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Partially Informed Agents can Form a Swarm in
a Nash Equilibrium
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Abstract—Foraging swarms in one-dimensional motion with incomplete
position information are studied in the context of a noncooperative
differential game. In this game, the swarming individuals act with partial
information as it is assumed that each agent knows the positions of
only the adjacent ones. It is shown that a Nash equilibrium solution
that exhibits many features of a foraging swarm such as movement
coordination, self-organization, stability, and formation control exists.

Index Terms—Dynamic multi-agent systems, swarming behavior, social
foraging, dynamic game theory, Nash equilibrium, finite horizon, artificial
potentials.

I. INTRODUCTION

The motivations for collective movements such as schooling of
fish, flocking of birds, and herding of sheep are having protection
from predators, saving energy, and locating food sources with ease
[1]. Such swarms have attracted attentions of scientists and engineers
in many disciplines. The following features of a swarm are most
remarkable [2]: i) No member in a swarm views the whole picture, but
their decentralized actions result in a collective behavior. ii) Simple
actions of the members described in [3] result in a complex behavior
of the swarm. iii) There are no leaders commanding the others so that
many swarms are self-propelled. iv) There is limited communication
based on local information among members. Such features of swarms
are expressed by the notions of coordinated group behavior, self
organization, stability, collision avoidance and distributed control [4].
Engineers have based their designs of multi-robot or multi-vehicle
systems mainly on these concepts [5], [6], [7], [8].

In recent years, swarm analysis techniques have focused on three
principal methodologies; namely, model based approaches, Lyapunov
analysis and simulations. Compared to model based approaches,
simulation based approaches suffer from convergence, accuracy, and
computational complexity issues. On the other hand, while Lyapunov
based methods (e.g. [9], [10], [11]) remain confined to the stability
(boundedness) analysis, a model based approach allows a more com-
prehensive theoretical analysis that may reveal important structural
properties.

Noncooperative game theory, in particular the notion of Nash
equilibrium, is ideally suited for studying collective behaviors that
are caused by decentralized individual motives and actions. It thus
seems that quests into the nature and the origin of collective behavior
in swarms is a natural application area for game theoretical models;
but, such studies are surprisingly rare. Currently, the application has
mainly been limited to two-person games since the objective was
mainly to understand the “motive formation” of animals, [12], [13]. In
studying multi-robot, multi-vehicle systems cooperative game theory
has been the main tool applied since the emphasis [14] is on the
“design” of a swarm system, rather than an analysis which strives
to “explain” collective behavior. Vehicle platooning or air traffic
control in automated environments require conflict resolution so that
game theory is used in [15], [16], [17] and [18] for the purpose of
coordination.
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First studies, which demonstrate that a swarming behavior may
result as a Nash equilibrium are [19] and [20]. A main assumption
in both [19] and [20] is that each agent has a complete information
of its pairwise distances to other agents. The main contribution of
this article is to relax this assumption by considering that each agent
has a partial information access and knows its pairwise distances to
neighboring agents only. The assumption that a member interacts with
(exchanges information with or has sensory perception of) all of the
remaining members of a swarm may be a realistic assumption when
the swarm size is not too large or when designing a swarm system
from scratch. It may not, however, be realistic in large biological
swarms or if the cost of communication is substantial. The swarm is
thus assumed to have the structure of a line topology communication
network as opposed to a complete topology network.

The paper is organized as follows. In Section II, the main non-
cooperative dynamic game is introduced for the case where target
location is exactly known by the agents. In the remaining part of
Section II, main results and their implications are given. Section III
is on conclusions and the proofs of the main theorems are given in
the Appendix.

