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Abstract. For any finite Galois extension K of Q and any conjugacy class

C in Gal(K/Q), we show that there exist infinitely many Carmichael numbers

composed solely of primes for which the associated class of Frobenius auto-
morphisms is C. This result implies that for every natural number n there are

infinitely many Carmichael numbers of the form a2 + nb2 with a, b ∈ Z.

1. Introduction

For every prime number N , Fermat’s little theorem asserts that

(1.1) aN ≡ a (mod N) for all a ∈ Z.

Around 1910, Carmichael began an in-depth study of composite numbers N with
this property, which are now known as Carmichael numbers. In 1994 the existence
of infinitely many Carmichael numbers was established by Alford, Granville and
Pomerance [1]. The aim of the present work is to prove the following extension of
their result.

Theorem 1.1. Let K/Q be a finite Galois extension, and let C be a fixed conjugacy
class in Gal(K/Q). Then, there are infinitely many Carmichael numbers which are
composed solely of primes for which the associated class of Frobenius automorphisms
is the class C.

Let K/Q be an arbitrary number field and K0 its Galois closure. Taking the
conjugacy class of the identity automorphism of K0 in Theorem 1.1, it follows that
there exist infinitely many Carmichael numbers composed solely of primes that split
completely in K0. Since such primes must also split completely in K, we deduce
the following statement, recovering a recent result of Grantham [8, Theorem 2.1] on
the existence of infinitely many Carmichael-Frobenius numbers with respect to K.

Corollary 1.2. For any fixed algebraic number field K, there are infinitely many
Carmichael numbers which are composed solely of primes that split completely in K.

As prime numbers and Carmichael numbers are linked by the common prop-
erty (1.1), it is natural to ask whether certain questions about primes can also be
settled for Carmichael numbers; see [2, 3, 6]. For example, it is well known that
for every natural number n, there are infinitely many primes of the form a2 + nb2

with a, b ∈ Z (see the book [4] by Cox), and thus it is natural to ask whether the
same result holds for the set of Carmichael numbers. In view of Corollary 1.2, we
give an affirmative answer to this question.
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Corollary 1.3. For any fixed integer n > 1, there are infinitely many Carmichael
numbers of the form a2 + nb2 with a, b ∈ Z.

To see why, let Sn = {a2 + nb2 : a, b ∈ Z}, and let Kn be the ring class
field associated to the order Z[

√
−n ] in the imaginary quadratic field Q(

√
−n ).

According to [4, Theorem 9.4], if p is an odd prime not dividing n, then p splits
completely in Kn if and only if p ∈ Sn. Applying Corollary 1.2 with K = Kn,
we see that there are infinitely Carmichael numbers N composed solely of primes
p ∈ Sn. Since Sn is closed under multiplication, every such N also lies in Sn, and
the corollary follows.

In a different direction, taking K = Q(µd), where µd is a primitive d-th root of
unity, we recover the following result.

Corollary 1.4. For any coprime integers a and d > 1, there are infinitely many
Carmichael numbers composed solely of primes p ≡ a (mod d).

Matomäki [12] has recently shown that whenever gcd(a,m) = 1 and a is a
quadratic residue mod m, there are infinitely many Carmichael numbers in the
progression a mod m. Assuming the necessary compability between the numbers
a,m and the conjugacy class C in Gal(K/Q), it should be possible to combine the
methods of [12] with those in our proof of Theorem 1.1 to show that there are
infinitely many Carmichael numbers in the arithmetic progression a mod m which
are composed solely of primes for which C is the associated class of Frobenius
automorphisms. We thank the referee for posing this question and leave it as an
open problem for the interested reader.

2. Preliminaries

Let K/Q be a finite Galois extension of degree nK = [K : Q] and absolute
discriminant DK . We put

(2.1) NK =
{
d ∈ N : gcd(d,DK) = 1

}
.

For any Galois extension M/N and any unramified prime ideal p of N , we de-
note by (p,M |N) the conjugacy class of Frobenius automorphisms of Gal(M/N)
corresponding to the prime ideals of M above p.

Given a conjugacy class C in Gal(K/Q), let

PC = {p ∈ NK : p prime, (p,K|Q) = C}.

