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We present a textbooklike treatment of hybrid systems employing both optical and electrical interconnec-
tions. We investigate how these two different interconnection media can be used in conjunction to
realize a system not possible with any alone. More specifically, we determine the optimal mix of optical
and normally conducting interconnections maximizing a given figure-of-merit function. We find that
optical interconnections have relatively little to offer if the optical paths are constrained to lie on a plane
(such as in an integrated optics system). However, if optical paths are permitted to leave the plane, they
may enable considerable increase in performance. In any event the prize in terms of performance is
accompanied by a penalty in terms of system power and/or size.
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1. Introduction

Computing systems are becoming increasingly lim-
ited by the signal delay, space consumption, and
power dissipation associated with the complex net-
work of resistive wiring that interconnects their
switching elements."- It has been suggested that
the use of optical or of superconducting interconnec-
tion media might alleviate this trend and enable the
construction of computing systems that are superior
to what can be constructed by use of normally
conducting interconnections alone.5r3

In previous research we compared the system size,
the signal delay, and the power dissipation of systems
employing only one interconnection medium at a
time.' 4 We found that normally conductingintercon-
nections were preferable for smaller numbers of
elements, whereas optical and superconducting inter-
connections were preferable for larger numbers of
elements. This suggests that we can do better by
joint use of normal conductors (for the shorter connec-
tions) and optics or superconductors (for the longer
connections). Indeed, the concept of use of optical
interconnections for higher levels of the interconnec-
tion hierarchy has received more widespread atten-
tion than all optically connected systems. The ques-
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tion is, beyond what point should we start employing
optics?

The way this problem was first addressed in the
literature was by derivation of a breakeven distance
beyond which the use of optical communication was
preferable to the use of normal conductors. For
instance, Feldman et al.'5 and Miller9 claimed that
optical communication is energetically favorable for
connections of length / > 1 mm or so. There also
have been attempts to compare the information den-
sity of optical and normally conducting interconnec-
tions in a similar manner. 7

Whereas this approach to comparing various inter-
connect media can be instructive and useful, it is
nevertheless unsatisfactory in many ways. First, it
enables comparison of only one quantity at a time
without attention being paid to the others. Whether
information density or energy is of greater impor-
tance depends not only on whether the system is
heat-removal, wireability, or device limited, but also
on the relative emphasis we give to various measures
of performance (signal delay, bit-repetition rate, etc.)
and cost (system size and power dissipation). Since
the length scale of the system is related to the
properties of the interconnections through wireabil-
ity and heat-removal requirements in a complicated
manner, we do not know initially the physical length
/ of a line of length r in (dimensionless) grid units.
The comparison of isolated lines of given length has
little meaning when these lines are embedded in a
system.

Even the comparison of an all optically connected
system with an all electrically connected system (as in
Ref. 14) does not tell us which connections to imple-
ment optically in a hybrid system. Other research
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falling into this category is that of Feldman et al., who
compare a three-dimensional optical system to a
two-dimensional electrical system,'6 that of Stirk and
Psaltis, who compare three-dimensional optical and
electrical permutation network implementations
based on yield considerations,'7 and that of Kiamilev
et al.18 The problem of how to use both media in
conjunction has received less attention; Krishnamoor-
thy et al. discuss how a perfect-shuffle network
should be partitioned into very-large-scale-integrated
(VLSI) chips, which are then interconnected opti-
cally.' 9

For the reasons discussed above we take a more
general approach to this problem. We start with a
layout of N elements (gates or switches), which we
partition into N/N 1 groups of N1 elements each (Fig.
1). All connections internal to a group are made
electrically, whereas connections between elements
in different groups are made optically. Notice that
N1 = N corresponds to an all electrically connected
system, whereas N1 = 1 corresponds to an all optically
connected system. For given total number of ele-
ments N and bit-repetition-rate B we calculate the
optimal value of N1 maximizing our optimization
function r, which in general can be a function of
signal delay, total system size, and power consump-
tion. We are interested mostly in high-performance
systems for which system size and power dissipation
are only secondary considerations, the primary consid-
eration being minimization of signal delay. We also
consider optimization functions putting a greater
emphasis on cost of size and power.

In Section 2 we describe the models and the
important variables used in this study. Section 3
outlines the general procedure, and Section 4 pro-
vides some remarks on the numerical examples.
The major results of this paper are derived in Section
5 (two-dimensional systems), Section 6 (the effect of
the cost of system size being taken into account),
Section 7 (the effect of repeaters being used), and
Section 8 (three-dimensional systems); our predomi-
nantly analytical treatment is illustrated by numeri-
cal examples. Section 9 provides discussion and
conclusions.

Results of this study were first presented in Ref. 20
and subsequently in Ref. 21. This paper is a simpli-
fied and condensed version of the more elaborate

Fig. 1. Partitioning a system of N elements into N/N 1 groups of
N1 elements each (N/N, = 9).

analysis presented in Ref. 21. Unlike that study, in
which the aim was a more general formulation, here
we employ the simplest treatment that still leads to
the same conclusions, so that our exposition is more
transparent and instructive. The reader is referred
to that study for extensions and generalizations.

Our analysis involves several approximations.
Some are made to maintain analytic simplicity and
transparency, others are made to maintain generality.
In order to be more exact, we would have to introduce
several new parameters and make many arbitrary
assumptions. Dependent on the details of the de-
sign, additional factors or terms would have to be
included in our expressions. We avoided doing so
when the error incurred does not exceed a factor of
the order of unity, since we believe that there is no
point in trying to specify and to keep track of such
factors in this type of (general) analysis.

2. Model Description

A. Wireability Limitations and Connectivity Model

The spacing between the elements (switches and
gates) of a computing system must be large enough to
permit sufficient space for the interconnections to
pass between them. Systems employing longer con-
nections require greater interelement spacing than
systems employing shorter connections. We speak
of systems employing greater fractions of longer
connections as being highly connected. Here we
present a model that enables us to quantify the
connectivity of computer circuits to first order, and
we can predict the interelement spacing necessary to
ensure that there is enough space for implementing
the desired pattern of connections. This is not the
only such model possible, nor one that is suited for
every possible situation. However, there are strong
rational and empirical foundations for adopting it, in
addition to its being well suited for the type of
analysis we intend to pursue.22"14 2'

For the purpose of this study a processing system is
a collection of N given similar elements connected to
each other according to a prespecified graph. A list
of symbols is provided as Table 1. k denotes the
number of connections (graph edges) per element (for
simplicity we are considering pairwise connections
only; the extension to fan-in and fan-out is not
considered); thus there is a total of kN connections.
Within a factor of 2, we may also interpret kN as the
total number of input-output ports. dd denotes the
linear extent of the elements. Let the N >> 1
elements comprising our system be laid out on an e
(equal to two or three) -dimensional Cartesian grid of
as yet unspecified lattice constant d with N'/e ele-
ments along each dimension (Fig. 2). Figure 3 de-
picts a hierarchical partitioning of this array of cells.

