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If the sampled diffraction pattern due to a planar object is used to reconstruct the object pattern by backpropa-
gation, the obtained pattern is no longer the same as the original. The effect of such sampling on the recon-
struction is analyzed. The formulation uses the plane-wave expansion, and therefore the provided solution is
exact for wave propagation in media where scalar wave propagation is valid. In contrast to the sampling effects
under the Fresnel approximation, the exact solution indicates that there are no modulated replicas of the origi-
nal object in the reconstructed pattern. Rather, the distortion is in the form of modulated, translated, and dis-
persed versions of the original. © 2007 Optical Society of America
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. INTRODUCTION
econstruction of underlying objects from their captured
iffraction patterns, or holograms in more practical cases,
y digital means is an attractive common practice.1–7 The
ssociated inevitable sampling (discretization) of the dif-
raction field during the initial phase of subsequent digi-
al processing requires care.8–12 As in many other appli-
ations, the band-limited sampling and the associated
inc interpolation are also commonly applied to diffrac-
ion. However, it is known that such a general approach,
ithout taking into consideration the other properties
nd restrictions due to the nature of the diffraction and
he objects, is bound to yield extremely inefficient results
y producing an unnecessarily large amount of samples.
or example, space-limited (thus non-band-limited) ob-

ects can be fully recovered from their Fresnel transforms,
hich are sampled rather sparsely.8,13 It is shown that

he sampling of the Fresnel diffraction field results in
odulated and translated replicas of the original at peri-

dic locations. Therefore, a finite-extent (space-limited)
bject can be fully recovered by cutting away the undes-
red modulated replicas; the sampling rate determines
he locations of the replicas: higher sampling rates gener-
te farther translated modulated replicas of the object.8

It is noticed by Coupland14 that when the Fresnel ap-
roximation is no longer valid the sampling of the diffrac-
ion field does not create visible replicas in the reconstruc-
ion. Coupland got experimental results and provided
ome theoretical explanation for this phenomenon. Here
n this paper, a rigorous proof for the above-mentioned ob-
ervation and the exact analytical form of the introduced
istortion due to the sampling are presented. A review of
lane-wave decomposition formulation of diffraction is in-
luded in Section 2 for the sake of clarity and complete-
ess of the subsequent sections.
1084-7529/07/020359-9/$15.00 © 2
. REVIEW OF PLANE-WAVE
ECOMPOSITION FORMULATION
F DIFFRACTION
ven though there is plenty of good literature on diffrac-

ion (see, for example, Goodman15 or Born and Wolf16), it
ay be useful to provide a brief review both to establish

he notation and to provide a better basis for the rest of
he paper. We concentrate on the plane-wave decomposi-
ion (angular spectrum representation) approach.15–18

For the scalar case, the plane-wave decomposition ap-
roach is exact, and simple and yields efficient computa-
ional algorithms. Briefly, a single 3-D plane wave
xp�jkTx� is a solution of the Helmholtz equation. There-
ore, a superposition of plane waves,

��x� =� B�k�exp�jkTx�dk, �1�

s also a solution and gives the 3-D field. The integration
s over a set of k’s that is determined by constraints asso-
iated with the physics of a given problem, where k
�kx ky kz�T and x= �x y z�T.
If we restrict the wavenumber (the 3-D spatial fre-

uency) k, such that �k�=k=2� /�, where � is the wave-
ength to represent the monochromatic propagating
aves, the integral becomes a surface integral over the

k�=2� /� (Ewald) sphere.19 The conventional diffraction
roblem between two parallel planes can be solved by in-
ersecting the 3-D field of Eq. (1) by the two planes.20 As a
onsequence of the monochromatic propagating wave con-
traint, the variable k can be represented by two vari-
bles (directional components) kx and ky, since kz= �k2

kx
2−ky

2�1/2. We define the 2-D vector k to be equal to
kx ky�T to ease the notation. Similarly, x represents the
-D space variables �x y�T. A positive kz represents
007 Optical Society of America
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ropagation in the positive z direction and vice versa.
herefore, it may be convenient to convert the integration
easure dk of Eq. (1) into dk=dkxdky and rewrite the in-

egral as

��x� =�
kx

2+ky
2�k2

A�k�exp�jkTx�dk, �2�

here, due to change of variables of the integration, the
elation between the amplitude of the plane-wave compo-
ents B�k� and A�k� is19

