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a b s t r a c t

An exciton condensate is a vast playground in studying a number of symmetries that are of high interest
in the recent developments in topological condensed matter physics. In double quantum wells (DQWs)
they pose highly nonconventional properties due to the pairing of non-identical fermions with a spin
dependent order parameter. Here, we demonstrate a new feature in these systems: the robustness of the
ground state to weak external magnetic field and the appearance of the artificial spinor gauge fields
beyond a critical field strength where negative energy pair-breaking quasi particle excitations, i.e.
de-excitation pockets (DX-pockets), are created in certain k regions. The DX-pockets are the Kramers
symmetry broken analogs of the negative energy pockets examined in the 1960s by Sarma. They respect
a disk or a shell-topology in k-space or a mixture between them depending on the magnetic field
strength and the electron–hole density mismatch. The Berry connection between the artificial spinor
gauge field and the TKNN number is made. This field describes a collection of pure spin vortices in real
space when the magnetic field has only inplane components.

& 2014 Elsevier B.V. All rights reserved.

It has recently become clearer that fundamental symmetries
play a much more subtle role in condensed matter physics. In
particular, the interplay between the time reversal symmetry
(TRS), spin rotation symmetry (SR), parity (P), particle–hole
symmetry (PHS) leads into the theoretical and experimental
discovery of an exotic zoo of topological insulators (TI) [1],
topological superconductors (TSC) [2] in one, two and three
dimensions, and helped us in deeper understanding the quantum
Hall effect and the quantum spin Hall effect [3,4] within the
periodic table of more general topological classes [5]. These
structures once experimentally manipulated are promising in
devising completely fault tolerant mechanisms for quantum com-
puters [6]. In this field of research, the strong spin–orbit interac-
tion with or without the magnetic field is the basic ingredient in
providing the exotic topology in the momentum–spinor space [7].

These fundamental symmetries that are important in TIs and
TSCs also play a subtle role in excitonic insulators not only in the
normal phase of the exciton gas, but also in the condensed phase
in low temperatures. The basic difference from the PHS manifest
TIs and the TSCs is that, the analogous symmetry in the excitonic
systems, i.e. the fermion exchange (FX) symmetry is heavily

broken. The absence of FX symmetry is minimally due to the
different band masses and the orbital states of the electrons and
holes and the parity breaking external electric field (E-field)
required in the experiments in order to prolong the exciton
lifetime. Without the FX symmetry, the triplet and the singlet
components have no definite parity and they can coexist within
the same condensate. Additionally, despite the spin independence
of the Coulomb interaction, the exciton condensate (EC) breaks the
spin degeneracy between the dark and the bright components
from 4 to 2 due to the radiative exchange processes [8,9]. The four
exciton spin states corresponding to the total spin-2 triplet (dark
states) and the total spin-1 singlet (bright state) are connected by
the TRS, imposing the condition on the spin dependent exciton
order parameter: Δss0 ðkÞ ¼ �ð�1Þsþs0

Δn

s s 0 ð�kÞ where the dark
and the bright states are the symmetric and antisymmetric
combinations of the electron (hole) spins sðs0Þ ¼ 7f1=2g respec-
tively. Due to the real and isotropic Coulomb interaction, the order
parameter matrix Δss0 ðkÞ is real with vanishing off-diagonal triplet
component, leaving two dark triplets ΔssðkÞ and the bright singlet
Δ↑↓ðkÞ ¼ �Δ↓↑ðkÞ nonzero. The breaking of FX symmetry implies
that Δss0 ðkÞ ¼ �Δs0sð�kÞ is no longer respected [10].

The radiative exchange processes inhibit the independent spin
rotations of the electrons and holes in their own planes separating
the dark and the bright contributions in magnitude. Considering
these processes, we have recently confirmed that the EC is
dominated by the dark states [8]. There are higher order weak
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mechanisms known as Shiva diagrams [9] between two excitons,
where the dark and the bright states can turn into each other by a
fermion exchange. There are also intrinsic Dresselhaus as well as
Rashba type spin–orbit couplings that are present already in many
semiconductors. Nevertheless, the spin–orbit coupling in the case
of EC is perturbatively smaller than the condensation energy gap
[11] in comparison with the much stronger spin–orbit coupling in
topologically interesting noncentrosymmetric superconductors.