During the course of our analyses it is necessary to
specify the following quantities in order to obtain
explicit results:

(1) The average connection length T of the layout
(in grid units).
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Table 1. List of Symbols

A Cross-sectional area associated with each physical line.
Y Area (base area) of two (three) -dimensional system.
B Bit-repetition rate along each edge of connection

graph.
d Linear extent of a unit cell, identical to interelement

spacing.
dd Linear extent of an element.
dm Center-to-center spacing of modules.
dtr Linear extent of an optical transducer.
di Linear extent of a module of N elements.
e Euclidean dimension of layout space.
E Energy associated with each transmitted bit of infor-

mation.
f Identical to W/X for optical systems.
k Number of graph edges (connections) per element.
/ Length of a line in real units.
.2 Linear extent of the system.
M Number of interconnection layers.
N Number of elements.
Ni Number of elements in each module.
p Rent exponent of layout.
Se Total power dissipation.
Q Maximum amount of power we can remove per area.
r Length of a line in grid units.
S Inverse of worst-case signal delay.
Td Response time of devices.
Tr Minimum pulse-repetition interval along a line.
V Nominal voltage level.
W Transverse linear extent associated with each physical

line.
Wmin Minimum manufacturable linewidth.
a Defined in Eq. (9).
13 Defined in Eq. (12).
y Defined in Eq. (10).
r Optimization function.
K Coefficient for average connection length.
X Optical wavelength.
X Worst-case signal delay.

seTM~~~-~771- 
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Fig. 2. Layout of the connection graph.

gives the expected number of connections in our
system with lengths lying in the interval [ro, r + Ar]
and approximately satisfies f Ng(r)dr = kN.
{Thus k-lg(r) may be interpreted as a probability
distribution defined over [1, rmaj } rmax 1 denotes
the longest connection length (in grid units), assumed
to be of the order of the linear extent of the system.
We take rma = Nl/e without concerning ourselves
with precise geometrical factors. (As we have al-
ready discussed, there seems to be little gained by our
trying to specify and carry around factors such as V.)
The parameterp, known as the Rent exponent, is our
measure of connectivity. Systems with large Rent
exponents have a large fraction of longer connections.

(2) The longest connection length rma (in grid
units).

(3) The number of connections P(N') emanating
from a group of N' elements in the partitioning of
Fig. 3.

All of the above quantities can be specified by postula-
tion of the distribution of line lengths for our system.
(The terms line, connection, and graph edge are used
interchangeably.) Obviously we cannot hope to ac-
count for all possible connection patterns. Rather
we seek a simple analytic distribution function with a
few variable parameters, which we hope is representa-
tive of the wireability requirements of typical circuits.

Provided the parameter 0 p < 1 (to be discussed
shortly) is not too close to unity (say p < 0.9), we
assume the line-length distribution g(r) to be of the
form22-24 (for an expression valid for all values of 0 <
p < 1, see Ref. 21)

g(r) = ke(1 -p)re(Pl)l

where r denotes distances in terms of grid spacing so
that physical distances are given by/= rd. Ng(ro)Ar

11~~~ II - - - - - -

Fig. 3. Binary hierarchical partitioning of the array of cells. A
group at the ith level has N' = N/4i cells.
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Whenp is small, it is more likely for a connection to be
made to close-by rather than to distant elements.

Since e(p - 1) - 1 < 0, we observe that Eq. (1) is
simply an inverse power law. Gien an empirical
line-length distribution, one may attempt to fit Eq. (1)
by suitably choosing p. If this is not possible, some
other functional form must be employed. We dis-
cuss our preference for this type of distribution in
Ref. 22.

The average connection length r = k-1 frma rg(r)dr
can be calculated as

r K(p, e)NP (e)/e (2)

K(p, e) 1 -e(l -p) (3)

for p > (e - 1)/e (which is the only case to be
discussed here; locally connected systems with smaller
values of p usually do not suffer from interconnect
limitations and thus are not interesting from the
viewpoint of this paper). Equation (3) is the defini-
tion of the coefficient K appearing in relation (2).

In order to ensure that there is enough space
between the elements for the connections, we need to
set the interelement spacing d large enough to permit
the passage of at least approximately kr connections
through each elementary cell.25 26 For instance, for
an e = 2 -dimensional system, if the width of each
connection is W, then the minimum value of d would
be krW. The linear extent 2 of the system would
then be at least Y = N1/2 krW = k KNPW, where in the
last step we used relation (2). Of course, the linear
extent must also be at least 2 = N

1 / 2dd. Thus the
system linear extent would be given by the greater of
the right-hand sides of these equations. If the tech-
nology permits M connection layers, this can be
written as

y = max(N1 /2 dd, kKNPW/M). (4)

For larger values of N the second term dominates
since we are restricting ourselves to the case p < 1/2.
The same analysis can be repeated for an e = 3
-dimensional system, resulting in

2 = max[N1/3 dd, (kKNP)'/2 W]. (5)

Our line-length distribution is consistent with the
following expression for the number of connections
P(N') emanating from a group of N' elements23 24:

P(N') = kN'P. (6)

Equation (6), historically known as Rent's rule, is
valid provided N' is not very close to N (say, N' <
N/4). This equation implies that the number of
connections emanating from the boundaries of a
group increases sublinearly with the number of ele-
ments N' in the group. Larger values of p corre-
spond to a stronger increase with N'.

The reader is referred to Refs. 14, 21, and 22 for

discussion, elaboration, and justification of this model,
as well as an extensive list of references. The essen-
tial assumption we make is that we can speak mean-
ingfully about a distribution of line lengths for our
system. Readers who prefer some other form for the
function g(r) may easily modify the results of this
paper by using appropriate expressions for r, rmar and
P(N') corresponding to their particular choice of g(r).
The qualitative results of this paper (for instance,
that a particular quantity increases with increasing
connectivity) remain applicable regardless of how one
chooses to model or measure connectivity.

B. Heat-Removal Model

The interelement spacing of a computing system
must also be large enough that we can successfully
remove the dissipated power. Packing the elements
too densely may result in unacceptable temperature
rises and destruction of the system. For systems in
which the power-dissipating elements are confined to
a planar surface we assume that there is an upper
limit to the amount of power we can remove per unit
area, denoted by Q (W/m2). Thus power dissipation
! 9 and linear extent Y of a square system must
satisfy Q22 2 3.

For systems in which the power-dissipating ele-
ments are distributed throughout a volume, one can
again quantify our heat-removal capability by the
quantity Q, this time interpreted as the amount of
power we can remove per unit cross-sectional area of
the volume.1' 27 We do not require this result, how-
ever.

C. System Characterization

In this study we assume that the performance of our
systems can be characterized in terms of those param-
eters: the number of elements, N, the bit-repetition
rate, B, along each edge of the connection graph, and
the inverse signal delay, S = 1/T. Although it would
certainly be desirable, it is not possible to arbitrarily
increase S, B, and N simultaneously because of
physical limitations. For simplicity the rate B (bits/s)
at which information is piped through the connec-
tions is assumed to be the same for all connections.
Likewise, signal delay T is taken as the worst case
(maximum) over all connections, as is appropriate for
synchronous systems.

D. Interconnection Models

We characterize physical interconnection media in
terms of the following parameters: (i) Interconnec-
tion length A. (ii) Cross-sectional area A or trans-
verse linear extent W (where A = W2). These param-
eters define packing density for three- and two-
dimensional systems, respectively, and thus include
any necessary line-to-line separations. (iii) Signal
delay T. (iv) Minimum pulse-repetition interval Tr,
i.e., the minimum time interval between consecutive
bits on the line. (v) The energy per transmitted bit,
E. (Subscripts are used whenever necessary to clarify
whether one of the above parameters is associated
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with an optical or a normally conducting line, e.g., E0
orEs.)

