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Fractional Fourier transform as a tool for analyzing
beam propagation and spherical mirror resonators
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The complex amplitude distributions on two spherical reference surfaces of given curvature and spacing are simply
related by a fractional Fourier transform. The order of the fractional Fourier transform is proportional to the
Gouy phase shift between the two surfaces. This result provides new insight into wave propagation and spherical
mirror resonators as well as the possibility of exploiting the fractional Fourier transform as a mathematical tool
in analyzing such systems.

Let fo(x, y) denote the complex amplitude distribu-
tion at the plane z = 0 of light propagating in the
positive z direction. We are interested in the am-
plitude distribution at other planes z * 0. The sim-
plest and usual approach is to employ harmonic ex-
pansion, because plane waves are the eigenfunc-
tions of propagation in free space.' Instead, we
will expand fo(x, y) in terms of scaled Hermite-
Gaussian functions, which also constitute a com-
plete orthonormal set. Normalized such that its
magnitude squared integrates to unity, the lth-order
Hermite-Gaussian function is given by

2 1/4
ql(u) = A2dd1 Hi (V- u) exp(- vr0), 1

where H&(-) is the lth-order Hermite polynomial. We
can expand fo(x, y) in terms of these functions as
follows:
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In this equation sn e s(zn) = jw(zjD where w(zn) =
w(O)[1 + (zn/z) 2 ]"i2 is the beam radius. Thus so
s(O) = ,/;w(O), where w(O) is the waist radius. The
Rayleigh range z is related to so by the relation
SO2 = AT. We also have k = 2-r/A, where A is the
wavelength. Rn =R(zn) = znJl + (z/Zn) 2 ] is the ra-
dius of curvature of the wave fronts, and 4 , (zn) =
arctan(zn/Z) is the Gouy phase shift.'

Equation (4) can be written in a considerably
simpler manner in terms of the fractional Fourier
transform.2 -8 (A brief discussion is given at the
end of this Letter.) Let us define the circum-
flexed functions with normalized arguments such
that fn(x/sn, Y/Sn) = fn(x, y), etc. Furthermore, let
(Tan fo)(u, v) denote the two-dimensional anth-order
fractional Fourier transform of fo(u, v). Then the
amplitude distribution at the plane z = zn is given
by

KSo)

Alm = f IfT o(X N"SO '( SO >( Y )dxdy
)O

(2) fn(X, Y) = Sn ( f)( .- , Y )exp(ikz - io)

F ik(x2 + y')
xexPL 2 Rn

(3)

because f'0. I&(x/so)I2dx = so for any arbitrary so > 0.
We can interpret the function so-"I'i(x/so)0In(Y/so)

as the amplitude distribution at z = 0 of a two-
dimensional Hermite-Gaussian beam of order (1, m)
with scale parameter so. Then it becomes an easy
matter to write the amplitude distribution fn(X, y) at
an arbitrary plane z = zn, because we know how each
of the Hermite-Gaussian components propagates':

f.(x, Y) = Y YE Alm -'Pi- . Y
1=0 1ex=P S., SRn S.m

x expt ikzn, + k(X2R + y) -il+ m + )f-

(5)

with
Anan =

7T/2
(6)

We discuss the interpretation of this result shortly.
But first, let us put it to a simple test. Letting z - co,
we see that the resulting intensity pattern is simply
the magnitude squared of the first-order (ordinary)
Fourier transform of fo(x, y), consistent with what
we know of Fraunhofer diffraction.

Let us now consider any two planes z, # 0 and
Z2 - 0 such that z1 < Z2 and relate the amplitude dis-
tribution in these two planes. Equation (5) holds for
both planes. Let us introduce the scaled coordinates
U2 = xIs2 , V2 = y/s2, ul = x/si, and vl = y/s, on the
spherical surfaces with radii R2 and R, (see Fig. 1).
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Fig. 1. Spherical surfaces of given radii and separation:
the complex amplitude distribution on the second surface
is the fractional Fourier transform of that on the first
surface. g(uj, vj) and h(u2 , v2) denote the complex am-
plitude distributions on the scaled coordinate systems on
surfaces 1 and 2, respectively. In the figure z1 < 0 and
Z2 > 0, but the results remain valid if both surfaces are
on the same side of the z = 0 plane.

Working with these spherical reference surfaces en-
ables us to eliminate the final quadratic phase factor
in Eq. (5). Then, in terms of our new coordinates,
the complex amplitude distribution of light in the two
spherical surfaces shown in Fig. 1 can be related in
the particularly simple form

h(U 2, V2) = Ls (Fyg)(u 2 , V2), (7)
S2

where

a = a2 -a, (8)
iT/2

yFan denotes the ath fractional Fourier trans-
form of k, and we have dropped the uninterest-
ing phase factor exp[ik(z2 - zI) - i(42 - ;,)] from
the right-hand side of Eq. (7). The factor Sl/S 2 ,

of course, ensures power conservation. [One de-
rives Eq. (7) from Eq. (5) by first writing h(u2, v2) 0C

(So/s 2 )(SnOfo)(U 2 v 2 ), and a similar equation for z,
and then combining them.]

The parameters a, = 2,1/iT and a2 = 2;2/v are
merely special cases of Eq. (6). At z = zi, we have
the alth fractional transform of the distribution at
z = 0, which implies that at z = 0 we have the -alth
fractional transform of the distribution at z = zj. At
z = z 2 , we have the a2th fractional transform of the
distribution at z = 0. Thus, at z = Z 2, we have the
(a2 - aj)th transform of the distribution at zj. This
is the essential content of Eq. (7).

