
1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 1

Locality-Aware Parallel Sparse Matrix-Vector
and Matrix-Transpose-Vector Multiplication on

Many-Core Processors
M. Ozan Karsavuran, Kadir Akbudak, and Cevdet Aykanat

Abstract—Sparse matrix-vector and matrix-transpose-vector multiplication (SpMMTV) repeatedly performed as z ← AT x and
y ← A z (or y ← A w) for the same sparse matrix A is a kernel operation widely used in various iterative solvers. One important
optimization for serial SpMMTV is reusing A-matrix nonzeros, which halves the memory bandwidth requirement. However, thread-
level parallelization of SpMMTV that reuses A-matrix nonzeros necessitates concurrent writes to the same output-vector entries.
These concurrent writes can be handled in two ways: via atomic updates or thread-local temporary output vectors that will undergo
a reduction operation, both of which are not efficient or scalable on processors with many cores and complicated cache-coherency
protocols. In this work, we identify five quality criteria for efficient and scalable thread-level parallelization of SpMMTV that utilizes
one-dimensional (1D) matrix partitioning. We also propose two locality-aware 1D partitioning methods, which achieve reusing A-matrix
nonzeros and intermediate z-vector entries; exploiting locality in accessing x-, y-, and z-vector entries; and reducing the number
of concurrent writes to the same output-vector entries. These two methods utilize rowwise and columnwise singly bordered block-
diagonal (SB) forms of A. We evaluate the validity of our methods on a wide range of sparse matrices. Experiments on the 60-core
cache-coherent Intel Xeon Phi processor show the validity of the identified quality criteria and the validity of the proposed methods in
practice. The results also show that the performance improvement from reusing A-matrix nonzeros compensates for the overhead of
concurrent writes through the proposed SB-based methods.

Index Terms—cache locality, sparse matrix, sparse matrix-vector multiplication, matrix reordering, singly bordered block-diagonal form,
Intel Many Integrated Core Architecture (Intel MIC), Intel Xeon Phi

F

1 INTRODUCTION

The focus of this work is parallelization of sparse
matrix-vector and matrix-transpose-vector multiplica-
tion (SpMMTV) operations on many-core processors. Sev-
eral iterative methods perform repeated and consecutive
computations of sparse matrix-vector (SpMV) and sparse
matrix-transpose-vector (SpMTV) multiplications that in-
volve the same sparse matrix A.

Typical examples include iterative methods for solv-
ing linear programming (LP) problems through inte-
rior point methods [1], [2]; the Biconjugate Gradient
(BCG), the Conjugate Gradient for the Normal Equations
(CGNE), the Conjugate Gradient for the Normal Resid-
ual (CGNR), and the Lanczos Biorthogonalization meth-
ods [3] for solving nonsymmetric linear systems; the
LSQR method [4] for solving the least squares problem;
the Surrogate Constraints method [5], [6] for solving the
linear feasibility problem; the Hyperlink-Induced Topic
Search (HITS) algorithm [7], [8] for rating web pages;
and the Krylov-based balancing algorithms [9] used as
preconditioners for sparse eigensolvers.

In the LP application, the SpMV operation immedi-
ately follows the SpMTV operation in such a way that

• All authors are with the Department of Computer Engineering, Bilkent
University, Turkey, 06800.
E-mail: {ozan.karsavuran, kadir, aykanat}@cs.bilkent.edu.tr

the output vector of SpMTV becomes the input vector
of SpMV. In CGNE, LSQR, Surrogate Constraints, and
CGNR methods, the input vector of SpMTV is obtained
from the output vector of SpMV through linear vector
operations. In BCG, Lanczos Biorthogonalization, HITS,
and Krylov-based balancing algorithms, the SpMV and
SpMTV operations are totally independent.

The SpMV operation is known to be memory
bound [10]–[13] due to low operational intensity (flop-
to-byte ratio, i.e., the ratio of the number of arithmetic
operations to the number of memory accesses). Ex-
ploiting temporal locality through reusing input and/or
output vector entries is expected to increase performance
through reducing the memory bandwidth requirement
of SpMV operations. Here, temporal locality refers to
the reuse of data words (e.g., vector entries and ma-
trix nonzeros) within a relatively small time duration,
actually before eviction of the words from cache. As
the SpMMTV operation involves two SpMV operations
with the same sparse matrix, reusing A-matrix nonzeros
(together with their indices) is an opportunity towards
further performance improvement over the opportunity
of reusing input, output, and intermediate vector entries.
Such data reuse opportunities become much more im-
portant on cache-coherent architectures involving large
number of cores, such as the Xeon Phi processor.

In this work, we propose and discuss efficient parallel
SpMMTV algorithms that utilize the above-mentioned

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 2

data reuse opportunities. The proposed algorithms are
directly applicable to the LP application as well as to the
applications in which SpMV and SpMTV operations are
independent. The proposed algorithms are also applica-
ble to the remaining applications as long as the inter-
mediate linear vector operations that incur dependency
between SpMV and SpMTV operations do not require
synchronization in parallelization. The applicability is-
sues for these applications are discussed in Section 3.5.