Td denotes the response time of the devices (gates
and optical transducers). Of course in general the
value of Td may be different for each of these, but for
simplicity we assume that the rate at which the gates
may be switched and the optical sources modulated
are more or less the same. In almost all cases,
minimum bit-repetition interval T cannot be less
than Td. This limits the rate B at which we can pipe
information through each connection. Thus we
assume that B is always specified so as to satisfy B <
1/Td. (B can be increased beyond /Td by use of
several physical channels in parallel to establish each
connection or by employment of wavelength-division
multiplexing. Both complications, discussed in Ref.
14, are avoided in this paper.)

In the following sections we present models for
optical and normally conducting interconnections in
their simplest possible form. Detailed derivations
and elaborations may be found in Refs. 14 and 21.

1. Optical Interconnections
The cross-sectional area per independent spatial chan-
nel is taken to be proportional to the wavelength
squared: A = W2 = (fX)2, where the constant f can
be as small as 1 for a diffraction-limited system but
may be much larger in practice. In the context of a
two-dimensional integrated optics system this simply
means that waveguides can be packed at a transverse
density of one every W = f. We have argued
elsewhere that this is a suitable model for three-
dimensional systems as well,28'29'21 at least from a
fundamental perspective. Of course, if one is con-
fronted with a particular optical architecture, as in
Refs. 30 and 16, one can determine the space required
for communication directly without resorting to pa-
rameter W. The analyses presented in this paper
can be easily adapted to such architectures.

The signal delay is taken to be the greater of the
speed-of-light delay and the device response time:
X = max(//c, Td). Since the effects of dispersion and
attenuation can be made small for the length scales in
consideration, minimum pulse-repetition interval
Tr Td and energy per transmitted bit E are
assumed to be constants. The value of E0 is deter-
mined largely by the properties of the light
source/modulator and the detector.9"5

As a simple example, let us derive the signal delay
for a wireability-limited (that is, the interelement
spacing is set by wireability limitations) two-dimen-
sional integrated optics system with very small ele-
ments (dd negligible), very fast devices (Td negligible),
and only one connection layer. Using /ma. = Y and
Eq. (4), we obtain14

T = (max/C = '/c = k KNPfX/c, (7)

and S = 1/T. If the system is heat-removal limited,
QY2 must exceed the total power dissipation 9 =
kNEoB (since there are kN connections dissipating

EoB each); thus the signal delay is given by

= max/C = '/c = (kNE.B/Q)'/ 2 /c. (8)

2. Normally Conducting Interconnections
Shorter normally conducting interconnections can be
left unterminated, whereas longer ones must be
terminated. However, detailed analysis permitting
termination of conducting lines shows that it is
optimal to start employing optical interconnections at
lengths for which it is not yet necessary to terminate
lines.21 Thus it makes little if any difference in our
results if we restrict our attention to unterminated
lines only. This permits considerable simplification.

The relationship between the rise-time, the length,
and the cross-sectional parameters of an untermi-
nated RC line is given by Refs. 14 and 21

TRC = CL w (9)

where a is a constant proportional to the resistivity of
the conductor and the permittivity of the dielectric
isolating the conductor from the ground plane. It is
assumed that the optimal ratios between all trans-
verse dimensions of the line are maintained for
different values of W. (A line with width comparable
to its height is close to optimal. Increasing the width
increases capacitance and reduces packing density.
Increasing the height increases fringe effects, again
forcing a reduction in packing density, without im-
proving the capacitance considerably.9 4 ) Although
we refer the reader to the above references for a
derivation, it is easy to convince oneself that this
equation makes sense. TRC is proportional to RC/2,
where R and C are the resistance and the capacitance
of the line per unit length. C is proportional to the
ratio of the width of the line to the height of the
dielectric; thus it is not affected by scaling of W. On
the other hand, R is inversely proportional to both
the width of the line and the height of the conductor;
thus R cX 1/W2 . Of course, no matter how small the
rise time, the signal delay cannot be less than device
delay Td, so = max(rRc, Td). The energy per trans-
mitted bit is given by

(10)

where y is a constant proportional to the permittivity
of the dielectric and the square of the nominal
voltage, V. The energy is proportional to C/V 2, and
since C is not affected by scaling W, the above
equation is justified.

For simplicity we assume that all lines in a given
system are of the same width W. (This assumption
is relaxed in Ref. 14.)

Again, as an example, let us derive the signal delay
for a two-dimensional system with very small ele-
ments and very fast devices. Using ma. = Y and Eq.
(4), we find14

T = CL/2a /W 2 = I(kiNP/M)2 . (11)
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For an unterminated RC line the signal delay is also
the minimum bit-repetition interval, which deter-
mines the maximum bit-repetition rate. Thus B <
S= 1/T.

The above result is scale invariant' 4; i.e., it does not
depend on W. If technology enables us to manufac-
ture very fine lines, heat-removal requirements will
determine how much we can scale down the system
and thus its minimum linear extent, but this will
have no effect on the delay (provided the scale of the
system does not have to be so large that the lines
become propagation limited14). To find the heat-
removal-limited linear extent of the system, first note
that the dissipation associated with each cell is
,yk/B = yk-dB [obtained by Eq. (10) and because
there are k connections per cell with average length

= d, switched at a rate B]. Using relation (2) and
requiring that the power dissipation per cell not
exceed Qd2, we can show that the system linear
extent 2 = N1/2d = YkKNPB/Q.

3. Repeatered Normally Conducting
Interconnections
The inhibitive square-law behavior of normally con-
ducting lines may be alleviated with the use of
repeater structures. Bakoglu and Meindl derived
the optimal configurations of such structures.3 ' The
delay along such a line is given by Trep oc (RoCoRC12)112
where RoCo denotes the intrinsic delay of the repeat-
ers. Following scaling arguments similar to those
with ordinary normal conductors, we may write this
in the form

rep= 3 W (12)

where is proportional to (RoCo)'/2 as well as the
square roots of the conductor resistivity and the
dielectric permittivity. The effect of repeaters being
used on the energy per transmitted bit can be ignored
so that Eq. (10) is still valid.

Following the derivation of earlier results, one can
show that the signal delay for a two-dimensional
repeatered system with very small elements and very
fast devices is given by' 4

= pe'max/W = (kKNP/M). (13)

The effect of heat-removal requirements is similar to
that in the unrepeatered case.

4. Superconducting Interconnections
Superconducting interconnections are not treated in
this paper. Let it suffice to say that superconductors
lead to similar results as optical interconnections,
both analytically and numerically.'4 However, there
is one exception: The energy per transmitted bit can
be made much smaller than with optical interconnec-
tions, especially at lower temperatures; thus they
may be advantageous in heat-removal-limited systems.
On the other hand they suffer from termination

problems, and the prospects for three-dimensional
circuits are no better than for normal conductors.

3. Outline of the Analysis

Now we actually outline the steps of our analysis (Fig.
4). The linear extent di of an electrically connected
group of N, elements must be large enough to do the
following:

(1) Accommodate N, elements.
(2) Accommodate the electrical wires connecting

them.
(3) Accommodate kNP optical transducers [Eq.

(6)].
(4) Satisfy heat-removal requirements.

Then dim the intergroup spacing of the electrically
connected groups (also referred to as modules) must
be large enough to do the following:

(1) Accommodate di (i.e., d. 2 di).
(2) Accommodate the optical channels connecting

the groups.
(3) Satisfy any additional heat-removal require-

ments.

