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We define the accumulated Gouy phase shift as the on-axis phase accumulated by a Gaussian beam in passing
through an optical system, in excess of the phase accumulated by a plane wave. We give an expression for the
accumulated Gouy phase shift in terms of the parameters of the system through which the beam propagates.
This quantity complements the beam diameter and the wave-front radius of curvature to constitute three pa-
rameters that uniquely characterize the beam with respect to a reference point in the system. Measurement
of these parameters allows one to uniquely recover the parameters characterizing the first-order system
through which the beam propagates. © 1997 Optical Society of America [S0740-3232(97)01408-7]
1. INTRODUCTION
A paraxial wave1 is a plane wave exp(ikz) modulated by a
complex envelope A(x, y, z) that is assumed to be a
slowly varying function of position. In paraxial waves, in
order for the complex amplitude U(x, y, z), expressed as

U~x, y, z ! 5 A~x, y, z !exp~ikz !, (1)

to satisfy Helmholtz equation, A(x, y, z) must satisfy the
paraxial Helmholtz equation. One of the solutions of the
paraxial Helmholtz equation is a Gaussian beam, for
which we can express the complex envelope A(x, y, z) as

A~x, y, z ! 5
A1

q~z !
exp@ik~x2 1 y2!/2q~z !#,

q~z ! 5 z 2 iz0 , (2)

where z0 is known as the Rayleigh range and A1 is an ar-
bitrary complex constant. We can also express q(z)
through

1

q~z !
5

1

r~z !
1 i

l

pw2~z !
, (3)

where w(z) and r(z) are the beam width and the wave-
front radius of curvature, respectively, of Gaussian
beams. With these newly defined parameters, the ex-
pression in Eq. (2) becomes

A~x, y, z ! 5 A0

w0

w~z !
expF2

x2 1 y2

w2~z !
GexpF ip

x2 1 y2

lr~z !
G

3 exp@2iz~z !#, (4)

where A0 5 2A1 /iz0 is another complex constant and

w~z ! 5 w0A1 1 z2/z0
2, r~z ! 5 z~1 1 z0

2/z2!,

z~z ! 5 tan21 z/z0 , w0 5 Alz0 /p. (5)

In these equations, w0 and z(z) are defined as the beam-
waist diameter and the Gouy phase shift, respectively.
0740-3232/97/0902190-05$10.00 ©
These expressions assume that the beam waist is located
at z 5 0, but they can be generalized to any waist location
at z 5 zw by simply replacing z with z 2 zw .

In this paper we consider Gaussian beams passing
through centered, axially symmetric quadratic-phase op-
tical systems under the standard approximations of Fou-
rier optics.1 Thin lenses, arbitrary sections of free space
(under the Fresnel approximation), quadratic graded-
index media, and any combinations of these belong to the
class of quadratic-phase systems. We characterize the
members of quadratic-phase systems through2–6

pout~x ! 5 E
2`

`

h~x, x8!p in~x8!dx8,

h~x, x8! 5 K exp@ip~ax2 2 2bxx8 1 gx82!#, (6)

where K is a complex constant and a, b, and g are real
constants. Thus, apart from the constant factor K,
which has no effect on the resulting spatial distribution, a
member of the class of quadratic-phase systems is com-
pletely specified by the three parameters a, b, and g. Al-
ternatively, such a system can also be completely speci-
fied by the transformation matrix2–6

T [ FA B

C DG [ F g/b 1/b

2b 1 ag/b a/bG , (7)

with unity determinant (i.e., AD 2 BC 5 1). If several
systems each characterized by such a matrix are cas-
caded, the matrix characterizing the overall system can
be found by multiplying the matrices of the several
systems.2,4,5 The matrix defined above also corresponds
to the well-known ray matrix employed in ray optical
analysis.1,3

If we want to express the transformation in Eq. (6) in
terms of the matrix elements ABCD of the medium, it
turns out that5,7
1997 Optical Society of America
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pout~x ! 5 exp~ikL0!E
2`

`

h̃~x, x8!p in~x8!dx8,

h̃~x, x8! 5
1

AiB
expF ip

B
~Dx2 2 2xx8 1 Ax82!G .

(8)

In this equation, L0 is the on-axis optical length of the
medium.7 For two-dimensional, centered, and axially
symmetric systems this transformation becomes

pout~x, y ! 5 exp~ikL0!E
2`

` E
2`

`

h̃~x, x8!h̃~y, y8!

3 p in~x8, y8!dx8dy8. (9)

In this paper we define the accumulated Gouy phase
shift and give an expression for it in terms of the trans-
formation matrix elements ABCD of the medium. We ob-
serve that this quantity complements the beam diameter
and the wave-front radius of curvature to constitute three
parameters that uniquely characterize the first-order op-
tical system parameters through which the beam propa-
gates.