We investigate four parallel SpMMTV approaches that
utilize one-dimensional (1D) rowwise and columnwise
partitioning of A and AT matrices. We identify five
quality criteria for efficient thread-level parallelization of
SpMMTV based on the utilization of different data reuse
opportunities. Four out of the five quality criteria refer to
data reuse opportunities on reusing A-matrix nonzeros,
reusing the intermediate vector entries, and data reuse
in accessing vector entries during individual SpMVs.
Reusing A-matrix nonzeros introduces the crucial prob-
lem of concurrent writes to either the intermediate or
the output vector. The fifth quality criterion refers to the
trade-off between the reuse of A-matrix nonzeros and
concurrent writes.

We propose permuting A and AT matrices into dual
singly bordered block-diagonal (SB) forms to satisfy
all five quality criteria simultaneously. We obtain two
distinct parallel SpMMTV algorithms by permuting A
into a rowwise SB form, which induces a columnwise
SB form of AT , and permuting A into a columnwise
SB form, which induces a rowwise SB form of AT . We
show that the objective of minimizing the size of the
row or column border in the SB form of A corresponds
to minimizing the number of concurrent writes in the
respective parallel SpMMTV algorithm.

We evaluate the validity of our proposed SpMMTV

algorithms on a single Xeon Phi processor for a wide
range of sparse matrices. Although we experiment with
Xeon Phi, our contributions are also viable for other
cache-coherent shared memory architectures. The exper-
imental results show that the performance improvement
from reusing A-matrix nonzeros compensates for the
overhead of concurrent writes through the proposed SB-
form scheme. To our knowledge, this is the first work
that successfully achieves reusing matrix nonzeros in
SpMMTV operations on many-core architectures.

The rest of the paper is organized as follows: Four
viable parallel SpMMTV approaches that utilize 1D row-
wise and columnwise partitioning of A and AT matri-
ces are discussed in Section 2. The five quality criteria
for efficient thread-level parallelization of SpMMTV are
presented in Section 3.1 and the two proposed SB-
based SpMMTV schemes achieving all these criteria are
described in Section 3.2. Section 3.3 discusses the existing
hypergraph-partitioning (HP)-based method utilized for
permuting a sparse matrix into an SB form. The merits
of using an SB form are discussed in Section 3.4 and
the applicability of the proposed schemes to the iterative
methods are investigated in Section 3.5. We present the

experimental results in Section 4. The related work on
SpMV on Xeon Phi and SpMMTV algorithms is reviewed
in Section 5. Finally, we conclude the paper in Section 6.

2 PARALLEL SpMMTV ALGORITHMS BASED
ON 1D MATRIX PARTITIONING

Consider an iterative algorithm involving SpMMTV op-
erations of the form y ← AATx, which are performed as
two successive SpMV operations z ← ATx and y ← A z.

Based on 1D matrix partitioning, there are two viable
parallel SpMV algorithms, namely row parallel and col-
umn parallel. The row-parallel SpMV algorithm utilizes
rowwise partitioning, where each thread is held respon-
sible for performing the submatrix-vector multiplication
associated with a distinct row slice (submatrix). The
column-parallel SpMV algorithm utilizes columnwise
partitioning, where each thread is held responsible for
performing the submatrix-vector multiplication associ-
ated with a distinct column slice.

In terms of inter-dependence among threads, the row-
parallel algorithm incurs concurrent reads of the same
input-vector entries, whereas the column-parallel algo-
rithm incurs concurrent writes to the same output-
vector entries. Concurrent reads do not incur any race
conditions, however, concurrent writes do incur race
conditions, which must be handled via either atomic
updates or thread-local temporary output vectors. So,
due to the more-expensive concurrent write operations,
the row-parallel SpMV can be considered to be more
advantageous than the column-parallel SpMV on shared
memory architectures.

There are four viable parallel SpMMTV algorithms
based on 1D partitioning of A and AT matrices:

• Column-Column parallel (CCp)
• Row-Row parallel (RRp)
• Column-Row parallel (CRp)
• Row-Column parallel (RCp)

The CCp algorithm utilizes the column-parallel SpMV

in both y ← A z and z ← ATx, whereas the RRp algo-
rithm utilizes the row-parallel SpMV in both y ← A z
and z ← ATx. The CRp algorithm utilizes the column-
parallel SpMV for y ← A z and row-parallel SpMV for
z ← ATx, whereas the RCp algorithm utilizes the row-
parallel SpMV for y ← A z and column-parallel SpMV for
z ← ATx.

Fig. 1 illustrates the four SpMMTV algorithms for a
parallel system with four threads. In each figure, the
z ← ATx computation involving the matrix on the right
is performed first, then the y ← A z computation involv-
ing the matrix on the left is performed. In the figure,
a gray scale tone indicates the data exclusively used
and/or computed by a single thread. The black color on
the x, y, and z vectors indicates the data concurrently
read and/or written by multiple threads.

