Complex signal recovery from multiple fractional

Fourier-transform intensities
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The problem of recovering a complex signal from the magnitudes of any number of its fractional Fourier
transforms at any set of fractional orders is addressed. This problem corresponds to the problem of phase
retrieval from the transverse intensity profiles of an optical field at arbitrary locations in an optical
system involving arbitrary concatenations of lenses and sections of free space. The dependence of the
results on the number of orders, their spread, and the noise is investigated. Generally, increasing
the number of orders improves the results, but with diminishing return beyond a certain point. Selecting
the measurement planes such that their fractional orders are well separated or spread as much as

possible also leads to better results.
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1. Introduction

The ath-order fractional Fourier domain is a gener-
alization of the ordinary space and frequency do-
mains. Just as the original function resides in the
space domain and its Fourier transform resides in the
frequency domain, the ath-order fractional Fourier
transform (FRT) of the function!-5 resides in the ath-
order fractional Fourier domain.5-1° The ath-order
FRT f,(u) of a function f(u) is defined for 0 < |a| <

2 as
f.(w) =j

X exp[im(cot au’ — 2 csc auu’
+ cot au'?) JAu)du’, (1

exp{—i[msgn(a)/4 — a/2]}
|sine|1/2

where a = aw/2. When a = 0, we have f,(u) = flu),
and when a = *2, we have f,(u) = f(—u). When a
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= 1, we have fi(u) = F(u), the ordinary Fourier trans-
form, and when ¢ = —1, we have f_,(u) = F(—u), the
ordinary inverse Fourier transform. The transform is
additive in index: the a,th transform of the a,th
transform is equal to the a, + a;th transform and so
forth. The FRT has a fast algorithm.!* Further prop-
erties and references are given in Ref. 12.

Phase retrieval from intensity information is a
problem of great practical interest and has accord-
ingly been extensively studied (for instance, see Refs.
13, 14 and the references therein). In one variation of
the problem, the intensity (or magnitude) is known
only at one observation plane, such as the Fourier
transform plane, and the retrieval process relies on
additional assumptions such as finite extent and non-
negativity of the original function. In another varia-
tion the intensity is known at two planes. These two
planes may be the plane of the original object and
that of its Fourier transform. Generalization to the
case in which the intensity of an object and that of its
fractional Fourier transform, or the intensity of any
two of its fractional Fourier transforms, is known has
been addressed in.15-20

Here we consider the even more general case in
which the intensity (or magnitude) of the signal is
known at any number of arbitrary fractional Fourier
domains (or, in other words, we know the magnitude
of the FRT of the function at an arbitrary set of or-
ders). It has been shown that the propagation of op-
tical waves can be characterized by the FRT, with the
transverse amplitude of light going through frac-
tional Fourier transforms of increasing order as light
propagates along the optical axis. Mathematically,



this result is expressed as a relation between the FRT
and the Fresnel integral, with the transform order’s
being related to the distance of propagation.!22!
Therefore the problem of recovering a complex signal
fully from its FRT magnitudes at multiple orders can
be used to solve the problem of recovering a complex
field from multiple transverse intensity profiles at
arbitrary locations along the optical axis. In other
words, if we cannot measure the phase at a certain
plane, we can compensate by measuring the intensity
at other planes.

Furthermore, optical systems involving arbitrary
concatenations of thin lenses and sections of free
space in the Fresnel approximation can also be mod-
eled in terms of the FRT.1221 Such systems are
known as quadratic-phase systems, ABCD optical
systems, among other names. This means that the
transverse amplitude of light at any arbitrary plane
of such a system can be related to the transverse
amplitude at any other plane through a FRT relation.
Therefore the problem addressed here can also be
used for recovering the complex field from multiple
transverse intensity profiles at arbitrary locations in
such a system. In other words, the problem we deal
with here does not require that the several planes be
related through a Fourier transform or free-space
propagation and is more general.

A fundamental algorithm used to recover phase
from the magnitudes of a function and its Fourier
transform is known as the Gerchberg—Saxton (GS)
iterative algorithm.22 Many refinements of this basic
algorithm have been considered; for instance, see
Refs. 13, 14, 23, and 24. A variation of the algorithm
to deal with arbitrary general linear systems (not
necessarily unitary like the Fourier or fractional Fou-
rier transforms) has also been presented.25-27 In this
paper we consider the generalization of the two-
intensity phase retrieval problem to the multiple-
intensity phase retrieval problem as well as the
multiple-domain GS algorithm in their purest forms
so as to reveal the effects of working with multiple
fractional domains as transparently as possible; and
we refrain from carrying over extensions or refine-
ments proposed for the basic GS algorithm. We also
do not make use of any additional prior knowledge
(such as nonnegativity and so forth) other than the
magnitudes.