II. PROBLEM DEFINITION AND MAIN RESULTS

One dimensional motion of swarms with incomplete position
information is modeled as a noncooperative infinite dimensional
dynamic game in this section. Every agent in the swarm is assumed
to know its distance to only the adjacent agents. Each swarm member
minimizes the total work done in a time interval [0, T ] by controlling
its velocity. The total work done by the i-th member of the swarm
for i = 1, ..., N can be formulated as

Li(ui, xi−1, xi, xi+1) := [xi(T )]2 f (1)

+

∫ T

0

{
ui(t)2

2
+

i+1∑
j=i−1,j ̸=i

(
a[xi(t)− xj(t)]2

2
− r|xi(t)− xj(t)|)} dt,

with the convention that x0(t) = xN+1(t) = 0. Each agent is
assumed to adjust its control so as to minimize this expression. Here,
N is the number of agents, xi(t) is the position of the ith member.
The control input of agent-i is assumed to be its velocity

ui(t) = ẋi(t). (2)

The first component of the total work is the environment potential
which monitors the toxicity or the amount of food source at position
x. Here, it is selected as a quadratic profile as in [21]. The second
component is the kinetic energy term which measures the total effort
of the ith member. The minimization of this effort term implies that
the swarm members use their energy efficiently which is an essential
feature of actual biological swarms [22]. The third term in the total
work done is the attraction potential energy and the last term is the
repulsion potential energy. The attraction and repulsion potentials are
again chosen following [23], [21]. The parameters f, a, and r are
the weights of the environment, attraction, and repulsion potential
terms, respectively. These weights are thus assumed to be of the same
value for all swarm members, which is a reasonable assumption for
biological swarms consisting of the same species.

The optimization performed by the swarm members is

min
ui

{Li} subject to ẋi = ui, ∀ i = 1, ..., N. (3)

This is thus a noncooperative dynamic game and we will investigate
the existence and uniqueness of Nash equilibrium of this game. For
a concise exposition, we give the main result only for the specified
terminal condition case of xi(T ) = 0 for all i = 1, ..., N in (1).
(See [24] for the general free terminal condition case.) The closed
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form solution will be obtained in Appendix through the approaches
outlined in [25] and [26].

We will see in Appendix that solution of the above problems
requires solving nonlinear differential equations that do not obey
any Lipschitz condition. Therefore, neither the existence nor the
uniqueness of a Nash equilibrium is clear at the outset.

We now describe the main features of the solution to the
game played by agents. Consider the position vector of the N
agents x(t) :=

[
x1(t) ... xN (t)

]′
, and the vector of pair-

wise distances and sum y(t) := [x1(t) − x2(t)|...|xN−1(t) −

xN (t)|
N∑

j=1

xj(t)]′ where “prime” denotes transpose. Let M ∈

R(N−1)×N be such that Mi,i = 1, Mi,i+1 = −1, Mi,j = 0 for
i = 1, ..., N − 1, j = 1, ..., N, i ̸= j ̸= i + 1. Thus, the i-th row
of M has all zeros except a 1 and a −1 at its i-th and (i + 1)-st
positions, respectively. Consider the singular value decomposition

M = UΣV ′, (4)

for unitary matrices V ∈ RN×N , U ∈ R(N−1)×(N−1). The matrix
M has one zero singular value and N −1 distinct singular values all
in the open interval (0, 2). The N singular values σ1 > σ2 > ... >
σN−1 > σN are non-degenerate so that the columns of U and of V
are unique up to sign. Let

σk := 2 cos(
kπ

2N
), αk := σk

√
a, k = 1, ..., N − 1, (5)

and σN = αN := 0. The time constants α−1
k will determine how

x(t) and y(t) evolve in time.
Define

bk(t) :=
sinh[αk(T−t)]

sinh(αkT )
,

ck(t) :=
1
α2
k
[1− bk(t)− sinh(αkt)

sinh(αkT )
],

(6)

and consider B(t) := diag[ b1(t), ..., bN−1(t),
T−t
T

], C(t) :=

r diag[ c1(t), ..., cN−1(t),
(T−t)t

2
],

Q := diag[U, 1], r =
[
1 0 ... 0 1 0

]′ ∈ RN . (7)

THEOREM 1. Given any r ∈ (0,∞), there exists a0 ∈ (0,∞)
such that for each value a ∈ (0, a0) of the attraction parameter,
a unique Nash equilibrium with specified terminal condition of the
partial information game (1)-(3) exists. This Nash solution has the
following properties:

P1. The initial ordering among the N agents in the queue is
preserved during [0, T ].

P2. The vector of pairwise distances and sum at time t is given by

y(t) = QB(t)Q′y(0) +QC(t)Q′r. (8)

P3. For every T and as T → ∞, the swarm size dmax(t) :=
max
i,j

|xi(t)− xj(t)| remains bounded in [0, T ].