The manifestation/breaking of the TRS, SR, P and the FX symme-
tries plays a fundamental role in the properties of the ground state of
the EC. The physical parameters are the exciton density nx, the
electron–hole density imbalance n� and the Coulomb interaction
strength. The phase diagram is quite rich in that, the critical values of
these parameters define a manifold even at zero temperature
between the EC and the normal exciton gas [8]. Within the condensed
state, the Sarma I, II and the LOFF phases have been analytically
examined by many authors in the context of atomic condensates [12].
In the exciton case the energy gap is inhomogeneous in k-space due
to long range Coulomb interaction and the numerical work is
necessary to find under which conditions these different phases
actually occur. We also report in this work that both the Sarma-I
and Sarma-II like phases [13] in ECs can be observed even when the
Fermi surface mismatch is minimal, i.e. n� ¼ 0. On the other hand,
satisfying methods to search for the exotic LOFF phase require real
space diagonalization and up to our knowledge this has not been
done yet for the ECs. Another high interest is the prediction of a new
force due to the strong dependence of the condensation free energy
of an EC on the layer separation near the phase boundary [8,14].

In this letter, we demonstrate another new feature of the EC in
response to a weak, adiabatically space dependent external magnetic
field (B-field). That is the ground state topology and the appearance of
artificial gauges in the real space created by these weak B-fields. In
complimentary to the progress made in the k-space TIs and TSCs, the
search for artificial gauges has received significant attention in probing
the real space topology of the neutral or charged atomic gases. In the
particular case of neutral atoms, rotating a condensed atomic gas has
been accomplished experimentally [15] by circularly polarized laser
field and the appearance of these gauge fields has been confirmed in
the formation of superfluid vortices. Real space artificial pure gauge
fields have been proposed based on the coupling of the internal
quantum degrees of freedom with externally controllable adiabatic
potentials [16].

Here we report that the real space adiabatic gauge fields can be
produced in the condensed excitonic background as a result of the
absence of the FX symmetry. This symmetry is intrinsically broken
due to the electron–hole mass difference breaking the 4-fold spin
degeneracy into a pair of Kramers doublets. The Kramers symme-
try thus obtained is further broken with the application of the
weak Zeeman field producing 4 non-degenerate excitation bands.
Two of these bands that are lowered by the Zeeman field can turn
into the Sarma-I and II like bands beyond a critical magnetic field
strength. A second method of strongly breaking the FX symmetry
is by externally creating a number imbalance between the elec-
trons and the holes. We examine in this paper the consequences of
both as well as their effects on the ground state topology.

The electron–hole system in a typical semiconductor DQW struc-

ture is represented in the electron–hole basis ðêk↑ êk↓ ĥ
†

�k↑ ĥ
†

�k↓Þ
using the self-consistent Hartree–Fock mean field formalism by

H¼
~ϵðxÞ
k s0 Δ†ðkÞ
ΔðkÞ � ~ϵðxÞ

k s0

0
@

1
Aþ ~ϵð� Þ

k s0 � s0 ð1Þ

where s0 is 2�2 unit matrix, ~ϵð� Þ
k ¼ ð ~ζ ðeÞ

k � ~ζ
ðhÞ
k Þ=2 is the mismatch

energy and ~ϵðxÞ
k ¼ ð ~ζ ðeÞ

k þ ~ζ
ðhÞ
k Þ=2 with ~ζ

ðeÞ
k ¼ ℏ2k2=ð2meÞ�μe;

~ζ
ðhÞ
k ¼

ℏ2k2=ð2mhÞ�μh being the single particle energies (with the self-
energies) for the electrons and the holes with the masses me and mh,
μe;μh are their chemical potentials respectively andΔ is a 2�2matrix
representing the spin dependent order parameter [10].