In Fig. 1, a horizontal vector on the top of a matrix
denotes the input vector of the respective SpMV com-
putation, whereas a vertical vector denotes the output

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 3

C1

z1

C2

z2

C3

z3

C4

z4

y = CT
1

x1

CT
2

x2

CT
3

x3

CT
4

x4

z =

A AT

(a) CCp

R4y4

R3y3

R2y2

R1y1

=

z

RT
4

z4

RT
3

z3

RT
2

z2

RT
1

z1

=

x

A AT

(b) RRp

C1

z1

C2

z2

C3

z3

C4

z4

y =

CT
4

z4

CT
3

z3

CT
2

z2

CT
1

z1

=

x

A AT

(c) CRp

R4y4

R3y3

R2y2

R1y1

=

z

RT
1

x1

RT
2

x2

RT
3

x3

RT
4

x4

z =

A AT

(d) RCp
A gray scale tone denotes exclusive accesses by a single thread, whereas black color denotes concurrent accesses by multiple threads.

Fig. 1: Four baseline SpMMTV algorithms for computing y ← A z after z ← ATx by four threads.

TABLE 1: Quality criteria for efficient parallelization of
SpMMTV algorithms

Quality criteria

(a) Reusing z-vector entries generated in z ← ATx and then
read in y ← A z

(b) Reusing matrix nonzeros (together with their indices) in
z ← ATx and y ← A z

(c) Exploiting temporal locality in reading input vector en-
tries in row-parallel SpMVs

(d) Exploiting temporal locality in updating output vector
entries in column-parallel SpMVs

(e) Minimizing the number of concurrent writes performed
by different threads in column-parallel SpMVs

vector of the respective SpMV computation. Note that the
intermediate z vector appears twice in each figure, verti-
cal as the output vector of the first SpMV and horizontal
as the input vector of the second SpMV. For example, in
the SpMTV computation of the RRp algorithm, each of
the four z subvectors is exclusively computed by threads,
whereas the whole z vector is concurrently read by all
threads in the SpMV computation.

All the above-mentioned SpMMTV methods are viable
on distributed-memory architectures, however, CCp is
not viable on cache-coherent many-core processors be-
cause it requires expensive concurrent writes in both
SpMV operations. For this reason, CCp is not investi-
gated in the rest of the paper.

3 THE PROPOSED SpMMTV METHODS

3.1 Quality Criteria for Efficient Parallelization
We identify five quality criteria given in Table 1 for effi-
cient thread-level parallelization of the above-mentioned
SpMMTV algorithms, which utilize 1D matrix partition-
ing.

The RRp algorithm has the nice property of avoiding
expensive concurrent writes in both SpMVs, therefore,
it automatically satisfies quality criterion (e). However,
RRp fails to satisfy criterion (b) since it necessitates
storing A and AT matrices separately. RRp also fails to
satisfy criterion (a) since all threads require the whole z
vector during the row-parallel SpMV y ← A z.

The CRp algorithm automatically satisfies quality cri-
terion (a), whereas RCp fails to satisfy this criterion. Both
CRp and RCp have the potential of satisfying quality
criterion (b) since neither of them necessitates storing
A and AT separately. Both CRp and RCp fail to satisfy
quality criterion (e) since both of them contain expensive
concurrent writes to the whole output vector in one of
the two SpMVs.

In this work, we utilize a special form of sparse
matrices – namely SB form – to develop parallel CRp and
RCp algorithms that satisfy all quality criteria. We will
show that SB forms together with the proposed CRp and
RCp algorithms automatically satisfy criteria (a) and (b).
Two 1D matrix partitioning schemes are adopted to find
row/column reorderings to permute A and AT matrices
into the desired SB forms. In both partitioning schemes,
the partitioning objective corresponds to satisfying the
remaining three criteria (c), (d), and (e).

3.2 CRp and RCp Algorithms based on SB Forms
We propose two methods for SpMMTV: The first method
uses the CRp algorithm with the rowwise SB form of
A, whereas the second one utilizes the RCp algorithm
together with the columnwise SB form of A. Here and
hereafter, the first and second methods will be respec-
tively referred to as sbCRp and sbRCp. The following
two subsections, Sections 3.2.1 and 3.2.2, present the pro-
posed 1D matrix partitioning schemes together with the

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 4

A11

AB1

z1

y1

A22

AB2

z2

y2

A33

AB3

z3

y3

A44

AB4

z4

y4

yB

=

AT
11 AT

B1
z1

x1

AT
22 AT

B2
z2

x2

AT
33 AT

B3
z3

x3

AT
44 A

T
B4

z4

x4 xB

=

A AT

(a) sbCRp

A11 A1By1

z1

A22 A2By2

z2

A33 A3By3

z3

A44 A4By4

z4 zB

=

AT
11

AT
1B

x1

z1

AT
22

AT
2B

x2

z2

AT
33

AT
3B

x3

z3

AT
44

AT
4B

x4

z4

zB

=

A AT

(b) sbRCp
A gray scale tone denotes exclusive accesses by a single thread, whereas black color denotes concurrent accesses by multiple threads.

