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We present a digital integral imaging system. A Fresnel lenslet array pattern is written on a phase-only LCoS
spatial light modulator device (SLM) to replace the regular analog lenslet array in a conventional integral imaging
system. We theoretically analyze the capture part of the proposed system based on Fresnel wave propagation
formulation. Because of pixelation and quantization of the lenslet array pattern, higher diffraction orders and
multiple focal points emerge. Because of the multiple focal planes introduced by the discrete lenslets, multiple
image planes are observed. The use of discrete lenslet arrays also causes some other artifacts on the recorded
elemental images. The results reduce to those available in the literature when the effects introduced by the discrete
nature of the lenslets are omitted. We performed simulations of the capture part. It is possible to obtain the
elemental images with an acceptable visual quality. We also constructed an optical integral imaging system with
both capture and display parts using the proposed discrete Fresnel lenslet array written on a SLM. Optical results
when self-luminous objects, such as an LED array, are used indicate that the proposed system yields satisfactory
results. © 2011 Optical Society of America

OCIS codes: 110.0110, 110.4190, 110.6880.

1. INTRODUCTION
Long after Lippmann had proposed integral imaging [1], it be-
came a popular research topic [2] and now it is used as a 3D
autostereoscopic capture and display method. As CCD
arrays and LCDs emerged, digital implementations of
Lippmann’s original work were also reported [3]. Chemical
photographic capture and display processes are now almost
entirely replaced by these digital recording and display de-
vices. Today, the resolution and size of these digital devices
are sufficiently high for experimental capture and display of
small-sized 3D objects/scenes. Even if the resolution of these
devices is not yet comparable to that of chemical photo-
graphic emulsions, the perceived 3D object quality is quite
good. Such devices are getting more and more popular due
to well-known advantages, such as flexibility, and also due
to the easy reproducibility, processing, storage, and transmis-
sion of the data written on these devices. Current research
focus in integral imaging is mainly on quality improvements
of perceived 3D objects/scenes by changing the physical prop-
erties of the lenslet arrays [4,5]. One of the problems is the
small viewing angle. A structure composed of a curved screen
and a curved lenslet array is proposed [6] to overcome this
problem. Since it is difficult to produce such lenses, placing
a large aperture lens, which simulates a curved array, in front
of a planar array of lenses was proposed [7]. Another issue is
the limited depth of field. This problem is due to the physical
properties of the lenslets in the array. It is shown that by using
amplitude masks the depth of focus of the system can be in-
creased by trading-off lateral resolution and light throughput
[4,8]. It is also possible to use phase masks on the lenslets to
improve the depth range of the system [5]. Another problem of
integral imaging is pseudoscopic 3D object perceived at the
display end. The simplest practical solution is to replicate

the process once more to obtain an orthoscopic image [2].
However, this makes the system or the process cumbersome.
So, digital and optical solutions to this problem are proposed
in [3,9], respectively. Even if those issues are fundamentally
important to improve the perceived image quality, the generic
system did not change much. The key element of the system,
lenslet array, is still mostly an analog device. Usually, it is a
fixed component with fixed physical parameters. So, if we
need to change the physical parameters of the lenslet array,
it should be manufactured again. Furthermore, different types
of lenslets to overcome some problems like the insufficient
depth of field may be needed [8]. It is difficult to manufacture
such special lenslet arrays. It would be much easier to pro-
gram an electronic device that would act as an electronic lens-
let array. Fortunately, it is shown that for adaptive optics,
programmable lenslet arrays can easily be implemented using
LCoS phase-only SLMs and are used in Hartmann–Shack sen-
sors [10,11]. Such devices work in the phase-only mode so that
Fresnel lenses can be written on them [12–14]. In some early
studies, magneto-optic SLMs were used to write binary Fres-
nel lens patterns [15] and used to modulate light. Moreover, it
is shown that it is possible to generate such lenslet arrays [16].
It is also mentioned in [16] that a generated lenslet array is
used to image a 3D object. However, experimental results
were not given. In [17], it is presented that electronically
synthesized Fresnel lenslet arrays can be encoded on an LCD
panel for integral imaging. In that paper, they showed the po-
tential of the idea by applying it to their previous setup, which
increases the viewing angle by mechanically moving the lens-
let array. In theory, the electronic lenslet array replaces the
moving lenslet array. However, because of the physical limita-
tions of the LCD panel, it is reported that such lenslet arrays
were not used in the optical experiments of the pickup pro-
cess. It is also reported that perceived resolution of the 3D
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reconstruction with the bare eye with the above-mentioned
system was very low. They suggested that an SLM with
smaller pixel size would give better results.

In this paper, we analyze the effects of using pixelated and
quantized lenslet arrays in an integral imaging system. Speci-
fically, we find the analytical results for the output elemental
images of the capture stage with a self-luminous 3D point
cloud input. We carried the analysis as if the source points
are coherent sources. The pixelated and quantized lenslet ar-
rays introduce some artifacts. Some of these artifacts are
multiple focal lengths due to quantization, and higher-order
diffractions due to the pixelated structure of the lenslets.
There is also inherent apodization due to the finite pixel size
[18]. We carry out the analysis by taking into consideration
these features of pixelated and quantized lenslet arrays,
and show that when these effects are ignored, the results sim-
plify to the previous results given in the literature [4,8]. We run
simulations to confirm the theoretical results and they are in
good agreement. Furthermore, we show that we can construct
a versatile integral imaging system by using a programmable
lenslet array, which is formed by writing an array of Fresnel
lenslet phase profiles on a high definition (1920 × 1080) reflec-
tive phase-only LCoS SLM (Holoeye HEO 1080P); this replaces
the conventional lenslet array. Furthermore, we present the-
oretical background for the system. An integral imaging sys-
tem, which implements the display as a reflective imaging
scheme, is proposed in the literature [19]. In that system, a
concave mirror array replaces the lenslet array and the image
is formed by the help of a half mirror. The elemental images on
a 2D display are integrated at the reconstruction distance that
is not on the same optical axis with the elemental images. The
half mirror folds the optical axis by 90 degrees. The recon-
structed 3D object is formed away from the half mirror. In
our system we use a similar scheme since our SLM device
is also reflective type. Both of the capture and display parts
of our system work with half mirrors. The elemental images
and the reconstructed images of the capture and the display
systems are formed away from the half mirrors. However, we
use a 2D lenslet array phase profile that is written on the SLM
electronically instead of a concave mirror array. This way we
succeeded to implement the entire integral imaging structure
as a digital system. We believe that this approach increases
the capability and flexibility of the system, significantly. Thus,
all subsequent improvements to increase the system quality
can be implemented easily by electronically changing the lens-
let array structure using digital means. In Section 2, we pre-
sent the formulation for lenslet array patterns with certain
focal lengths and describe the properties of such discrete lens-
lets. We review the multiple focal points issue due to quanti-
zation. We also analyze the capture system from a signal
processing perspective and give a brief explanation for the
display system. In Subsection 3.A, we present the results of
computer simulations and give correspondences to the theo-
retical results. In Subsection 3.B, we show the proposed sys-
tems for both capture and display parts of the integral imaging
setup for specific physical parameters and describe the opti-
cal setup and present the optical experiment results. Finally
we draw conclusions in Section 4.

2. ANALYSIS
The purpose of this section is to form the theoretical back-
ground of a conventional integral imaging setup, where an
analog lenslet array is replaced by an LCoS SLM, which has
an array of Fresnel lenslets written on it. Since the SLM has a
discrete nature we need to determine the 2D discrete array
that will be written on the SLM. The 2D discrete pattern of
Fresnel lenslet array written on the SLM is calculated by first
sampling a quadratic phase function with certain parameters
to represent a single Fresnel lenslet, then, by quantizing the
sample values to match the phase levels that the SLM can sup-
port, and finally, by replicating as many single lenslets in 2D as
the SLM dimensions can support. Before the analysis of the
capture setup, we reviewed the response of a single sampled
and quantized lenslet and also an array of such lenslets to a
plane wave illumination. For the continuous field propagation
analysis, we converted the 2D discrete pattern to a continuous
field by interpolating it with the pixel function related to the
SLM. In the capture part analysis of the integral imaging setup,
first the impulse response of the system is determined and
then a 3D point cloud is imaged and the intensity distribution
at the elemental image plane is given using a lenslet array on
the SLM. The relation between the parameters in the mathe-
matical models to the physical setup is discussed.