The use of the GS algorithm in conjunction with
FRTs has been reported in a number of earlier
papers,15:17-20.28-30 which are comparatively dis-
cussed in Ref. 15. All of these studies deal with two
fractional domains. [A number of studies deal with
the retrieval of phase from FRT magnitudes at all
orders.31-33 Such tomographic methods are inefficient
when they are applied to fully coherent or determin-
istic fields that require a large number of measure-
ments (see Ref. 12, pp. 378 -380 and Refs. 34-36). A
number of other studies deal with the problem of
recovering phase from two fractional domains whose
orders are close.37-39]

The problem of phase retrieval from FRT magni-
tudes is related to the problem of phase retrieval from

Fresnel transform magnitudes.40-47 However, the
problem of retrieval from more than two Fresnel
transforms does not seem to have received anywhere
near the attention received by the two-intensity
problem. Nevertheless, it has been demonstrated in
various contexts that phase information can be recov-
ered from multiple Fresnel intensities.*8-52 The prob-
lem of recovery from multiple-intensity observations
related through general linear transformations is dis-
cussed in Ref. 53.

Formulating the problem in terms of FRTSs is con-
sistent with the description of optical propagation
through ABCD optical systems as continuous FRT
and evolution of the light field through increasing
FRT orders. In addition to being mathematically
purer, FRT has several advantages. FRT satisfies a
more complete and elegant set of basic properties.
The concept of fractional Fourier domains”-8 allows us
to more transparently understand the working of the
GS algorithm as the signal is iterated through do-
mains of different orders, whereas a corresponding
concept of Fresnel domains is not so well established.
The FRT formulation facilitates a systematic and
general study of the variation of key parameters and
the derivation of fairly general conclusions. Since
FRT corresponds to pure rotation in the space—
frequency plane (rather than to shearing as in the
Fresnel transform), it is geometrically and numeri-
cally better behaved.

2. Results

We assume that the magnitude |f, ()| or inten-
sity |f,, (w)| % of the a,th fractional Fourier transform
of a complex function f{u) is known at M orders a,
<ay <...<ay Our aim is to recover the unknown
function f(u). Since the fractional order a is periodic
with periodicity 4 and since f.,(u) = f(—u), we can
restrict the values of a,, to the interval [0, 2) without
loss of generality.

The GS algorithm employed can be summarized as
follows. We begin by initializing the unknown phase
function of £, (1) to some initial value, such as zero
or a constant. Then we take the a, — a;th-order FRT
of f,(u). We leave the calculated phase intact but
replace the magnitude with the known magnitude of
fa,(). Then we take the a; — asth-order FRT of this
function and again leave the calculated phase intact
and replace the magnitude with the known magni-
tude of £, (). We continue in this manner until we
reach f, (u), whose a; — ayth-order FRT we take to
return to the domain we started with. The iteration
cycle is then repeated. Since functions differing by a
constant phase would have the same fractional Fou-
rier magnitudes, recovery is possible up to a constant
phase factor. In plotting the final recovery errors in
the following examples, we have eliminated this con-
stant phase.

The example signal employed is shown in Fig. 1. A
large percentage of the signal energy is contained in
a space—frequency region of radius 4 so that in all
domains we restrict our attention to the interval
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Fig. 1. (a) Magnitude and (b) phase of f(u).

u € [—4, 4]. The Nyquist theorem implies a sampling
interval in each domain that is equal to the inverse of
the extent of the signal in the orthogonal domain,
which leads to a sampling interval of 1/8 and a
space—bandwidth product of 64 in all domains. Ei-
ther the discrete FRT matrix defined in Ref. 54 or the
algorithm described in Ref. 11 can be employed to
compute the FRTs to a good approximation; the
former approach was employed here. The GS algo-
rithm uses the magnitudes of the FRTs of the func-
tion displayed as its input. The phase is initialized to
zero. The final error between the iterate and the orig-
inal phase function ¢(u) is defined as

4 1/2
{(I/S)J |d>k(u)—d>(u)|2du] . (2)

-4

Although this equation is used as a measure of the
final error for the purpose of this paper, we note that,
in practice, &(x) is not known beforehand. The issue of
when to stop the iterations is similar to that encoun-
tered in other studies that dealt with iterative phase
retrieval and is therefore not a focus of this paper.

As a generic example, we assume that the intensi-
ties happen to be known at the orders 0.0, 0.3, 0.7,
0.9, and 1.9. In this example by employing the out-
lined method, the final error drops below 0.001 within
10 iterations.