A�k� = B�k�
k

�k2 − kTk�1/2 ; �3�

ote that B�·� and A�·� are 3-D and 2-D functions, respec-
ively. Choosing the two parallel planes as the z=0 (ob-
ect) plane and z=Z (diffraction) plane, we see that, for
ach plane-wave component,

�A�k�exp�jkTx��z=0 = A�k�exp�jkTx�, �4�

�A�k�exp�jkTx��z=Z = A�k�exp�jkTx�exp�j�Z�k��, �5�

here �Z�k� is the phase shift due to the angle of propa-
ation of the plane wave and linearly increases with the
istance variable Z, as

�Z�k� = Z�k2 − kTk�1/2, �6�

or a given k. Therefore, the superposition of all such
onochromatic propagating waves, over all k that fall

nto the disk �k2−kTk��0, gives us the object pattern at
he z=0 plane and the diffraction pattern at the z=Z
lane, as

�0�x� � ��x,y,0� =� A�k�exp�jkTx�dk, �7�

�Z�x� � ��x,y,Z� =� A�k�exp�jkTx�

�exp�jZ�k2 − kTk�1/2�dk. �8�

lease note that all the superpositions presented in ex-
ressions (1), (2), (7), and (8) are either 3-D or 2-D Fourier
xpansions for the corresponding diffraction patterns
which, of course, include the object pattern, as well).
rom expression (7), we see that

4�2A�k� = F���x��, �9�

nd, from expression (8), we get the result

�Z�k� = F−1�4�2A�k�HZ�k��, �10�

here

HZ�k� = HZ�kx,ky� � exp�jZ�k2 − kTk�1/2�

= exp�jZ�k2 − kx
2 − ky

2�1/2�. �11�

herefore, expression (8) [or, equivalently, Eq. (10)] indi-
ates the well-known result that the diffraction pattern
ue to propagating waves, over a plane parallel to the
iven planar object pattern, at a distance Z, is the output
f a linear shift-invariant system whose transfer function
s HZ�k�, which has a unity magnitude within its pass-
and. The impulse response of this linear shift-invariant
ystem, which is the inverse Fourier transform of HZ�k�,
s21,22

hZ�x� = hZ�x,y�

= F−1�HZ�k�� = −
1

2�

�

�Z

exp��jk�x2 + y2 + Z2�1/2�

�x2 + y2 + Z2�1/2

= −
1

2�

�

�Z

exp��jk�xTx + Z2�1/2�

�xTx + Z2�1/2

= −
1

2�

�

�Z

exp�jkr�

r
. �12�

f the diffraction due to illumination of a physical mask is
onsidered, evanescent wave components should also be
ncluded in the discussion. Indeed, the Fourier transform
elation between expressions (12) and (11) includes both
ropagating �kTk=kx

2+ky
2�kz

2� and evanescent �kTk=kx
2

ky
2	kz

2� components.21 However, if the physical mask is
spatially low-pass function with a 2-D passband kx

2+ky
2

kz
2 or if the mask is simply obtained by intersecting the

-D field due to propagating waves with the z=0 plane,
hen there are no evanescent components. Therefore, the
ayleigh–Sommerfeld diffraction and the plane-wave de-
omposition are equivalent, as also shown by Sherman.21

s a conclusion, we can say that the Rayleigh–
ommerfeld diffraction whose convolution kernel is given
y Eq. (12) is the exact solution to the scalar diffraction
roblem. Furthermore, as a consequence of the Fourier
ransform relations given by Eqs. (9) and (10), the compu-
ational burden of this exact solution in simulations is
omparable to that of the Fresnel case, and therefore, con-
idering the accuracy and the broader applicability, one
ay prefer the Rayleigh–Sommerfeld diffraction formula-