A. Quadratic Discrete Phase Array Patterns
It is crucial to determine how to generate the lenslet array.
Under the Fresnel approximation, the phase pattern of a thin
lens is a quadratic phase function. For the simplest case let us
consider a sampled (discrete) thin lens phase pattern written
on an SLM device. For a lens with a focal length f , the con-
tinuous quadratic phase function is

h−γðxÞ ¼ expð−jγxTxÞ; ð1Þ

where x ¼ ½x y�T , x; y ∈ R, and γ is a parameter that we will
explain later. By substituting x by Vn we get the 2D complex
discrete lens quadratic phase pattern

h½n� ¼ expð−jγnTVTVnÞ; ð2Þ

where V is the 2D sampling matrix. For simplicity we chose a

regular rectangular sampling matrix V ¼
�
X 0
0 X

�
, where

X is the sampling period (pixel period of the SLM), and
n ¼ ½n1 n2�T , where n1, n2 are integers. The sampling of the
quadratic phase function will cause a very specific type of
aliasing and naturally generates an array of Fresnel lens pat-
terns [20]. In [16], lenslet arrays are generated using this meth-
od. However, each lenslet in the generated array may have
different phase variation relative to its neighbor lenslet due
to the parameters of the designed array [16]. In [20], it is
shown that sampled quadratic phase patterns may have cer-
tain periodicity properties with such phase variations on
them. By choosing the parameters properly, one can obtain
a periodic phase pattern with no phase variations on them
so each lenslet will be exactly the same as its neighbors. In-
stead of this approach, we designed a single lenslet pattern
and then replicated this pattern one after another to cover
the entire SLM surface. Therefore, there is no phase variation
between the lenslets. Even though this method may cause
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phase jumps at the borders of the lenslets, and, thus, some
unwanted effects, such effects are negligible especially for lar-
ger array sizes. Furthermore, generation of lenslets with spe-
cial phase patterns [5] is easier to obtain using this method.
Also, such an approach makes it easier to fit a certain array
configuration over the finite size SLM. To determine the num-
ber of lenslets given the SLM size we need the discrete array
size of a single lenslet pattern. For this reason, we need to
relate the parameter γ to physical parameters as γ ¼ π

λf , where
λ is the wavelength. Focal length should be chosen as f ¼ N X2

λ
to cover the entire normalized local frequency range ½−π; πÞ, in
radians, for the discrete signal, where N is the number of pix-
els along one dimension of the finite 2D discrete array, which
represents a single lenslet. So, when we limit n1, n2 in Eq. (2)
to be in the interval ½− N

2 ;
N
2 − 1�, we will obtain a single lenslet.

If the SLM has N1 × N2 pixels, then the number of the lenslets
will be N1

N
× N2

N
, where N1

N
and N2

N
are integers.

For a setup that requires longer focal length lenslets, we
can still use the same SLM with the same lenslet array size,
by keeping the lenslet size N × N the same; thus, the Fresnel
pattern becomes cropped. Therefore, we will not be able to
cover the full local frequency range of ½−π; πÞ for longer focal
length lenslets in this case. This will introduce blurriness since
the light that would be coming from higher angles does not
exist as a consequence of the cropped lens pattern, and thus,
will not be accumulated at the focal point. So, there is a trade-
off between longer focal lengths and focused point sharpness
if the size of the lenslet is kept fixed. One can easily calculate
the range of instantaneous frequencies, which the lenslet can
accommodate with such a larger focal length, of the sampled
quadratic phase function. In our experiments, we used several
lenslet patterns with focal lengths equal to N X2

λ to cover the
full local frequency range. In each such pattern, we deter-
mined the value of N , which specifies f since λ and X are
fixed, and each lenslet is generated according to these param-
eters. Our device has 1920 × 1080 (HDTV) pixels with a 8 μm
pixel period in each direction. We were able to implement
3 × 5, 6 × 10, and 12 × 20 arrays of lenslets, which have
360 × 360, 180 × 180, and 90 × 90 pixels with 43.4, 21.65, and
10:825mm focal lengths, respectively, for the same wave-
length of 532nm. There are some unused pixels on the left
and right side of the SLM with the given size and array con-
figurations; we evenly split this excess area to both ends. We
were also able to generate shorter focal length lenslet arrays.
However, the resultant imaging quality in the optical experi-
ments with these lenslets was low. This is because the higher-
order effects (multiple focal points and higher diffraction
orders) are dominant; thus, it does not behave as a good
quality lens anymore.

B. Multiple Focal Points
The SLM acts as a diffractive optical element. The pixelated
structure of the SLM causes higher diffraction orders; this is a
well-known effect [20,18]. However, this is not the only effect
that we observe when a discrete quadratic phase function is
written on the SLM. For writing any pattern onto the SLM we
also need to quantize the sampled pattern. The quantization is
a nonlinear process and its consequences are investigated in
[21] for the quadratic phase function. Suppose that we have a
sampled and quantized Fresnel lens pattern that we want to
write on an SLM, which has exactly the same amount of pixels

as the number of samples of the finite-size pattern. The
Fresnel pattern is like a discrete hologram of a point source
at a distance f . We will call this distance the fundamental focal
point. This distance from the lens is also referred as the refer-
ence focal [22] and it is also called the critical distance [15].
Between the lenslet and the fundamental focal point, we have
to consider the effect of both sampling and quantization to-
gether. Quantization will cause multiple focal points over the
z axis. When such a discrete and quantized Fresnel pattern is
illuminated by a plane wave and the modulated light is
allowed to propagate along the z axis the light will be concen-
trated on bright spots on these focal points [21]. So, quantiza-
tion causes multiple focal planes while sampling causes
higher diffraction orders.

Considering the case of an infinite array of such lenslets,
the phase angle of the complex pattern, which is the sampled
and quantized Fresnel lenslet array pattern as calculated in
the previous section, is written on a hypothetical infinite-size
phase-only SLM. When the SLM is illuminated by a plane wave
and the modulated light is allowed to propagate further away
from the fundamental focal length on the z axis, the periodic
array of focused points will be repeated at certain distances.
This phenomenon is known as the Talbot effect [23]. When an
infinite array of discrete lenslets, each with a size N × N , is
written on an infinite-size SLM, so-called self images of the
lenslet array will periodically occur at multiples of Talbot dis-
tance given as zT ¼ m

ðNXÞ2
λ ¼ mNf on the z axis, where NX is

the distance between two lenslets (lenslet period), andm is an
even integer [23]. Since the input pattern will be repeated at
multiples of zT , the fundamental focal point will also be re-
peated at multiples of zT . Furthermore, between each Talbot
distance atmzT and ðmþ 1ÞzT , there exist other spots at frac-
tions of the Talbot distance. In real life, the Talbot effect may
or may not be visible physically depending on the length zT
and also on the lenslet array size, and thus on the SLM size.
For a sufficiently large array and short zT , it is possible to ob-
serve this effect. For example, in our setup, it is possible to
observe the periodic focused spots created by a lenslet array
pattern with a 24 × 40 lenslet array where each lenslet has
45 × 45 pixels, f ¼ 5:41mm, and the first Talbot distance
zT þ f ¼ 0:492m.

To relate the physical observations to theoretical analysis,
let us consider a hypothetical case: an infinite-size analog
mask of periodic lenslets consisting of equally spaced impul-
sive elements is illuminated by a plane wave. We use the
Fresnel transform as if it is a valid diffraction model. In reality,
this model is valid only for small angle propagation (the para-
xial approximation) and such a restriction will not support im-
pulsive patterns since they imply high frequencies. Even if the
diffraction model is not the Fresnel model but the accurate
Rayleigh–Sommerfeld model, the free space propagating
waves still do not support an impulsive pattern, since the
plane wave components that superpose to form an impulse
should inevitably have both propagating and evanescent com-
ponents. Those components with spatial frequencies ðνx; νyÞ
on the mask, such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2x þ ν2y

q
> 1=λ, will not propagate

and result in evanescent waves. Those components whose

spatial frequencies satisfy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2x þ ν2y

q
≤ 1=λ will propagate.

Therefore, impulsive function cannot be reconstructed by
propagating waves. However, here we still conduct a
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mathematical exercise using impulsive inputs and Fresnel
propagation to understand the associated concepts.