This Hamiltonian can be diagonalized analytically, and the

excitation spectra are λk ¼ � ~ϵð� Þ
k þEk; λ

0
k ¼ ~ϵð� Þ

k þEk where

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~ϵðxÞ

k Þ2þTr½ΔðkÞΔ†ðkÞ�=2
q

. Due to the time reversal symme-

try, λk and λ0k are doubly degenerate. The excitations over the
ground state can be described by the quasiparticle annihilation
operators

ĝ1;k ¼ αk êk↑þβk ĥ
†

�k↑þγk ĥ
†

�k↓

ĝ2;k ¼ αk êk↓�γk ĥ
†

�k↑þβk ĥ
†

�k↓ ð2Þ

and

ĝ3;k ¼ αk ĥk↑�βk ê†�k↑þγk ê†�k↓

ĝ4;k ¼ αk ĥk↓�γk ê†�k↑�βk ê†�k↓ ð3Þ

Here, αk ¼ CkðEkþ ~ϵðxÞk Þ, βk ¼ CkΔ↑↑ðkÞ and γk ¼ CkΔ↑↓ðkÞ describe
the normal, the dark and the bright condensate contributions in
the ground state respectively, where Ck is determined by
jαkj2þjβkj2þjγkj2 ¼ 1.

In this paper we ignore the effect of the radiative coupling and
assume for simplicity that the dark and the bright pairing
strengths are identical, i.e. jΔ↑↑ðkÞj ¼ jΔ↓↓ðkÞj ¼ jΔ↑↓ðkÞj. Using the
time reversal transformation for the real and isotropic order
parameter i.e. Θ̂ : ΔssðkÞ ¼Δs s ð�kÞ ¼Δs s ðkÞ and Θ̂ : Δss ðkÞ ¼
�Δssð�kÞ ¼ �ΔssðkÞ where s and s are opposite spin orienta-
tions, it can be seen easily that

Θ̂ :
ĝ ð13;kÞ
ĝ ð24;kÞ

2
4

3
5¼

ĝ ð24;�kÞ
� ĝ ð13;�kÞ

2
4

3
5 ð4Þ

Hence, Eqs. (2) and (3) describe a pair of fermionic Kramers
doublets. The ground state described by jΨ 0〉 is annihilated by
the operators in Eqs. (2) and (3) and is given by jΨ 0〉¼∏kjψk〉

where jψk〉¼ T ð1Þ
k T ð2Þ

k j0〉 are the vacuum modes with

T ð1Þ
k ¼ αk�βk ê†k↑ ĥ

†

�k↑�γk ê†k↑ ĥ
†

�k↓

T ð2Þ
k ¼ αk�βk ê†k↓ ĥ

†

�k↓þγk ê†k↓ ĥ
†

�k↑ ð5Þ

where Θ̂ : jΨ 0〉¼ jΨ 0〉, hence the ground state is expectedly a time
reversal singlet. The energy of the ground state is EG ¼ �2∑kλk
and the excitations are described by the Hamiltonian H0 ¼∑k½λ0k
ðĝ †

1;kĝ1;kþ ĝ†
2;kĝ2;kÞþλkðĝ†

3;kĝ3;kþ ĝ†
4;kĝ4;kÞ� where H0 ¼H�EG is

relative Hamiltonian with respect to the ground state. We show
the numerical self-consistent mean field solution of the energy
bands in Fig. 1(a) and (d) for n� ¼ 0 and Fig. 2(a), (b), (d), and
(e) for finite n� . Note that these bands are doubly degenerate
where the corresponding eigenstates are related by time reversal.
These are the non-conventional analogs of the disk shaped and the
ring shaped bands that are studied first by Sarma in the 1960s in
the context of conventional singlet superconductivity [13].

Once the condensate in Eq. (5) is formed with a negative
condensation energy, a weak magnetic field is turned on as
BðrÞ ¼ B? êϕþBzêz where Bz and B? are slowly spatially varying
function of the radial coordinate r¼ jrj where r¼ ðr;ϕÞ and êϕ and

êz are the unit vectors along the ϕ and z directions respectively. The
field is weak firstly because we neglect the effect of the magnetic

vector potential and that requires jBðrÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
? þB2

z

q
5B0 where

B0 ¼Φ0nx, withΦ0 as the flux quantum, is the critical field strength
for Landau degeneracy. The second is that we neglect the light hole
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influence on the heavy hole states [17,18]. The Zeeman coupling for
the electron–heavy hole systems has been derived before [17] as

Uz ¼ �ðγesðeÞ � BðrÞþγhs
ðhÞ
z BzÞ where s¼ ðsx;sy;szÞ's are the Pauli

matrices, γi ¼ gnμn
B=2, i¼ ðe;hÞ where gn is the effective g-factor [19]

and μn
B ¼ eℏ=2mn is the effective Bohr magneton with mn as the

effective mass of the electron or the hole. Due to the intrinsic
heavy-light hole splitting in the valence band (much larger than a
typical Zeeman splitting), the Zeeman coupling for the heavy holes
becomes highly anisotropic. The Zeeman field breaks the Kramers
symmetry between the quasiparticle operators in Eqs. (2) and (3) as
given in the block diagonal form of H0 as