ion (or the equivalent plane-wave decomposition) over
ther approximate diffraction formulations. Both the im-
ulse response [Eq. (12)] and its Fourier transform [ex-
ression (11)] corresponding to the linear shift-invariant
ystem representing the exact scalar diffraction between
arallel planes are analytically known, as presented
bove, anyway.
The 3-D field over the space z�0 may be physically

enerated by illuminating the 2-D object mask by a single
lane wave propagating along the z axis. Similarly, if a
omplex-valued mask records the diffraction pattern at
=Z and if this mask is illuminated by a single plane
ave propagating along the −z direction, the 3-D field is
btained physically for the space z�Z; this is commonly
alled the reconstruction. Reconstruction refers to the
rocess of creating ��x� [and thus �0�x�] from �Z�x�, and
hat can be accomplished by implementing the inverse
ystem by physical or computational means. Mathemati-
ally, the reconstruction is equivalent to

�0�x� = F−1��Z�k�H−Z�k�� = �Z�x� � � h−Z�x� �13�

s a consequence of the properties

HZ�k�H−Z�k� = 1 �14�

r
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hZ�x� � � h−Z�x� = 
�x�, �15�

here �� denotes 2-D convolution and h−Z�x� is the con-
olution kernel for the reverse propagation that is ob-
ained by replacing Z by −Z in hZ�x�. The function 
�x� is
he 2-D impulse function.

. EFFECT OF SAMPLING—EXACT
NALYSIS

et us consider the sampling of the 2-D scalar diffraction
attern, �Z�x� over the plane z=Z, by a 2-D lattice. This
orresponds to the multiplication of the pattern by a regu-
ar (periodic) lattice of impulse functions:

�Zs�x� � �Z�x�	
n


�x − Vn� = 	
n

�Z�Vn�
�x − Vn�,

�16�

here �Zs�x� is the 2-D discrete (sampled) diffraction
eld, V is the 2-D sampling matrix, 
�x� is the 2-D im-
ulse function, and n= �n1 n2�T is a vector of integers.
e label the sampling function as

p�x� = 	
n


�x − Vn�. �17�

Using the Fourier relations due to sampling,8,23 we get

�Zs�k� = F��Zs�x�� =
1

�det V�	m �Z�k − Um�, �18�

here U=2�V−T and m is a 2-D vector of integers.
Therefore, the Fourier transform, �R�k�, of the recon-

truction from the sampled diffraction pattern is8

�R�k� = �Zs�k�H−Z�k� =
1

�det V�	m �Z�k − Um�H−Z�k�

=
1

�det V�	m 4�2A�k − Um�HZ�k − Um�H−Z�k�.

�19�

We can analytically find HZ�k−Um�H−Z�k� of Eq. (19)
s

HZ�k − Um�H−Z�k� = exp�jZ�k2 − �k − Um�T�k − Um��1/2�

�exp�− jZ�k2 − kTk�1/2�, �20�

nd therefore Eq. (19) becomes

�R�k� =
4�2

�det V�	m A�k − Um�exp�jZ��k2 − �k − Um�T

��k − Um��1/2 − �k2 − kTk�1/2��

=
4�2

�det V�	m A�k − Um�

�exp�j��k − Um��exp�− j��k��, �21�

here

��k� = �k2 − �k�T�k��1/2Z. �22�

Finally, we obtain the desired solution as
�R�x� = F−1��R�k�� =
1

4�2 � �R�k�exp�jkTx�dk. �23�

Therefore, the exact effect of reconstruction from a
ampled diffraction pattern is obtained as given in Eqs.
21) and (23). It is not difficult to interpret this result. Let
s define �R,m�x� as