We start from a Fourier series expansion [21]. For the sake
of simplicity, we look at the 1D version of the continuous
quadratic phase function

h−γðxÞ ¼ expð−jγx2Þ· ð3Þ

Consider that wemake a change of variables u ¼ x2. The func-
tion bðuÞ ¼ expð−jγuÞ is a periodic function of u. Now, we in-
troduce a pointwise nonlinearity Tð·Þ to get another periodic
function ϕðuÞ ¼ T ½bðuÞ�, and then we can make a Fourier
series analysis of ϕðuÞ to find a set of coefficients as

ak ¼
1
L

Z
L

0
ϕðuÞ exp

�
j
2πk
L

u

�
du; ð4Þ

where L is the period 2π
γ . A commonly used nonlinearity is the

staircase function, which is investigated in [21]. Following
the similar steps in [21], and by substituting back for u, the
Fourier synthesis can be written as

ψðxÞ ¼ ϕðuÞ
����
u¼x2

¼
X
k

ak exp
�
−j

2πk
L

x2
�

¼
X
k

ak exp

�
−j

π
λf k

x2
�
: ð5Þ

Equation (5) can be interpreted as many superposed thin
lenses with different focal lengths at f k ¼ f

k
and different trans-

parencies indicated by the amplitude ak. It is possible to de-
sign a nonlinear function to achieve a desired allocation of
power among the terms of Eq. (5) by choosing ak’s accord-
ingly. Usually, it is desirable to emphasize a1 and suppress
other terms. For example, it is shown in [21] that by increasing
the quantization level it is possible to increase the power con-
tributed to the fundamental focal point (larger a1 with respect
to other ak’s). However, there still exists power contributed to
other focal points since ak’s for k ≠ 1 are not necessarily zero.
Let us concentrate on the imaging properties of a quantized
lens with arbitrary ak’s. When we use such a lens to image
an object, due to multiple focal lengths, not only the main

image, which is formed by the lens with focal length f , is pre-
sent but also there exists images formed by the higher-order
lenses with smaller focal lengths. However, these images,
which are also smaller in size, have less power as a conse-
quence of distribution of ak’s, as discussed above, and quickly
disperse when they propagate and reach the main image
plane. We conducted simulations related to this observation
and the results are presented in Section 3.A. In our experi-
ments, the quantization is linear with equidistant 256-levels be-
tween 0 and 255 to cover the ½0; 2πÞ radians phase interval.
Subsequently, we convert ψðxÞ to a pixilated form by sampling
(multiplying by an impulse train) it first and then convolving
the result with a zero-order interpolator (hold), which has a
width equal to the sampling period X where we assumed that
there are no gaps between the SLM pixels. In case there are
gaps, the analysis should be modified by starting as presented
in [22,18]. Therefore, we can write

ψsðxÞ ¼
�
pðxÞψðxÞ

X
n

δðx − nXÞ
�
� sðxÞ: ð6Þ

The finite size of a lenslet is represented by the aperture func-
tion pðxÞ ¼ rectð x

NX
þ 1

2Þ. sðxÞ ¼ rectðx
X
Þ is the pixel function,

where the rectangular function defined as rectðxÞ ¼ 1 for x ∈

½0; 1Þ and 0 otherwise. Figure 2 shows the angle of ψsðxÞ,
modulo 2π.

To create the lenslet array, we replicate the function
pðxÞψðxÞ by convolving it with an impulse train, which shifts
the center of each lenslet in the array such that each lenslet is
positioned one next to another:

LAsðxÞ ¼
��

pðxÞψðxÞ �
X
r

δðx − rx0Þ
�X

n

δðx − nXÞ
�
� sðxÞ;

ð7Þ

where n and r are integers. In Eq. (7), we modeled the lenslet
array such that there are no gaps between two consecutive
lenslets; thus, the lenslet period is equal to the lenslet size.
There are N pixels in one direction from the center of one
lenslet to next center of the next lenslet. Therefore, the lenslet

Fig. 1. 3 × 5 Lenslet array phase profile on the SLM, each lens has f ¼ 43:3mm. There are equal number of unused pixels both at left
and right edges.
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array period is x0 ¼ NX . The reason for this choice is the
finite SLM size: since we have limited number of pixels, we
want to generate as many lenslets as we can without wasting
any pixels between the lenslets. Depending on the application,
it might be desirable to have gaps between the lenslets. How-
ever, the relation between the pixel period and the lenslet per-
iod is critical: if this ratio is not an integer, then the focal
points from higher diffraction orders, and the multiple focal
points due to higher-order lenslets due to nonlinearity will
not overlap. They do overlap in our choice as indicated above.

Now assume that the lenslet array is illuminated by a plane
wave. Then, the complex field just after the infinite-size SLM
will be given by Eq. (7). Therefore, the field that propagates
away from the SLM is

qðxÞ ¼ LAsðxÞ � hχðxÞ ¼
Z
η
LAsðηÞhχðx − ηÞdη; ð8Þ

where χ ¼ π
λz, which indicates the distance along the z direc-

tion from the SLM plane. There are two convolutions within
the function LAsðxÞ. Using the commutative property of the
convolution operation we replace the order of the convolu-
tions sðxÞ and hχðxÞ in Eq. (8) [18]. So, the above equation
can be rewritten as

qðxÞ ¼
��

pðxÞψðxÞ �
X
r

δðx − rx0Þ
�X

n

δðx − nXÞ
�

� hχðxÞ � sðxÞ: ð9Þ
As a consequence, it is easier to observe the focusing proper-
ties of a sampled and quantized lenslet array and explain the
effect of the rectangular pixels. Carrying out the convolution
by hχðxÞ and the function inside the curly brackets, where the
evaluation is given in Appendix A, we can rewrite Eq. (9) as

qðxÞ ¼
X
k

��
P

�
x

λf k

�
� x0
k

X
n

δ
�
x −

n

k
x0

��

�
�X

r

ck;rðxÞδðx − rx0Þ
��

� sðxÞ; ð10Þ

where the parameter χ is set as γk, thus, z ¼ f k, (i.e., we have
the field at the focal distances) to show the effect of multiple
focal planes. Pð x

λf kÞ is the Fourier transform of the lenslet’s

pupil function scaled with x
λf k; so, for the 1D analysis we have

been carrying out, it is given by k
X
sincðx

X
kÞ where

sincðxÞ ¼ sinðxÞ
x

. It represents the effect on the diffraction
due to the limited aperture size of the lenslet. The constants
are given as λf k

X
¼ NX

k
¼ x0

k
and ck;rðxÞ ¼ akhγkðx − rx0Þ. It is

shown in [18] that the output of the diffraction from a single
lenslet is the convolution of the Fourier transform of the pupil
function and the pixel function, which introduces an inherent
apodization [18]. This observation still holds for an array of
lenslets shown by Eq. (10), as expected.

In Eq. (10), the impulse train indexed by n is due to the
sampling of the lenslet and this introduces multiple diffraction
orders. At the fundamental focal plane, that is when k ¼ 1, we
observe that the separation of higher diffraction orders of fo-
cused spots of a lenslet is x0. In our cases, this period matches
the impulse train indexed by r, which is present due to the
separation of the lenslets. The interesting case occurs due to
the effect of quantization since it causes multiple focal points.
Note that the impulse train indexed by n, when k ≠ 1, intro-
duces shifts, which are a fraction of x0. So, the spots appear
on the x axis with x0=k distance away from each other on each
focal plane f =k. Since all impulse trains are infinite in extent,
we see that the focused spots at a certain distance are periodic
over the x axis. So, Eq. (10) is a collection of points in three-
dimensional free space.

Equation (10) can be illustrated by Fig. 3, where the circles
along the optical axis of each lenslet specifies the multiple fo-
cal points, and along the x axis, at each focal length, periodi-
cally positioned spots are present due to higher diffraction
orders. For a single lenslet pattern in the lenslet array, any
focused spot it yields along the x axis, except the ones that
lie on its optic axis, are higher diffraction orders at the focal
planes. Thus, each lenslet creates multiple depth focal points,
together with higher diffraction orders. In other words, when
the generated Fresnel field from the impulsive pattern propa-
gates in the free space, at certain distances, again periodic and
impulsive patterns are formed [20].