Although this method is generally valid for an ar-
bitrary set of a,, as illustrated by the above example,
for purposes of illustration and determining the effect
of the number of orders on the results systematically,
we discuss the case in which the orders are evenly
spaced. Two variations are considered. In variation
A the M orders are chosen as 0.0,0.2,04,...,0.2
X (M — 1). In other words, regardless of the number
of orders, the spacing remains the same. In variation
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B the M orders are spread evenly over the range [0, 2)
as0,2/M,4/M, . ..,2(M — 1)/M. Here, regardless of
their number, the orders span the whole range of a.
We consider values of M ranging from 2 to 8.

Figure 2 shows the final error between the iterate
and the original phase function ¢(z). In most cases
the error decreases to small values within ~100 it-
erations. For alternative A, we observe that conver-
gence is faster when M is larger and worse when M is
smaller. This is understandable: Larger values of M
mean that a greater amount of information is avail-
able for and applied to the solution of the problem so
that we reach smaller errors more quickly. This may
not be a fair comparison since the computation time
for an iteration is actually proportional to M. How-
ever, from the figure we see that this conclusion tends
to remain true even when the error is plotted as a
function of computation time. Although not as clear
cut, similar conclusions can be made for alternative
B, with the exception that much smaller errors are
obtained for M = 2 (smaller than 0.001). The reason
for this exception is that for small values of M, the
disadvantage of having fewer orders is offset by the
advantage of having the spacing between the orders
equal to unity. (It was shown in Ref. 15 that conver-
gence was faster and smaller errors were obtained
when the spacing between the orders is close to
unity.) It is important to note that this exception is
not fundamental but rather a result of the way we
constructed our uniformly spaced illustrative exam-
ples. It may nevertheless be concluded that a greater
separation between the orders has a positive effect on
the results, as evidenced by the fact that the errors
for variation B are generally smaller than those for
variation A, for the same M. When the orders are
farther apart, they represent more independent
pieces of information.

We now consider the effects of adding various
amounts of zero-mean white Gaussian noise to the
observed FRT magnitudes. The signal-to-noise ratio
(SNR) is defined as

4
f |fw)|2du
SNR=—*———, (3)

o’du

-4

where ¢” is the variance of the zero-mean Gaussian
random variable characterizing each sample of the
noise process. Figure 3 gives the final errors between
the 10th and 100th iterates and the original phase
function for different amounts of added noise for vari-
ation A. As expected, the final error increases as the
noise increases for any given order. When SNR = 1,
all the final errors are very large and do not depend
much on the order. As the SNR increases, we begin to
observe a decrease in the final error with increasing
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Fig. 2. Final recovery error. The right-hand plots contain the same data as the left-hand plots, with the horizontal axis scaled to
correspond to the actual time of computation: Time = M X Number of iterations. (a), (b), variation A; (c), (d), variation B.

M. This decrease with order is most pronounced for
the largest SNR values. Also, with increasing number
of iterations, the errors for smaller values of M be-
come closer to those for larger values of M, so that the
decrease with M becomes less pronounced.

Knowing the magnitude at a greater number of
orders reduces the negative effects of noise through
increased redundancy and noise-averaging effects.
Since the noise added to the measurements at the M
different orders are independent, we might very
crudely expect a (M/2)"? factor of effective SNR im-
provement with respect to the case in which only two
intensites are known. (For example, the case M = 8
with SNR = 1000 would crudely correspond to the

@)

Final Error

case M = 2 with SNR = 2000.) Since this crude
argument indicates that the effect of increasing M in
combating the effects of noise is modest and much
less than the improvements observed with increasing
M, we conclude that the reduction of the effects of
noise is not the major contributor to the reduction in
error obtained with increasing M. Since the error
quickly falls to very small values when there is no
noise for even moderate values of M, the noise rather
than the structural features of the problem can be
said to be responsible for the final error in the pres-
ence of noise.

We must also note that the errors in Fig. 3 were
computed according to the modified error formula
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Fig. 3. Final recovery error in the presence of noise for variation A. (a) Final error after 10 iterations. (b) Final error after 100 iterations.
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2

1/2
| br(u) — ¢(u)|2du] . 4)

to exclude the regions where the magnitude of the
original function is identically zero. When the mag-
nitude is identically zero, we cannot expect to retrieve
the phase, which is indeterminate. Owing to this in-
determinacy, the algorithm is very sensitive to even
the smallest amount of noise and results in random-
like and highly erroneous results outside the interval
[—2, 2]. Including these randomlike results in the
final error leads to meaningless results. Of course, in
practice we may not know that the actual noiseless
magnitude was exactly zero outside this interval, and
formal or informal application of additional con-
straints or knowledge would be needed to decide that
the randomlike results obtained outside [—2, 2] con-
stitute an amplification of noise and not a reconstruc-
tion of the phase in that region.

Although we expect most of the results of this pa-
per to also hold true for the two-dimensional case, it
would be necessary to conduct additional simulations
to make definitive conclusions.