Note that the N elements (switches and gates) are no
longer uniformly laid out as in Fig. 2 but are clustered
into modules. This enables considerable energy sav-
ings since the electrical wires can be made much
shorter.

On the basis of these considerations we can write
expressions for the signal delay (which is taken as the
worst case over all connections), the system size, and
the power dissipation as functions of N, B, and N1.
Then we can pick the value of N, maximizing our
figure-of-merit function.

We carried out this analysis for a variety of layout
constraints, combinations of media, and physical
parameters. It is not possible (and perhaps not
useful) for us to reproduce all of our results. Rather,
we try to present representative examples chosen for
their illustrative qualities and qualitatively discuss

L��PJ

[�pJ

?d,

dm

Fig. 4. Analysis of optimal hybrid layouts (N1 = 4).
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several general conclusions deduced from the study of
a large number of cases.

Although not attempted in this paper, systems with
three or more hierarchical levels can also be ana-
lyzed.2 ' This would permit systems involving nor-
mal conductors, superconductors, and optics all to-
gether.2 ' It would also enable the different
parameters of electrical interconnections at different
levels (such as on-chip and multichip substrates) to be
taken into account.

4. Regarding Numerical Examples

In our numerical examples we try to look into the
future and to select reasonably optimistic parameters
for each interconnection media. We also consider
the effects of degradation of the optical parameters
from what seems to be their best possible values, as it
is not yet a mature technology.

We assume 10-GHz devices, i.e., Td = 0.1 ns. We
permit a maximum of M = 10 conducting connection
layers but only one optical connection layer for two-
dimensional layouts. We assume a nominal voltage
level of V = 1 V and room-temperature aluminum
conductivity. The parameters a, 13, and y are taken
as 1.5 x 10-17 s, 3.9 x 10-14 s, and 6.9 x 10-1 J/m,
respectively.2 ' These values roughly correspond to
the best possible at room temperature, with 10-GHz
repeaters. Since our analysis is approximate, these
numbers can also be rounded to the nearest order of
magnitude; however, we use them as they are so that
consistency with Ref. 21 is maintained. We permit a
maximum power dissipation per unit area of Q = 10
W/cm2. The minimum manufacturable value of W
for conducting interconnections is taken as Wmi =
0.2 pum. Element size dd is assumed to be ten times
this value. (This implies that our elements are of
the simplest type, such as logic gates.) We assume
there to be k = 5 connections per element. We take

= 1 m as the optical wavelength. The optical
transducers are assumed to be dtr = 5 pm in diameter.
We assume the best possible optical communication
energy to be E0 = 1 pJ, but we also consider degrada-
tion of this value by a factor of 100. Likewise, we
consider near-diffraction-limited operation (f = 2),
but we also consider degradation of this by a factor of
as much as 100 (f = 200). We consider two different
values of the Rent exponent, p = 0.6 and p = 0.8, to
observe the effects of connectivity on the results.
The values chosen above for W,,, dd, and dtr, which
seem realizable in the near future, are already small
enough that in most cases, totally ignoring the effects
of these parameters will have little or no effect on our
results.

Our primary objective is minimization of signal
delay. As a secondary objective we try to minimize
total power dissipation. In other words we try to
minimize signal delay as much as possible, and only
then, to the extent possible without making any
sacrifice from the minimum signal delay, do we try to
minimize power dissipation. This approach empha-
sizes performance, and cost is minimized only if this

can be achieved without performance being sacrificed.
Analytically this can be realized by maximization of

SF = -) e -> 0. (14)

Other figures of merit emphasizing cost are also
discussed.

Computationally, we chose E = 10-10. We ob-
served that choosing values as large as 10-5 or as
small as 10-12 makes no difference. Values larger
than 10-5 start changing the results in favor of
systems exhibiting somewhat larger signal delay but
less power dissipation. Values lower than 10-12
start causing numerical problems.

5. Two-Dimensional Systems

In this section we consider fully two-dimensional
systems, i.e., systems that are confined to a two-
dimensional surface, including optical paths. One
implementation of such a system may involve a
two-dimensional array of VLSI chips with optical
transducers located on a topmost layer or on dedi-
cated islands. The optical imaging system may be a
glass waveguide overlay or the folded multifacet
architecture described in Ref. 32.

A. Analysis

We refer to Fig. 4. We assume that there are k
connections per element. Some of these connections
are made to elements in the same module and are
implemented with normal conductors. Other connec-
tions are made to elements in other modules. One
can establish such connections optically by tying
optical transducers at the to-be-connected terminals
and by guiding the light emanated from the source
terminal to the target terminal with some type of
optical imaging system. It matters little whether
the transducers are on a separate layer or side by side
with the electrical wiring [since max(x, y) x + y
within a factor of 2]. The intergroup spacing dm may
have to be larger than d because of the space
necessary to accommodate the optical channels.
Again, it makes little difference whether we assume
that the optical channels are on a separate layer or
that they compete for the same space with the
modules. As discussed earlier, there is little purpose
in specifying such details, as they ultimately change
the results by factors such as 2, V4, etc. If one is
confronted with a particular system for which such
details are specified, such factors can be readily
introduced in order to obtain more accurate results.

Remember that our purpose is to determine, for
every N and B < 1/Td, the value of N, maximizing
our figure-of-merit function. We can immediately
set an upper bound on N, since we know that the
maximum bit-repetition rate, B, is a decreasing func-
tion of the number of electrically connected elements
[Eq. (11) and the following remarks]. We can solve
for N, from Eq. (11) (rewritten for a module with N1,
rather than N elements, and since B < 1/- for
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unterminated conducting lines) as

N, < (M/kK)'/P(1/aB)/2P. (15)

The right-hand side of this inequality is the largest
value of N compatible with given B. We denote
this value of N, as N . For given B, N, must be
chosen to lie between 1 and N 1 .

Ignoring heat-removal requirements for the
moment, we see that the linear extent of each module
d, must satisfy

d, 2 max[N]/2 dd, kKNPWmin/M, (kNP)1/2dtr, kNp(f X)].

(16)

The first term is trivial. d must be at least large
enough that the module can accommodate N1/2 x
N'/ 2 elements of linear extent dd each. The second
term is simply the smallest module linear extent that
still provides enough room for routing the electrical
connections at the minimum manufacturable line-
width Wnin. These two terms correspond to Eq. (4).
The third term accounts for the fact that the module
must be at least large enough to accommodate kNP
transducers of linear extent dtr, since this many
connections are made to elements in other modules
[according to Rent's rule, Eq. (6)]. The final term
accounts for the fact that the linear extent of the
module must be large enough to permit the passage of
kNP optical channels through it; otherwise, the chan-
nels emanating from the transducers would not be
able to get out of the boundaries of the module.
(Such a problem does not arise if out-of-plane optical
communication is permitted.) The values of dd and
Wmin/M are often small enough that the first two
terms can be ignored. Technological improvements
will further decrease dd and Wmin and increase M so
that it is unlikely for these terms to determine dj.
Also, since dtr need not be much larger than fX (i.e.,
the transducers need not be much larger than the
transverse extent allocated for each channel), the
third term will often be shadowed by the fourth.
Thus in most cases we will be left with the single term
d, 2 kN (fX).

Heat-removal considerations will require that

Qd' > (electrical dissipation plus optical dissipation).