It follows that self-organized (no leader) agents, each individually
optimizing its effort, end up in a coordinated movement towards the
foraging location. Here, we emphasize as a fundamental feature of
Nash equilibrium that if each agent minimizes its total work (1),
which only requires the position information of agents adjacent to it
and the knowledge that the location of food (or the least toxic region)
is the origin, then the foraging swarm behavior characterized by P1-
P3 is expected. The swarm that results from this decentralized action
is such that the initial ordering among agents is preserved, it is stable
(its size is bounded) by P3, and the distance between the consecutive
agents can be computed by P2 at any given time. Also by P2, the
last entry of y(t) gives the swarm-center x̄(t) := x1(t)+...+xN (t)

N
as

x̄(t)= T−t
T

x̄(0), which monotonically approaches the target location
as t→ T and ends up at the origin at T .

The proof of Theorem 1 in the Appendix (see Remark A.1) will
show that if a > 0 is sufficiently large, then the existence conclusion
of Theorem 1 also holds true. It is, however, still an open question
whether a Nash solution exists without the assumption of a small or
large attraction parameter a.

III. CONCLUSIONS

The results in this article complement the (more comprehensive)
result of [20] that was based on the hypothesis of complete informa-
tion. The main contribution in both has been to show that a collective
behavior of foraging swarm can result from self-organized actions of
individual agents. This is a large step in explaining the phenomena
of biological swarms.

The prices paid in going from the complete to partial information
assumptions are described in [24] and they can be summarized as:
a slower convergence to the foraging location, more dependence on
the initial conditions, and having to additionally assume an ordering
relation such as the attraction parameter a is small (or large), or
equivalently, that the repulsion parameter r is large (or small). The
simulations carried out in [24] and our intuition indicate that the
unique Nash solution of Theorem 1 is actually valid for all a, r > 0.

IV. APPENDIX

This section contains a proof of Theorem 1. The proof is rather
technical and long because an essential task is to establish the
“positivity” of certain time-varying matrices in the foraging interval
[0, T ]. We refer the reader to [24] for the result in the free terminal
condition case and for details.

The optimal control problem that the ith agent needs to solve, i.e.,
minimize (1) subject to (3), is first considered, [27]. Applying the
necessary conditions of optimal control on Hamiltonian as in [20],
we have the state equation given by[

ẋ
ṗ

]
=

[
0 −I

−A 0

] [
x(t)
p(t)

]
+ r

[
0

s(t)

]
, (9)

where x := [ x1 ... xN ]′, p := [ p1 ... pN ]′, s :=

[

2∑
j=0,j ̸=1

sgn(x1 − xj) ...

N+1∑
j=N−1,j ̸=N

sgn(xN − xj)]′.

The “signum vector” s is piecewise-constant in the interval [0, T ]
with each constant value obtained by a permutation of entries
in [ 1 0 ... 0 −1 ]′. This is because its ith entry si =∑i+1

j=i−1,j ̸=i sgn(x
i − xj) is equal to 1 if agent i is leading the

queue, −1 if i is the last in queue, and 0 otherwise. Also in (9), A
is the symmetric tridiagonal matrix

A = aM ′M = a


1 −1 0
−1 2 −1

. . .
. . .

. . .
−1 2 −1
0 −1 1

 ,
where M is as defined prior to (4) and a is the attraction parameter
in (1). Note that the matrix V in (4) is such that A = aM ′M =
V aΣ′ΣV ′ = V diag[D2, 0]V ′, D := diag [α1, ..., αN−1] . We will
now obtain a solution to (9) under the assumption that s(t) = s(0)
for all t ∈ [0, T ]. We first list certain properties of the matrix A.

Let Bn(t) denote the n-th Bernoulli polynomial (see e.g., [28],
Ch. 12).

Lemma A.1. It holds that

bk(t) =

∞∑
n=0

βn(t)σ
2n
k , ck(t) =

∞∑
m=0

γm(t)σ2m
k , (10)
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where

βn(t) = B2n+1(1−
t

2T
)

22n+1

(2n+ 1)!
T 2nan, (11)

γm(t) =

− [B2m+3(1−
t

2T
) +B2m+3(

1

2
+

t

2T
)]

22m+3

(2m+ 3)!
T 2m+2am+1.