Z ¼ Zð1Þ 0
0 Zð2Þ

 !
ð6Þ

where ZðiÞ ¼ hðiÞ � s, and hðiÞ ¼ ðhðiÞ
x ;hðiÞ

y ;hðiÞ
z Þ with i¼ ð1;2Þ are given by

hð1Þx ¼ α2
kB

ðeÞ
? cos ϕ

hð1Þy ¼ α2
kB

ðeÞ
? sin ϕ ð7Þ

hð1Þz ¼ α2
kB

ðeÞ
z �ðβ2

kþγ2kÞBðhÞ
z

in the ðĝ1;k; ĝ2;kÞ basis and

hð2Þx ¼ ðβ2
kþγ2kÞBðeÞ

? cos ϕ

hð2Þy ¼ ðβ2
kþγ2kÞBðeÞ

? sin ϕ

hð2Þz ¼ �α2
kB

ðhÞ
z þðβ2

kþγ2kÞBðeÞ
z ð8Þ

in the ðĝ†
3;k; ĝ

†
4;kÞ basis. Here for a compact notation we used

BðehÞ
z
?
¼ γð

e
hÞ
z
?
B z

?
. The excitation spectrum of H0 is split into λð7 Þ

k ¼
λk7zk and λ0ð7 Þ

k ¼ λ0k7z0k, where zk ¼ jhð1Þj; z0k ¼ jhð2Þj. The
Zeeman-shifted quasiparticles are

Ĝ 1
3ð Þ;k

Ĝ 2
4ð Þ;k

" #
¼ Û :

ĝ 1
3ð Þ;k

ĝ 2
4ð Þ;k

" #
¼

ĝ 1
3ð Þ;k cos

θðiÞ
k
2

þ ĝ 2
4ð Þ;ke

� iϕ sin
θðiÞ
k
2

� ĝ 1
3ð Þ;keiϕ sin

θðiÞ
k
2

þ ĝ 2
4ð Þ;k cos

θðiÞ
k
2

2
664

3
775 ð9Þ

where Û is the unitary diagonalizing transformation with

tan θðiÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhðiÞx Þ2þðhðiÞ

y Þ2
q

=hðiÞz , i¼ 1 for the upper and i¼ 2 for the

lower indices.
The excitations in Eq. (9) are described by the Hamiltonian

H″ ¼∑k½λ0ðþ Þ
k Ĝ

†

1;kĜ1;kþλ0ð� Þ
k Ĝ

†

2;kĜ2;kþλðþ Þ
k Ĝ

†

3;kĜ3;kþλð� Þ
k Ĝ

†

4;kĜ4;k�.
Unless, the excitation energies λ0ð7 Þ

k ; λð7 Þ
k are negative for some of

the k-modes, the application of the Zeeman field does not change
the ground state energy EG and the same ground state jΨ 0〉 of the

Hamiltonian H0 is now annihilated by the Ĝi operators. As the
Zeeman energy is increased, the energy required to create an
excitation in the first excited state becomes smaller and eventually

at certain k regions, λ0ð� Þ
k and(or) λð� Þ

k become(s) negative, creating
a new ground state with energy lower than EG. The numerical self-
consistent calculations for these branches with negative Zeeman
shifts are shown in Fig. 1(b), (c), (e), and (f) for equal electron–hole
concentrations, i.e. n� ¼ 0, and in Fig. 2(c) and (f) for finite n� .

Fig. 1. The upper (λð� Þ
k ) and the lower (λ0ð� Þ

k ) branches with negative Zeeman shifts are plotted as k¼ jkj varying (horizontal axes scaled by aB) for various nx and B. The upper
and lower branches: in (a) and (d) at B¼0 with nxa2B ¼ 0:7;0:5;0:3;0:1 (from top to bottom at k¼0); in (b) and (e) at nxa2B ¼ 0:1 for gnB=B0 ¼ 0;2:0;2:8;3:2 (from top to bottom
at k¼0); in (c) and (f) at nxa2B ¼ 1:4 for gnB=B0 ¼ 0;0:2;0:4;0:6 (from top to bottom at k¼0). The bands in (a) and (d) are doubly and in (b), (c), (e), and (f) are singly
degenerate. The zero of the vertical axes describes EG.
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Since the Kramers symmetry is broken, we depicted only the
relevant lower Zeeman branches in the figures.