It is known that for a proper choice of parameters
it is possible to obtain an exact Fourier-transform re-
lation between two spherical surfaces (choose a = 1).
What we have shown is that for other values of the
parameters we obtain a fractional Fourier-transform
relation. Given any two surfaces, as in Fig. 1, all we
need to do to find the order a of the fractional Fourier-
transform relation existing between these two sur-
faces is to find the Rayleigh range and waist location
of a Gaussian beam that would fit into these surfaces
and then calculate a from Eq. (8).

The complex amplitude distribution with respect
to any given reference sphere can be mapped harm-

lessly onto another reference sphere by using a lens
of appropriate focal length. Conversely, the effect
of an ideal thin lens can be interpreted merely as
a change of the spherical reference surface, with no
change in the amplitude. Thus any system of con-
catenated lenses and segments of free space with
any choice of spherical or planar input/output ref-
erence surfaces can be analyzed within this frame-
work, as consecutive fractional Fourier transforms.
As a simple example, if we wish to obtain an ex-
act fractional Fourier-transform relation between two
planar-rather then spherical-surfaces, we can use
appropriately chosen and situated lenses to cancel the
overall spherical phase factors. (Lohmann's Type I
and Type II systems7 may be interpreted as spe-
cial cases. In general, the total amount of spherical
phase correction can be distributed in a much more
flexible way.)

We may also think of a complex amplitude distri-
bution riding on a Gaussian beam wave front. The
spatial dependence of the wave front as the wave
propagates is like a carrier defining spherical sur-
faces, on top of which the complex amplitude distri-
bution rides, being fractional Fourier transformed in
the process.

Hermite-Gaussian functions are not strictly eigen-
functions of free space, although they do preserve
their profile within a scaling factor. However, they
are eigenfunctions of periodic lens systems and
spherical mirror resonators. Thus it will be instruc-
tive to relate the above results to spherical mir-
ror resonators. Let us now interpret Fig. 1 as a
resonator. Assume that the complex amplitude dis-
tribution of light at, say, the waist plane is known.
After one round trip, we will observe at the same
plane the 2ath fractional Fourier transform of the
initial distribution, where a is given by Eq. (8).
(This is because the mirror precisely reverses the
quadratic phase factor so that we get twice the
effect on completing a round trip.) That is, one
round trip in the resonator is described by a frac-
tional Fourier transform operation. In general, this
2ath fractional Fourier transform is not of the same
functional form as the initial distribution. If the
initial distribution is to be a mode of the reso-
nator, it must preserve its functional form after a
round trip. That is, it must be an eigenfunction
of the fractional Fourier-transform operation. But
eigenfunctions of the fractional Fourier transform
are known to be the Hermite-Gaussian functions8

(which are well known to be the modes of spherical
mirror resonators).

It is possible for one to express a [as given by
Eq. (8)] in terms of the radii of curvature and spac-
ing of the resonator mirrors by first calculating the
Rayleigh range and waist location of a Gaussian
beam that fits such a resonator and then calculat-
ing the Gouy phase shift. In general this results in a
complicated expression. For symmetrical resonators
with IRI = JR21 R, we obtain

=rc (2R/d -j )j2
a 2 = arictanL / (9)
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The range of the arctangent function in this ex-
pression is chosen such that a-r/2 monotonically de-
creases from 7r to 0 as Rid increases from 1/2 to .
For R/d < 1/2, the resonator is unstable.

Let us examine the important special case of
the symmetrical confocal resonator in which the
radii of the mirrors equal their spacing. In this
case, half a round trip through the resonator cor-
responds to the ordinary Fourier transform, that
is, a = 1. Lipson and Lipson9 have also discussed
so-called quasi-confocal resonators, in which the
beam profile repeats itself not after one round trip
but after several round trips. Such systems are
easily analyzed within the framework of fractional
Fourier transforms.' 0 For instance, if for the reso-
nator under question we have a = 2/3 and thus
2a = 4/3, after three round trips the beam profile will
repeat itself.

The well-known stability (or confinement) condi-
tion for spherical mirror resonators' can be cast in a
particularly simple form in terms of the parameter a,

0 s [cos(a7r/2)]2 • 1. (10)

Note that, as long as a is real, we have a stable reso-
nator. In this Letter we have implicitly assumed
that a and the Rayleigh range Y are real, which
means that we have implicitly assumed stable reso-
nators. Unstable resonators are described by values
of a that are not real. Elaboration of this issue must
be left for a future discussion.

In conclusion, we have cast the well-known formu-
lation and properties of Hermite-Gaussian beams
and spherical mirror resonators in a simple and
transparent form in terms of a transform with several
interesting and relatively well-studied properties.

Finally, so that the reader may easily verify our
results, we give the definition of the ath-order frac-
tional Fourier transform (F af)(U, v) of f(u, v):

(F f)(u, v) = J j Ba(U, v; u', v)f(u, v')du'dv',
(11)

The kernel can also be written in closed form,8 but
this form is more useful in the present context. The
a = 1st transform is the ordinary Fourier transform.
The ath transform of the a'th transform is equal
to the (a + a')th transform. The Hermite-Gaussian
functions are eigenfunctions of the fractional Fourier
transform operator F a:

_T~a[V,(u)1(v)] = exp(-ialir/2)exp(-iamiT/2)

X 11M0 0 (13)

Other properties of this by now fairly well-studied
transform may be found in Refs. 2-8.

The benefit of collaborating with A. W. Lohmann
of the University of Erlangen-NUrnberg on various
phases of our research on fractional Fourier trans-
forms is gratefully acknowledged.
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