For d ∈ N and M a number field, put Md = M(µd), where µd is a primitive d-th
root of unity. According to [15, Proposition 2.7], the discriminant of Qd is

(2.2) DQd = (−1)φ(d)/2 dφ(d)∏
p | d p

φ(d)/(p−1)
,

where φ(·) is the Euler function.

Lemma 2.1. For each d ∈ NK , Kd is a Galois extension of Q of degree nKφ(d)
with discriminant

DKd = D
φ(d)
K D nK

Qd
.

Furthermore, Gal(Kd/Q) ' Gal(K/Q) × Gal(Qd/Q), where the isomorphism is
given by the restriction map σ → (σ|K , σ|Qd).
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Proof. In view of (2.1) and (2.2), the discriminants DK and DQd are coprime for
every d ∈ NK . Put L = K ∩ Qd. By [13, Ch.3, Corollary 2.10] the absolute
discriminant DL of L divides both DK and DQd ; thus, DL = 1 and K∩Qd = L = Q.
The result now follows from [13, Ch.1, Proposition 2.11], [5, 14.4, Proposition 21]
and [5, 14.4, Corollary 22]. �

The constants c0, c1, c2, . . . that appear in our proofs are assumed to be positive
and depend only on the field K. All constants implied by the symbols O, � and
� are absolute; we write OK , �K and �K to indicate that the implied constant
depends on K.

3. Zeros of Dedekind zeta functions

For each d ∈ NK , let ζd(s) be the Dedekind zeta function ζKd(s) associated with
the field Kd considered in §2.

Lemma 3.1. There are constants c1, c2 > 0 depending only on K with the property
that for all T > 1 and U > 2 there exists a proper integral ideal f = f(K,U, T ) of
K such that for any d ∈ NK with d 6 U , f | dOK , where OK is the ring of integers
of K, whenever ζd(s) has a zero β + iγ in the region

(3.1) Ω(T,U) =

{
β + iγ : β > 1− c1

log(c2TU)
, |γ| 6 T

}
.

Proof. We use the notation of [16, §1]. For each d ∈ NK with d 6 U , and any
Dirichlet character χ modulo (d) = dOK of conductor fχ, we see that

dχ := |DK |NK/Q(fχ) �
K
dnK 6 UnK ,

Hence, it follows that dχ 6 (c2U)nK for some constant c2 = c2(K). Applying [16,
Theorem 1.9] with Q = (c2U)nK and

L = log(QTnK ) = nK log(c2TU),

we see that for some constant c1 = c1(K), any Hecke L-function L(s, χ) with
dχ 6 Q has at most one zero in the region Ω(T,U). Moreover, the remark following
[16, Theorem 1.9] asserts that there is at most one function L(s, χ∗) vanishing in
Ω(T,U) among all L(s, χ) associated with primitive characters χ with dχ 6 Q. If
such a zero exists, then it is a real number β∗ (which can be bounded in terms
of Q). For such a zero we have

β∗ > 1− c1
log(c2TU)

> 1− c1
log c2

.

Replacing c1 by a smaller constant (which also depends only on K), we can assume
that ζK(β∗) 6= 0, i.e., χ∗ is not the trivial character.

By [13, Ch.7, Corollary 10.5]

ζd(s) = ζK(s)
∏
χ 6=1

L(s, χ,Kd|K)

is the product of Artin L-functions, where χ runs over the irreducible characters
of Gal(Kd/K). Let Kχ be the fixed field of the kernel of χ. Then, χ is injective
as a character of Gal(Kχ/K). Hence, by [13, Ch.7, Theorem 10.6] there exists a
primitive Dirichlet character χ̃ modulo the conductor fχ of the extension Kχ/K
such that

L(s, χ,Kd|K) = L(s, χ̃).
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Furthermore, since K ⊆ Kχ ⊆ Kd, we see by [9, 5.1.5] and the last paragraph of
[9, §6] that the conductor fχ divides (d); thus, dχ̃ 6 Q.