(17)

First, let us calculate the electrical dissipation. We
can find the total connection length by multiplying
the total number of connections kN1 by the average
connection length = d (where, as before, d is the
interelement spacing of the elements). Then, with
Eq. (10), the total energy involved in one cycle is
,ykN1l and the power dissipation is ykNI/B. Using
relation (2) and also d, = N 1/2d, we find the total
electrical power dissipation to be ykrNPBdl. The
optical power dissipation per module is simply the
number of optical connections per module times the

power dissipation EB per connection, giving
kNP'EB. Using these results, simplifying inequality
(17) with x + y max(x, y), and solving for dj, we
obtain

d1 2 max [(kNzE 0 B)'/ 2 ykKNPIB]

Combining this with d, 2 kNP(fX), we obtain the
minimum value of d, as

r {kN~l~oB1/2 -ykKNlBl
d = maxIkN)(fX), Q ) Q j * (19)

The minimum value of the intermodule separation,
dm, is then given by

d = max[dj, kKN(N/N)P-1/ 2(fX)], (20)

where we assume only one optical connection layer.
Apart from being large enough to accommodate the
module, the intermodule spacing must be large enough
to permit the passage of at least kNPK(N/N,)P-1/ 2

optical- channels. (Remember that the spacing be-
tween elementary cells had to be large enough to
permit the passage of at least kr = kuNPl- /2 connec-
tions. Now replace k -> kNP and N1 -- N/N 1, since
now instead of N, elements with k connections each,
we have N/N, modules with kNP connections each.)

The system signal delay is finally given as the
maximum over all connections:

= max[(N/N1)1/2d./c, ao(kK/M)2N2P, Td). (21)

The first term is the speed-of-light delay along the
longest optical connection. The second term is the
delay along the longest normally conducting intercon-
nection, and the last term accounts for device delay.
Employing previous equations, we obtain

T = max[kKNP(fX/c), (N/N 1)/ 2 (kNjE.B/C 2Q)'/2 ,

(NIN,)112 (ykK1NPB/cQ), a(kKIM)2N2P, Td]

(22)

for the resulting signal delay for a hybrid system.
The signal delay for an all-optical system under the
same approximations is given by the maximum of the
right-hand sides of Eqs. (7) and (8) and Td. For an
all-electrical system it is given by the maximum of the
right-hand side of Eq. (11) [Eq. (13) with repeaters
and Td.] The first term, which is independent of N1,
is also the delay of an all optically connected system of
N elements [Eq. (7)]. Thus we conclude that the use
of a hybrid layout cannot reduce the system size and
delay below that of a wireability-limited all-optical
system.

Since N, < Nmax, the first term in the above
equation eventually dominates the others with in-
creasing N (remember that our expressions are valid
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forp > 1/2). When this is the case, the choice of N,
has no effect on the delay. Thus we choose that
value resulting in minimum power dissipation. The
total power dissipation is expressed as

.9 = (N/N)(kNJE 0 + ykKNldl)B

= (N/N)max(kNPjE 0 , ykKNPd,)B. (23)

When d, is given by the first term of Eq. (19), the
value of N, minimizing total power dissipation is
given by

NP -E. (24)
1 y(f X)kK (4

For larger values of B either of the two latter terms in
Eq. (19) may dominate. Interestingly, whichever of
these two terms dominates, it is possible to show that
the value of N, minimizing relation (23) is given by
the same expression:

NJ = kEoQ (25)
=(-ykK)

2B (5

[Incidentally, we also note that this value of N,
minimizes the combined second and third terms of
Eq. (22).] We see from this equation that the opti-
mal value of N, increases with the optical communica-
tion energy and our heat-removal ability and de-
creases with the bit-repetition rate and the Rent
exponent. It obviously increases with increasing E,
as optical communication becomes energetically more
expensive. It also increases with increasing Q: if
we are able to remove larger amounts of power per
unit area, this means that the scale of the electrically
connected groups can be reduced, reducing the energy
cost of electrical interconnections. On the other
hand, increasing B reduces N,, since it results in an
increase in power dissipation and d,, making electri-
cal interconnections more expensive. N also de-
creases with increasing p. Systems with larger p
have a larger fraction of longer connections, so it is
beneficial to make fewer electrically.

Of course, since we are giving full precedence to
minimizing signal delay, keeping the latter terms of
Eq. (22) at less than its first term has priority over
minimizing power. For instance, so that the fourth
term of Eq. (22) does not exceed the first, we must
maintain

N, < (fX/c M2) 2 NP/2 (26)

Thus the optimal value of N, is determined by three
considerations. For larger N it is that value which
minimizes total power consumption, as given by
either of Eqs. (24) or (25), with the restriction that
it can never exceed Nma. These two considerations
determine the optimal value of N, for large N. The
optimal value of N, should also not exceed the

envelope given by inequality (26). This last restric-
tion relaxes with increasing N. Notice that the effect
of variation ofp on all three of these considerations is
the same: larger Rent exponents favor the use of
more optics.

Naturally, it is possible for there to be combina-
tions of parameters and variables for which other
terms that we neglect dominate. But in most cases
the above expressions agree with the calculations of
Ref. 21, in which all terms were maintained. Thus
they suffice for our purposes.

B. Numerical Examples

Throughout this paper we keep all but three of the
physical parameters the same for all examples, as
discussed in Section 4. Thus in the following we
only specify the values of p, f, and E for each
example.

In our first example we consider a system with Rent
exponentp = 0.6, optical communication density only
f = 2 times worse than diffraction limited, and an
optical communication energy E, = 1 pJ. Figure 5
shows the optimal value of N, as a function of N with
B as a parameter. In all numerical plots we vary N
from 104 to 1010. One should keep in mind, however,
that the larger values of N in this range may lead to
unrealistic system sizes and/or power dissipations for
some combinations of the parameters. For the two
lower values of B it is optimal to make all connections
electrical (i.e., N, = N) until N 2 x 105, after which
the optimal value of N, is independent of N and is that
value that minimizes total power consumption. For
these relatively low values of B the size of each
electrically connected group d is given by d =
kNP(fX). Thus the total power dissipation is given
by relation (23) with di = kNP(fX). The value of N,
that minimizes power dissipation is given by Eq. (24)
and is indeed consistent with that observed in Fig. 5
for the two lowest values of B. For the two larger
values of B the latter terms of Eq. (19) dominate so
that the optimal value of N, is given by Eq. (25),
which indeed predicts the optimum values of N, for
the two larger values of B in Fig. 5. [The optimal
values of N, for smaller values of N are determined by
the competition of the various terms in Eq. (22), until
the first term dominates the others, after which N, is
given by Eq. (25).]

Figure 6 illustrates the resulting dependence of S
on N for B = 100 Mbits/s. The solid curve corre-
sponds to the optimal choice of N,. The dashed
curve corresponds to all connections being made
optical and coincides with the solid curve for larger
values of N; it is given by 1/S = . = kKNPfX/c. The
dotted curve, which overlaps with the solid curve
initially, corresponds to all connections being made
electrical and is given by a(kK/M)2N2P. We cannot
make all connections electrical once N > N, = 7 x
106; thus the dotted curve terminates at this value of
N. After a certain value of N, making all connec-
tions optical is as good as the optimal hybrid combina-
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Fig. 5. N versus N: p = 0.6, f = 2, E 0 = 1 pJ. The plots for the two lower values of B coincide.

tion in terms of minimization of system size and
delay, as discussed previously [following Eq. (22)].