2. ACCUMULATED GOUY PHASE SHIFT
A. Definition
The Gouy phase shift defined in Eq. (5) is the on-axis
phase of a Gaussian beam with respect to the beam waist
in excess of the phase of a plane wave exp(ikz). It is not
independent of beam diameter w and the wave-front ra-
dius of curvature r. That is, if we know w and r of a
beam at a specific plane, we can also obtain the Gouy
phase shift at that plane. More specifically, from Eq. (5)
we can find

z~z ! 5 tan21
pw2~z !

lr~z !
. (10)

When a Gaussian beam propagates through an optical
system composed of several lenses, there may be a num-
ber of beam waists. In this case it does not seem possible
to interpret the Gouy phase shift as defined above in a
meaningful manner. It may be possible to interpret z as
the on-axis phase of the beam in excess of that of a plane
wave with respect to the last (possibly virtual) waist. Of
greater interest would be the phase shift accumulated by
the beam as it passes through several lenses and sections
of free space with respect to a single reference point in the
system. Thus we define the accumulated Gouy phase
shift z̃ of a Gaussian beam passing through an optical sys-
tem as the on-axis phase accumulated by the beam in ex-
cess of the factor exp(ikL0) in Eq. (9) (this factor can also
be thought as the on-axis phase that would be accumu-
lated by a plane wave). Mathematically,

2z̃ 5 arg$ pout~0, 0!% 2 arg$ p in~0, 0!% 2 kL0 , (11)

where p in(x, y) and pout(x, y) denote the input and the
output Gaussian beams, respectively, and arg$•% denotes
the argument (phase).

In Ref. 8, transformation of the generalized beam-mode
parameters is analyzed with operator algebra. The out-
put parameters are related to the input parameters
through transformation matrix elements ABCD of the
medium. When the matrix elements are real, as is the
case here, the generalized beams correspond to conven-
tional Hermite–Gaussian beams, the lowest order of
which is the Gaussian beam.

Let us now consider a Gaussian beam with parameters
w in and r in input to a quadratic-phase system, and let the
system be characterized by the transformation matrix
with elements ABCD. The output beam parameters are
wout and rout . Let us define the complex parameters q in
and qout associated with the input and the output Gauss-
ian beams, respectively, through Eq. (3). We know that
qout is related to q in through matrix elements ABCD
as1,7,8

lqout 5
Alq in 1 B
Clq in 1 D

. (12)

Using this expression, we can relate the output param-
eters wout and rout to the input parameters w in and r in
through ABCD as

wout
2 5 w in

2 S A 1
B

lr in
D 2

1
B2

p2w in
2 , (13)

1

rout
5

S lC 1
D

r in
D S A 1

B

lr in
D 1

BDl

p2w in
4

S A 1
B

lr in
D 2

1
B2

p2w in
4

. (14)

In this paper we show that the accumulated Gouy phase
shift z̃ can be similarly expressed as

tan z̃ 5
B

S A 1
B

lr in
Dpw in

2
. (15)

Two proofs of this expression are given in Section 3. The
first one is algebraically straightforward, but the second
one although somewhat long, is more instructive.

As a result, if we consider a Gaussian beam with pa-
rameters w in and r in input to a quadratic-phase system
characterized by the matrix with elements ABCD, the
parameters wout and rout of the output beam as well as the
accumulated Gouy phase shift from input to output can be
found from Eqs. (13)–(15). Notice that the accumulated
Gouy phase shift depends on only two of the three inde-
pendent parameters that characterize the first-order sys-
tem. Thus two systems that have the same values of A
and B but different values of C and D may have the same
accumulated Gouy phase shift.

B. Interpretation As an Independent Parameter
We may also look at the problem the other way around.
Let us assume that we know the parameters w in and r in of
the Gaussian beam at the input and that we can measure
wout and rout at the output of the quadratic-phase system,
and let us assume that we also know the accumulated
Gouy phase shift between the input and the output planes
(if we know the on-axis optical length of the system, we
can obtain both the output wave-front radius of curvature
and the accumulated Gouy phase shift by interfering the
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beam with a plane). Then we can recover the matrix el-
ements ABCD of the system by using Eqs. (13)–(15) and
the identity AD2BC51 as

A 5
wout

w in
cosz̃ 2

pw inwout sin z̃

lr in
, (16)

B 5 pw inwout sin z̃, (17)

C 5
A

lrout
2

B

p2w in
4 1

1

lr in
S A 1

B

lr in
D

S A 1
B

lr in
D 2

1
B2

p2w in
4

, (18)

D 5
1 1 BC

A
. (19)