As a final remark before leaving this section, we
note that it has been shown that if the Fourier trans-
form intensity can be oversampled at a rate suffi-
ciently higher than the Nyquist rate, then the phase
can be retrieved by using an iterative algorithm.16.23
It would be interesting to inquire whether the same
would be true for FRT intensities and what the im-
plications of this would be to two- and multiple-
intensity problems.

3. Discussion and Conclusions

In this paper we have considered the problem of re-
covering complex signals from multiple magnitude
(or intensity) measurements at an arbitrary set of
FRT orders. While showing that the method works
for any set of orders, we have also constructed two
variations of systematically chosen orders to investi-
gate the dependence of the results on the number of
orders, their spread, and the noise.

This problem corresponds to the problem of recover-
ing the complex field from multiple transverse inten-
sity profiles at arbitrary locations in an optical system
that involves arbitrary concatenations of lenses and
sections of free space and is not limited to the case in
which the several planes are related through Fourier
transforms or free-space propagation.

We have observed that knowing the magnitude (or
intensity) of the FRT of a function at more than 2
orders has a positive effect on the results by decreas-
ing the final error. Generally, increasing the number
of known orders improves the results; however, be-
yond a certain number of orders, further increases
have diminishing returns. This is understandable
since the information that comes with additional or-
ders becomes increasingly redundant with increasing
M. Such redundant information is useful up to a cer-
tain point but not after that. In fact, since increasing
the number of orders M also increases the computa-
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tional time per iteration, increasing M too much may
result in a slower reduction of the error as a function
of real time. It is not possible to be very specific re-
garding the precise value of M after which improve-
ments saturate, but in general it seems that values of
M beyond the order of 10 are not useful. This also
confirms that tomographic methods that employ a
large number of orders are not efficient.

In terms of information, the complex function we
wish to recover is equivalent to two independent real
functions. Two intensity measurements at different
fractional orders (M = 2) also correspond to two real
functions. However, since the problem is not linear or
convex, these two measurements do not necessarily
lead to a unique solution, or at least they do not
ensure an efficient convergence to such a solution.
One may be confronted with stagnation of the algo-
rithm or slow progress in a “tunnel” (see Ref. 13, p.
304). Unlike in two dimensions, where uniqueness is
usually ensured, in one dimension the solution of the
conventional two-intensity phase retrieval problem is
not unique.?® Increasing M beyond 2 orders helps
overcome these difficulties.

The effect of noise is to equalize the dependence on
the number of orders M. When the noise is small, the
final errors depend more strongly on M, with smaller
M tending to result in greater error. As the noise is
increased, the final errors obtained with different M
become closer, and for large noise values correspond-
ing to unity SNR, the final errors are roughly com-
parable for all M. Generally speaking, for a given M,
the final error decreases with decreasing noise as
expected, with the amount of decrease greater for
higher M. Likewise, for a given SNR, final error de-
creases with increasing M, with the decrease greater
for higher values of SNR. We also observed that the
benefits of using larger versus smaller values of M
were especially pronounced for the case of large SNR
and small iteration numbers, an observation that
might be especially useful when the need to obtain
solutions in real time severely limits the number of
feasible iterations.

The final error has two main constituents, a noise-
independent one and a noise-dependent one. The
noise-independent contribution is pronounced when M
is small and is a result of the nonlinear, nonconvex
nature of the problem. This contribution quickly de-
creases as M increases. On the other hand, the noise-
dependent contribution does not depend strongly on M.

We observed that for a given number of orders,
spreading them over the whole range of a resulted in
smaller errors when compared with spreading them
over a smaller range. It may be concluded that
greater separation between orders has a positive ef-
fect on the results. When the orders are farther apart
from one another, they represent more independent
pieces of information. When the orders are clustered
or close to one another, the problem becomes more ill
posed. Knowledge of the magnitudes clustered or
close to one another is less desirable, whereas knowl-
edge of the magnitudes at orders that are well sepa-
rated or spread over the range of ¢ is more desirable.



It follows from the discussion in the previous para-
graph that if multiple-intensity measurements are to
be made in an optical system and if it is desirable to
retrieve the phase from these measurements, it
would be best to select the measurement planes such
that they correspond to FRTs whose orders are well
separated or spread over the range of a. This conclu-
sion, which follows immediately from our FRT-based
formulation, might have been less evident in a
Fresnel-transform-based approach. The well-known
relation between quadratic-phase optical systems
and FRT enables one to easily find the locations along
the optical axis that correspond to given fractional
orders. Therefore, given any physical or mechanical
constraints of the system, the orders can be chosen in
the most suitable manner.

H. M. Ozaktas acknowledges partial support of the
Turkish Academy of Sciences.
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