Moreover,

sign{βn(t)} = sign{γn(t)} = (−1)n, ∀ t ∈ [0, T ]. (12)

Proof. By the defining equation for Bernoulli polynomials yexy

ey−1
=

∞∑
n=0

Bn(x)
yn

n!
, we can write bk(t) of (6) as

2αkTe
(2τ−1)αkT

eαkT − e−αkT
=

∞∑
n=0

Bn(τ)
(2αkT )

n

n!
, (13)

2αkTe
−(2τ−1)αkT

e−αkT − e−αkT
=

∞∑
n=0

Bn(τ)(−1)n
(2αkT )

n

n!
.

Subtracting and dividing by 2αkT , and letting τ := 1− t
2T

, we get

e(2τ−1)αkT − e−(2τ−1)αkT

eαkT − e−αkT
=

∞∑
n=0

Bn(τ)[1− (−1)n]
(2αkT )

n−1

n!
,

which leads to the expression for bk(t) in (10) and (11). A similar
procedure applied to ck(t) also leads to the expansion in (10), (11) for
ck(t). The odd-numbered Bernoulli polynomials have constant sign
in the interval (0.5, 1) with B1(τ) having positive sign (Chapter 23
of [29]). Now, B′

2n+1(τ) = (2n + 1)B2n(τ) for n ≥ 1 so that
sign{B′

2n+1(1)} = sign{B2n(1)}. Since B2n(1) are the second
Bernoulli numbers, it follows that sign{B′

2n+1(1)} = (−1)n−1 for
n ≥ 1. Thus, B2n+1(τ) is decreasing to 0 as τ → 1 if and only if n
is even, which gives sign{B2n+1(τ)} = (−1)n, ∀τ ∈ (0.5, 1). This
implies (12) by the expressions in (11). �

We now turn to (9) with s(t) = s(0) for all t ∈ [0, T ] and note
that[

x(t)
p(t)

]
= ϕ(t)

[
x(0)
p(0)

]
+ ψ(t, 0)s(0), (14)

where

ϕ(t) =

[
ϕ11(t) ϕ12(t)
ϕ21(t) ϕ22(t)

]
:= L−1{

[
sI I
A sI

]−1

},

ψ(t, t0) :=

∫ t

t0

r

[
ϕ12(t− τ)
ϕ22(t− τ)

]
dτ,

for initial time t0 ≥ 0 with r being the repulsion parameter. The
inverse Laplace transform of[
sI I
A sI

]−1

=

[
s(s2I −A)−1 −(s2I −A)−1

−A(s2I −A)−1 s(s2I −A)−1

]
,

gives that

ϕ11(t) = ϕ22(t) = V diag [cosh(α1t), ..., cosh(αN−1t), 1]V
′,

ϕ12(t) = −V diag
[
sinh(α1t)

α1
, ...,

sinh(αN−1t)

αN−1
, t
]
V ′,

ϕ21(t) = −V diag [α1sinh(α1t), ..., αN−1sinh(αN−1t), 0]V
′.

(15)

Moreover, integration results in

ψ1(t, 0) = r V diag
[

1−cosh(α1t)

α2
1

, ...,
1−cosh(αN−1t)

α2
N−1

,− t2

2

]
V ′,

ψ2(t, 0) = r V diag
[
sinh(α1t)

α1
, ...,

sinh(αN−1t)

αN−1
, t
]
V ′.

(16)

Using the boundary condition x(T ) = 0 in (14) for t = T gives
ϕ11(T )x(0) + ϕ12(T )p(0) + [ψ1(T, 0) − ψ2(T, 0)]s(0) = 0 which can
be solved for p(0) since ϕ12(T ) is nonsingular. It follows that there
is a candidate solution of (9) for every x(0). This solution is

x(t) = {ϕ11(t)− ϕ12(t)[ϕ12(T )]
−1ϕ11(T )}x(0)

+{ψ1(t, 0)− ϕ12(t)[ϕ12(T )]
−1ψ1(T, 0)}s(0).