Notice that the ABCD parameters of the system could not
be recovered from measurements of a single Gaussian
probe by employing the conventional Gouy phase shift
[Eq. (10)]. This is because the conventional Gouy phase
shift is not independent of beam diameter w and the
wave-front radius of curvature r. In contrast, the accu-
mulated Gouy phase shift is an independent parameter
that complements the beam diameter and the wave-front
radius of curvature to constitute three parameters that
uniquely characterize the beam with respect to a refer-
ence point in the system. This means that knowledge of
these three parameters at any single plane in the system
allows them to be calculated at any other plane in the sys-
tem. Measurement of these parameters allows one to
uniquely recover the parameters that completely charac-
terize the quadratic-phase system through which the
beam propagates. Remember that such systems are
characterized by three parameters (a, b, g, or any three of
ABCD). Thus we would expect the effect of such a sys-
tem on a beam passing through it also to be characterized
by three parameters. The conventional Gouy phase
shift, which is not independent of w and r and is difficult
to interpret meaningfully in multilens systems, cannot
serve as a third parameter. This was the motivation be-
hind defining the accumulated Gouy phase shift. The
importance of this quantity is further supported by its di-
rect relation to the fractional-Fourier-transform param-
eter,3,9,10 as discussed at length elsewhere.11

3. PROOF OF THE ACCUMULATED GOUY
PHASE-SHIFT EXPRESSION
In this section we give two proofs for the expression in Eq.
(15).

A. Proof A
The output Gaussian beam pout(x, y) is related to the in-
put Gaussian beam p in(x8, y8) through Eq. (9) as

pout~x, y ! 5 exp~ikL0!E
2`

` E
2`

`

h̃~x, x8!h̃~y, y8!

3 p in~x8, y8!dx8dy8, (20)

where h̃( • , • ) is the kernel in Eq. (8) and
p in~x, y ! 5 A in

w0

w in
expS 2

x2 1 y2

w in
2 D expS ip

x2 1 y2

lr in
D .

(21)

We know from Ref. 7 that

E
2`

`

exp~2x2r2 2 qx !dx 5
Ap

r
expS q2

4r2D . (22)

Using this identity, after some algebra we obtain
pout(x, y) as

pout~x, y ! 5 A in

w0

wout
exp~ikL0!expF2

x2 1 y2

wout
2 G

3 expF ip
x2 1 y2

lrout
Gexp~2i z̃ !, (23)

where

wout
2 5 w in

2 S A 1
B

lr in
D 2

1
B2

p2w in
2 , (24)

1

rout
5

S lC 1
D

r in
D S A 1

B

lr in
D 1

BDl

p2w in
4

S A 1
B

lr in
D 2

1
B2

p2w in
4

,
(25)

tan z̃ 5
B

S A 1
B

lr in
Dpw in

2
. (26)

B. Proof B
Lemma 1: The expression in Eq. (15) is consistent under
concatenation [i.e., if two systems for which Eq. (15) holds
are cascaded, the resultant accumulated Gouy phase shift
is also in the form of Eq. (15) and is expressed as the sum-
mation of the phase shifts associated with the individual
systems].

Proof: Suppose that we have two systems with trans-
formation matrix elements A1B1C1D1 and A2B2C2D2
concatenated one after another. Let us call the Gaussian
beam parameters at the input of the first system w in1 and
r in1 , at the output of the first system wout1 5 w in2 and
rout1 5 r in2 (which are also the input parameters of the
second system), and at the output of the second system
wout2 and rout2 . We also have the accumulated Gouy
phase shifts z̃1 and z̃2 associated with the first and second
systems, respectively. Let us also assume that both sys-
tems satisfy Eq. (15). Then

tan z̃1 5
B1

S A1 1
B1

lr in1
Dpw in1

2
, (27)

tan z̃2 5
B2

S A2 1
B2

lrout1
Dpwout1

2
. (28)

We can obtain wout1 and rout1 used in Eq. (28) in terms of
w in , r in and the matrix elements of the first system
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through Eqs. (13) and (14). We also have the overall sys-
tem transformation matrix elements ABCD through

FA B

C DG 5 FA2 B2

C2 D2
GFA1 B1

C1 D1
G . (29)

We have all the necessary equations, so although the com-
putations are somewhat long, it is just a matter of
straightforward algebra to show that

z̃1 1 z̃2 5 z̃r 5 tan21
B

S A 1
B

lr in1
Dpw in1

2
, (30)

where z̃r is the accumulated Gouy phase shift associated
with the cascaded system.

Lemma 2: Equation (15) holds for systems with upper
triangular matrices of the form

T [ F1 ld

0 1 G . (31)

(The matrix associated with a section of free space of
length d is of this form.)

Proof: Let us consider a Gaussian beam with w in and
r in input to a system. With these parameters, the com-
plex envelope of the input Gaussian beam defined in Eq.
(2) becomes

A in~x, y ! 5 A0

w0

w in
expS 2

x2 1 y2

w in
2 D expS ip

x2 1 y2

lr in
D .