Using the remarks above we conclude that ζd(s) vanishes in Ω(T,U) if and only
if L(s, χ∗) is a factor of ζd(s) and L(β∗, χ∗) = 0. In this case, we know that fχ∗ | (d)
and fχ∗ 6= 1; thus, we can take f = fχ∗ . �

Lemma 3.2. There are constants c3, c4, c5 > 0 depending only on K with the
property that for all d ∈ NK , T > c3d, and σ > 1 − 1/c5, the number Nd(σ, T ) of
zeros β + iγ of ζd(s) with β > σ and |γ| 6 T satisfies the bound

Nd(σ, T ) 6 c4(Td)c5(1−σ).

Proof. We continue to use notation of [16, §1]. As in the proof of Lemma 3.1, for
each d ∈ NK let H (in the notation of [16, §1]) denote the trivial subgroup of the
ideal class group I((d))/P(d) modulo (d), and note that the quantities hH and d(H)
defined by [16, Equation (1.1b)] satisfy the bound

max{hH , d(H)} 6 (cd)nK

for some constant c = c(K) in view of [16, Lemma 1.16]. The result now follows by
applying [16, Corollary 4.4] with Q = (cd)nK and T > c3d, where c3 = c3(K) is any

constant that is large enough so that the conditions T � 1 and T > n2
Kh

1/nK
H of

[16, Corollary 4.4] are met (for the latter condition, any number c3 > cn2
K suffices

by the inequality above). �

4. Chebotarev Density Theorem

Our goal in this section is to provide a lower bound for the counting function of
the set

PCd =
{
p ∈PC : p ≡ 1 (mod d)

}
using an effective version of the Chebotarev density theorem given by [10].

By [13, Ch.1, Corollary 10.4] we see that p ≡ 1 (mod d) if and only if p splits
completely in Qd if and only if (p,Qd|Q) = {1d} for p ∈ NK , where 1d denotes the
identity element of Gal(Qd|Q). It follows by the isomorphism in Lemma 2.1 that
there exists a conjugacy class Cd in Gal(Kd/Q) (one that corresponds to C×{1d})
with the property that

p ∈PCd ⇐⇒ (p,Kd|Q) = Cd (p ∈ NK).

Accordingly, we study the function

πC(x; d, 1) = #{p 6 x : p ∈ NK , (p,Kd|Q) = Cd}

and its weighted version

ψC(x; d, 1) =
∑

p,m: pm6x
(pm,Kd|Q)=Cd

log p,

where the sum is taken over primes in NK . Our main result is the following:

Theorem 4.1. There are constants x1, B > 0 depending only on K with the prop-
erty that for all x > x1 and every d ∈ NK with d 6 xB,

(4.1) πC(y; d, 1) >
|C|

2nKφ(d)

y

log y
(x4/5 6 y 6 x)
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whenever ζd(s) has no zeros in the region

(4.2) ΩB(x) =

{
β + iγ : β > 1− c1

log(c2x4B)
, |γ| 6 x3B

}
.

Proof. Let B = B(K) be a constant in the interval (0, 1
100 ) to be further determined

below. For convenience, we set

(4.3) θB(y) =
c1 log y

log(c2y5B)
.

For x4/5 6 y 6 x, we have

1− θB(y)

log y
> 1− c1

log(c2x4B)
and y3B 6 x3B ,

hence the region

Ω̃B(y) =

{
β + iγ : β > 1− θB(y)

log y
, |γ| 6 y3B

}
is contained in ΩB(x); therefore, ζd(s) has no zeros in Ω̃B(y) whenever it has no
zeros in ΩB(x).

Let g be a fixed element of Cd with d ∈ NK and d 6 xB , H = 〈g〉 the cyclic

subgroup of G generated by g, E the fixed field of H, and Ĥ the dual of H, i.e.,
the set of irreducible characters χ : H → C×.

Applying [10, Theorem 7.1] with the choices G = Gal(Kd|Q) and T = y3B , and
taking into account the bounds

|G| = nKd = φ(d)nK �
K
d 6 y2B

log |DKd | � φ(d) (log |DK |+ nK log d) �
K
y2B log y,

(4.4)

which hold by Lemma 2.1 for all d 6 xB 6 y5B/4, we derive that

(4.5) ψC(y; d, 1)− |C|
|G|

y +
|C|
|G|

ZB(y) �
K

|C|
|G|

y1−B log y

where we have used |Cd| = |C|, and

ZB(y) =
∑
χ∈Ĥ

χ(g)

( ∑
ρ

|γ|6T

yρ

ρ
−
∑
ρ

|ρ|< 1
2

1

ρ

)
.

