈ T1 of
the two-echelon inequality (T1, T2 ∪ 6l+ 11 n7, �, k, n). Then the
two-echelon inequality (T1, T2, T3, k, l) is dominated by the two-
echelon inequalities (T1, T2 ∪ 6l + 11 n7, �, k, n) and (�, 611 l7,
T3, 0, l), because the sum of inequalities (T1, T2 ∪ 6l + 11 n7, �,
k, n) and (�, 611 l7, T3, 0, l) is equal to the sum of two-echelon
inequality (T1, T2, T3, k, l) and flow balance equation (11).

(9) It is easy to see that for k = l = n, we cannot have T1 = �

in a facet-defining inequality. Suppose that k = l = n and T2 = �.
If �T1� > 1, then the two-echelon inequality 4T11�1�1 n1n5 is
dominated by the two-echelon inequalities (8j9, �, �, n, n),
j ∈ T1. Next, suppose that k = l = n, T2 6= �, w1 ¶ w2 and there
exists j ∈ 6p11w27 such that j 6∈ T2. Let j ′ = min8j ∈ 6p11w27,
j 6∈ T29.

• If j ′ ∈ T1, then the two-echelon inequality (T1, T2, T3, n, n)
is dominated by the two-echelon inequalities (T1 ∩ 611 j ′ −17, T2 ∩

611 j ′ − 17, T3 ∩ 611 j ′ − 17, n, n), (T1 ∩ 6j ′ + 11 n7, T2 ∩ 6j ′ + 11 n7,
T3 ∩ 6j ′ + 11 n7, n, n), and (8j ′9, �, �, n, n).

• If j ′ 6∈ T1, then the two-echelon inequality (T1, T2, T3,
n, n) is dominated by the two-echelon inequalities (T1 ∩611 j ′ − 17,
T2 ∩ 611 j ′ − 17, T3 ∩ 611 j ′ − 17, n, n) and (T1 ∩ 6j ′ + 11 n7, T2 ∩

6j ′ + 11 n7, T3 ∩ 6j ′ + 11 n7, n, n).
• If j ′ >w1, then the two-echelon inequality (T1, T2, T3, n, n)

is dominated by the two-echelon inequality (T1, T2 ∩ 611 j ′ − 17,
T3 ∩ 611 j ′ − 17, n, n).

Lastly, suppose that k = l = n, T2 6= � and w1 >w2. Let j ′′ 2=
min8j ∈ T12 j > w29. Then the two-echelon inequality (T1, T2, T3,
n, n) is dominated by the two-echelon inequality (T1 ∩ 611 j ′′ −

17, T2, T3, n, n). Note that if T3 6= �, then w2 < n by facet
condition (7).

(10) Suppose that k 6= 0 and T1 = �. It is easy to see
that if k = l = n, then we cannot have T1 = � in a facet-
defining inequality. Therefore, we assume that k < n. Then
the two-echelon inequality (�, T2, T3, k, l) is dominated by
two-echelon inequality (8k + 19, T2, T3, k + 1, max8l1 k + 19)
and inequality y1

k+1 ¶ 1. Suppose that k = 0 and T3 = �.
From facet condition (5), we must have l < n in this case. Note
that for k = 0, T2 is a consecutive set 611 l7 by its definition in
Theorem 2. Then the two-echelon inequality (�, T2, �, 0, l)
is dominated by two-echelon inequality 4�1 611 n71 611 n7\T2101 n5
and inequalities y2

j ¶ 1 for j ∈ 611 n7\T2.
Sufficiency. To prove sufficiency, we exhibit 4n − 4 affinely

independent points on the face defined by inequality (16). First,
note that if k = 0, the two-echelon inequalities are equivalent
to 4`1 S5 inequalities for the second echelon, which have been
proved to be facet-defining for the convex hull of solutions to
ULS by Barany et al. (1984), when 1 6∈ T3 (facet condition (3)).
The dimension of the convex hull of ULS with positive demand
is 2n − 2. Then there exist 2n − 2 affinely independent points
4x21y25 = aj ∈ �2n

+ , j = 11 0 0 0 12n− 2 on the face defined by the
4`1 S5 inequality. We can expand these 2n − 2 points to 4n −

4 affinely independent points 4x11y11x21y25 ∈ �4n
+ for 2-ULS,

by letting â2j−1 = 4d1
1n + d2

1n5�
1
1 + e1

j + ãj and â2j = 4d1
1n +

d2
1n − d1

j 5�
1
1 + d1

j�
1
j + e1

j + ãj , where ãj = 401 0 0 0 101 aj5 ∈�4n
+ .
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It is easy to see that for j ∈ 621 n7, the points 8âi9
4n−4
i=1 are in

conv4S5 and affinely independent. Thus, the inequalities (16) are
facet-defining for 2-ULS when k = 0.

From facet condition (4), we have k 6= 1 for the two-echelon
inequality to be facet-defining. So we assume k¾ 2 in the rest of
the proof. Note, from facet condition (10), that T1 6= � in this case.
By facet condition (6), we define g4j5 2= max8i ∈ T12 j ∈ �4T21 i59
for j ∈ T2 ∩ 621 k7. In addition, let r4j5 = max8i ∈ �4T21 j59 if
�4T21 j5 6= �, and r4j5= j − 1, otherwise.