(17)

Proof of THEOREM 1. Let us assume x1(t) > x2(t) > ... > xN (t)
without loss of generality so that s(0)′ =

[
1 0 ... 0 −1

]′.
Substituting (15) and (16) into (17) yields

x(t) = V B(t)V ′x(0) + V C(t)V ′s(0). (18)

Note that the nonsingular matrix [M ′ w], where w ∈ RN is a vector
of all 1’s, satisfies[
M
w′

]
V aΣ′ΣV ′ = Q

[
D2 0
0′ 0

]
Q′
[
M
w′

]
,

and both B(t) and C(t) are matrix functions of Σ′Σ. Hence, the
transformation y(t)′ = x(t)′[M ′ w] applied to (18) gives

y(t) =

[
M
w′

]
V B(t)V ′

[
M
w′

]−1

y(0) (19)

+

[
M
w′

]
V C(t)V ′

[
M
w′

]−1

r.

This yields (8).
We now show that with such y(t), the ordering of the agents

indeed remains the same, i.e., sign yi(t) = sign yi(0) for all
i = 1, ..., N − 1 and t ∈ [0, T ]. We establish this for some (small
enough) values of the attraction parameter a > 0. Let us consider
the sub-vector yd := [x1 − x2 ... xN−1 − xN ]′ of y, Then, with
rd := [1 0 ... 0 1 ]′, (8) gives yd(t) = K(t)yd(0)+L(t)rd, K(t) :=
U diag[b1(t), ..., bN−1(t)]U

′, L(t) := U diag[c1(t), ..., cN−1(t)]U
′,

which are both positive definite matrices for every t ∈ [0, T ] by
the fact that bi(t) and ci(t) are positive functions of t ∈ [0, T ] for
i = 1, ..., N−1. The matrix U of (4) that occurs here can be written
explicitly by [30], p. 514, as U = [Uij ], Uij =

√
2
N

sin( (N−j)iπ
N

),

so that, for i, j = 1, ..., N − 1,

Kij(t) =
2

N

N−1∑
k=1

bN−k(t) sin(
kiπ

N
) sin(

kjπ

N
),

Lij(t) =
2

N

N−1∑
k=1

cN−k(t) sin(
kiπ

N
) sin(

kjπ

N
).

We now show that, there exist values for the attraction parameter
a > 0 such that for all i, j = 1, ..., N−1 and t ∈ [0, T ], Kij(t) > 0
and Lij(t) > 0. Consider

Kij(t) =
2

N

N−1∑
k=1

bk(t) sin(
(N − k)iπ

N
) sin(

(N − k)jπ

N
) (20)

=
2

N
(−1)i+j

N−1∑
k=1

bk(t) sin(
kiπ

N
) sin(

kiπ

N
)

=
(−1)i+j

N
(−1)i+j

N−1∑
k=1

bk(t){cos[
(i− j)kπ

N
]

− cos[
(i+ j)kπ

N
]}.

By these expressions it follows that Kij(t) =
KN−j,N−i(t), Lij(t) = LN−j,N−i(t) for all i, j, i.e., K and
L are centrosymmetric (or bisymmetric) matrices, [31] . This allows
us to only show the positivity of the entries with

j < i ≤ N − j, j = 1, ..., ⌊N − 1

2
⌋. (21)
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Substituting (10) into Kij(t) and employing the trigonometric iden-
tity

cos2m(θ) =
1

22m

(
2m
m

)
+

2

22m

m−1∑
l=0

(
2m
l

)
cos[2(m− l)θ],

we have

Kij(t) =
(−1)i+j

N

∞∑
n=0

βn

N−1∑
k=1

σ
2n
k {cos[

(i − j)kπ

N
] − cos[

(i + j)kπ

N
]} (22)

=
(−1)i+j

N

∞∑
n=0

βn

N−1∑
k=1

2
2n

cos
2n

(
kπ

2N
){cos[

(i − j)kπ

N
] − cos[

(i + j)kπ

N
]}

=
(−1)i+j

N

∞∑
n=0

βn

(
2n
n

)N−1∑
k=1

{cos[
(i − j)kπ

N
] − cos[

(i + j)kπ

N
]}

+
2(−1)i+j

N

∞∑
n=0

βn

n−1∑
l=0

(
2n
l

)N−1∑
k=1

cos[
(n − l)kπ

N
]

{cos[
(i − j)kπ

N
] − cos[

(i + j)kπ

N
]}.