Here, the inner sums are taken over the nontrivial zeros ρ = β + iγ of the Artin
L-functions L(s, χ,Kd|E) so that

ζd(s) =
∏
χ∈Ĥ

L(s, χ,Kd|E).

Assuming ζd(s) has no zeros in the region ΩB(x), it follows by the functional
equation of ζd(s) that every zero ρ = β + iγ of ζd(s), and thus also of each
L(s, χ,Kd|E), lies outside of the region{

β + iγ : 0 6 β 6
θB(y)

log y
, |γ| 6 y3B

}
,
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and thus |ρ| > θB(y)/ log y �
K

1/ log y for every such zero. We conclude that∑
ρ: β< 1

2

|γ|61

yρ

ρ
−
∑
ρ

|ρ|< 1
2

1

ρ
� y1/2

∑
ρ
|γ|61

1

|ρ|
�
K
nχ(0) y1/2 log y,

where nχ(t) is the number of zeros β+ iγ of L(s, χ,Kd|E) such that 0 < β < 1 and
|γ − t| 6 1. By [10, Lemma 5.4],

(4.6) nχ(t)� log dχ +
nKφ(d)

|H|
log(|t|+ 2),

where dχ = |DE |NE/Q(fχ). Summing over all characters χ ∈ Ĥ and using (4.6) we
see that ∑

χ∈Ĥ

χ(g)

( ∑
ρ: β< 1

2

|γ|61

yρ

ρ
−
∑
ρ

|ρ|< 1
2

1

ρ

)
�
K
y1/2 log y

∑
χ∈Ĥ

(
log dχ +

d

|H|

)

= y1/2 log y
(
log |DKd |+ y2B

)
�
K
y1/2+2B log2 y,

(4.7)

where the equaliy |DKd | =
∏
χ dχ follows from [13, Ch.3, Corollary 2.10] and the

Conductor-Discriminant formula [13, Ch.7, Proposition 11.9]. Moreover,

∑
ρ: β< 1

2

1<|γ|6y3B

yρ

ρ
� y1/2

∑
ρ

16|γ|6y3B

1

|ρ|
6 y1/2

by3Bc∑
j=1

∑
ρ

j6|γ|6j+1

1

|ρ|
;

thus, summing over the characters we obtain

∑
χ∈Ĥ

χ(g)
∑

ρ: β< 1
2

1<|γ|6y3B

yρ

ρ
� y1/2

by3Bc∑
j=1

1

j

∑
χ∈Ĥ

(
log dχ +

nKφ(d)

|H|
log(j + 1)

)

�
K
y1/2+2B log2 y.

(4.8)

In view of (4.7) and (4.8) we have

(4.9) ZB(y) =
∑
χ∈Ĥ

χ(g)
∑

ρ: β> 1
2

|γ|6y3B

yρ

ρ
+OK

(
y1/2+2B log2 y

)
.

To estimate the sum in (4.9), we use ideas (and notation) from the proof of [1,
Theorem 2.1]. For each zero ρ = β + iγ in the sum, we have |yρ| = yβ and

|ρ| > 1
4 + |γ| � 1 + |γ|. Fix χ ∈ Ĥ and write

∑α
σ for any sum over all zeros β + iγ

of L(s, χ,Kd/E) with σ 6 β < α and |γ| 6 y3B . Put τ = 1−θB(y)/ log y, and note
that

1∑
τ

yρ

ρ
= 0

since ζd(s) has no zeros in Ω̃B(y). Hence, using the upper bound yβ 6 y1−1/c5

when β 6 1 − 1/c5 and the identity yβ = y1−1/c5 + log y
∫ β

1−1/c5
yσ dσ when β lies
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in the range 1− 1/c5 6 β 6 τ , it follows that

∑
ρ

β> 1
2 , |γ|6y

3B

yρ

ρ
=

1−1/c5∑
1/2

yρ

ρ
+

τ∑
1−1/c5

yρ

ρ
�

1−1/c5∑
1/2

yβ

1 + |γ|
+

τ∑
1−1/c5

yβ

1 + |γ|

� y1−1/c5

τ∑
1/2

1

1 + |γ|
+ log y

τ∑
1−1/c5

1

1 + |γ|

∫ β

1−1/c5

yσ dσ

� y1−1/c5
∑
ρ

|γ|6y3B

1

1 + |γ|
+ log y

∫ τ

1−1/c5

yσ

(
τ∑
σ

1

1 + |γ|

)
dσ.