Fig. 2: Proposed SB-based SpMMTV algorithms for computing y ← A z after z ← ATx by four threads.

associated SpMMTV algorithms. More details are given
for sbCRp in Section 3.2.1, and sbRCp is summarized in
Section 3.2.2 because sbRCp can be considered a dual
form of sbCRp.

3.2.1 The sbCRp Method
The Parallel Algorithm

Consider a row/column reordering that permutes ma-
trix A into a rowwise SB form as:

Â = ArSB = PrAPc

=

A11

A22

. . .
AKK

AB1 AB2 . . . ABK

 =

R1

R2

...
RK

RB

=

[
C1 C2 . . . CK

]
. (1)

In (1), Pr and Pc respectively denote the row and column
permutation matrices. Akk denotes the kth diagonal
block of ArSB . Rk and Ck respectively denote the kth
row and column slices of ArSB for k = 1, 2, . . . ,K. RB

denotes the row border as follows:

RB =
[
AB1 AB2 . . . ABK

]
. (2)

Here, ABk denotes the kth border block in the row
border RB . In ArSB , the columns of diagonal blocks
are coupled by rows in the row border. That is, each
coupling row in RB has nonzeros in the columns of at
least two diagonal blocks. A coupling row ri ∈ RB is said
to have a connectivity of λ(ri) if and only if ri ∈ RB has
at least one nonzero at each of the λ(ri) ABk submatrices.

The rowwise SB form of A given in (1) induces the
columnwise SB form of AT as follows:

(ArSB)
T = ÂT = AT

cSB = PcA
TPr

=

AT

11 AT
B1

AT
22 AT

B2

. . .
...

AT
KK AT

BK

 =

CT

1

CT
2
...
CT

K

=
[
RT

1 RT
2 . . . RT

K RT
B

]
. (3)

Algorithm 1 The proposed sbCRp method

Require: Akk and ABk matrices; x, y, and z vectors
1: for k ← 1 to K in parallel do
2: zk ← AT

kk xk
3: zk ← zk +AT

Bk xB
4: yk ← Akk zk
5: yB ← yB +ABk zk B Concurrent

writes
6: end for

zk ← CT
k x

y ← Ck zk

In (3), AT
kk denotes the kth diagonal block of AT

cSB . CT
k

and RT
k respectively denote the kth row and column

slice of AT
cSB for k = 1, 2, . . . ,K. RT

B denotes the column
border as follows:

RT
B =

AT

B1

AT
B2
...

AT
BK

 . (4)

Here, AT
Bk denotes the kth border block in the column

border RT
B . In AT

cSB , the rows of diagonal blocks are
coupled by columns in the column border. That is, each
coupling column in RT

B has nonzeros in the rows of at
least two diagonal blocks. A coupling column cj ∈ RT

B

is said to have a connectivity of λ(cj) if and only if
cj ∈ RT

B has at least one nonzero at each of λ(cj) AT
Bk

submatrices.
In the proposed partitioning scheme, K is selected

in such a way that the size of each column slice
Ck together with the associated input and output
subvectors is below the size of the cache of a sin-
gle core. Both submatrix-transpose-vector multiplica-
tion zk ← CT

k x and submatrix-vector multiplication
y ← Ck zk are considered as an atomic task, which is
assigned to a thread executed by a single core of the
Xeon Phi architecture. So this partitioning and task-to-
thread assignment scheme leads to the sbCRp method,
as shown in Algorithm 1. In this algorithm, as well as
in Algorithm 2, the “for . . . in parallel do” constructs
mean that each iteration of the for loop can be executed
in parallel. Fig. 2a displays the matrix view of the
parallel sbCRp method given in Algorithm 1. In this
figure, the xB and yB vectors are also referred to as

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 5

“border subvectors” throughout the paper. In this figure,
as well as in Fig. 2b, concurrently accessed subvectors
are colored black.

The row-parallel SpMV algorithm incurs input de-
pendency, whereas the column-parallel SpMV algo-
rithm incurs output dependency among threads. As
seen in Algorithm 1, the proposed method utilizing
the SB form enables both input and output inde-
pendency among threads for SpMV computations on
diagonal blocks and their transposes. That is, SpMV

computations zk ← AT
kk xk and yk ← Akk zk in lines 2

and 4 are performed concurrently and independently
by threads. Note that the write-read dependency be-
tween these two SpMV computations incurs only
intra-thread dependency due to the zk vector. The
zk ← zk +AT

Bk xB computation in line 3 incurs input
dependency among threads via the border subvector
xB . The yB ← yB +ABk zk computation in line 5 in-
curs output dependency among threads via the border
subvector yB .