�R,m�x� � F−1
 4�2

�det V�
A�k − Um�exp�jZ��k2 − �k − Um�T

��k − Um��1/2 − �k2 − kTk�1/2��� , �24�

o that

�R�x� = 	
m

�R,m�x� �25�

s a consequence of Eqs. (21) and (23). First of all, �R,0�x�
s the perfect reconstruction. And, since each �R,m�x� term
s associated with a translated function A�k−Um� in the
ourier domain, these terms are modulated versions of
R,0�x� by exp�j�Um�Tx�. Please note that this modulation
ffect is the same as in the Fresnel case.8 However, in con-
rast to the Fresnel case, frequency components of �R,m�x�
hift by a different amount in space due to the nonlinear
hase, �m�k����k−Um�−��k�, resulting in a dispersion.
e can look further at the form of the dispersion: a

aylor-series expansion of the terms in square root yields
he constant, linear, and the higher-order terms of ��k� as

��k� = kZ −
1

2k
kTkZ + higher-order terms. �26�

herefore,

�m�k� = ��k − Um� − ��k�

= −
1

k
Z�Um�Tk +

1

2k
Z�Um�T�Um�

+ higher-order terms. �27�

he first term of Eq. (27) is the linear phase term in the
ourier domain and therefore corresponds to a transla-

ion in space; the location of the 2-D translation is
�Z /k�Um. The second term is just a constant, and there-

ore it corresponds to a multiplication of the field by a
omplex constant. Higher-order terms create the disper-
ion around the location of translation. Please note that
he linear term is more dominant, and therefore the
igher-order terms are less significant for those m closer
o 0. Therefore, we conclude that the dispersion due to the
onlinear phase is stronger as m increases.
Thus we reach the final result: the reconstruction from
sampled diffraction pattern yields a superposition of

erms corresponding to the exact reconstruction and its
odulated, translated, and dispersed versions; when the

ranslations are far away, the modulation is higher in fre-
uency, and the dispersion is stronger, yielding more
pread-out versions of the original. Depending on the
ampling rate and the spatial structure of the object, the
ispersion for the components with farther translations
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larger m) may be so strong (spreads the object too much)
hat the translated objects are no longer recognizable.

It is interesting to note that, by definition, the Fresnel
ase has only up to the linear term in the Taylor-series ex-
ansion above. Therefore, there is no dispersion but only
odulated and translated replicas of the perfect

econstruction.8 The Fresnel case is an approximation to
iffraction, whereas the Rayleigh–Sommerfeld case, as
lso shown in this paper, is exact for the scalar case. The
ffects of sampling for the Fresnel case given by Onural8

s valid only if the diffraction field, which is then sampled,
an be approximated by a paraxial propagation and the
ubsequent reconstruction is carried out digitally, again
y simulating the Fresnel transform. However, if the dif-
raction field does not satisfy the Fresnel conditions or if
he reconstruction after the sampling is carried out by op-
ical means or by digital computation simulating the
ayleigh–Sommerfeld diffraction, there is dispersion, as
xplained above.

It is important to note that the dispersed and trans-
ated components in the reconstruction may be an advan-
age in some applications: it reduces the unwanted effects
f sampling by washing out the strongly visible undesired
omponents. However, the energy in those components
oes not get smaller but just spreads out, creating small
ut far-extending deterministic noiselike components
hat corrupt the desired perfect reconstruction compo-
ent. Therefore, it may not be possible to completely
liminate those higher-order term components by win-
owing as in the Fresnel case.8 A simulated example, for a
ectangular sampling grid, is illustrated in Figs. 3
hrough 6. The locations of translations, the modulation
f the translated patterns, and the dispersion are clearly
isible. Furthermore, the increase of the dispersion, as
he order of diffractions increases, is also visible.

It should also be noted that the range of the summation
ndex m is limited to those m that result in propagating
aves, since we have excluded the evanescent compo-
ents in our discussions.