(4.10)

Summing over all characters and using (4.6) the first term above can be bounded
as before:

∑
χ∈Ĥ

χ(g)
∑
ρ

|γ|6y3B

1

1 + |γ|
6
∑
χ∈Ĥ

by3Bc∑
j=0

∑
ρ

j6|γ|6j+1

1

1 + |γ|

�
K

by3Bc∑
j=0

d log d+ d log(1 + j)

j + 1
� y2B log2 y.

(4.11)

Let Nχ(σ, T ) be the number of zeros β+iγ of L(s, χ,Kd|E) with β > σ and |γ| 6 T .
Then, it follows by partial summation that for σ > 1− 1/c5,

τ∑
σ

1

1 + |γ|
6 Nχ(σ, c3d) +

Nχ(σ, y3B)

y3B
+

∫ y3B

c3d

Nχ(σ, t)

t2
dt

Summing over all characters χ once again we obtain

(4.12)
∑
χ∈Ĥ

χ(g)

τ∑
σ

1

1 + |γ|
� Nd(σ, c3d) +

Nd(σ, y
3B)

y3B
+

∫ y3B

c3d

Nd(σ, t)

t2
dt

By Lemma 3.2, we have for all σ > 1− 1/c5 and d 6 xB 6 y2B ,

∑
χ∈Ĥ

χ(g)

τ∑
σ

1

1 + |γ|
� c4(c3d

2)c5(1−σ) +
c4(y3Bd)c5(1−σ)

y3B
+

∫ y3B

c3d

c4(td)c5(1−σ)

t2
dt

�
K
y4c5B(1−σ) + y2c5B(1−σ)

∫ y3B

1

tc5(1−σ)

t2
dt.

Using the bound

∫ y3B

1

tc5(1−σ)

t2
dt �

K

{
log y if 1− 1/c5 6 σ 6 1− 1/(2c5)

1 if σ > 1− 1/(2c5),
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and assuming that B < 1/(4c5), we derive that∫ τ

1−1/c5

yσ

(∑
χ∈Ĥ

χ(g)

τ∑
σ

1

1 + |γ|

)
dσ

�
K

∫ τ

1−1/c5

yσ · y4c5B(1−σ) dσ +

∫ 1−1/(2c5)

1−1/c5

yσ · y2c5B(1−σ) log y dσ

= y4c5B

∫ τ

1−1/c5

yσ(1−4c5B) dσ + y2c5B log y

∫ 1−1/(2c5)

1−1/c5

yσ(1−2c5B) dσ

� y4c5B
yτ(1−4c5B)

(1− 4c5B) log y
+ y2c5B

y(1−1/(2c5))(1−2c5B)

(1− 2c5B)

=
y exp(−(1− 4c5B)θB(y))

(1− 4c5B) log y
+
y1+B−1/(2c5)

(1− 2c5B)
,

where we have used the definition of τ in the last step. Combining this bound with
(4.9), (4.10) and (4.11), and assuming further that B 6 1/(5c5), we find that

ZB(y) �
K
y exp(− 1

5θB(y)).

Finally, using (4.5) we see that

(4.13)

∣∣∣∣ψC(y; d, 1)− |C|
|G|

y

∣∣∣∣ 6 |C||G| cy (exp(− 1
5θB(y)) + y−B log2 y

)
for some sufficiently large constant c = c(K).

To finish the proof, we now put

B = min

{
1

100
,

1

5c5
,

c1
30 log(6c)

}
.

Note that B depends only on K, the bound (4.13) holds, and we have

c exp
(
− c1

30B

)
6

1

6
.