Quality Criteria Coverage

The working set of every for-loop iteration fits into
the cache of a single core due to the partitioning
and task-to-thread assignment scheme adopted in the
sbCRp method. Hence, the sbCRp method achieves both
quality criteria (a) and (b) by enabling the reuse of
z-vector entries and matrix nonzeros, respectively, be-
tween zk ← CT

k x and y ← Ck zk computations. Under
a fully associative cache assumption, there will be no
cache misses during the y ← A z computation, neither
in reading z-vector entries nor in accessing A-matrix
nonzeros. Note that misses in a fully associative cache
are compulsory or capacity misses and are not conflict
misses. Also note that quality metric (b) can only be
achieved by storing the A matrix only once, that is, A
and AT matrices are not stored separately. Therefore,
reusing nonzeros of diagonal blocks in zk ← AT

kk xk
and yk ← Akk zk computations can be achieved by stor-
ing Akk in Compressed Sparse Columns (CSC) format
which corresponds to storing AT

kk in Compressed Sparse
Rows (CSR) format, or vice versa. Similarly, reusing
nonzeros of border blocks in zk ← zk +AT

Bk xB and
yB ← yB +ABk zk computations can also be achieved by
storing ABk in CSC format, which corresponds to storing
AT

Bk in CSR format, or vice versa. To some extent, quality
metric (b) can be achieved by storing A in the Coordinate
(COO) format, however COO is likely to have lower
performance due to its higher index-storage overhead.

We make the following notes for achieving quality
criteria (c) and (d): For CSR-/CSC-based sequential
SpMV, reordering the rows/columns with similar spar-
sity patterns nearby is likely to increase temporal locality
in accessing input-/output-vector entries as mentioned
in [14]. So, for row-/column-parallel SpMV, temporal
locality in accessing input-/output-vector entries can
be exploited by clustering rows/columns with similar
sparsity patterns to the same row/column blocks. In the

following two paragraphs, we show how the SB forms
of matrix A are utilized to achieve quality criteria (c)
and (d) in parallel SpMMTV operations. Also note that,
in the rest of the paper, the analyses on the number
of data accesses are given under single-word line-size
assumption. The upper bounds given in these analyses
are still valid for multiple-word line-sizes.

For achieving quality criterion (c), temporal locality in
accessing input-vector (x-vector) entries in row-parallel
SpMV s zk ← CT

k x can be exploited by utilizing the
columnwise SB form of the AT matrix as follows: The
diagonal block computations zk ← AT

kk xk (line 2 of Al-
gorithm 1) share no xk-vector entries due to the structure
of the columnwise SB form. Hence, under a fully asso-
ciative cache assumption, only one cache miss will occur
for each of such xk-vector entries. On the other hand, the
border block computations zk ← zk +AT

Bk xB (line 3 of
Algorithm 1) do share xB-vector entries because of the
coupling columns in RT

B . Under a fully associative cache
assumption, column cj ∈ RT

B with a connectivity of λ(cj)
will incur at most λ(cj) cache misses due to accessing
xj . λ(cj) is an upper bound on the number of cache
misses because of the possibility of reusing xj , which
can only occur when the SpMV computations associated
with two border blocks having nonzeros in column cj
are executed consecutively on the same core. Therefore,
this upper bound is rather tight, and hence, minimizing
the sum of the connectivities of the coupling columns
in RT

B closely relates to minimizing the number of cache
misses in performing z ← ATx.

For achieving quality criterion (d), temporal locality in
updating the output-vector (y-vector) entries in column-
parallel SpMVs y ← Ck zk can be exploited by utiliz-
ing the rowwise SB form of the A matrix as follows:
The diagonal block computations yk ← Akk zk (line 4
of Algorithm 1) share no yk-vector entries due to the
structure of the rowwise SB form. Hence, under a fully
associative cache assumption, at most two cache misses
(for reading and writing) will occur for each of such
yk-vector entries. On the other hand, the border block
computations yB ← yB +ABk zk (line 5 of Algorithm 1)
do share yB-vector entries because of the coupling rows
in RB . Under a fully associative cache assumption, row
ri ∈ RB with a connectivity of λ(ri) will incur at most
2λ(ri) cache misses due to updating yi. 2λ(ri) is an upper
bound on the number of cache misses because of the
possibility of reusing yi, which can only occur when the
SpMV computations associated with two border blocks
having nonzeros on row ri are executed consecutively
on the same core. Therefore, this upper bound is rather
tight, and hence, minimizing the sum of the connec-
tivities of the coupling rows in RB closely relates to
minimizing the number of cache misses in performing
y ← A z.

We make the following notes on how criteria (b),
(c), and (d) are related. Consider an SpMMTV algorithm
that achieves criterion (b). If this algorithm achieves
criterion (c), it automatically achieves criterion (d) and

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 6

Algorithm 2 The proposed sbRCp method

Require: Akk and AkB matrices; x, y, and z vectors
1: for k ← 1 to K in parallel do
2: zk ← AT

kk xk
3: zB ← zB +AT

kB xk B Concurrent
writes

4: yk ← Akk zk
5: end for
6: for k ← 1 to K in parallel do
7: yk ← yk +AkB zB
8: end for

z ← RT
k xk

yk ← Rk z

vice versa. This is because criterion (b) can be achieved
by storing the A matrix only once and a rowwise SB
form of A induces a columnwise SB form of AT and
vice versa.