However, making all connections optical results in
power dissipation 1 order of magnitude larger than
the optimal hybrid combination for the largest value
of B and 2 orders of magnitude larger for the
smallest value of B. The disparity is greater for
smaller values of B because the optimal value of N is
larger when B is smaller. In other words the all-
optical system (N1 = 1) is farther away from the

loll
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Q
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_4

C/2

109
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107

186
10)4 105 106

optimum. These considerations have no effect on
the resulting system size and signal delay, since
two-dimensional systems tend to be wireability rather
than heat-removal limited. Another consequence of
this is that the resulting values of S for different
values of B are identical.

The entrance of optical interconnections after N 
2 x 105 elements is accompanied by a drastic increase
in system size, as illustrated in Fig. 7. The linear
extent of the all-electrical system is given by

107 108 109 1010

N

Fig. 6. S versus N: B = 100 Mbits/s, p = 0.6, f = 2, E 0 = 1 pJ. The plot for the optimal hybrid case first coincides with that for the
all-electrical case and then with that for the all-optical case.
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B = 100 Mbits/s, p = 0.6, f = 2, E0 = 1 pJ. The plots for the all-optical and the optimal hybrid cases coincide for

ykIKNPB/Q. Once we start using optical communica-
tion for the longer connections, they dominate the
system area, leading to a linear extent given by
k KNPfX. The curve for S is continuous because the
fast velocity of propagation of optical interconnec-
tions compensates for the increase in system size.
We can avoid the jump in system size by keeping all
connections electrical; however, in this case the value
of S is less than that possible with a hybrid system.
This is one example of a situation in which the use of

1010

109 -- 0 Gbits/s
- -B= 1 Gbit/s

108 ........ B=lOOMbits/s

107 .-.-. B=10Mbits/s

106
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optics permits performance not possible with normal
conductors alone but at a significant penalty in terms
of system size.

Let us now explore the effects of degradation of the
optical parameters. The optimal value of N, when
f = 50 is plotted in Fig. 8. We observe that it is
beneficial to stick to an all-electrical system (N1 = N)
until N > N1 , after which the entrance of optics is
unavoidable. m7If f is too large, the increase in 2
accompanying the entrance of optics may be unreason-

107 108 109 1010

N

Fig. 8. N, versusN p 0.6,f J 50, o 1 pJ. All plots coincide for the smallest and the largestvalues of N.
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ably large; thus increasing N beyond N, while we
maintain the given value of B may not be feasible.)
Once this occurs, module size d is limited by the term
kNP(fX) for all values of B. The resulting large
value of d, makes electrical connections expensive,
leading to a small optimal value of N,, as given by
Eq. (24). Notice that although increasing f leads to
an overall degradation in performance and cost, it
results in greater use of optics when N > N1m 

Figure 9 illustrates the resulting dependence of S
on N. Notice that in this case, unlike in the previous
example, a sudden drop in S is observed. This is
because we are forced to use optical interconnections
prematurely so as to maintain the given value of B,
before the value of S for an all-electrical system falls
below that for an all-optical system (as was the case in
Fig. 6).

In other words, when f > 10 or so, we have a region
in S-B-N space in which a small increase in N or B is
accompanied by a large increase in system size and a
large decrease in S. This behavior may have algorith-
mic implications.'4 Among several algorithms de-
signed to solve a given problem it may be preferable to
employ those requiring relatively smaller values of N
and/or B, if possible, since even small increases in
these parameters require a large sacrifice in terms of
S. For instance, if we are trying to maximize a
figure-of-merit function of the form SxBY, where
x, y > 0 and x is not much smaller than y, it is likely
that we will settle for an operating point not involving
any optical interconnections.

In conclusion, if the use of optics is to be worth-
while for two-dimensional systems, it is of paramount
importance to bring f as close as possible to unity.
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The folded multifacet architecture described in Ref.
32 was devised to meet this requirement.

Now we discuss the effects of an increase in the
optical communication energy hundredfold (Fig. 10).
For large N the optimal value of N, is seen to hit
Nm. For smaller N we observe the envelope
N1 c N'!2 given by inequality (26). Despite the fact
that increasing the optical energy results in a drastic
shift in N,, it has no effect on the resulting value of S,
which is still as given in Fig. 6. This is because the
system is still wireability limited. (An exception
occurs for the largest values of B, for which the
system may be heat-removal limited up to a certain
value of N.)

Of course, now the total power dissipation is much
larger, and the discrepancy between the optimal
system and the all-optical system in this respect is
even greater than before. The entrance of optics
results in a large increase in total power dissipation
(Fig. 11). The all-optical and the all-electrical sys-
tem power dissipations are given by kNEoB and
(ykKNPB)2/Q, respectively. The total power dissipa-
tion for the optimal hybrid case for larger N is given
byNkNP'E 0 B withN, 5 x 106.

Let us now consider that p is increased to 0.8
(Fig. 12). The downward shift in the optimal values
of N, is easily explained by the changes in the values
of N, Once again the envelope given by in-
equality (26) is observed.

6. Cost-Based Optimization

Until now we have concentrated on the optimization
function given by Eq. (14), which gave full precedence
to minimizing signal delay and only secondarily tried

optimal hybrid
- - all optical
........ .all electrical

107 108 1 0 g 1010

N
Fig. 9. S versus N: B = 100 Mbits/s, p = 0.6, f = 50, E0 = 1 pJ. The plot for the optimal hybrid case first coincides with that for the
all-electrical case and then with that for the all-optical case.
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Fig. 10. N, versus N: p = 0.6, f= 2, E0 = 100 pJ.

to minimize power dissipation. The cost of system
size was not accounted for at all. Now we consider
another example optimization function, which ac-
counts for the cost of system size.

A. Analysis

We consider dividing Eq. (14) by the system area y2:

1'
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Of course, it is always possible to employ more
complicated functions if desired, depending on the
relative importance we attach to speed, system size,
and power cost.

B. Numerical Examples

Figure 13 shows how the optimal values of N are
changed for the layout considered earlier (Fig. 5).
As discussed before, the entrance of optics is accompa-
nied by a drastic increase in system size. Thus with

107 108 109 1010

N

Fig. 11. .iA versus N: B = 10OMbits/s,p = 0.6,f= 2,E 0 = lOOpJ.
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Fig. 12. N, versus N: p = 0.8, f = 2, E0 = 100 pJ.

our new figure of merit it is beneficial to stick to an
all-electrical system until larger values of N despite
the fact that the resulting signal delay will be worse
than that possible with a hybrid system. However,
once N tends to exceed N1 , the entrance of optics is
unavoidable. Once opticaninterconnections are en-
tered, the steep increase in system size is observed.
For N > N 1,a the optimal values of N, are
identical to those in Fig. 5.

One other possible figure-of-merit function that we
do not deal with here is given by F = Sf9, which is
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discussed in Ref. 21. The general conclusion is that
accounting for the cost of system size and power
dissipation results in all-electrical systems being pre-
ferred until very large numbers of elements.

7. Effect of Using Repeaters

A. Analysis

There is no maximum value of N1 for given B when
repeaters are used; thus there is no analog of inequal-
ity (15). The linear extent of each module must

107 108 109 1010

N

Fig. 13. N, versus N (cost-based optimization): p = 0.6, f = 2, E0 = 1 pJ.
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again satisfy Eq. (19), and the intermodule separation
dm is calculated similarly. Finally the system signal
delay is given by

Xr = max[(N/N 1)1"2d/c, P(kK/M)NP', Td]. (28)

The total power dissipation is again given by relation
(23), and Eqs. (24) and (25) are still applicable.
Again, on the basis of arguments similar to those
leading to inequality (26), we must ensure that
P(kK/M)Np < kKNP(fX/c).