Consider the point

u0 =
(

d1
1k +d2

1l

)

�1
1 + e1

1 +
(

d1
k+11 n +d2

l+11 n

)

�1
k+1

+ e1
k+1 +d2

1l�
2
1 + e2

1 +d2
l+11 n�

2
l+1 + e2

l+11

on the face defined by the two-echelon inequality (16). Based on
u0, we can generate 4n− 4 points as follows.

For j ∈ 6k+ 21 n7, consider the points

u1
j =















u0 +
(

d1
jn +d2

l+11 n

)

�1
j −

(

d1
jn +d2

l+11 n

)

�1
k+1 + e1

j

if j ∈ 6k+ 21min8l+ 11 n971

u0 +d1
jn�

1
j −d1

jn�
1
k+1 + e1

j if j ∈ 6l+ 21 n71

and ū1
j = u0 + e1

j .
For j ∈ 6l + 21 n7, consider the points u2

j = u0 + d2
jn�

2
j −

d2
jn�

2
l+1 + e2

j and ū2
j = u0 + e2

j .
For j ∈ 621 k7\T1, consider the points u1

j = u0 +d1
jk�

1
j −d1

jk�
1
1 +

e1
j and ū1

j = u0 + e1
j .

For j ∈ T1, note that either r4j5 < k or r4j5= l. Also note that
j 6= 1 from facet condition (1). Consider the points

u1
j =















u0 +�j�
1
j −�j�

1
1 −d2

r4j5+11 l�
2
1 +d2

r4j5+11 l�
2
r4j5+1

+ e1
j + e2

r4j5+1 if r4j5 < k1

u0 +�j�
1
j −�j�

1
1 + e1

j if r4j5= l1

and

ū1
j =







































u1
j + ��1

j − ��1
k+1 if k < l = n or k¶ l < n1

u1
j +d2

w2�
1
j −d2

w2�
1
1 −d2

w2�
2
1 +d2

w2�
2
w2 + e2

w2

if k = l = n1T2 6= �1w2 ∈ T31

u1
j + ��1

j − ��1
1 − ��2

1 + ��2
w2 + e2

w2

if k = l = n1T2 6= �1w2 ∈ T2\T31

where 0 < � < d1
k+1 if k ¶ l < n; 0 < � < d2

w2 if k = l = n and
T2 6= �. Note that for k = l = n, if T3 6= �, then j ¶ w2 < k = n
from facet condition (9).

For j ∈ 621 l7\T2, consider the points u1
j = u0 +d2

jl�
2
j −d2

jl�
2
1 +

e2
j and ū1

j = u0 + e2
j .

For j ∈ T3, by facet conditions (7) and (8), for j ∈ T3 ∩ 621 k7,
either r4j5 < k or r4j5= l. Consider the following points:

u2
j =















































































u0 +4�g4j5+d2
j1r4j55�

1
g4j5−4�g4j5+d2

j1r4j55�
1
1 −d2

jl�
2
1

+d2
j1 r4j5�

2
j +d2

r4j5+11 l�
2
r4j5+1 + e1

g4j5 + e2
j + e2

r4j5+1

if j ∈ T3 ∩ 621 k71 r4j5 < k1

u0 + 4�g4j5 +d2
jl5�

1
g4j5 − 4�g4j5 +d2

jl5�
1
1

−d2
jl�

2
1 +d2

jl�
2
j + e1

g4j5 + e2
j

if j ∈ T3 ∩ 621 k71 r4j5= l1

u0 −d2
jl�

1
1 −d2

jl�
2
1 +d2

jl�
1
k+1 +d2

jl�
2
j + e2

j

if j ∈ T3 ∩ 6k+ 11 l70

ū2
j =



























u2
j + ��2

j − ��2
r4j5+1 if j ∈ T3 ∩ 621 k71 r4j5 < k1

u2
j + ��1

g4j5 + ��2
j − ��2

l+1 − ��1
k+1

if j ∈ T3 ∩ 621 k71 r4j5= l1

u2
j + ��2

j − ��2
l+1 if j ∈ T3 ∩ 6k+ 11 l71

where 0 < � < d2
r4j5+1 if j ∈ T3 ∩ 621 k7, r4j5 < k; 0 < � < d2

l+1 if
j ∈ T3 ∩ 621 k7, r4j5= l, or j ∈ T3 ∩ 6k+11 l7. Note that j 6= 1 from
facet condition (2).

For j ∈ T2\T3, consider the points

u2
j =















































































u0 +4�g4j5+d2
j1r4j55�

1
g4j5−4�g4j5+d2

j1r4j55�
1
1 −d2

jl�
2
1

+d2
j1 r4j5�

2
j +d2

r4j5+11 l�
2
r4j5+1 + e1

g4j5 + e2
j + e2

r4j5+1

if j ∈ 4T2\T35∩ 621 k71 r4j5 < k1

u0 + 4�g4j5 +d2
jl5�

1
g4j5 − 4�g4j5 +d2

jl5�
1
1

−d2
jl�

2
1 +d2

jl�
2
j + e1

g4j5 + e2
j

if j ∈ 4T2\T35∩ 621 k71 r4j5= l1

u0 −d2
jl�

1
1 −d2

jl�
2
1 +d2

jl�
1
k+1 +d2

jl�
2
j + e2

j

if j ∈ 4T2\T35∩ 6k+ 11 l71

and ū2
j = u0 + e2

j . Note that j 6= 1 from facet condition (2) and if
j ∈ 4T2\T35∩ 6k+ 11 l7, then r4j5= l.