For achieving quality criterion (e), minimizing the
number of concurrent writes to the output-vector
(y-vector) entries in column-parallel SpMVs y ← Ck zk
can be accomplished by utilizing the rowwise SB form
of the A matrix as follows: Concurrent writes occur only
during the border block computations. Consider two
possible implementations of each border block computa-
tion yB ← yB +ABk zk, namely CSC and CSR schemes.
The CSC scheme will incur one concurrent write for each
nonzero of the row border RB , whereas the CSR scheme
will incur only one concurrent write for each nonzero
row of the ABk matrices of RB . That is, to update
yi ∈ yB , the CSC and CSR schemes will respectively
incur nnz(ri) and λ(ri) concurrent writes. Here, nnz(ri)
and λ(ri) respectively denote the number of nonzeros
and connectivity of row ri ∈ RB . Hence, the CSR scheme
is selected since it requires a much smaller number
of concurrent writes. Therefore, each border block ABk

is stored in CSR format, which corresponds to storing
AT

Bk in CSC format. Hence, under this implementation
scheme, minimizing the sum of the connectivities of
coupling rows in RB exactly corresponds to minimizing
the number of concurrent writes in performing y ← A z.
This one-to-one correspondence is valid when concur-
rent writes are handled via atomic updates, however,
this correspondence depends on the algorithm used in
reducing the temporary vectors when concurrent writes
are handled using thread-local temporary vectors.

We should mention here that criteria (d) and (e) are
closely related for column-parallel SpMV. Criterion (e) is
given to clarify the conditions under which achieving
criterion (d) implies achieving criterion (e) of mini-
mizing the number of concurrent writes in a parallel
implementation. These conditions are storing row border
submatrices in CSR format and identifying the output
vector entries that will incur concurrent writes prior to
execution of the SpMMTV algorithm.

As a consequence of the above-mentioned discussions
about quality coverage, the proposed sbCRp method
can achieve criterion (c) by minimizing the sum of the
connectivities of the coupling columns in RT

B and can
achieve both quality criteria (d) and (e) by minimizing

the sum of the connectivities of the coupling rows in RB .
Note that the former and latter minimization objectives
are equivalent since the columns of RT

B correspond to
the rows of RB . Thus, the sbCRp method can achieve
all three quality criteria (c), (d), and (e) by permuting
matrix A into the rowwise SB form with the objective of
minimizing the sum of the connectivities of the coupling
rows. Consequently, sbCRp satisfies all quality criteria
since CRp already achieves quality criteria (a) and (b).

3.2.2 The sbRCp Method
The Parallel Algorithm

The sbRCp method utilizes the columnwise SB form
of matrix A as follows:

Â = AcSB = PrAPc

=

A11 A1B

A22 A2B

. . .
...

AKK AKB

 =

R1

R2

...
RK

=

[
C1 C2 . . . CK CB

]
. (5)

This columnwise SB form of A induces the rowwise SB
form of AT as follows:

(AcSB)
T = Â = AT

rSB = PcA
TPr

=

AT

11

AT
22

. . .
AT

KK

AT
1B AT

2B AT
KB

 =

CT

1

CT
2
...
CT

K

CT
B

=

[
RT

1 RT
2 . . . RT

K

]
. (6)

In this partitioning scheme, K is selected in such a way
that the size of each row slice Rk together with the
associated input and output subvectors is below the size
of the cache of a single core. The sbRCp method is pre-
sented in Algorithm 2. Similar to the sbCRp method, the
sbRCp method given in Algorithm 2 enables both input
and output independency among threads for SpMV com-
putations on diagonal blocks and their transposes (as
shown in lines 2 and 4). In a dual manner to the sbCRp
method, the zB ← zB + AT

kB xk computation in line 3
incurs output dependency among threads via border
subvector zB , whereas the yk ← yk +AkB zB computa-
tion in line 7 incurs input dependency among threads via
border subvector zB . The existence of both output and
input dependencies on the same border subvector zB
incurs additional synchronization overhead, as depicted
by the two consecutive “for . . . in parallel do” constructs
in Algorithm 2. Fig. 2b displays the matrix view of the
parallel sbRCp method given in Algorithm 2.

For the BCG, Lanczos Biorthogonalization, HITS, and
Krylov-based balancing algorithms, the two for loops of
sbRCp given in Algorithm 2 can be fused since there is
no input/output dependency between the z ← ATx and

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 7

y ← A w operations. On the average, the fusion of these
two for loops provides 10% performance improvement
over the non-fused case for the nonsymmetric square
matrices given in Table 4.