At any arbitrary jBðrÞj5B0 exceeding the critical B-field, the
condensate is represented by the new ground state

jΨ B〉¼ ∏
fkng

Ĝ
†

2;kn
∏
fKng

Ĝ
†

4;Kn
jΨ 0〉 ð10Þ

where fkng and fKng are the de-excitation pockets (DX-pockets) in
the regions where λ0kn

oz0kn
and λKn

ozKn
respectively. The DX-

pockets correspond to one particle excitations with negative
energy where breaking a pair by the Ĝ

†

2;kn
and Ĝ

†

4;Kn
operators is

energetically more favorable than keeping the pairs within the
condensate. Those corresponding to λð� Þ

k branch have disk, i.e.
0okoQ1, and those corresponding to the λ0ð� Þ

k branch have ring,
i.e. Q2okoQ3 topologies generating a rich spectrum of noncon-
ventional ground states at different magnetic field strengths,
where Qi's are the positions of the zero energy crossings for
i¼ ð1;2;3Þ in momentum space. The DX-pockets are shown in
Fig. 1(b), (e) and Fig. 1(c), (f) for the upper and the lower branch
where they nearly touch EG in (b), (e), and where they are given by
the finite regions in (c), (f) for different magnetic fields and
concentrations.

Before we discuss the appearance of the artificial gauge field, a
justification is necessary for ignoring the magnetic vector poten-
tial. This is a good approximation when the magnetic field is
considerably weaker than the critical field strength corresponding
to the Landau level degeneracy at a fixed nx given as by B0 ¼Φ0nx

with Φ0 ¼ h=e as the flux quantum. Considering the typical range

1010rnxðcm�2Þr1011, we have 0:4rB0ðTÞr4. For the branch
λkn

the critical field strength Bc is found from λkn
¼ zkn

(i.e.

λð� Þ
kn

¼ 0) which can be found as

gnBc

B0
¼ 1

~nx

ðEkn
� ~ϵðxÞ

kn
Þ=ERd

α2
kn

ð11Þ

where ~nx ¼ πa2Bnx is the dimensionless exciton concentration, aB

being the exciton Bohr radius, gn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2z þg2?

q
is the effective g-

factor and ERd ¼ ℏ2=ð2mna2BÞ is the exciton Rydberg energy. The
critical field on the left hand side of Eq. (11) is defined by

Bc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgzBzÞ2þðg?B? Þ2

q
=gn and we assumed for simplicity that

Bz ¼ B? . We can roughly estimate Bc=B0 using gnC�3,
mnC0:067me, where me is the electron mass in vacuum, for

nxa2B ¼ 1 by ignoring the self-energy corrections to ~ϵðxÞkn
. As the B-

field is increased, the earliest de-excitation occurs at the point
where gap is the weakest, Ekn Cμx, where μxCnx=2Γ, with Γ
being the two dimensional density of states, we find that

BcC
2nx

gnΓμn
B

ð12Þ

where the coefficient 2=gnΓμn
B is in flux units, and a simple

calculation yields that 2=gnΓμn
B ¼ ð4=gnÞΦ0 with Bc ¼ 4=gnnxΦ0.

This result, which is a comparison between the Zeeman energy
and the Landau level splitting is quite expected and verifies that
Eq. (11) yields the expected result in the weak condensate limit.
The numerical result for gnBc=B0 in Eq. (11) for the disk shaped DX-
pockets is plotted for various concentrations in Fig. 3. We believe
that In-based semiconductors with a large gn factor are good
candidates to observe the DX-pockets.