. PLANE-WAVE DECOMPOSITION
QUIVALENT OF SAMPLING
he exact analytical solution of the effect of sampling of
he scalar diffraction is given in Section 3, together with
nterpretations of the results. To give a better insight to
he mathematical analysis provided in Section 3, a physi-
al interpretation may be useful. Such a physical inter-
retation is provided here in this section.
It can be assumed that the 2-D function p�x� defined by

q. (17) is obtained by intersecting a hypothetical 3-D
onochromatic field:

p�x� = 	
m

pm�x�

=
1

�det V�	m exp�j�− kx,mx − ky,my ± kz,m�z − Z���,

�28�
here, as usual, kz,m= �k2−kx,m
2 −ky,m

2 �1/2. We call this
undle of discrete angle 3-D plane waves the 3-D sam-
ling waves: the illumination of the diffraction mask
Z�x� by this bundle, p�x�, of discrete angle plane waves
amples the 2-D field by a regular 2-D lattice at the z=Z
lane. Note that, while the +kz choice corresponds to for-
ard propagation of the sampling plane waves, −kx corre-

ponds to backward propagation. As usual, complex km
nvolves evanescent waves due to imaginary kz,m; the eva-
escent waves correspond to higher-frequency compo-
ents, �kx ,ky�, of the impulsive sampling lattice.
Therefore, instead of the single illuminating plane

ave incident perpendicularly on the diffraction mask for
he purpose of reconstruction, now we are illuminating
he mask with a collection of many plane waves that su-
erpose to form the sampling lattice at z=Z as given by
q. (28). The superposition of Eq. (28) includes both
ropagating plane waves (corresponding to lower-
requency components of the impulsive sampling lattice)
nd evanescent plane waves (higher-frequency compo-
ents). Since evanescent components are quickly attenu-
ted as we go away from the sampling impulses, they do
ot affect the field at larger distances from the sampling
lane. Therefore, we ignore the evanescent components.
Let us start with the analysis of the reconstruction by a

ingle oblique plane-wave illumination of the diffraction
ask in the reverse direction. Therefore, the incident ob-

ique wave,

pm�x� =
1

�det V�
exp�j�kx,mx + ky,my

+ �k2 − kx,m
2 − ky,m

2 �1/2�z − Z���, �29�

odulates the mask to yield the field at the z=Z plane as

�Z�x�pm�x� = �Z�x�
1

�det V�
exp�j�kx,mx + ky,my��

=
1

�det V� � � A�kx,ky�

�exp�j�k2 − kx
2 − ky

2�1/2Z�exp�j��kx + kx,m�x

+ �ky + ky,m�y��dkxdky. �30�

The reconstructed 3-D field, as a consequence of the
bove oblique plane-wave illumination, is

�m�x� =
1

�det V� � � A�kx,ky�exp�j�k2 − kx
2 − ky

2�1/2Z�

�exp�j��kx + kx,m�x + �ky + ky,m�y

+ �k2 − �kx + kx,m�2 − �ky + ky,m�2�1/2�z − Z���dkxdky.

�31�

Thus at z=0, the reconstructed 2-D field, �R,m�x�, be-
omes

�R,m�x� =
1

�det V� � � A�kx,ky� · exp�j��k2 − kx
2 − ky

2�1/2

− �k2 − �kx + kx,m�2 − �ky + ky,m�2�1/2�Z�

· exp�j��k + k �x + �k + k �y��dk dk . �32�
x x,m y y,m x y
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Fig. 1. Circular aperture.
ig. 2. Fresnel reconstruction from the sampled Fresnel diffraction pattern of the object given in Fig. 1. The real part of the field is
hown.
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ig. 3. Rayleigh–Sommerfeld reconstruction from the sampled Rayleigh–Sommerfeld diffraction pattern of the object given in Fig. 1.

he distance is large, and therefore the pattern is similar to the Fresnel case. The real part of the field is shown.
ig. 4. Rayleigh–Sommerfeld reconstruction from the sampled Rayleigh–Sommerfeld diffraction pattern of the object given in Fig. 1.
he distance is smaller than that of Fig. 3, and therefore the discussed dispersion effects are more visible. The real part of the field is
hown.
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Fig. 5. Same simulation as in Fig. 4 but with a smaller diffraction distance.
Fig. 6. Same simulation as in Fig. 5 but with a smaller diffraction distance.
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change of variables, kx�=kx+kx,m and ky�=ky+ky,m, yields