Quality Criteria Coverage

The matrix partitioning scheme of the proposed sbRCp
method can be considered a dual form of the sbCRp
method given in Section 3.2.1. So the discussion for
the sbRCp method, in general, follows the discussion
given for the sbCRp method in a dual manner. Here,
we will briefly discuss the sbRCp method, focusing on
the differences. The sbRCp method satisfies all quality
criteria in general. It satisfies quality criteria (c)–(e) for
all respective computations. It also satisfies quality crite-
ria (a) and (b) for the zk ← AT

kk xk and yk ← Akk zk com-
putations. However, it fails to satisfy quality criteria (a)
and (b) for the zB ← zB +AT

kB xk and yk ← yk +AkB zB
computations.

Despite the above-mentioned disadvantages, sbRCp
can still be preferred since some of the nonsymmetric
square and rectangular matrices may be more suitable
for permuting into a columnwise SB form, whereas some
other matrices may be more suitable for permuting into
a rowwise SB form. This property is because of the
differences in row and column sparsity patterns of a
given nonsymmetric square or rectangular matrix.

3.3 Permuting Matrices into SB Form
For the proposed sbCRp and sbRCp algorithms, we
utilize the hypergraph-partitioning (HP)-based methods
in [15] for permuting matrices into rowwise and colum-
nwise SB forms via row/column reordering. Here, we
will briefly discuss this HP approach for sbCRp, where
a dual discussion applies for sbRCp.

In sbCRp, the HP-based method utilizes the row-net
hypergraph model [16] for obtaining a rowwise SB form.
In the HP problem, the partitioning constraint is to
maintain balance on the weights of the parts and the par-
titioning objective is to minimize the cutsize, defined as
the sum of the connectivities of the cut nets. For sbCRp,
the partitioning constraint encapsulates balancing the
nonzero counts of the column slices, which in turn corre-
sponds to maintaining balance on computational loads
of K submatrix-vector and submatrix-transpose-vector
multiplications. The partitioning objective encapsulates
minimizing the sum of the connectivities of the coupling
rows in the row border RB of ArSB , which in turn
corresponds to satisfying quality criteria (c), (d), and (e).

3.4 Merits of SB Forms in CRp and RCp Algorithms
Table 2 displays the comparison of the SpMMTV algo-
rithms in terms of quality criteria coverage. As seen in
the table, RRp does not satisfy quality criteria (a) or (b),
as mentioned in Section 3.1. On the other hand, sepa-
rate storages of A and AT enable avoiding concurrent
writes, which in turn corresponds to satisfying (e). Note

TABLE 2: Quality criteria coverage of SpMMTV algo-
rithms

Quality Criteria RRp CRp RCp sbCRp sbRCp

(a)z-vector reuse × X × X X–1

(b)A-matrix nonzero reuse × X × X X–2

(c) temporal locality in row-parallel SpMV ×3 ×3 ×3 X X
(d)temporal locality in col-parallel SpMV ×3 ×3 ×3 X X
(e) minimizing concurrent writes X × × X X

1: except zB border subvectors 2: except AkB border submatrices
3: may be satisfied through row/column reordering

that RRp, CRp, and RCp can be enhanced to satisfy
criteria (c) and (d) via adopting intelligent cache-aware
row/column reordering methods such as the Reverse
Cuthill-McKee (RCM) algorithm [12], [17].

CRp satisfies only criteria (a) and (b). Utilizing the
SB form of A in the proposed sbCRp method extends
the quality coverage of CRp so that criteria (c), (d),
and (e) are satisfied by sbCRp. These merits of the SB
form can also be observed by comparing the black vec-
tors/subvectors in Figs. 1c and 2a. In the CRp algorithm,
whole x and y vectors are concurrently accessed by all
threads, whereas in the sbCRp method, only xB and yB
subvectors are concurrently accessed by all threads, and
each of the other subvectors is accessed by one distinct
thread.

RCp satisfies none of the quality criteria. Utilizing the
SB form of A in the proposed sbRCp method enables
reusing z-vector entries and matrix nonzeros in the
diagonal submatrix-vector multiplies, whereas it cannot
achieve the reuse in the border submatrix-vector mul-
tiplies. So sbRCp partially satisfies criteria (a) and (b)
while satisfying criteria (c), (d), and (e). These merits
of the SB form can also be observed by comparing
Figs. 1d and 2b. In the RCp algorithm, the whole z vector
is concurrently accessed by all threads, whereas in the
sbRCp method, only the zB subvector is concurrently
accessed by all threads, and each of other subvectors is
accessed by one distinct thread.

3.5 Applicability of the Methods
The discussion given in Sections 3.2.1 and 3.2.2 about
the quality criteria coverage of the proposed methods is
based on the assumption that the second SpMV immedi-
ately follows the first SpMV with no intermediate com-
putation, where the input of the second SpMV is equal
to the output of the first SpMV. The proposed methods
are therefore directly applicable to linear programming
(LP) problems.