On the other hand, from the definition (4.3) one sees that θB(y) > c1/(6B) holds
for any y > y1, where y1 = exp((log c2)/B). Therefore,

(4.14) c exp(− 1
5θB(y)) 6

1

6
(y > y1).

Increasing the value of y1 if necessary, we also have

(4.15) c y−B log2 y 6
1

6
(y > y1).

Put x1 = y
5/4
1 so that the condition y > y1 is satisfied whenever x4/5 6 y 6 x and

x > x1. Combining the bounds (4.13), (4.14) and (4.15) we obtain

(4.16) ψC(y; d, 1) >
2|C|
3|G|

y (x4/5 6 y 6 x)

for all x > x1. Partial summation yields

(4.17) πC(y; d, 1) >
2|C|
3|G|

y

log y
−

4
√
y

log y
>
|C|
2|G|

y

log y
(x4/5 6 y 6 x),
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where the last inequality holds when
√
y > 24|G|/|C|, which is guaranteed by

our choice of B and d with d 6 xB . We finish the proof by noting that |G| =
nKφ(d). �

5. Construction of Carmichael numbers

In view of Theorem 4.1, our construction of Carmichael numbers with the prop-
erty stated in Theorem 1.1 follows closely that given in [1]. We shall be brief, since
most of the details are the same. Our principal tool is the following variant of [1,
Theorem 3.1]:

Lemma 5.1. Let the constants x1, B have the property stated in Theorem 4.1, and
suppose that x > x1. If L is any squarefree number in NK that is not divisible by
any prime exceeding x(1−B)/2, and∑

prime q |L

1

q
6

1

60nK
,

then there is a positive number k 6 x1−B with gcd(k, L) = 1 such that

#
{
d | L : dk + 1 ∈PC , dk + 1 6 x

}
>

1

6nK log x
·#
{
d | L : d 6 xB

}
.

Proof. We use ideas (and notation) from the proof of [1, Theorem 3.1].
Observe that the region ΩB(x) defined by (4.2) is the same as the region Ω(T,U)

defined by (3.1) when we put T = x3B and U = xB .
Fix a prime p0 with the property that p0 | NK/Q(f), where f = f(K,xB , x3B) is

given by Lemma 3.1. If L is divisible by p0 let L′ = L/p0; otherwise, let L′ = L.
Note that

(5.1) #
{
d | L′ : d 6 y

}
>

1

2
·#
{
d | L : d 6 y

}
(y > 1)

(see [1, p. 716]). Since p0 - L′, for every divisor d of L′ with d 6 xB , Lemma 3.1
shows that ζd(s) has no zeros in ΩB(x); therefore, using the lower bound (4.1) from
Theorem 4.1 we have

πC(dx1−B ; d, 1) >
|C|
2nK

dx1−B

φ(d) log x
.

On the other hand, since any prime divisor q of L does not exceed x(1−B)/2, we
have from [11, Theorem 2]:

πC(dx1−B ; dq, 1) 6 π(dx1−B ; dq, 1) 6
10

q

dx1−B

φ(d) log x
.

Therefore, the number of primes p ∈PCd with p 6 dx1−B and gcd((p−1)/d, L) = 1
is at least

πC(dx1−B ; d, 1)−
∑

prime q |L

πC(dx1−B ; dq, 1)

>

(
1

2nK
− 10

∑
prime q |L

1

q

)
dx1−B

φ(d) log x
>

x1−B

3nK log x
.

Using this bound together with (5.1) (instead of [1, Equation (3.1)]), the proof can
be concluded in the same manner as that of [1, Theorem 3.1]; the remaining details
are omitted. �
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We are now in a position to establish a quantitative version of Theorem 1.1.

Theorem 5.2. There are constants x0, c0 > 0 depending only on K such that for
all x > x0, there are at least xc0 Carmichael numbers up to x that are composed
solely of primes which split completely in K.

Proof. To prove this, we only need to modify the proof of [1, Theorem 4.1] slightly,
as follows.