�R�x� =
1

�det V� � � A�kx� − kx,m,ky� − ky,m� · exp�j��k2

− �kx� − kx,m�2 − �ky� − ky,m�2�1/2 − �k2 − kx�
2 − ky�

2�1/2�Z�

· exp�j�kx�x + ky�y��dkx�dky�. �33�

herefore, we conclude that the reconstructed field from
he sampled diffraction pattern is the inverse Fourier
ransform from the �kx� ,ky�� domain to �x ,y�:

�R�x� =
1

�det V�
F−1�A�kx� − kx,m,ky� − ky,m�

�exp�j��k2 − �kx� − kx,m�2 − �ky� − ky,m�2�1/2

− �k2 − kx�
2 − ky�

2�1/2�Z��. �34�

epeating for each such illuminating oblique plane-wave
omponent of Eq. (28) and summing over all such recon-
tructions, we get

�R�x� = 	
m

�R,m�x�, �35�

hich is the same as the previously derived Eq. (23).
Provided digitally simulated figures demonstrate the

ffects interpreted above. A test object, which is a circular
perture, is shown in Fig. 1. A Rayleigh–Sommerfeld dif-
raction pattern is computed by digital simulation. After-
ard, the diffraction pattern is sampled by keeping one
ut of eight pixels in each direction (one out of 64 samples

Fig. 7. Intensity pattern of the fi
re kept in a rectangular area); the rest of the samples
63 of them) are replaced by zeros. The sampled pattern is
hen numerically reconstructed by simulating Rayleigh–
ommerfeld diffraction. Simulations are repeated for dif-

erent effective Z values. For comparison, a Fresnel case
s also presented. Figure 2 is the digitally simulated
resnel reconstruction from the digitally computed and
ampled Fresnel diffraction pattern. Figures 3–6 are digi-
ally simulated Rayleigh–Sommerfeld reconstructions at

effectively different from the digitally computed and
ampled Rayleigh–Sommerfeld diffraction pattern. Fig-
re 3 shows the largest distance (closer to Fresnel range),
nd the distance gets smaller in Figs. 4–6. In each case,
he real part of the field is demonstrated. Sharp bound-
ries of the shifted and modulated replicas of the perfect
econstruction (the circle at the center) in the Fresnel
ase is typical. However, the higher-order diffraction com-
onents are spread out in the Rayleigh–Sommerfeld case.
n agreement with the theoretical analysis and interpre-
ation above, the spread is stronger as the diffraction or-
er increases. Similarly, the spread is more visible as the
istance Z gets smaller, and thus the exact (Rayleigh–
ommerfeld) diffraction deviates more from the Fresnel
ase. Figure 7 shows the intensity image of the pattern
hose real part is illustrated in Fig. 6; as seen from this
gure, the reconstruction is good even if 63 out of 64
amples are zeroed out due to sampling.

. CONCLUSIONS
n exact analytical solution to find the effects of sampling
f the scalar diffraction field on the reconstruction is de-

ose real part is shown in Fig. 6.
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ived. The analysis of this solution indicates that the re-
onstruction from the sampled diffraction pattern con-
ains an exact reconstruction of the original object (within

gain factor); however, this exact reconstruction is con-
aminated by the superposition of a number of distorted
nd translated versions of the reconstructed original. The
istortion includes a modulation by a complex sinusoid;
ut a more important distortion is the dispersion of these
ranslated components. The dispersion gets stronger for
ar-away components. This dispersion may or may not be
esirable: It washes out the translated components by
preading them out and thus makes them less visible, but
t also creates small but spread-out deterministic noise
erms that may overlap with the desired reconstruction
omponent.

A comparison of the effects of sampling for the
ayleigh–Sommerfeld (plane-wave decomposition) case
ith the Fresnel case8 indicates that both cases have the

xpected higher diffraction orders translated to the same
ocations and modulated by the same complex sinusoi-
als, but there is no dispersion in the Fresnel case.
It is also shown that, for the scalar case, the effect of

ampling may be interpreted as the illumination of the
ask by a bundle of different angle incident plane waves.
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