(1) If l 6=n, three more points, u1
k+11 u

1
l+1 and ū1

l+1, are to be
considered. Let q̄ 2= max8j ∈ 6p11 k7: j 6∈ T29 and q 2= max8j ∈ T1:
j ¶ q̄9. By facet condition (8), q̄ exists.

(a) If k = l < n.

u1
k+1 = u0 + 4�q +d1

k+1 +d2
k+15�

1
q −�q�

1
1 −d2

r4q5+11 k�
2
1

+d2
r4q5+11 k�

2
r4q5+1 − 4d1

k+11 n +d2
k+11 n5�

1
k+1

−d2
k+21 n�

2
k+1 + 4d1

k+21 n +d2
k+21 n5�

1
k+2 +d2

k+21 n�
2
k+2

+ e1
q + e2

r4q5+1 − e1
k+1 + e1

k+2 + e2
k+21

u2
l+1 = u0 + 4�q +d2

l+15�
1
q −�q�

1
1 −d2

r4q5+11 l�
2
1

+d2
r4q5+11 l+1�

2
r4q5+1 −d2

l+1�
1
k+1 −d2

l+11 n�
2
l+1

+d2
l+21 n�

2
l+2 + e1

q + e2
r4q5+1 − e2

l+1 + e2
l+21

ū2
l+1 = u2

l+1 + e2
l+10

(b) If k < l < n.

u1
k+1 = u0 + 4�q +d1

k+15�
1
q −�q�

1
1 −d2

r4q5+11 l�
2
1

+d2
r4q5+11 l�

2
r4q5+1 − 4d1

k+11 n +d2
l+11 n5�

1
k+1

+ 4d1
k+21 n +d2

l+11 n5�
1
k+2 + e1

q + e2
r4q5+1 − e1

k+1 + e1
k+21

u2
l+1 = u0 + 4�q +d2

l+15�
1
q −�q�

1
1 −d2

r4q5+11 l�
2
1

+d2
r4q5+11 l+1�

2
r4q5+1 −d2

l+1�
1
k+1 −d2

l+11 n�
2
l+1

+d2
l+21 n�

2
l+2 + e1

q + e2
r4q5+1 − e2

l+1 + e2
l+21

ū2
l+1 = u1

k+1 + e1
l+10

(2) If k < l = n, one more point u1
k+1 is to be considered.

u1
k+1 = u0 + 4�w1 +d1

k+15�
1
w1 −�w1�1

1 −d2
r4w15+11 n�

2
1

+d2
r4w15+11 n�

2
r4w15+1 −d1

k+11 n�
1
k+1 +d1

k+21 n�
1
k+2

+ e1
w1 + e1

r4w15+1 − e1
k+1 + e1

k+20
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Next, for the case of k = l = n with �T1� = 1 (T1 = 8p19), we
show that the 4n− 4 points 8u01 8u

1
j , ū

1
j , u

2
j , ū

2
j 9j∈621 n7\8ū

1
p199 are

affinely independent. For all other cases, we show that the 4n− 4
points 8u01 8u

1
j , ū

1
j , u

2
j , ū

2
j 9j∈621 n7\8ū

1
k+199 are affinely independent.

We assume that the 4n− 4 points associated with a particular
choice of (T1, T2, T3, k, l) lie on the hyperplane

∑n
j=14�

1
jx

1
j +

�2
jx

2
j + �1

j y
1
j + �2

j y
2
j 5=�0.

(1) For the case of k = l = n with T2 = �, by facet condition
(9), we have �T1� = 1. Comparing u0 with ū1

j for j ∈ 621 n7\T1

and ū2
i for i ∈ 621 n7, we get �1

j = �2
i = 0 for j ∈ 621 n7\T1 and

i ∈ 621 n7. Comparing u1
j and ū1

j for j ∈ 621 n7\T1, we get �1
1 = �1

j

for j ∈ 621 n7\T1. Similarly, �2
1 = �2

j for j ∈ 621 n7. Comparing u0

and u1
j , j ∈ T1, we get �1

j =�j4�
1
1 −�1

j 5.
(2) Now consider the cases k = l = n with T2 6= �, or k <

l = n, or k ¶ l < n. Comparing u0 with ū1
j for j ∈ 4621 k7\T15 ∪

6k+ 21 n7 and ū2
i for i ∈ 4621 l7\T35∪ 6l+ 21 n7, we get �1

j = �2
i =

0 for j ∈ 4621 k7\T15 ∪ 6k + 21 n7 and i ∈ 4621 l7\T35 ∪ 6l + 21 n7.
Comparing u0 with ū2

j for j ∈ 6k + 21 n7, we get �1
k+1 = �1

j for
j ∈ 6k + 21 n7. Similarly, we have �2

l+1 = �2
j for j ∈ 6l + 21 n7;