Now we look at the case of a finite-size SLM. In this case,
the locations of the focused spots will not change. However,
limited SLM aperture will introduce a low pass filter over the
intensities of these spots. Depending on the aperture size, the
intensities of the focused spots are modulated by a sinc func-
tionWð x

λf kÞ ¼
Kx0
λf k sincð x

λf k Kx0Þ ¼ Kk
X
sincðxKk

X
Þ, which is due to a

rectangular window function wðxÞ ¼ rectð x
Kx0

Þ, which is the
aperture function of the SLM, which contains K discrete
lenses along one direction. Such a modulation will diminish
the power associated with some of these multiple focused
spots and thus reduce their visibility.

Before investigating the impulse response and the imaging
properties of quantized and sampled lenslet arrays, we
achieved to formulate the focusing properties of such lenslet
arrays: quantization causes multiple focal planes while
sampling causes higher diffraction orders at each focal plane.
This will help us in the next section while formulating the gen-
eration of elemental images, since we will follow similar steps.

Fig. 2. (Color online) Illustrationof a quadratic phase function and its
sampled and quantized version. Vertical axis shows the phase, mod 2π,
while the horizontal axis shows the spatial extent of the function.
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C. Capture System Analysis
This section will provide the analytical results, which give the
elemental images of a 3D object defined by a point cloud. In
the analysis of the capture system we start from the light that
propagates from an object to the SLM plane. The propagated
field is then multiplied with the phase profile, which is the
lenslet array profile, written on the SLM. The resulting field
is then propagated to the recording plane. We will also follow
a similar derivation as in Subsection 2.B with the addition of
the calculation of the propagation from the object. The object
field arriving at the SLM plane replaces the plane wave illumi-
nation used in the formulation of the previous section. Again
we will use the Fresnel -based wave propagation model. For
simplicity, a 3D input object is modeled as a point cloud. Here,
we again assume that in the derivations the SLM has impulsive
pixels and add the effect of rectangular pixels later. The cap-
ture system scheme is shown in Fig. 4. The distance d is mea-
sured from a chosen theoretical reference plane on which the
closest point on the object to the lenslet array plane is located.
The distance g is measured from the lenslet array plane to the
CCD plane. These distances are chosen such that they satisfy

the imaging equation 1=f ¼ 1=dþ 1=g for a single lenslet with
focal length f .

The point cloud, which is the input of the system, is
defined as

tðx; zÞ ¼
X
i

tiδðx − xi; z − ziÞ; ð11Þ

where zi ¼ dþΔzi, which is the depth location of object
points. ti’s are the complex valued source amplitudes. There-
fore, we assume that the object consists of self-luminous point
sources. The complex field just before the lenslet array is gi-
ven by the sum of the convolutions of the propagation kernel
with each point source in the point cloud. On the lenslet array
plane, since the physical device consists of pixels, we assume
that the light falling onto a pixel is integrated to yield a con-
stant value. Thus, we get the propagated field at the lenslet
array plane as

hLPi
ðxÞ ¼ tihαiðxÞ � sðxÞ � δðx − xiÞ

¼ ti

�Z
hαiðx − ηÞsðηÞdη

�
� δðx − xiÞ

¼ ti

�Z
hαiðxÞ expð−j2αixηÞhαiðηÞsðηÞdη

�
� δðx − xiÞ

¼ tihαiðxÞ
�Z

hαiðηÞsðηÞ expð−j2αixηÞdη
�
� δðx − xiÞ

¼
�
tihαiðxÞ

�
Hαi

�
x

λzi

�
� S

�
x

λzi

���
� δðx − xiÞ

¼ ½tihαiðxÞVðxÞ� � δðx − xiÞ
¼ tihαiðx − xiÞVðx − xiÞ; ð12Þ

where αi ¼ π
λzi ¼ π

λðdþΔziÞ and VðxÞ ¼ ðjλziÞ1=2h−αi ðxÞ � Sð x
λziÞ

where we used the Fourier transform property, Hαið x
λziÞ ¼

ðj π
αiÞ1=2 expð−j

ð2πx=ðλziÞÞ2
4αi Þ ¼ ðjλziÞ1=2h−αiðxÞ, for quadratic

Fig. 3. (Color online) Multiple focal points and higher diffraction or-
ders. The focal points are shown by small circles. Dashed lines show
the converging waves toward multiple focal points from a single lens-
let. Solid lines show the converging waves toward higher diffraction
orders at the fundamental focal plane. (Not all lines are shown in or-
der not to clutter the drawing.)

Fig. 4. Capture setup.
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phase functions given in [20]. The propagated field is the low
pass filtered version of hαðxÞ by the pixel function sðxÞ. The
samples of this field,

hLPDi
½n� ¼ hLPi

ðxÞ
����
x¼nX

; ð13Þ

represent the discrete pixel values on the SLM. Each such
sample is then multiplied by the sampled lenslet array phase
distribution LA½n�, which is given by

LAD½n� ¼
�
pðxÞψðxÞ �

X
r

δðx − rx0Þ
�
x¼nX

· ð14Þ

The resulting discrete complex field is converted to an analog
signal by convolving with the pixel function. Next, this analog
complex field is propagated for a distance g to find the field on
the recording plane. Finally, we take the magnitude square of
the field to simulate the intensity recording.

First let us look at the impulse response of the system for
an impulse located at ðxi; ziÞ. The impulse response of the
capture system can be written as

qiðxÞ ¼
�X

n

hLPDi
½n�LAD½n�δðx − nXÞ

�
� sðxÞ � hβðxÞ; ð15Þ

where hβðxÞ ¼ expðjβx2Þ, β ¼ π
λg. The pixel function, sðxÞ, con-

verts the discrete pattern into continuous field by zero-order
hold interpolation. Since the systems are linear, we can inter-
change the order of the convolutions sðxÞ and hβðxÞ, given as

qiðxÞ ¼
�X

n

hLPDi
½n�LAD½n�hβðx − nXÞ

�
� sðxÞ· ð16Þ

So, we first find the propagation result, where the details of
the derivation are given in Appendix B. The final result of the
impulse response can be written as (see Appendix B)

qiðxÞ ¼ Pi

�
x

λg

�
� sðxÞ �

�X
k

akH−γk

�
x

λg

��
�ΨðxÞ �ϒiðxÞ·

ð17Þ

In Eq. (17), the last term

ϒiðxÞ ¼
X
r

cðxÞ
��

v

�
x

λg

�
exp½j2βðxi − rx0Þx�

�

� δ
�
x −

�
1þ g

zi

�
rx0 þ

g

zi
xi

��
;

where we obtain vð xλgÞ ¼ jλzihβð
ffiffiffi
zi
g

q
xÞsð− zi

g
xÞ by using again

the Fourier transform property, H−αið xλgÞ ¼ ðj π
αiÞ1=2

expðj ð2πx=ðλgÞÞ24αi Þ ¼ ðjλziÞ1=2hβð
ffiffiffi
zi
g

q
xÞ, for quadratic phase func-

tions given in [20] and cðxÞ ¼ hβðx − rx0Þtihαiðxi − rx0Þ, is a
weighted impulse train that gives the perfect mapping (ima-
ging) at locations ð1þ g

zi
Þrx0 − g

zi
xi of the input point to multi-

ple output points. This would be the imaging of a lenslet array
consisting of perfect thin lenses. However, because of the low
pass filtering caused by the pixel function at the input, this
term gives blurred spots. The term ΨðxÞ, which is a scaled
impulse train due to sampling of the lenslets, causes multiple
diffraction orders and it replicates the points at locations