(32)

After taking the Fresnel integral of this expression, we
find the output Gaussian beam as

Aout~x, y ! 5 A0

w0

wout
expS 2

x2 1 y2

wout
2 D expS ip

x2 1 y2

lrout
D

3 exp~2i z̃ !, (33)

where wout and rout in Eq. (33) are in the form of Eqs. (13)
and (14) with ABCD as the parameters of the matrix in
Eq. (31) and

tan z̃ 5
ld

S 1 1
d
r in

Dpw in
2

. (34)

We see that this expression is consistent with the one in
Eq. (15) with A 5 1 and B 5 ld, as is the case for the
matrix in Eq. (31).

Lemma 3: Equation (15) holds for systems with lower
triangular matrices of the form

T 5 F 1 0

21
lf

1G , (35)

(The matrix associated with a thin lens of focal length f is
of this form.)

Proof: Again starting with the complex-envelope ex-
pression of the input Gaussian beam in Eq. (32), we know
that after passage through a lens of focal length f, this
complex envelope becomes
Aout~x, y ! 5 A0

w0

w in
expS 2

x2 1 y2

w in
2 D expS ip

x2 1 y2

lr in
D

3 expS 2ip
x2

lf D . (36)

Observing Eqs. (32) and (36), we see that when a Gauss-
ian beam passes through a lens, its wave-front radius of
curvature rout will be the only parameter that changes ac-
cording to rout

21 5 r in
21 2 f21, whereas the beam diameter

remains unchanged and there is no accumulated Gouy
phase shift ( z̃ 5 0). This result is consistent with Eq.
(15), as we can again obtain z̃ 5 0 from this equation to-
gether with the transformation matrix expressed in Eq.
(35).

Proof of equation 15: Any 2 3 2 matrix of unity deter-
minant can be decomposed as

T [ FA B

C DG [ F1 ~A 2 1 !/C

0 1 GF 1 0

C 1GF1 ~D 2 1 !/C

0 1 G .
(37)

Thus any quadratic-phase system can be modeled as two
sections of free space with a lens in between. We have
shown in lemmas 2, 3 that the expression in Eq. (15)
holds for both lenses and free-space sections. Then
with the help of lemma 1 we can say that the accumulated
Gouy phase-shift expression in Eq. (15) also holds for the
cascaded system in Eq. (37) and hence for quadratic-
phase systems.

4. CONCLUSION
In this paper we defined the accumulated Gouy phase
shift, and gave an expression for it in terms of the trans-
formation matrix elements of the system through which
the beam propagates. We observed that this quantity is
independent of beam diameter w and the wave-front ra-
dius of curvature r. Thus, measurement of the accumu-
lated Gouy phase shift, the beam diameter, and the wave-
front radius of curvature allows one to uniquely recover
the parameters that completely characterize the
quadratic-phase system through which the beam propa-
gates.

REFERENCES
1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics

(Wiley, New York, 1991).
2. M. J. Bastiaans, ‘‘Wigner distribution function and its ap-

plication to first-order optics,’’ J. Opt. Soc. Am. 69, 1710–
1716 (1979).

3. H. M. Ozaktas and D. Mendlovic, ‘‘Fractional Fourier op-
tics,’’ J. Opt. Soc. Am. A 12, 743–751 (1995).

4. K. B. Wolf, Integral Transforms in Science and Engineering
(Plenum, New York, 1979).

5. M. Nazarathy and J. Shamir, ‘‘First-order optics—a canoni-
cal operator representation: lossless systems,’’ J. Opt. Soc.
Am. 72, 356–364 (1982).

6. S. Abe and J. T. Sheridan, ‘‘Optical operations on wave
functions as the Abelian subgroups of the special affine
Fourier transformation,’’ Opt. Lett. 19, 1801–1803 (1994).

7. A. E. Siegman, Lasers (University Science Books, Mill Val-
ley, Calif., 1986).

8. M. Nazarathy, A. Hardy, and J. Shamir, ‘‘Generalized mode



2194 J. Opt. Soc. Am. A/Vol. 14, No. 9 /September 1997 M. F. Erden and H. M. Ozaktas
propagation in first-order optical systems with loss or gain,’’
J. Opt. Soc. Am. 72, 1409–1420 (1982).

9. H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural,
‘‘Convolution, filtering, and multiplexing in fractional Fou-
rier domains and their relation to chirp and wavelet trans-
forms,’’ J. Opt. Soc. Am. A 11, 547–559 (1994).
10. A. W. Lohmann, ‘‘Image rotation, Wigner rotation, and the
fractional Fourier transform,’’ J. Opt. Soc. Am. A 10, 2181–
2186 (1993).

11. H. M. Ozaktas and D. Mendlovic, ‘‘Fractional Fourier trans-
form as a tool for analyzing beam propagation and spherical
mirror resonators,’’ Opt. Lett. 19, 1678–1680 (1994).