We now compute the finite sums over k and t. Let E(N) read as “an
even multiple of N .” The first sum is

N−1∑
k=1

{cos[ (i− j)kπ

N
]− cos[

(i+ j)kπ

N
]}

=
{

−1, i − j ̸= E(N)
N − 1, i − j = E(N)

}
−
{

−1, i + j ̸= E(N)
N − 1, i + j = E(N)

}
= 0,

where the last equality is by (21). Let t1 := t− i+ j, t2 := t+ i−
j, t3 := t+ i+ j, t4 := t− i− j. The second sum is

n−1∑
l=0

(
2n
l

)N−1∑
k=1

cos[
(n − l)kπ

N
]{cos[

(i − j)kπ

N
] − cos[

(i + j)kπ

N
]} (23)

=

n∑
t=1

(
2n

n − t

)N−1∑
k=1

cos(t
kπ

N
){cos[

(i − j)kπ

N
] − cos[

(i + j)kπ

N
]}

=
1

2

n∑
t=1

(
2n

n − t

)N−1∑
k=1

{cos(
t1kπ

N
) − cos(

t2kπ

N
) + cos(

t3kπ

N
) − cos(

t4kπ

N
)}

=
1

2

n∑
t=1

(
2n

n − t

)
(

{
−1, t1 ̸= E(N)

N − 1, t1 = E(N)

}
−

{
−1, t2 ̸= E(N)

N − 1, t2 = E(N)

}

+

{
−1, t3 ̸= E(N)

N − 1, t3 = E(N)

}
−

{
−1, t4 ̸= E(N)

N − 1, t4 = E(N)

}
).

By (21), it is easy to see that if tl = E(N) for some l = 1, 2, 3, 4,
then tk ̸= E(N) for all three k ̸= l. Therefore,

Kij(t) = (−1)i+j
∞∑

n=0

βn (24)

[

n∑
p = 1

p = E(N) + i − j

(
2n

n − p

)
+

n∑
p = 1

p = E(N) − i − j

(
2n

n − p

)

−
n∑

p = 1
p = E(N) − i + j

(
2n

n − p

)
−

n∑
p = 1

p = E(N) + i + j

(
2n

n − p

)
].

At this stage, rather than Kij(t), it will be more convenient to
consider the expression for Ki,N−j(t) for

N − j < i ≤ j, j = ⌊N + 1

2
⌋, ..., N − 1. (25)

With this change of index, we are still considering the same subset
of entries of K but their expressions will be simpler. Substituting
N − j for j in the above expression, we have

S := Ki,N−j(t)(−1)
N

(−1)
i+j (26)

=

∞∑
n=0

βn [

n∑
p = 1

p = O(N) − i − j

(
2n

n − p

)
+

n∑
p = 1

p = O(N) − i + j

(
2n

n − p

)

−
n∑

p = 1
p = O(N) − i + j

(
2n

n − p

)
−

n∑
p = 1

p = O(N) + i + j

(
2n

n − p

)
],

where O(N) reads ”odd multiple of N .” Writing out a few terms of
each summation in the expression of S, it is not difficult to see that

S =
∞∑

m = 1
m odd

2N−1∑
k=0

βmN−i−j+k

m−1
2∑

t=0

(
2mN − 2(i + j) + 2k

2tN + k

)
(27)

+ βmN−i+j+k

m−1
2∑

t=0

(
2mN − 2(i − j) + 2k

2tN + k

)

− βmN+i−j+k

m−1
2∑

t=0

(
2mN + 2(i − j) + 2k

2tN + k

)

−βmN+i+j+k

m−1
2∑

t=0

(
2mN + 2(i + j) + 2k

2tN + k

) .

We now separate the even and odd k in the summations with respect
to k, to obtain

S =

∞∑
m = 1
m odd

N−1∑
k=0

βmN−i−j+2k

m−1
2∑

t=0

(
2mN − 2(i + j) + 4k

2tN + 2k

)
(28)

+ βmN−i+j+2k

m−1
2∑

t=0

(
2mN − 2(i − j) + 4k

2tN + 2k

)

− βmN+i−j+2k

m−1
2∑

t=0

(
2mN + 2(i − j) + 4k

2tN + 2k

)

− βmN+i+j+2k

m−1
2∑

t=0

(
2mN + 2(i + j) + 4k

2tN + 2k

)