B. Numerical Examples

Comparing Eqs. (7) and (13), we observe that the
relations between S = 1/v and N for repeatered and
optical layouts are identical in form and differ only by
the numerical factors (fX/c) versus (/M). Optical
interconnections have larger linewidths and faster
propagation velocity. Repeatered interconnections
can (and must) be scaled down to smaller linewidths
but have a slower propagation velocity. Let us first
consider a system with optical communication den-
sityf = 50 times worse than diffraction limited and an
optical communication energy of E0 = 1 pJ. The
same results are obtained whetherp = 0.6 orp = 0.8.
(For these parameters an all-repeatered layout re-
sults in signal delay more than 40 times less than that
possible with an all-optical layout). We find that an
all-electrical system (N1 = N) is best for the range of
N and B in consideration (Fig. 14). What essentially
happens is that with 10-GHz devices, repeaters per-
mit fast propagation. Much smaller linewidths and
ten connection layers result in much smaller system
size, more than making up for the deficiency com-
pared with the speed of light.

It is also interesting to note that no optical commu-
nication is used even when the system size exceeds a
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centimeter, which is the breakeven length for energy
for this choice of parameters. This illustrates the
inadequacy of breakeven-length approaches. A sub-
micrometer repeatered line cannot be replaced with
anf 50 optical line even though the latter may have
a smaller communication energy. (Of course, for
large N the total power dissipation for the all-
repeatered system will be greater than that possible
with a hybrid system. Remember, however, that our
original figure-of-merit function gives full priority to
minimizing signal delay.)

Now, let us assume the value of f is reduced to 2,
which we are assuming to be its best possible value.
In this case the discrepancy between the use of all
repeaters and all optics in terms of signal delay is
reduced to less than a factor of 2.

(An exception may occur for the largest values of B
for which the system tends to be heat-removal limited.
Then, the heat-removal-limited all-repeatered system
may result in signal delay greater than that given by
the wireability-limited Eq. (13). However, the dem-
onstration of this would require consideration of
effects not taken into account in this paper and would
greatly complicate our analysis; thus we satisfy our-
selves by referring the reader to Ref. 21.)

Apart from such cases, when f 2, the signal delay
of an all-optical system is close to that of an all-
repeatered system [i.e., Eqs. (7) and (13) are numeri-
cally close. This does not mean, however, that we
can use optics or repeaters interchangeably for the
individual connections in the same system because of
scale incompatibility.] The all-repeatered system has
much smaller area. Whenp = 0.6, the power dissipa-
tion of the all-repeatered system lies quite below that
of the all-optical system for the range ofNin consider-
ation (although it grows faster with increasing N).

10S 106 107 108 1010

Fig. 14. N versus N (repeaters):
N

p = 0.6 orp = 0.8, f = 50, E = 1 pJ. The plots for all values of B coincide.
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Thus unless B is very large so that the system is
heat-removal limited (as discussed above), an all-
repeatered system would be preferred. When p =
0.8, the power dissipation for the all-repeatered case
grows faster so that hybridization according to Eqs.
(24) and (25) may be beneficial, if minimizing power
dissipation is considered to be more important than
minimizing system size.

In conclusion, the only situations in which it is
desirable to use optics is either when B is very large so
that the system is heat-removal limited or when
f 2,p is large and we give priority to minimizing the
cost of power over the cost of system size. In
practice it is relatively difficult to achieve f 2
imaging. Furthermore, a larger number of conduct-
ing connection layers and faster devices may become
possible in the near future (the latter of which will
reduce the value of 13). Thus it seems that as long as
the optical communication paths are constrained to
the plane, optics may have limited usefulness.

8. Three-Dimensional Systems

In this section we consider systems in which the
modules are still confined to a plane, as in Fig. 4, but
the optical communication paths are permitted to
leave the plane. Such a system would most likely
employ some type of free-space interconnection archi-
tecture.

Various other configurations are also possible.
For instance, the modules may be arrayed through-
out the volume of the system instead of being con-
fined to the plane.2 9 The N electrically
interconnected elements constituting each module
may be arrayed in a three-dimensional lattice, if such
a cubic chip can be manufactured. Such alternatives
have been considered in Ref. 21. The general conclu-
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sion is that such choices have little or no effect on the
optimal value of N1 and the resulting performance
and cost of the system.

Why is this so? Utilizing a volume for the estab-
lishment of the interconnections relaxes wireability
requirements greatly, whereas it hardly has any
effect on heat-removal requirements. (In Refs. 21
and 27 we show that the requirement Q2 2 .9

holds regardless of whether the system is two or three
dimensional.) Thus in three-dimensional systems,
heat removal becomes the dominant issue.33'27'2 As
a result, the particular choice of architecture, which
essentially has to do with wireability requirements,
has little or no effect.

A. Analysis

The analysis essentially follows the same lines as for
two-dimensional systems; however, we concentrate
exclusively on heat-removal requirements, on the
basis of the above discussion.

Once again, N1 must satisfy N1 < N 1 [inequality
(15)] and a condition similar to that given by inequal-
ity (26). However, we do not take these into consid-
eration since the former condition can be avoided by
use of repeaters, and the latter can be relaxed to an
extent that it is not a limiting factor by use of either
three-dimensional or two-dimensional modules with
a large number of connection layers. We assume
that these conditions are satisfied so as to be able to
concentrate on the essential issues.

d, is given by the purely heat-removal-limited Eq.
(18). Since we are ignoring wireability require-
ments, d = d, and since we are ignoring the
electrical delay term (the latter condition in the

)10108

N

Fig. 15. N versus N (three dimensions): p = 0.6, E0 = 1 pJ.
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Fig. 16. S versusN (three dimensions): B = 100 Mbits/s,p = 0.6, E = 1 pJ. Repeaters are assumed for the all-electrical case.

previous paragraph),

T = max[(N/N 1 )12d/c, Td]. (29)

Total power 9 is again given by relation (23). The
value of N, minimizing .9, , and - simultaneously is
then easily shown to be given by Eq. (25). With this
value of N, we find the system linear extent, total
power, and delay to be given by

2 = N1/2 (kB/Q)/12PE'-/2 P(KY)'/p', (30)

1011

C)
2)
UI,

-4

V)

109

108

107

106 8
104 105 10

.9 = Qy 2, and 1/S = X = max(Y/c, Td), respectively.
Notice that 2 X N112 regardless ofp.

B. Numerical Examples

First considerp = 0.6 and E0 = 1 pJ (Figs. 15 and 16).
Unlike the two-dimensional layout discussed earlier
in which the optimal value of S was equal to that for
the all-optical case (Fig. 6), here the value of S for the
optimal hybrid case is better than that for both
all-electrical and all-optical alternatives. With Eqs.

107 108 1010

N

Fig. 17. S versusN(three dimensions): B = 100 Mbits/s,p = 0.8, E = 1 pJ. Repeaters are assumed for the all-electrical case.
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(8) and (30) it is easily shown that an order of
magnitude improvement in S = 1/T and a hundred-
fold reduction in power is achieved over the all-optical
case, for B = 100 Mbits/s. This example provides a
good illustration of how both media can be used in
conjunction to obtain performance and cost much
better than those possible with any alone.