�1
1 = �1

j for j ∈ 621 k7\T1; �2
1 = �2

j for j ∈ 621 l7\T2. If k < n, com-
paring u1

j and ū1
j for j ∈ T1, we get �1

j = �1
k+1 for j ∈ T1 with

k < n. Comparing u1
k+1 and u1

q , we get �1
k+1 = 0. Comparing u2

l+1

and ū2
l+1, we get �2

l+1 = 0. Hence, we have �1
j = �2

i = 0 for j ∈

621 n7\T1, i ∈ 621 n7\T3. For j ∈ T1, comparing u0 and u1
j , we get

�1
j = �j4�

1
1 − �1

j 5 for j ∈ T1. Then, comparing ū1
j for all j ∈ T1,

we get �1
j = �1

p1 for j ∈ T1 ∪ 6k+ 11 n7. Comparing u2
j and ū2

j for
j ∈ 4T2\T35∩ 6k+11 l7, u2

j and ū1
g4j5 for j ∈ 4T2\T35∩ 621 k7, we get

�2
j = �1

1 +�2
1 −�1

p1 for j ∈ T2\T3. Comparing u2
j and ū2

j for j ∈ T3,
u2
l+1 and u1

q , we get �2
j = �2

1 for j ∈ 4621 n7\T25 ∪ T3. Finally,
comparing u2

j and u1
g4j5 for j ∈ T3, we get �2

j = �j4�
1
1 − �1

p15.
Finally, from u0, we get �0 = 4d1

1k+d2
1l5�

1
1 +d2

1l�
2
1 +d1

k+11 n�
1
k+1 +

d2
l+11 n�

2
l+1 + �1

1 + �2
1 .

Therefore, the hyperplane is of the form

�1
1

∑

j∈611 k7\T1

x1
j +�1

p1

∑

j∈T1∪6k+11 n7

x1
j +�2

1

∑

j∈4611 n7\T25∪T3

x2
j

+ 4�1
1 +�2

1 −�1
p15

∑

j∈T2\T3

x2
j + �1

1y
1
1 + �2

1y
2
1

+ 4�1
1 −�1

p15

(

∑

j∈T1

�jy
1
j +�j

∑

j∈T3

y2
j

)

= 4d1
1k +d2

1l5�
1
1 +d2

1l�
2
1 +d1

k+11 n�
1
k+1

+d2
l+11 n�

2
l+1 + �1

1 + �2
1 0

Hence these points define the two-echelon inequality (16) up to
a multiple �1

1 of y1
1 = 1; a multiple �1

2 of y2
1 = 1; a multiple �1

p1 of
∑n

i=1 x
1
i = d1

1n; and a multiple �2
1 of

∑n
i=1 x

2
i = d2

1n. In addition, if
k = 0, then by facet condition (10), T3 6= �, and by facet condition
(3), 1 6∈ T3, thus the point 4d1

1n + d2
1n5�

1
1 + d2

1n�
2
1 + e1

1 + e2
1 +

∑

j∈T3
e2
j is not on the face defined by the two-echelon inequality.

If k = l = n, by facet conditions (1) and (10), 1 6∈ T1 6= �, then the
point 4d1

1n +d2
1n5�

1
1 +d2

1n�
2
1 +e1

1 +e2
1 +

∑

j∈T1
e1
j is not on the face

defined by the two-echelon inequality. For other cases, we have
1 ¶ k < n or 1 ¶ l < n, and the point 4d1

1n + d2
1n5�

1
1 + d2

1n�
2
1 +

e1
1 + e2

1 is not on the face defined by the two-echelon inequality.
Hence, the face is proper. �

Appendix C. Proof of Proposition 5

We prove a series of lemmas to prove Proposition 5. Lemmas (12)
and (13) characterize the nonnegative extreme rays of the projec-
tion cone defined by constraints (33)–(35), where each component
is either 0 or 1. Lemmas (14)–(18) give conditions under which
such an inequality is a nondominated inequality (32).

Lemma 12. Let 4�11�21 �111 �121 �221�11�21 �5 be a nonnega-
tive extreme ray of the projection cone. Then �11

ut = 4�1
t −�1

u 5
+,

�12
ut = 4

∑t
j=u �jt − �1

u 5
+ and �22

ut = 4�2
t −

∑t
j=u �jt − �2

u 5
+ for

1 ¶ u¶ t ¶ n.

Let 4�11�21 �111 �121 �221�11�21 �5 be a nonnegative extreme
ray of the projection cone such that the entries are equal to 0 or 1.
Let A1 = 8t ∈ 611 n72 �1

t = 19, S1 = 8u ∈ 611 n72 �1
u = 19, A2 =

8t ∈ 611 n7: �2
t = 19, S2 = 8u ∈ 611 n72 �2

u = 19, G11 = 84u1 t52 1 ¶
u¶ t ¶ n1�11

ut = 19, G12 = 84u1 t52 1 ¶ u¶ t ¶ n1�12
ut = 19, G22 =

84u1 t52 1 ¶ u¶ t ¶ n1�22
ut = 19, and for t ∈ 611 n7, R= 84j1 t52 1 ¶

j ¶ t ¶ n1�jt = 19. Lemma 12 implies that 4u1 t5 ∈ G11 if and
only if 1 ¶ u¶ t ¶ n, t ∈A1 and u 6∈ S1.