+ βmN−i−j+2k+1

m−1
2∑

t=0

(
2mN − 2(i + j) + 4k + 2

2tN + 2k + 1

)

+ βmN−i+j+2k+1

m−1
2∑

t=0

(
2mN − 2(i − j) + 4k + 2

2tN + 2k + 1

)

− βmN+i−j+2k+1

m−1
2∑

t=0

(
2mN + 2(i − j) + 4k + 2

2tN + 2k + 1

)

−βmN+i+j+2k+1

m−1
2∑

t=0

(
2mN + 2(i + j) + 4k + 2

2tN + 2k + 1

)
For fixed m and k, the smallest indexed β occurs in the first term in
the brackets. By the expression in (11), the sign of S is determined
by the sign of βmN−i−j+2k for small enough attraction parameter
a > 0 because βmN−i−j+2k is divisible by the smallest power of a
among all β that occur in the above expression. It follows by (12)
that, sign(βmN−i−j+2k) = (−1)mN−i−j for all t ∈ [0, T ]. Since
m is odd, we have sign(S) = (−1)N (−1)i+j . This establishes that,
there exists a > 0 such that for all i, j as in (25), Ki,N−j(t) > 0,
t ∈ [0, T ]. The proof of positivity of the matrix L is obtained in
exactly the same manner since γn(t) of Lemma A.1 replacing βn(t)
in the last expression above yields Li,N−j(t). This proves that there
is a Nash equilibrium in which the initial ordering among the agents
is preserved in the whole interval [0, T ].

Here, it will be shown that swarm size is bounded. Since x1(t) >
x2(t) > ... > xN (t), the swarm size is equal to x1(t)−xN (t) which
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is given by

x1(t)− xN (t) =

N∑
m=1

N∑
p=1

N−1∑
n=1

qnmqpmyp(0)bm(t) (29)

+

N∑
m=1

N−1∑
n=1

qnmq1mcm(t)

+

N∑
m=1

N−1∑
n=1

qnmq(N−1)mcm(t),

that results from (8), where qij is the ijth entry of the matrix Q
of (7) and y(0), b(t), and c(t) are as defined in (6). Note that, by
triangular inequality

x1(t)− xN (t) ≤
N∑

m=1

N∑
p=1

N−1∑
n=1

|qnm||qpm||yp(0)|max
t

|bm(t)| (30)

+

N∑
m=1

N−1∑
n=1

|qnm||q1m|max
t

|cm(t)|

+

N∑
m=1

N−1∑
n=1

|qnm||q(N−1)m|max
t

|cm(t)|.

Considering the first and second derivatives of bm(t) and cm(t),
it is easy to show that max

t
|bm(t)|= 1 and max

t
|cm(t)|=

1

α2
m

[
1− 1

cosh
(
αmT

2

)], where αk is given in (5). Since all the

terms in the right hand side have finite positive values, x1(t)−xN (t)
is also finite. This completes the boundedness proof. �

We finally show that Nash solution is unique with respect to
strategies that are continuous against initial positions. Suppose that
there are changes in the ordering of the agents at the n − 1 time
instants {t1, ..., tn−1} ∈ (0, T ), with n ≥ 2. The integer n is
finite since the terminal condition should be satisfied exactly, not
asymptotically. Let t0 := 0 and tn := T . For k = 1, ..., n − 1, the
response at t ∈ (tk−1, tk) can be expressed in terms of the response
at tk−1 as

z(t) = ϕk(t− tk−1)z(tk−1) + ψk(t, tk−1)sk−1, t ∈ (tk−1, tk),

(31)

where ϕk(t − tk−1) is the state transition matrix for t ∈ (tk−1, tk)
and is related to the state transition matrix ϕk−1(t − tk−2), t ∈
(tk−2, tk−1), by

ϕk(t− tk−1) =

[
Pϕk−1

11 (t− tk−2)P
′ Pϕk−1

12 (t− tk−2)P
′

Pϕk−1
21 (t− tk−2)P

′ Pϕk−1
22 (t− tk−2)P

′

]
,

where P is a permutation matrix and the sizes of four partitions are
all N ×N . The matrix ψk(t, tk) is

ψk(t, tk) :=

∫ t

tk

r

[
Pϕk−1

12 (t− tk−2)P
′

Pϕk−1
22 (t− tk−2)P

′

]
dτ.