ð1þ g

zi
Þrx0 − g

zi
xi, where ð1þ g

zi
Þx0 is the elemental image se-

paration and − g

zi
xi is the image point location.ΨðxÞ is given as

ΨðxÞ ¼ xg

X
n

δðx − nxgÞ; ð18Þ

where xg ¼ λg
X
. Substituting ð1=f − 1=dÞ−1 for g we get

xg ¼ ð 1
1−f =dÞx0, which is equal to ð1þ g=dÞx0. For sufficiently

large d and small object depth, the elemental image separation
ð1þ g

zi
Þx0 ≈ ð1þ g

d
Þx0. So, we get nearly the same separation

periodicity for the elemental images and the higher diffraction
orders of the elemental images. For those object points near to
the distance d, we will have elemental images, which are im-
aged well. For other object points, which are further away
from d, the separation of the higher diffraction orders will be
slightly less than the elemental images separation. This might
cause intermingled elemental images. In reality, for the central
diffraction order, a human observer may not notice this effect.
However, for higher orders this artifact might be noticeable.
Furthermore, these far away points might be out of focus at
the imaging plane because of the limited depth of field, caused
by the term Pið xλgÞ, which will be explained later. Thus, for a
certain setup, it is possible to obtain good elemental images by
satisfying the above constraints. Moreover, higher diffraction
orders will have less intensity because of the rectangular
pixels and the SLMs’ finite size, as discussed previously in
Subsection 2.B. So, these artifacts will not disturb the elemen-
tal images at the central diffraction order. The termP

kakH−γkð xλgÞ is introduced because of the multiple focal point
property of the lenslets. In fact, this is another artifact term at
the main image plane caused by the out-of-focus small images
formed at multiple image planes related to the focal distances
f =k of higher-order lenslets due to quantization. sðxÞ is the pix-
el function, which introduces an inherent apodization [18].
The first term in Eq. (17), Pið xλgÞ ¼ Pð xλgÞ �Hθið xλgÞ, is the gen-
eralized pupil function, which takes defocussing due to differ-
ent depths of the point sources at the input plane into account.
The functionHθið xλgÞ is responsible for the defocussing. Pð xλgÞ is
the Fourier transform of the pupil function. This function is a
limiting factor for the extent of qiðxÞ. The constant θi is given
as β þ αi ¼ −

π
λ

Δzi
dðdþΔziÞ. Therefore, the overall response of the

system to the point cloud is given by

qðxÞ ¼
X
i

qiðxÞ; ð19Þ

by adding the response of each source in the point cloud. Here
we assume that each point is a source and, therefore, the field
on it is independent of other source points. Finally, in order to
obtain the elemental images, we simulate the intensity record-
ing process by taking the magnitude square of the qðxÞ as

IðxÞ ¼ jqðxÞj2 ¼
����
X
i

qiðxÞ
����
2
· ð20Þ

To simplify IðxÞ, we can assume that the elemental images
do not overlap and Pð xλgÞ � sðxÞ quickly diminishes with

respect to x. We can further assume that intensities of the
responses of each point of the point cloud can be added.
In Eq. (20), the magnitude square removes the phase

terms jhβ

� ffiffiffi
zi
g

q
x

�
exp½jβðxi − rx0Þx� and cðxÞ in ϒiðxÞ and
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ðλziÞ2sð− zi
g
xÞ remains as the only convolving term. Also, the

impulse train ΨðxÞ introduces a constant weight, x2g, after the
magnitude square operation. These impulses specify the loca-
tions of the imaged points. Thus, the impulse train indicated
byΨðxÞ and the impulse train inϒiðxÞ in Eq. (17) can be taken
out of the magnitude square operation. The spot size of the
imaged points are determined by convolution of the magni-
tude square of the function ΓðxÞ ¼ Pið xλgÞ � sðxÞ �P

kakH−γkð xλgÞ and ðλziÞ2sð− zi
g
xÞ. So, Eq. (20) can be approxi-

mated as

IðxÞ ≈
X
i

�
jΓðxÞj2 � ðλziÞ2s

�
−
zi

g
x

�
� x2g

X
n

δðx − nxgÞ

�
X
r

δ
�
x −

�
1þ g

zi

�
rx0 þ

g

zi
xi

��
: ð21Þ

To confirm this result we check the case where we use an
analog lenslet array. If we have had an analog lenslet array,
summation over k, the impulse train (indexed with n) due
to sampling, the convolution with the pixel function sðxÞ
and the low-pass filtering with ðλziÞ2sð− zi

g
xÞ would be

Fig. 5. Display setup.
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Fig. 6. Pixelated and quantized lens with f ¼ 14:43mm. Sampling
period is 8 μm, λ ¼ 532nm, and array dimension is 120 × 120 pixels.
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Fig. 7. (Color online) Magnitude square of the cross section of the field due to the pixelated and quantized lenslet, with f ¼ 14:43mm, under plane
wave illumination. The SLM is on the left. The bright areas indicate the multiple focal points and higher diffraction orders. (For visual purposes, we
adjusted the brightness of the figure by stretching the contrast. The adjustment is given by the small graph. The horizontal axis represent the original
gray values of the pixels, whereas the vertical axis is the modified gray value. We used a similar enhancement procedure also in Figs. 9 and 11–14.)
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dropped in Eq. (21). So, the result simplifies to the previous
result given in [4,8], which is given as

IðxÞ ¼
X
i

�����Pi

�
x

λg

�����
2
�
X
r

δ
�
x −

�
1þ g

zi

�
rx0 þ

g

zi
xi

��
:

ð22Þ

D. Display System
The reconstruction process is similar to the capture process
where the distances g and d are interchanged, that is, the dis-
tance between the input, in this case a 2D plane consisting of
an array of elemental images, and the lenslet array is mea-
sured as g, while the distance between the reference plane
on the reconstructed object/scene and the lenslet array is
d. This is shown in Fig. 5. We can think that the light distribu-
tion IðxÞ is input to this system. The input is only on a single
plane consisting of a point cloud whereas the output consists
of several planes. Each point in the point cloud will be recon-
structed by carrying out a similar derivation as in Subsec-
tion 2.C. The object is perceived with a pseudoscopic 3D
reconstruction, that is, the points nearer to the pickup lenses
will be far away from the reconstruction lenses forming a
depth reversed object.

3. RESULTS
A. Computer Simulation Results
As we mentioned in Subsection 2.B, we performed a series of
computer simulations to show the multiple focuses and dif-
fraction orders. First, we ran the simulations for a single lens-
let. The lenslet profile is generated using Eq. (2). As described
in Subsection 2.A, we determined N , the total number of sam-
ples along one dimension of the lenslet, by using the relation

f ¼ N X2

λ , where λ ¼ 532nm and X ¼ 8 μm. To obtain a single
lenslet, we limit n1, n2 in Eq. (2) to be in the interval
½− N

2 ;
N
2 − 1�. For a lenslet with f ¼ 14:4mm, N is equal to

120 and for a lenslet with f ¼ 43:3mm, N is equal to 360.

We want to show the effect of quantization on the lenslet
phase (mod 2π) by mapping this data linearly between 0
and 255. The results for these two single lenslets are shown
in Figs. 6 and 8, respectively.

We assumed a plane wave as the incident light on the lens-
lets whose phase patterns are shown in Figs. 6 and 8. We
performed wave propagation simulations using the Fresnel
diffraction kernel. We computed the output of the propagation
using convolution by discrete Fourier transform (DFT)
method, which is given by

di½n� ¼ IDFTfDFTfh½n�gHχi ½k�g; ð23Þ

where n ¼ ½n1 n2�T are the discrete spatial domain variables
and k ¼ ½k1 k2�T are the discrete spatial frequency domain
variables, and n1, n2, k1, k2 are integers in the interval
½−360; 359�, and where Hχi ½k� is the 2D DFT of hχi ½n� where
χi is a parameter related to the propagation distance. IDFT
denotes the inverse DFT. The multiplication inside 2D IDFT
is a pointwise multiplication. DFT and IDFT operations are
performed by two-dimensional fast Fourier transform (FFT)
and inverse FFT algorithms, respectively. Convolution by
the DFT method should be used carefully, as usual, to get lin-
ear convolution output using circular convolutions. We took
the computation window size larger than the signal window
in both directions and concatenated the signal window by
zeros. Our computation window is 720-sample wide in both
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Fig. 8. Sampled lens with f ¼ 43:3mm. Sampling period is 8 μm,
λ ¼ 532nm, and array dimension is 360 × 360 pixels.
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Fig. 9. Magnitude square of the cross section of the field due to the
pixelated and quantized lenslet, with f ¼ 43:3mm, under plane wave
illumination. The bright areas indicate the multiple focal points and
higher diffraction orders. The brightest area on the right is the funda-
mental focal point. (For visual purposes, we adjusted the brightness of
the figure.)
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directions, which is six times the lenslet with f ¼ 14:4mm and
two times the lenslet with f ¼ 43:3mm.

The simulation calculates the field at certain distances until
the fundamental focal point. So, we sampled the z axis with
equal separations of zi ¼ i

f

L
in the interval ½0; ðL−1Þ

L
f �, where

L ¼ 500 is the total number of samples along the z axis and
each χi ¼ π

λzi. For each distance, zi, a 2D diffraction pattern,
di½n�, is obtained. So, by combining all such 2D diffraction pat-
terns, we obtain a 3D diffraction volume. We are interested in
the locations of focal points. For display purposes, we take the
2D cross section of this 3D field, that is, we extracted the dis-
crete values on the n2 axis at n1 ¼ 0 at each z. The results of
the propagation with the constraints explained above are
shown in Fig. 7 and in Fig. 9 for lenslets with focal lengths
14.4 and 43:3mm, respectively. We converted the sample
values in the 2D array to actual physical dimensions and la-
beled the axes in the figures, accordingly. The multiple focal
points and diffraction orders are clearly seen in the xz plane,
as expected.