Lemma 13. Let 4�11�21 �111 �121 �221�11�21 �5 be a nonnega-
tive extreme ray of the projection cone such that the entries are
equal to 0 or 1. Then for each t ∈ 611 n7, we must have �R∩ 84j1 t5:
1 ¶ j ¶ t9�¶ 1. Let j4t5 ∈ 601 t7 for t ∈ 611 n7, then R= 84j4t51 t5:
j4t5 6= 0, t ∈ 611 n79.

Proof. Let � = 4�11�21 �111 �121 �221�11�21 �5 be a nonnega-
tive extreme ray of the projection cone such that the entries are
equal to 0 or 1. Let � > 0 be a very small number and consider
the following rays �̂ = 4�̂1, �̂2, �̂11, �̂12, �̂221 �̂1, �̂2, �̂5 and
�̃ = 4�̃1, �̃2, �̃11, �̃12, �̃22, �̃1, �̃2, �̃5 where �̂1

t = �1
t + �, �̃1

t =

�1
t −� for t ∈A1, �̂1

t = �1
t = �̃1

t = 0 for t ∈ 611 n7\A1, �̂2
t = �2

t +�,
�̃2
t = �2

t − � for t ∈A2, �̂2
t = �2

t = �̃2
t = 0 for t ∈ 611 n7\A2, �̂1

t =

�1
t +�, �̃1

t = �1
t −� for t ∈ S1, �̂1

t = �1
t = �̃1

t = 0 for t ∈ 611 n7\S1,
�̂2
t = �2

t + �, �̃2
t = �2

t − � for t ∈ S2 and �̂2
t = �2

t = �̃2
t = 0 for

t ∈ 611 n7\S2. For t ∈ 611 n7, define j4t5 to be the largest index j
with �jt = 1 (if none exists, then let j4t5= 0). Let �̂jt = �̃jt = �jt

for all j and t such that j 6= j4t5 and �̂j4t51 t = �j4t51 t + � and
�̃j4t51 t = �j4t51 t − � for t ∈ 611 n7. For 1 ¶ u¶ t ¶ n, �̂11

ut = �11
ut + �,

�̃11
ut = �11

ut −� if 4u1 t5 ∈G11, �̂11
ut = �11

ut = �̃11
ut = 0 otherwise, �̂12

ut =

�12
ut + �, �̃12

ut = �12
ut − � if 4u1 t5 ∈G12, �̂12

ut = �12
ut = �̃12

ut = 0 other-
wise, �̂22

ut = �22
ut +�, �̃22

ut = �22
ut −� if 4u1 t5 ∈G22, and �̂22

ut = �22
ut =

�̃22
ut = 0 otherwise. Now, these two rays �̂ and �̃ (�̂ 6= �̃6=�)

are in the projection cone and we have � = �̂/2 + �̃/2. As �
is an extreme ray, both rays �̂ and �̃ should be multiples of it.
Therefore, we cannot have �̂jt = �̃jt = 1 for any j < j4t5. Hence
�R∩ 84j1 t52 1 ¶ j ¶ t9�¶ 1 for all t ∈ 611 n7. �

As a result, we can conclude that 4u1 t5 ∈ G12 if and only if
1 ¶ u¶ t ¶ n, u¶ j4t5 and u 6∈ S1 and 4u1 t5 ∈G22 if and only if
1 ¶ u¶ t ¶ n, t ∈A2, u 6∈ S2 and u> j4t5.

The projection inequalities corresponding to the nonnegative
extreme rays with equal positive entries are of the form

∑

u∈S1

x1
u +

∑

u∈S2

x2
u +

∑

u6∈S1

(

∑

t2 4u1 t5∈G11

d1
t +

∑

t2 4u1 t5∈G12

d2
t

)

y1
u

+
∑

u 6∈S2

∑

t2 4u1 t5∈G22

d2
t y

2
u ¾

∑

t∈A1

d1
t +

∑

t∈A2

d2
t 0 (C1)

It is easy to see that it is of no use to make j4t5 > 0 for t 6∈A2.
So we are interested in the case with j4t5= 0 for t 6∈A2.

Let ti = maxt∈Ai
t if Ai 6= �, and ti = 0 otherwise, for i = 112.
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Lemma 14. If A1 6= � and there exists t̂ < t1 with t̂ 6∈ A1, then
inequality (C1) is dominated by other inequalities (C1).