Let E be the set of numbers E ∈ (0, 1) for which there exists a constant x2 > 0
depending only on E such that

(5.2) π(x, x1−E) �
E
π(x) (x > x2),

where π(x, y) denotes the number of primes p 6 x such that p− 1 is free of prime
factors exceeding y.

Fix E = 3/5, which lies in the set E (see, e.g., [7]), and let x2 be a number for
which the bound (5.2) holds. Let x1, B be numbers with the property stated in
Theorem 4.1, and put x3 = max{x1, x2}. Note that our choice of x3 depends only
on K.

Let y > 2 be a parameter and Q the set of primes q ∈ NK with

y5/2/ log y < q 6 y5/2

for which q − 1 is free of prime factors exceeding y. By (5.2)

(5.3) |Q| > π(y5/2, y)− π(y5/2/ log y)−
∑
q|DK

1� y5/2/ log y

for all sufficiently large y. Let L be the product of primes in Q; then

logL =
∑
q∈Q

log q 6
∑

q6y5/2

log q = ϑ(y5/2) 6 1.1y5/2

for all y > 0, where we have used [14] for the last inequality. Furthermore,

(5.4) λ(L) =
∏

pa||λ(L)

pa 6
∏
p6y

pb
log y5/2

log p c 6 y5π(y)/2 6 eπ·y

where the last inequality follows again by [14]. We also have

(5.5) n(GL) 6 λ(L)(1 + logL) 6 eπy(1 + 1.1y5/2) 6 e5y,

where GL = (Z/LZ)∗.

Let x = ey
1+δ

where δ = 5ε/(8B). Since∑
prime q |L

1

q
6

∑
y5/2/ log y<q6y5/2

1

q
6 4

log log y

5 log y
6

1

60nK

for sufficiently large y, it follows from Lemma 5.1 that there exists an integer k
coprime to L, for which the set P of primes p 6 x with p ∈PC and p = dk+ 1 for
some divisor d of L, satisfies

(5.6) |P| > 1

6nK log x
·#
{
d | L : 1 6 d 6 xB

}
.

The product of any

u :=

[
log(xB)

log y5/2

]
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distinct prime factors of L, is a divisor d of L with d 6 xB . We deduce from (5.3)
that

#{d|L : 1 6 d 6 xB} >
(
ω(L)
u

)
>

(
ω(L)

u

)u
>

(
cy5/2

2B log x

)u(5.7)

Thus, by (5.6) and the identity (5/2− 1− δ)2B/5 = 3B/5− ε/4,

|P| > 1

6nK log x

( c

2B
y5/2−1−δ

)b 2B log x
5 log y c

> x3B/5−ε/3

for all sufficiently large values of y. Now take P ′ = P\Q. Since |Q| 6 y5/2, it
follows by the above inequality that

(5.8) |P ′| > x3B/5−ε/2

for all sufficiently large values of y.
We may view P ′ as a subset of the group (Z/LZ)? by considering the residue

class of each p ∈ P ′ modulo L. If S is a subset of P ′ that contains more than one
element and if

Π(S) :=
∏
p∈S

p ≡ 1 (mod L),

then Π(S) is a Carmichael number. Indeed, every member of P ′ is 1 mod k so that
Π(S) ≡ 1 (mod k), and thus Π(S) ≡ 1 (mod kL), since (k, L) = 1. However, if
p ∈ P ′ then p ∈ P so that p− 1 divides kL. Thus Π(S) satisfies Korselt’s criterion.

Let t = ey
1+δ/2

. Then, by [1, Proposition 1.2], we see that the number of
Carmichael numbers of the form Π(S), where S ⊆ P ′ and |S| 6 t, is at least(

|P ′|
btc

)(
|P ′|
n(GL)

)−1

>

(
|P ′|
btc

)btc
|P ′|−n(GL) > xt(3B/5−ε)

for all sufficiently large values of y, using (5.5) and (5.8). But each such Carmichael
number Π(S) so formed is such that Π(S) 6 xt. Thus for X = xt we have
C(X) > X3B/5−ε for all sufficiently large y. But X = exp(y1+δ exp(y1+δ/2)),
so that C(X) > X3B/5−ε for all sufficiently large values of X. Since y can be
uniquely determined from X, we complete the proof by taking c0 = EB/2. �
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