Now we proceed to simulate a lenslet array by limiting the
lenslet array pattern in the interval ½− 3N

2 ; 3N2 − 1� (three lenslets
on each axis), as shown in Fig. 10. Again we simulated the
propagation of the input lenslet array phase pattern illumi-
nated by a plane wave. As in the previous simulations, we ob-
tained the 2D ðx; zÞ cross section of the propagated field. The
results of the free space propagation for this lenslet array is
presented in Fig. 11. Each lenslet in the array has a focal
length of 14:4mm. We used the same equation, Eq. (23), to
calculate the diffraction field. This time, a periodic input

pattern at the input yielded periodic diffraction orders of mul-
tiple focal points [20]. The figure shows that by adding more
and more lenslets, we can observe the phenomenon as de-
scribed in the analysis given in Subsection 2.B, where the the-
oretical results are presented by Eq. (10).

As mentioned in Subsection 2.B, we showed that the multi-
ple image planes are associated with the multiple focal length
phenomenon due to nonlinearity introduced by quantization.
To show this effect, we used a 3 × 3 lenslet array, each lenslet
having a focal length of 43:3mm. The window size of the lens-
let array, LA½n�, is 1080 × 1080 samples. The entire simulation
window size is 1920 × 1920 samples. The lenslet array is cen-
tered in the computation array, wLA½n�, of size 1920 × 1920
samples with zeros padded around the lenslet array. We used
a 2D input array, t½n�, which is illuminated by a plane wave.
The mask is letter “A”, which is centered again in a computa-
tion array of size 1920 × 1920 samples. The background
is black while the letter is white. We multiplied this mask
with a normally distributed pseudorandom phase to simulate
a diffuse object. To obtain the elemental images at the
multiple image planes, we first computed the propagation re-
sult, d1½n�, from the input t½n� until the lenslet array plane,
where the propagation distance is 4f . Then, we multiplied
the propagated field with the pixelated and quantized lenslet
array profile, wLA½n�. And then, we propagated the resulting
pattern to two different distances 4f =3 and 4f =7 to obtain
d3½n� and d4½n�, respectively. The entire simulation can be sum-
marized by
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Fig. 10. Array of lenslets consisting of pixelated lenslets with f ¼ 14:4mm. Total size is 360 × 360 pixels. Each lenslet in the array has the same
properties defined as in Fig. 6.
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d1½n� ¼ IDFTfDFTft½n�gHα½k�g;
d2½n� ¼ d1½n�wLA½n�;
d3½n� ¼ IDFTfDFTfd2½n�gHβ1 ½k�g;
d4½n� ¼ IDFTfDFTfd2½n�gHβ2 ½k�g· ð24Þ

where α ¼ π
λ4f , β1 ¼ π

λ4f =3, and β2 ¼ π
λ4f =7, and where n1, n2, n3,

n4 are in the interval ½−960; 959�. In Fig. 12, the image obtained
by taking the absolute value of d3½n� is shown. As it can be
seen from the figure that there are nine elemental images
due to nine lenslets. The out-of-focus terms cause an artifact
that is visible at the background of the figure at this distance.
This artifact is caused by the multiple focal length properties
of the lenslets and it is theoretically given by the termP

kakH−γkð xλgÞ in Eq. (21). At this image plane, which we call
the main image plane, the images of “letter A” are brighter.
Thus, their visibility is not disturbingly affected by the super-
imposed out-of-focus images. When we focus to the other dis-
tance, 4f =7, we obtain Fig. 13, which shows the absolute value
of d4½n�. At this distance the “letter A” is again focused, as ex-
pected. On this plane, we observe 25 five images. Nine of them
are shown in Fig. 9 by squares. These are due to the multiple
focal point property of the lenslets. However, there are inter-
mediate images between the images inside the squares. These
are present due to the higher diffraction orders created by the
pixelated structure of the lenslets. There are similar distor-
tions at this imaging plane as in the main image plane. Since
on this plane the images are smaller, thus they have small
power, the out-of-focus fringes degrade the visibility signifi-
cantly. So, a zoomed in version of the central elemental
images and the intermediate image right to it are shown
in Fig. 14.

B. Optical Setup and Experimental Results
We constructed a simplified integral imaging system and con-
ducted experiments with this system to confirm the theoreti-
cal analysis and computer simulations given in Sections 2.C
and 3.A, respectively. Since careful alignment of both parts
(capture and display) are needed to match the elemental
images captured by the CCD array to the LCD at the display
setup to have a good reconstruction, we chose to construct
our overall integral imaging system in one single stage, as
shown in Fig. 15. The display part immediately follows the
capture part in this experimental setup. A picture of the setup
is shown in Fig. 16. Furthermore, in the optical setup, we used
a green 10W 4 × 5 LED array from Edipower, as the object in-
stead of using a 3D object (Fig. 17), where we masked some
LEDs to form the letter “C” shape. LEDs fit into a square of
7 × 7mm2 area. One reason for us to choose an LED array
is the undiffracted light at the output of the display. Since
the SLMs have a limited diffraction efficiency, the observable
reconstruction will have a quite limited power. When we used
a passive 3D object illuminated by an external source in the
experiments, we were able to observe elemental images on
the diffuser at the elemental images plane. However, since
there is an undiffracted light at the background together with
the elemental images and since the intensities of the elemental
images are lower compared to the undiffracted light, the vis-
ibility was poor. So, it was difficult to observe the reconstruc-
tion with these elemental images from a passive (illuminated)
object at the display part of the proposed setup. When we

z

x 
(m

m
)

0 f/6f/5 f/4 f/3 f/2 f

2.88

2.4

1.92

1.44

0.96

0.48

0

−0.48

−0.96

−1.44

−1.92

−2.4

−2.88

Fig. 11. Magnitude square of the cross section of the field due to the
array of lenslets consisting of sampled lenslets, with f ¼ 14:4mm, un-
der plane wave illumination. Bright areas indicate the multiple focal
points and higher diffraction orders. The brightest areas on the right
are the fundamental focal points corresponding to each lenslet. (For
visual purposes, we adjusted the brightness of the figure.)
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Fig. 12. Image of the absolute value of d3½n�. There are nine elemen-
tal images due to nine lenslets of the letter “A”. There is an artifact due
to the out-of-focus images introduced by the multiple focal length
properties of the lenslets. However, the visibility is still good. (For
visual purposes, we adjusted the brightness of the figure by stretching
the contrast using a procedure similar to the one described in Fig. 7.)
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used the LED array we still observed the undiffracted light at
the background. But this time, intensities of the focused
images are much brighter. The other reason to use a single-
color 2D LED array instead of a 3D object is the chromatic
aberration introduced by the lenslets. Since, we calculated

the lenslets for a certain wavelength, 532nm, an object illumi-
nated with a white light causes elemental images to have chro-
matic aberration. There are some proposed methods to
compensate for chromatic aberration [22]. However, in our
experiments we chose to use a self-luminous object with a
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Fig. 13. (Color online) Image of the absolute value of d4½n�. The elemental images, which are depicted inside the rectangles, of the letter “A” are
seen together with the higher diffraction orders between the elemental images. A zoomed-in version of the central elemental image is given in
Fig. 14. We observe a similar artifact at the background. However, the visibility of elemental images are now degraded significantly due to this
artifact. This is because of the smaller-size elemental images with less power. (For visual purposes, we adjusted the brightness of the figure.)

Fig. 14. (a) Zoomed-in elemental image corresponding to the central part of Fig. 13. (b) Zoomed-in elemental image corresponding to the image
right to the central part of Fig. 13. (For visual purposes, we adjusted the brightness of the figure.)
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single color; our aim was to check the presented analysis. A
single wavelength light source from a self-luminous LED array
is easier to observe because the undiffracted light intensity
will not dominate and there will be no chromatic aberrations.
We used the lenslet array given in Fig. 1 on both SLMs in the
capture and display part.