Proof. Suppose that A1 6= � and there exists t̂ < t1 with t̂ 6∈ A1.
Then we would like to show that the projection inequality defined
by sets 4A1, A2, S1, S2, R, G11, G12, G225 is dominated. Consider
the projection inequalities (C1) for sets 4A1

1, A2, S1, S2, R, G1
11,

G12, G225 and (A2
1, A2, S1, S2, R, G2

11, G12, G22) where A1
1 =

A1 ∪ 8t̂9, A2
1 = A1\8t

19, G1
11 = G11 ∪ 84u1 t̂5: u 6∈ S1, u¶ t̂9 and

G2
11 =G11\84u1 t

15: u 6∈ S1, u¶ t19. The first inequality is

∑

u∈S1

x1
u +

∑

u∈S2

x2
u +

∑

u6∈S1

(

∑

t2 4u1 t5∈G11

d1
t +

∑

t2 4u1 t5∈G12

d2
t

)

y1
u

+
∑

u 6∈S2

∑

t2 4u1 t5∈G22

d2
t y

2
u

¾
∑

t∈A1

d1
t +

∑

t∈A2

d2
t +d1

t̂

(

1 −
∑

u 6∈S11 u¶t̂

y1
u

)

1

and the second inequality is

∑

u∈S1

x1
u +

∑

u∈S2

x2
u +

∑

u 6∈S1

(

∑

t2 4u1 t5∈G11

d1
t +

∑

t2 4u1 t5∈G12

d2
t

)

y1
u

+
∑

u 6∈S2

∑

t2 4u1 t5∈G22

d2
t y

2
u

¾
∑

t∈A1

d1
t +

∑

t∈A2

d2
t −d1

t1

(

1 −
∑

u 6∈S11 u¶t1

y1
u

)

0

Multiplying the first inequality with d1
t1

, the second with d1
t̂
,

and dividing the sum by d1
t1

+d1
t̂
, we obtain

∑

u∈S1

x1
u +

∑

u∈S2

x2
u +

∑

u 6∈S1

(

∑

t2 4u1 t5∈G11

d1
t +

∑

t2 4u1t5∈G12

d2
t

)

y1
u

+
∑

u 6∈S2

∑

t2 4u1 t5∈G22

d2
t y

2
u

¾
∑

t∈A1

d1
t +

∑

t∈A2

d2
t +

d1
t̂
d1
t1

d1
t̂
+d1

t1

(

1 −
∑

u 6∈S11 u¶t̂

y1
u

)

−
d1
t̂
d1
t1

d1
t̂
+d1

t1

(

1 −
∑

u 6∈S11 u¶t1

y1
u

)

0

As t1 > t̂, we have
∑

u6∈S11 u¶t1 y
1
u ¾

∑

u 6∈S11 u¶t̂ y
1
u. As a result,

the above inequality dominates the projection inequality for
4A11A21 S11 S21R1G111G121G225. �

Lemma 15. If A2 6= � and there exists t̂ < t2 with t̂ 6∈ A2, then
inequality (C1) is dominated by other inequalities (C1).

Proof. Consider the projection inequality defined by sets
4A11A21 S11 S21R1G111G121G225 and suppose that A2 6= � and
there exists t̂ < t2 with t̂ 6∈A2.

Let A1
2 =A2 ∪ 8t̂9, A2

2 =A2\8t
29, R1 =R∪ 84min8j4t25, t̂9, t̂59,

R2 = R\84j4t251 t259, G1
12 = G12 ∪ 84u1 t̂5: u ¶ t̂, 4u1 t25 ∈ G129,

G1
22 = G22 ∪ 84u1 t̂5: u ¶ t̂, 4u1 t25 ∈ G229, G2

12 = G12\84u1 t
25:

u¶ t29, G2
22 = G22\84u1 t

25: u¶ t29. First observe that sets
4A1, A1

2, S1, S2, R1, G11, G1
12, G1

225 and 4A1, A2
2, S1, S2, R2,

G11, G2
12, G2

225 give valid projection inequalities. The projection
inequality for 4A1, A1

2, S1, S2, R1, G11, G1
12, G1

225 is

∑

u∈S1

x1
u +

∑

u∈S2

x2
u +

∑

u 6∈S1

(

∑

t2 4u1 t5∈G11

d1
t +

∑

t2 4u1 t5∈G12

d2
t

)

y1
u

+
∑

u 6∈S2

∑

t2 4u1t5∈G22

d2
t y

2
u

¾
∑

t∈A1

d1
t +

∑

t∈A2

d2
t

+d2
t̂

(

1 −
∑

u2 4u1 t25∈G121 u¶t̂

y1
u −

∑

u2 4u1 t25∈G221 u¶t̂

y2
u

)

1

and the projection inequality for 4A1, A2
2, S1, S2, R2, G11,

G2
12, G2

225 is

∑

u∈S1

x1
u +

∑

u∈S2

x2
u +

∑

u 6∈S1

(

∑

t2 4u1 t5∈G11

d1
t +

∑

t2 4u1 t5∈G12

d2
t

)

y1
u

+
∑

u 6∈S2

∑

t2 4u1 t5∈G22

d2
t y

2
u

¾
∑

t∈A1

d1
t +

∑

t∈A2

d2
t

−d2
t2

(

1 −
∑

u2 4u1 t25∈G121 u¶t2

y1
u −

∑

u2 4u1 t25∈G221 u¶t2

y2
u

)

0

Again, multiplying the first inequality with d2
t2

, the second with
d2
t̂
, and dividing the sum by d2

t2
+d2

t̂
, we obtain

∑

u∈S1

x1
u +

∑

u∈S2

x2
u +

∑

u 6∈S1

(

∑

t2 4u1t5∈G11

d1
t +

∑

t2 4u1 t5∈G12

d2
t

)

y1
u

+
∑

u 6∈S2

∑

t2 4u1 t5∈G22

d2
t y

2
u

¾
∑

t∈A1

d1
t +

∑

t∈A2

d2
t

+
d2
t̂
d2
t2

d2
t̂
+d2

t2

(

∑

u2 4u1 t25∈G121 u¶t2

y1
u +

∑

u2 4u1 t25∈G221 u¶t2

y2
u

−
∑

u2 4u1 t25∈G121u¶t̂

y1
u −

∑

u2 4u1 t25∈G221 u¶t̂

y2
u

)