It follows that at tn = T , we have

z(T ) =

[
n∏

l=1

ϕl(tl − tl−1)

]
z(0) (32)

+

n∑
l=1

[
n∏

m=l

ϕm(tm − tm−1)

]
ψl(tl, tl−1)sl−1.

Multiplying both sides on the left by [I 0], where I has size N , we

have

[I 0]z(T ) = [I 0]

[
n∏

l=1

ϕl(tl − tl−1)

]
z(0) (33)

+ [I 0]
n∑

l=1

[
n∏

m=l+1

ϕm(tm − tm−1)

]
ψl(tl, tl−1)sl−1.

We employ the boundary condition x(T ) = 0 and obtain 0 =
Ω11x(0) + Ω12p(0) +

∑n
l=1 Γ

l
1sl−1, where Ωij is the ijth block

of Ω :=
n∏

l=1

ϕl(tl − tl−1) and Γl
i is the ith block of[

n∏
m=l+1

ϕm(tm − tm−1)

]
ψl(tl, tl−1). We now show that Ω12 is

nonsingular for small enough a so that p(0) is uniquely determined.
In fact, as a → 0, the state transition matrix in each interval
l = 1, ..., n asymptotically approaches

ϕl(t) →
[
P 0
0 P

] [
I −tI
0 I

] [
P ′ 0
0 P ′

]
=

[
I −tI
0 I

]
,

for the permutation matrix P that represents the ordering change
passing from the interval l − 1 to l. It follows that as a→ 0

Ω →
[
I −(tn − tn−1)I
0 I

] [
I −(tn−1 − tn−2)I
0 I

]
...

[
I −(t1 − t0)I
0 I

]
, (34)

so that Ω12 → −
∑n

l=1(tl− tl−1)I = −T I , which implies that Ω12

is nonsingular for sufficiently small a > 0. Therefore,

p(0) = −Ω−1
12

(
Ω11x(0) +

n∑
l=1

Γl
1sl−1

)
. (35)

Let us now consider the response in the vicinity of t1, the
first change of ordering instant, at which (31) gives x(t) =[
ϕ1
11(t)x(0) + ϕ1

12(t)p(0)
]
+ ψ1

1(t, 0)s0. Suppose xi(t1) = xj(t1),
i.e., the ith and the jth agents change positions at t1. Substituting
p(0) obtained in (35) and multiplying both sides of this equation by
the row vector wT

ij , all entries of which are 0 except 1 in its ith entry
and −1 in its jth entry, we obtain

xi(t) −xj(t) = wT
ij

(
ϕ1
11(t) + ϕ1

12(t)Ω
−1
12 Ω11

)
x(0)

+wT
ijϕ

1
12(t)Ω

−1
12

∑n
l=1 Γ

l
1sl−1 +wT

ijψ
1
1(t, 0)s0.

(36)

For ϵ sufficiently small and t ∈ (t1, t1+ ϵ), the left hand side can be
made as small as desired without any permutation in Ω and Γl

1 since
no change of ordering occurs in this time interval. By continuity of
strategies with respect to x(0), xi(t) − xj(t) and the first term on
the right hand side vary continuously and can assume an infinity of
values, whereas the last term can only take a finite number of values.
It follows that (36) can not hold. This contradiction implies that the
solution with no ordering change is unique for all 0 < a < a0 for
some a0 > 0. �

Remark A.1. The infinite summation expression for S, crucially
used in establishing the existence of Nash equilibrium, also indicates
that sign(S) is determined by the sign of −βmN+i+j+2k+1 for large
enough attraction parameter a > 0. This is because βmN+i+j+2k+1

is divisible by the largest power of a among all β that occur in
that expression. It follows by (12) that, sign(−βmN+i+j+2k+1) =
(−1)mN+i+j for all t ∈ [0, T ]. Since m is odd, we again have
sign(S) = (−1)N (−1)i+j . This establishes that, for large a > 0
and for all i, j as in (25), Ki,N−j(t) > 0, t ∈ [0, T ]. Similarly, one
can conclude the positivity of L. Therefore, Nash equilibrium also
exist for sufficiently large values of the attraction parameter as well.
△
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