In the capture part, the object was imaged at the object
plane with a projector lens, which is taken from an EPSON
EMP TW-520 projector, to shrink the size of the real object
and to collect and confine the light into a conical volume.
The LED array is placed just behind the objective lens. The
objective lens is adjusted such that the imaging distance from
the objective to the object plane is 45mm. The image of the
LEDs, shown in Fig. 18, covers a 4 × 4mm2 area on the object
plane. The small sized real image of the object is then imaged
by the lenslet array on SLM1 to the diffuser plane where we
observed the elemental images shown in Fig. 19. The distance
from the object plane to the surface of SLM1 is 188mm, and
the distance from the SLM surface to the diffuser is 68mm. In

theory, the lenslets should have exactly 43:3mm focal length
in free space propagation. However, in our system we use
beam splitters in front of the SLMs, so, the actual focal length
of the lenslets is shifted to approximately 55:3mm. So, we first
try to find the elemental image plane (the plane where the ele-
mental images seen the sharpest) and place the diffuser at this
plane. And then, we measured the distance from the SLM1 sur-
face to the diffuser and placed the second SLM accordingly.
The elemental images fit into a rectangle of approximately
10mm × 150mm area. One elemental image size is about
2mm × 2mm. The visibility of the elemental image set was
good. As discussed in Subsection 2.C, we were also able to
see the higher diffraction orders caused by the pixelated
structure of the SLM. These orders are intermingled because
of the difference between the elemental image separation
period and the higher diffraction order separation period. Be-
cause of the finite SLM size, the intensities of the first diffrac-
tion orders are weaker than the central order, but stronger
compared to the other higher orders. We masked higher
diffraction orders even if they do not strongly affect the dis-
play part.

The display part starts from the diffuser. Since the elemen-
tal images were imaged directly on the diffuser, we did not
need any other display device like in the conventional sys-
tems. So, we were able to observe the reconstructed image,
which is shown in Fig. 20, by directly looking at the second
lenslet array on SLM2. We put another diffuser at the recon-
struction distance. The distance of this diffuser to the elemen-
tal image plane is the same as the distance from the object
plane to the elemental images plane. The reason for this sec-
ond diffuser is to show that the reconstructed image is real. In
fact, we were able to see the reconstruction well with bare eye
without any diffuser. The quality of the reconstruction was
quite high since we did not use a pixelated device (i.e.,
LCD) to display the elemental images. However, the resulting
intensity is lowered by the beam splitters. Each beam splitter
in the system lowers the input light intensity by at least half

Fig. 15. (Color online) Experimental setup.

Fig. 16. (Color online) Top view of the optical setup: upper rectangle shows the capture part and lower square shows the display part. In between,
a small rectangle shows the diffuser, which acts as a capture and display device, on the elemental images plane. The object is behind the white
cardboard on the right before the projector lens. The cardboard prevents the light from the LED array to spread everywhere. The vertical dashed
line after the projector lens shows the object plane. Dashed lines with the arrows show the optical path. The small diffuser after the mirror is used to
show that the image at the calculated reconstruction distance is real.
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and the light travels through each beam splitter twice. How-
ever, the light intensity at the output is acceptable. This ex-
periment showed us that we can use phase-only SLMs with
lenslet array phase pattern written on them to replace analog
lenslet arrays in integral imaging systems. Such a system can
easily be integrated into current digital projection systems.

4. CONCLUSION
We have reviewed the analysis of a pixelated and quantized
lenslet. Such a lenslet causes multiple focal points and
higher diffraction orders of these focal points at each focal
distance. Multiple focal points are caused by the quantization,
whereas the higher diffraction orders are caused by the pixe-
lated structure.

When we look at the case of an array of such lenslets, we
observe that the multiple focal points and higher diffraction
orders from each such lenslet in the array come on top of each
other if the period of the lenslet is chosen to be equal to the
lenslet size, and the lenslets are generated such that they cov-
er the entire normalized frequency range.

It is easy to generate numerically, any type of lenslet array
by changing the physical parameters, like focal length, size,
and even the phase distribution. So, certain drawbacks, like
limited depth of focus, of a regular lenslet can be overcome.
To realize these synthetic lenslet arrays physically, we need
electronically controllable devices. One easy way to obtain
such lenslet arrays is to write numerically generated Fresnel
lenslet array patterns on a phase-only LCoS spatial light mod-
ulator. As a consequence, we obtain pixelated and quantized
lenslet arrays.

Such a lenslet array can be used in an integral imaging sys-
tem to replace the analog lenslet array both in the capture and
display parts. We analyzed the capture part of such an integral
imaging setup. When this lenslet array is used to image a 3D
point cloud (in the capture part of an integral imaging system)
we obtain an elemental image set at the main image plane.
There are other image planes present due to multiple focal
length property of pixelated and quantized lenslets. These
higher-order images introduce additional artifact terms on
the elemental images in addition to the out-of-focus term due
to the limited depth of focus of the lenslets.

We performed wave propagation simulations for pixelated
and quantized lenslets for two different focal lengths by using
Fresnel diffraction kernel to support the theoretical analysis.
In the simulations, we first looked at the case where a single
lenslet is illuminated by a plane wave. We plotted the 2D cross
section of the propagated field. For both lenslets we showed
the multiple focal points together with higher diffraction or-
ders. Then we looked at the case where we used small focal
length lenslets to create an array with lenslet period equal to
the lenslet size. We observed via simulations, multiple focal
points and higher diffraction orders as indicated by the theo-
retical analysis. Finally, we used the large focal length lenslet
to create another lenslet array, again with lenslet period equal
to the lenslet size. We used this new lenslet array to image a
diffuse mask. We obtained images of the mask at two different
image planes. On the main image plane, the image is some-
what deteriorated. The artifact is caused by the multiple focal
length property of the lenslets. Naturally, the shape and other
optical properties of the mask directly affect the noisy looking
background artifact. The diffusing nature of the mask results

Fig. 17. (Color online) LED array that we used as the object. We put
a black mask over the inner LEDs to form a (mirror image) “C” shaped
object.

Fig. 18. (Color online) An image of the LED array on the object
plane: the object is first imaged onto this plane by a projector lens
to control both the depth and the size of the object.

Fig. 19. (Color online) Optically captured elemental images.

Fig. 20. (Color online) Optical reconstruction.

2372 J. Opt. Soc. Am. A / Vol. 28, No. 11 / November 2011 A. Yö ntem and L. Onural



in a noise term that is well distributed over the image. We ob-
served in our simulations that this noise term did not signifi-
cantly degrade the visibility of the elemental images at this
imaging plane. When we imaged the mask at a lower image
plane, we observed the elemental images together with high-
er-order images in between them. The unwanted noisy looking
background was still there, as expected, and the degradation
in visibility was more significant in this plane. The reason for
the increased degradation is the smaller size and lower inten-
sity of the elemental images at this lower image plane.

To compare the theoretical and optical results, we con-
structed an integral imaging setup. In order to eliminate align-
ment problems between the capture and the display setups, we
constructed the integral imaging setup such that the display
part immediately follows the capture part and shares the ele-
mental image plane. At the transition region (elemental image
location), a diffuser was used instead of both capture (CCD)
and display (LCD) devices. The crucial analog element of
the system, that is, the lenslet array,was constructed as a phase
pattern written on a phase-only LCoS SLM in both parts of the
system. Since the SLMs are reflective type, we used beam split-
ters to split the incidentwave and the reflectedwave.However,
these beam splitters changed the theoretical focal length of the
lenslets. Thus, we modified the imaging distances accordingly.
We first used a passive 3D object illuminated by an external
source. However, because of the limited diffraction efficiency
of the SLM device, there was an undiffracted light at the back-
ground together with the elemental images. Furthermore, the
intensities of the elemental images were lower compared to
this undiffracted light. So, this made it difficult to observe
the reconstruction at the display part. Moreover, the lenslet ar-
ray causedchromatic aberration since it is designed towork for
a singlewavelength. Soweused a 2D green LED array,which is
masked to form a letter, as the object. The system successfully
worked to display this self-luminous object. The undiffracted
background light was not disturbing when this self-luminous
object was used. Experimental results show that the proposed
system is feasible.Within the physical limitations of the system,
we achieved good optical reconstruction.We have achieved an
integral imaging system with a full digital capture and display
lenslet arrays. Most of the integral imaging systems require a
special type of lenslets (i.e., phase apodized) to improve the
quality of the integral imaging system. These are generally hard
and costly tomanufacture.With our proposed system, it is pos-
sible to construct cost-efficient and simple integral imaging
systems.