0

As

∑

u2 4u1 t25∈G121 u¶t2

y1
u +

∑

u2 4u1 t25∈G221 u¶t2

y2
u −

∑

u2 4u1 t25∈G121 u¶t̂

y1
u

−
∑

u2 4u1 t25∈G221 u¶t̂

y2
u

is nonnegative, the above inequality dominates the projection
inequality (C1) for (A1, A2, S1, S2, R, G11, G12, G22). �

These two lemmas imply that undominated projection inequal-
ities have sets A1 and A2 of the form A1 = 611 t17 and A2 = 611 t27.

Lemma 16. If t1 > t2, then inequality (C1) is dominated by other
inequalities (C1).
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Proof. Consider the projection inequality defined by sets 4A1, A2,
S1, S2, R, G11, G121 G225 with t1 > t2.

The projection inequality for 4A1
1, A2, S1, S2, R, G1

11, G12, G225,
where A1

1 =A1\8t
19, G1

11 =G11\84u1 t
152 u 6∈ S11 u¶ t19, is

∑

u∈S1

x1
u +

∑

u∈S2

x2
u +

∑

u6∈S1

(

∑

t2 4u1 t5∈G11

d1
t +

∑

t2 4u1 t5∈G12

d2
t

)

y1
u

+
∑

u 6∈S2

∑

t2 4u1t5∈G22

d2
t y

2
u

¾
∑

t∈A1

d1
t +

∑

t∈A2

d2
t −d1

t1

(

1 −
∑

u 6∈S11u¶t1

y1
u

)

0

The projection inequality for 4A1, A1
2, S1, S2, R1, G11, G1

12, G225

where A1
2 = A2 ∪ 8t2 + 19, R1 = R∪ 84t2 + 11 t2 + 159 and G1

12 =

G12 ∪ 84u1 t2 + 15: u 6∈ S1, u¶ t2 + 19 is

∑

u∈S1

x1
u +

∑

u∈S2

x2
u +

∑

u 6∈S1

(

∑

t2 4u1 t5∈G11

d1
t +

∑

t2 4u1 t5∈G12

d2
t

)

y1
u

+
∑

u 6∈S2

∑

t2 4u1t5∈G22

d2
t y

2
u

¾
∑

t∈A1

d1
t +

∑

t∈A2

d2
t +d2

t2+1

(

1 −
∑

u 6∈S11u¶t2+1

y1
u

)

0

Now, we multiply the first inequality with d2
t2+1

, the second in-
equality with d1

t1
, add them up, and divide by d2

t2+1
+d1

t1
to obtain

∑

u∈S1

x1
u +

∑

u∈S2

x2
u +

∑

u 6∈S1

(

∑

t2 4u1 t5∈G11

d1
t +

∑

t2 4u1 t5∈G12

d2
t

)

y1
u

+
∑

u 6∈S2

∑

t2 4u1 t5∈G22

d2
t y

2
u

¾
∑

t∈A1

d1
t +

∑

t∈A2

d2
t

+
d1
t1
d2
t2+1

d2
t2+1

+d1
t1

(

∑

u 6∈S11 u¶t1

y1
u −

∑

u 6∈S11 u¶t2+1

y1
u

)

0

This inequality dominates the projection inequality for 4A1, A2,
S1, S2, R, G11, G12, G225 since

∑

u 6∈S11u¶t1 y
1
u−
∑

u 6∈S11u¶t2+1y
1
u

¾0. �

Now we limit our investigation to the projection inequalities
defined by sets A1 and A2 of the form A1 = 611 t17 and A2 = 611 t27

with t2 ¾ t1 ¾ 0. Note that if S1 or S2 has an element larger than
t2, then the resulting inequality is dominated. Hence, S1 ⊆A2 and
S2 ⊆A2. The projection inequalities under consideration have the
form

∑

u∈S1

x1
u+

∑

u∈S2

x2
u+

∑

u∈A2\S1

�̂uy
1
u+

∑

u∈A2\S2

�̂uy
2
u¾d1

1t1 +d2
1t2 1 (C2)

where �̂u = d1
ut1

+
∑

t2 4u1 t5∈G12
d2
t = d1

ut1
+
∑

t∈A2 2 u¶j4t5 d
2
t for u ∈

A2\S1 and �̂u =
∑

t2 4u1 t5∈G22
d2
t =

∑

t∈A2 2 j4t5<u¶t d
2
t for u ∈A2\S2.

Lemma 17. If there exists t̂ ∈ A2 with j4t̂5 > t1, then inequality
(C2) is dominated by other inequalities (C2).