Fig. 2. The same as Fig. 1 for n� a0. The upper and lower branches: (a) and (d) at B¼0, nxa2B ¼ 0:55 and n� ¼ 0;0:12;0:36;0:51 (from top to bottom at k¼0); (b) and (e) at
nx¼1.5 and for n� a2B ¼ 0;0:36;0:72;1:44 at B¼0 (from top to bottom at k¼0); (c) and (f) at nxa2B ¼ 1:5 and n� ¼ 1:1 for gnB=B0 ¼ 0;0:2;0:4;1:0 (from top to bottom at k¼0).
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An important result here is the emergence of an artificial gauge
field for BcrB as given by AðrÞ ¼ � iℏ〈Ψ Bj∇rjΨ B〉. Using Eq. (10) we
find

AðrÞ ¼ �ℏêϕ
r

∑
kA

fkn g þ fKn g

sin 2θk

2
ð13Þ

which is an overall pure gauge field present only for those modes
in the DX-pockets. In deriving Eq. (13) we ignored the jrj
dependence of θk through B? which is experimentally justified
considering the microscopic size of the condensate. Due to the
dependence of θk on the ratio B? =Bz , the magnetic field depen-
dence of AðrÞ mainly comes from the boundaries of the DX-
pockets.

Since the boundaries of the DX-pockets are defined by where
the excitation gap closes, i.e. λ0kn

�z0kn
¼ 0 and λKn

�zKn
¼ 0, it is

appealing to know if a non-trivial topology is present in the band
structure and whether there is any connection with the artificial
vortex in Eq. (13). Due to the slowly varying magnetic field, and for
a given ground state mode k, it is suggested by Eq. (6) that this
topology is present not in the spinor-k, but in the spinor-r space.
Generalizing the topological index by TKNN [20] in the form,

I¼ ∑
kA

fkn g þ fKn g

Z
dℓr �∑

λ
〈χλðkÞ ∇r χλðkÞ〉

���� ð14Þ

where dℓr describes the real-space line integral, jχλ〉 is the
eigenstate of Eq. (6) in the two spin eigen configurations λ
corresponding to the Zeeman lowered energy band yielding the
DX-pocket, it can be seen that ITKNN is nothing but the total
artificial flux enclosed within the DX-regions in Eq. (13). If Bz¼0,
then θk ¼ π=2 and Eq. (13) describes a spin vortex, i.e.
AðrÞ ¼ �ðIℏ=2rÞêϕ. In this case, every single mode in the disk or
ring shaped DX-pockets carries h=2 flux quantum with an integer I
number equal to the total number of modes in the DX-pockets
fkngþfKng.

Exotic properties are being studied extensively in the topology
of the energy bands of the insulators, superconductors as well as
their interfaces where the external magnetic field and the spin–
orbit coupling play an essential role in correlated spin and
momentum configurations. These systems are composed of single
particle species with or without spin degrees of freedom with
manifest particle–hole symmetry but a broken time reversal in the
former whereas manifest in the latter. The FX symmetry is the
analog of the particle–hole symmetry and, in ECs, with two species

of paired particles, it is broken, hence no doubling issues arise for
the fermion degree of freedom. In the model studied here,
contrary to the particle–hole symmetric superconductors with
violated parity, the appearance of the triplet and the singlet
condensates with mixed parities is the result of the FX symmetry
breaking which leads to a real space topology in the presence
of a textured B-field. Spinor related Fermi space topology has
been recently detected in the spin-ARPES measurements [21].
We believe that this technique with an additional Fourier decom-
position can also be applied to the real space-spinor topology
studied here.
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Fig. 3. The critical B-field with their positions knaB as a function of the dimension-
less exciton concentration nxa2B . The colorbar measures the vertical scale.
(For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

T. Hakioğlu et al. / Physica E 62 (2014) 10–1414

http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref1a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref1a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref1b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref1c
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref5a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref5a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref5b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref5b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref5c
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref5c
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref5d
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref5d
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref5e
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref5f
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref13a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref13b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref13b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref16a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref16b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref16c
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref20
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref20
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref21a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref21a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref21b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref21b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref21c
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref21c
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref25a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref25a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref25b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref28
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref29a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref29b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref32
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref33
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref34a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref34b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref34c
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref34d
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref34d
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref34e
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref34e
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref40
http://arXiv:1210.4687
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref42
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref43a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref43a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref43b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref43b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref46a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref46a
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref46b
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref49
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref49
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref51
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref51
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref52
http://refhub.elsevier.com/S1386-9477(14)00041-1/sbref52

	Robust ground state and artificial gauge in DQW exciton condensates under weak magnetic field
	References