APPENDIX A
The convolution of the function inside the curly brackets and
hχðxÞ in Eq. (9) can be written as

Z �
pðηÞψðηÞ �

X
r

δðη − rx0Þ
�X

n

δðη − nXÞhχðx − ηÞdη· ðA1Þ

The above equation can be rewritten as

X
r

Z
pðη − rx0Þψðη − rx0Þ

X
n

δðη − nXÞhχðx − ηÞdη; ðA2Þ

and by a change of variables as η ¼ σ þ rx0 we get

X
r

Z
pðσÞψðσÞ

X
n

δðσ þ rx0 − nXÞhχðx − σ − rx0Þdσ

¼
X
r

Z
pðσÞψðσÞ

X
n

δðσ þ rx0 − nXÞhχðxÞ

× exp½−j2χxðσ þ rx0Þ� exp½jχðσ þ rx0Þ2�dσ· ðA3Þ

Notice that x0 in the impulse train is equal to NX , where N is
an integer. Therefore,

P
nδðσ þ rx0 − nXÞ ¼ P

nδðσ − nXÞ for
each r. Further manipulations give

X
r

Z
pðσÞψðσÞ

X
n

δðσ − nXÞhχðxÞ expð−j2χxσÞ

× expð−j2χxrx0ÞhχðσÞ expðj2χrx0σÞ expðjχr2x20Þdσ

¼
X
k
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pðσÞh−γkðσÞhχðσÞ
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δðσ − nXÞ

×
X
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hχðx − rx0Þ expðj2χrx0σÞ exp
�
−j2π x

λz σ
�
dσ; ðA4Þ

where we used Eq. (5) for ψð·Þ. The summation over k is due to
the response of multiple lenses with focal lengths f k. The
above equation can be recognized as a Fourier transform,
of a product of functions, from variable σ to the spatial domain
variable x

λz. The Fourier transform can be written as

F σ→ x
λz

�X
k

akpðσÞh−γkðσÞhχðσÞ
X
n

δðσ − nXÞ
X
r

hχðx − rx0Þ

× expðj2χrx0σÞ
�
; ðA5Þ

where we define the Fourier transform and the inverse
Fourier transform as

FðνÞ ¼ F x→νff ðxÞg ¼
Z

∞

−∞

f ðxÞ expð−j2πνxÞdx

f ðxÞ ¼ F−1
ν→xfFðνÞg ¼

Z
∞

−∞

FðνÞ expðj2πνxÞdν:

Multiplications of the functions will result in convolutions
after the Fourier transformation and we will get
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in the spatial domain. We are interested in those cases where
χ ¼ γk, that is, z ¼ f k in the above equation. Thus, we obtain

X
k

ak

�
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�
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�
�H−γk

�
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�
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�
; ðA7Þ

where the convolution H−γkð x
λf kÞ �Hγkð x

λf kÞ ¼ 1. The final result
is thus,
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qðxÞ ¼
X
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where the constants are given as λf k
X

¼ NX
k
¼ x0

k
and

ck;rðxÞ ¼ akhγkðx − rx0Þ.

APPENDIX B
If we expand the quadratic phase function in Eq. (16), we will
get

qiðxÞ ¼
�
hβðxÞ

X
n

hLPDi
½n�LAD½n�hβðnXÞ expð−j2βxnXÞ

�

� sðxÞ; ðB1Þ

where the summation is the so-called discrete time Fourier
transform [24] of the function

u½n� ¼ hLPDi
½n�LAD½n�hβðnXÞ; ðB2Þ

and ucðxÞ ¼ hLPi
ðxÞLAðxÞhβðxÞ is the continuous function of

u½n�. Using the relation between the continuous time Fourier
transform FcðνÞ of the continuous function f cðxÞ and the dis-
crete time Fourier transform Fðν̂Þ of the discrete function
f ½n� ¼ f cðnXÞ, that is given by
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where Fðν̂Þ ¼ P
nf ½n� expð−jν̂nÞ and FcðνÞ ¼

R
∞

−∞
f cðηÞ

expð−j2πηνÞdη. We can rewrite qiðxÞ as

qiðxÞ ¼
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hβðxÞUc
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where xg ¼ λg
X
. The scaled impulse train is due to sampling of

the lenslets that causes multiple diffraction orders. Up to this
point we can explain the effect of sampled lenslets at the out-
put plane. However, we need to further analyze ½hβðxÞUcð xλgÞ�
to observe the effects of quantization. To do that, we first as-
sume that the tails of the replicas of the continuous Fourier
transform of the function are small so that they introduce neg-
ligible aliasing when they are summed. This is in fact true, be-
cause while the light travels from and through the physical
optical elements, it does not spread too much in space. Thus,
light cannot extend to very high angles. It is usually confined
into a certain region. This can be seen as an inherent low-pass
filtering of the optical elements. Furthermore, the pixelated
physical optical elements will diffract light into higher orders
while the modulated light propagates. So, each replica will
spread to a limited region and will be separated from each
other by a certain distance. These two properties will result
in reducing the aliasing components. Using the Fourier trans-
form relations given above in Eq. (B1), we expand hβðxÞUcð xλgÞ
as

hβðxÞUc

�
x

λg

�

¼ hβðxÞ
Z

hLPi
ðηÞLAðηÞhβðηÞ exp

�
−j2π x

λg η
�
dη

¼ hβðxÞ
Z

hLPi
ðηÞ

�
pðηÞψðηÞ �

X
r

δðη − rx0Þ
�

× hβðηÞ exp
�
−j2π x

λg η
�
dη

¼ hβðxÞ
Z

½tihαiðη − xiÞVðη − xiÞ�

×
�X

r

pðη − rx0Þψðη − rx0Þ
�
hβðηÞ exp

�
−j2π x

λg η
�
dη

¼ hβðxÞ
Z

tihαiðηÞ expð−j2αiηxiÞ expðjαix2i ÞVðη − xiÞ

×

�X
r

pðη − rx0Þψðη − rx0Þ
�
hβðηÞ exp

�
−j2π x

λg η
�
dη·

We make a change of variables η ¼ σ þ rx0 as in Appendix A
to get
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and then we expand some of the quadratic phase functions
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Notice that the terms hβðxÞ expð−j2βxrx0Þ expðjβr2x20Þ can be
rearranged as hβðx − rxoÞ. And also the terms expðjαir2x20Þ
expð−j2αixirx0Þ expðjαix2i Þ can be put into the compact form
hαiðxi − rx0Þ. Rearranging the remaining exponential terms
and gathering the summation terms over the variable r, we
finally get
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where θi ¼ β þ αi ¼ −
π
λ

Δzi
dðdþΔziÞ and cðxÞ ¼ hβðx − rx0Þtihαi

ðxi − rx0Þ. The above equation can be rewritten as
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Since the terms inside the right brackets are multiplied, the
result of the Fourier transform will be convolution of corre-
sponding Fourier transformed terms in the scaled spatial
domain.

The Fourier transform of the last term is a weighted im-
pulse train, which gives the perfect mapping (imaging) at lo-
cations ð1þ g

zi
Þrx0 þ g

zi
xi of the input point to multiple output

points. This would be the imaging of a lenslet array consisting
of perfect thin lenses. However, because of the low-pass filter-
ing caused by the pixel function at the input, this last term
gives blurred spots. The Fourier transform of the function in-
side the last right brackets is given as
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where we obtain vð xλgÞ ¼ jλzihβð
ffiffiffi
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q
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Fourier transform property,H−αi ð xλgÞ ¼ ðj π
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, for quadratic phase functions given in

[20]. The Fourier transform of the second termP
kakH−γkð xλgÞ is introduced because of the multiple focal point

property of the lenslets. In fact, this is another artifact term at
the main image plane caused by the smaller images formed at
image planes related to other focal distances, f =k, of higher-
order lenslets. The Fourier transform of the first term will be
Pið xλgÞ ¼ Pð xλgÞ �Hθið xλgÞ is the generalized pupil function, which

takes blurring due to different depths of the point sources at
the input plane into account. The function Hθið xλgÞ is respon-

sible for the defocussing. Pð xλgÞ is the Fourier transform of the

pupil function. This function is also a limiting factor for the
extent of qiðxÞ. Finally, arranging all terms, we can write
qiðxÞ as

qiðxÞ ¼ Pi
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