Proof. If there exists t̂ ∈ A2 with j4t̂5 > t1, then consider
the projection inequalities defined by 4A1

1, A2, S1, S2, R,
G1

11, G12, G225, where A1
1 = A1 ∪ 8j4t̂59 and G1

11 = G11 ∪

84u1 j4t̂55: u 6∈ S1, u ¶ j4t̂59 and 4A1, A1
2, S1, S2, R1, G11,

G1
12, G1

225, where A1
2 = A2\8t̂9, R1 = R\84j4t̂51 t̂9, G1

12 =

G12\84u1 t̂5: u 6∈ S1, u¶ t̂9 and G1
22 =G22\84u1 t̂5: u 6∈ S2, u¶ t̂9.

These inequalities are

∑

u∈S1

x1
u +

∑

u∈S2

x2
u +

∑

u6∈S1

(

∑

t2 4u1 t5∈G11

d1
t +

∑

t2 4u1 t5∈G12

d2
t

)

y1
u

+
∑

u 6∈S2

∑

t2 4u1 t5∈G22

d2
t y

2
u

¾
∑

t∈A1

d1
t +

∑

t∈A2

d2
t +d1

j4t̂5

(

1 −
∑

u 6∈S11 u¶j4t̂5

y1
u

)

1

and

∑

u∈S1

x1
u +

∑

u∈S2

x2
u +

∑

u 6∈S1

(

∑

t2 4u1 t5∈G11

d1
t +

∑

t2 4u1 t5∈G12

d2
t

)

y1
u

+
∑

u 6∈S2

∑

t2 4u1t5∈G22

d2
t y

2
u

¾
∑

t∈A1

d1
t +

∑

t∈A2

d2
t −d2

t̂

(

1−
∑

u24u1t̂5∈G12

y1
u−

∑

u24u1t25∈G22

y2
u

)

0

We multiply the first inequality with d2
t̂
, the second inequality with

d1
j4t̂5

, add them and divide by d1
j4t̂5

+d2
t̂

to obtain

∑

u∈S1

x1
u +

∑

u∈S2

x2
u +

∑

u 6∈S1

(

∑

t2 4u1 t5∈G11

d1
t +

∑

t2 4u1 t5∈G12

d2
t

)

y1
u

+
∑

u 6∈S2

∑

t2 4u1t5∈G22

d2
t y

2
u

¾
∑

t∈A1

d1
t +

∑

t∈A2

d2
t +

d1
j4t̂5

d2
t̂

d1
j4t̂5

+d2
t̂

·

(

−
∑

u 6∈S11u¶j4t̂5

y1
u +

∑

u2 4u1t̂5∈G12

y1
u +

∑

u2 4u1 t25∈G22

y2
u

)

0

Now because 8u2 4u1 t̂5 ∈G129= 8u 6∈ S12 u¶ j4t̂59,

−
∑

u 6∈S11u¶j4t̂5

y1
u +

∑

u2 4u1 t̂5∈G12

y1
u +

∑

u2 4u1 t25∈G22

y2
u

=
∑

u2 4u1 t25∈G22

y2
u ¾ 00

Hence, this inequality dominates the projection inequality (C2)
for 4A11A21 S11 S21R1G111G121G225. �

If j4t5 ¶ t1 for all t ∈ A2, then for u ∈ A2\A1, �̂u = 0.
Hence the projection inequality (C2) simplifies to inequality
(36) with �̂u = d1

ut1
+
∑

t∈A2 2 u¶j4t5 d
2
t for u ∈ A1\S1 and �̂u =

∑

t∈A2 2 j4t5<u¶t d
2
t for u ∈A2\S2. Finally, observe that if there exists

u ∈ S1 with u > t1, as j4t5¶ t1 for all t ∈ A2, removing u from
S1 yields a stronger inequality. As a result, the interesting pro-
jection inequalities are defined by 0 ¶ t1 ¶ t2 ¶ n, A1 = 611 t17,
A2 = 611 t27, S1 ⊆A1, S2 ⊆A2 and j4t5 ∈ 601min8t1 t197 for t ∈A2.

Lemma 18. In a nondominated projection inequality (36), j415 ∈

60117 and j4t + 15 ∈ 8j4t51 t + 19 for all t ∈A2 with t ¶ n− 1.
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Proof. Suppose that 0¶ t1¶ t2 ¶n, A1 = 611t17, A2 = 611t27,
S1 ⊆A1 and S2 ⊆A2 are given. Define

â4t1 j5=
∑

u∈A1\S1 2 u¶j

y1
u +

∑

u∈A2\S2 2 j<u¶t

y2
u0

Then the left-hand side of inequality (C2) is equal to
∑

u∈S1
x1
u +

∑

u∈S2
x2
u +

∑

u∈A1\S1
d1
ut1
y1
u +

∑

t∈A2
d2
t â4t1 j4t55. So for a given

vector 4x11y11x21y25 and fixed A1, A2, S1, and S2, the best j4t5
choices are those with minimum â4t1 j4t55 values for each t ∈A2.
Now let t ∈ A2 with t ¶ n − 1 and observe that for a given j ∈

601 t7, â4t + 11 j5= â4t1 j5+
∑

u∈A2\S2 2 u=t+1 y
2
u. This implies that

arg minj∈601 t7 â4t + 11 j5 = arg minj∈601 t7 â4t1 j5. Hence j4t + 15 ∈

8j4t51 t + 19. �
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