We also note that the discrepancy in S between the
all-optical and the optimal hybrid implementations is
less for larger values of B. To see this, form the
(greater than unity) ratio of the right-hand side of Eq.
(8) to that of Eq. (30), which is cc B('-'/p)/2, a decreas-
ing function of B. This is also consistent with the
fact that for larger B, the optimal value of N, is
smaller; hence the optimal system is closer to the
all-optical system (N1 = 1).

Now let us look at the effects of an increase in p to
0.8 (Fig. 17). Remember that the value of S for an
all-optical layout is independent of p [Eq. (8)]. For
the optimal hybrid layout the value of S is somewhat
worse when p = 0.8 than when p = 0.6. However,
the effect of an increase of p on S is relatively small
compared with the two-dimensional case.

Now let us consider an increase in E, by a factor of
100. The value of S = 1/T for the all-optical case
[Eq. (8)] degrades by an order of magnitude. The
value of S for the optimal hybrid case does not
undergo a full order of magnitude degradation, how-
ever, since the system adapts itself by employing
fewer optical interconnections (larger N1). To see
this, note that the power of E, in Eq. (30) is 1 -
1/2p < 1/2.

Although we have concentrated on systems satisfy-
ing Rent's rule, our general method can be applied to
the problem of location of the optimal value of N, for
graphs with specific topologies, such as various types
of permutation networks.

9. Discussion and Conclusions

In this section we present some of the more general
conclusions derived from the study of a large number
of examples, including those presented above. Up to
a certain value of N (which usually includes the
device-limited region for which T = Td), it is prefer-
able to make all connections electrical. In Ref. 14 it
is shown that beyond a critical value of N, even an
all-optical layout is preferable to an all normally
conducting layout. Thus it is beneficial to start
employing optics for the longer connections on or
before this critical value.

Broadly speaking, we have found that the use of
optics may enable performance (to increase perfor-
mance may be interpreted to mean to be able to access
previously unaccessible points in S-B-N space in a
desired direction'4 ) unachievable otherwise, however,
possibly at a significant cost of space and/or power,
depending on the information density and energy per
bit achievable. The use of optical interconnections
may enable smaller signal delay and larger bandwidth
in comparison to an all-electrical system. However,
they will usually not enable a reduction in our

measures of cost. The system size and the power
dissipation of the higher-performance hybrid system
will often exceed that of the all-electrical system.

This behavior can be the result of a number of
reasons. First of all, remember that optical lines
cannot be scaled down to submicrometer dimensions;
thus they lead to large system sizes. However, they
may still enable greater performance than an all-
electrical system, since the signal delay along a longer
optical line can be less than the rise time of a shorter
normally conducting line. A similar argument ap-
plies to heat-removal-limited systems. A hybrid sys-
tem may dissipate more power than an all-electrical
system, leading to larger system size, but may still
have smaller delay.

Another reason why we must use optics despite the
large cost of system size and power dissipation is
because we may want to increase N and B simulta-
neously beyond what is possible with normal conduc-
tors. In such cases we might be willing to employ
optical communication regardless of how large f, Eo,
and the resulting cost of space and power is. We can
avoid falling into this situation by using repeaters;
however, there are still points in S-B-N space that
are not accessible without the use of optics, no matter
at what cost.

Figure-of-merit functions emphasizing the cost of
system size and power dissipation tend to favor
all-electrical systems until very large numbers of
elements are used. If full priority is given to minimiz-
ing cost of system size and/or power dissipation,
almost always an all-electrical system will be preferred.
(The major exception arises when we want to increase
N beyond No.) Even if equal priority is given
to minimizing signal delay and measures of cost, as
in our example (Section 6), all normally conducting
systems are usually preferred until N > Nm.
When repeaters are used, all-electrical layouts are
preferred until even higher values of N, until eventu-
ally a hybrid layout is preferred because the signal
delay becomes much worse than that possible with
the hybrid system, outweighing the emphasis put on
measures of cost.

Two-dimensional systems tend to be wireability
limited. Consequently the resulting performance is
found to depend strongly on the connectivity, as
measured by p. How much we can approach diffrac-
tion-limited information densities has a significant
effect on whether optics is worth using at all, espe-
cially if repeatered connections are employed. When
hybridization is desirable, the optimal value of N, for
large N is usually that which minimizes total power
dissipation. As long as it is not very large, the value
of E. has little or no effect on the resulting perfor-
mance (since the system is wireability limited), al-
though it strongly affects the optimal value of N.

Iff 2 for two-dimensional systems, then a value
of E, 1 pJ leads to optimal values of N of the order
of roughly 103-104. Increasing E, hundredfold re-
sults in N, 105-106. If repeaters are used, optical
interconnections are useful only in a limited set of
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circumstances. Iff > 10 or so, there hardly seems to
be any room for the beneficial use of optics, if
repeaters are available. If not, we may resort to
optics so as to achieve large values of N and B
simultaneously. However, iff is too large, the result-
ing system size may quickly reach unrealistic propor-
tions (> 10 m); thus such a system would not be
feasible anyway.

Three-dimensional systems tend to be heat-re-
moval limited; thus the value offis relatively unimpor-
tant. A hundredfold degradation from what seems
the best possible (f - 2) has little effect on the
results. On the other hand, the value of E0 not only
determines how much optics should be used but also
has considerable effect on the resulting performance.
If E- 1 pJ, the optimal value of N1 is of the order of
roughly 104-105, whereas a hundredfold increase in
E leads to N - 107.

Systems with smaller values ofp are hurt less by an
increase in Eo, since such systems have a smaller
fraction of longer connections and are relatively less
dependent on use of optics. On the other hand, for
systems with largep an increase in E0 by 100 may lead
to nearly an order of magnitude degradation in signal
delay, nearly as much as the all-optical case. [To see
this, note the dependence cc E,'-112P in Eq. (30).]

The value of p has less effect on resulting signal
delay for three-dimensional systems. The power
dissipation and the system size of a heat-removal-
limited all-optical system are independent of p. For
a hybrid system, smaller values of p enable some
energy savings and consequent reduction in system
size, since a greater fraction of connections will fall
below the breakeven length for energy and can be
replaced with normal conductors.

Hybridization is most important when the system
is heat-removal limited. For two-dimensional sys-
tems, which are often wireability limited, hybridiza-
tion has little effect on resulting signal delay. An
all-optical system is just as good in this respect
(although it may have much larger power dissipa-
tion).

When E0 is small, even the longest normally con-
ducting lines in an optimal hybrid layout are usually
short enough to be left unterminated (of the order of a
centimeter or less). Terminated lines are not ob-
served; RC lines are followed directly by optical lines.
It is fortunate that the breakeven occurs at a point at
which terminated lines are not yet necessary, since
satisfactory termination can be a significant problem.
For large values of E0 (or f in two-dimensional
layouts), however, the module size may be forced to
be large enough that the longer normally conducting
lines have to be terminated. (The conclusions of this
paragraph rely on the calculations of Ref. 21, in which
terminated lines were taken into consideration.)

Based on the considerations of this paper, it seems
fair to conclude that if the optical communication
energy can be reduced to the order of 1 pJ, and if
three-dimensional architectures with f 100 or less
can be realized, the use of optics has the potential to

contribute significantly to the performance of large-
scale systems. As a final remark, we note that there
is considerable latitude in the choice of N1, leaving
room for other technological considerations. In other
words, we can deviate quite a bit from the optimal
value of N, while deviating only a little from the
optimal performance and cost.
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