The quality coverage of the proposed methods is still
valid if the input of the second SpMV is obtained from
the output of the first SpMV via linear vector operations
that incur no thread synchronization. If, however, in-
termediate parallel computations incur synchronization,
they disable the reuse of z-vector entries and A-matrix
nonzeros, thus preventing the proposed methods from
satisfying quality criteria (a) and (b). Typically, an inter-
mediate synchronization point is incurred by an inner-

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 8

TABLE 3: Coverage of quality criteria (a) and (b) of the
SpMMTV algorithms for several iterative methods

Iterative Methods CRp RCp sbCRp sbRCp

Directly applicable

LP [1], [2] z ← AT x
y ← Az

X × X X

Directly (no dependency since inner product can be delayed)

CGNE [3]
z ← q −Ax

β ← (z, z)/(q, q)
y ← AT z

X × X X

Directly (linear vector operations without synchronization)

LSQR [4]
z ← Ax
w ← f(z)
y ← ATw

X × X X

Surrogate
Constraints

[5], [6]
z ← Ax
w ← f(z)
y ← ATw

X × X X

Independent SpMVs (the two for loops of sbRCp can be fused.)

BCG [3]
z ← Ax
y ← ATw

X × X X

Lanczos
Biorthogonalization

[3]
z ← Ax
y ← ATw

X × X X

HITS [7], [8]
z ← Ax
y ← ATw

X × X X

Krylov-based
Balancing

[9]
z ← Ax
y ← AT x

X × X X

Not applicable due to inner product and inter-dependency

CGNR [3]
z ← Ax

α← ||y||22/||z||22
y ← AT αw

× × × ×

product computation that involves the output of the first
SpMV, the scalar result of which is used in computing
the input of the second SpMV via other linear vector
operations. Note that such intermediate synchronization
points do not adversely affect the coverage of quality
criteria (c), (d), or (e) for the SpMMTV algorithms. Table 3
summarizes the computational structure of several itera-
tive algorithms to discuss coverage of quality criteria (a)
and (b). In the table, f(·) denotes a set of linear vector
operations that do not involve explicit synchronization.

As seen in Table 3, the quality coverage of (a) and
(b) for the SpMMTV algorithms are disturbed only in the
CGNR method. This is expected since CGNR involves
an intermediate synchronization point due to the inner-
product computation. Note that although CGNE has an
intermediate inner-product computation [3], this is not
a problem since the inner-product computation can be
deferred to the end of the second SpMV.

4 EXPERIMENTS

4.1 Data sets
The validity of the proposed methods are tested on 28
nonsymmetric square and rectangular sparse matrices
arising in different application domains. All test matrices
are selected from the University of Florida Sparse Matrix
Collection [18]. Twelve of the test matrices in the set
are LP constraint matrices since the SpMMTV operation

is directly used in solving LP problems. Web-link ma-
trices are also included since PageRank computations
implemented via using Krylov-subspace methods (e.g.,
BCG) [19] and the HITS algorithm [7], [8] operate on
such matrices.

Table 4 displays properties of A matrices in the test
set. The matrices are listed in alphabetical order by
name. In the table, “avg” and “max”, respectively, denote
the average and the maximum number of nonzeros per
row/column. Table 4 also displays the number K of
parts of the SB forms of the test matrices in the last two
columns.

4.2 Experimental Framework
The performances of the proposed SB-based sbCRp and
sbRCp methods are evaluated against the RRp, CRp, and
RCp algorithms. Recall that sbCRp and sbRCp given in
Algorithms 1 and 2 utilize rowwise and columnwise SB
forms of A, as illustrated in Figs. 2a and 2b, respec-
tively. Performance comparisons of sbCRp against CRp
and sbRCp against RCp are reported to experimentally
validate the merits (see Section 3.4) of the SB form in the
CRp and RCp algorithms. The performance of baseline
algorithms CRp and RCp are tested according to two dif-
ferent row/column orderings of A: original ordering and
RCM ordering. The former and latter schemes will be
respectively referred to as orgCRp, orgRCp and rcmCRp,
rcmRCp. rcmCRp and rcmRCp respectively enable CRp
and RCp to satisfy quality criteria (c) and (d), as shown
by “×3” in Table 2.

RRp is also selected as a baseline algorithm for per-
formance comparison. The performance of RRp is also
tested according to the original and RCM orderings of
A, which will be referred to as orgRRp and rcmRRp,
respectively. rcmRRp enables RRp to satisfy quality cri-
teria (c) and (d), as also shown by “×3” in Table 2. In
addition to our RRp implementation, a vendor-provided
SpMV routine, mkl_dcsrmv, of Intel Math Kernel Li-
brary (MKL) [20], is also utilized to implement a variant
of RRp. The performance of MKL is also tested according
to the original and RCM orderings of A, which will be
referred to as orgMKL and rcmMKL, respectively.

In all of the baseline implementations, except MKL,
either the original matrix or the RCM-ordered matrix is
partitioned either rowwise or columnwise in such a way
that the size of each row/column slice is just above the
cache size threshold. For obtaining these partitionings,
we utilize a simple heuristic that assigns successive
rows/columns to a new row/column slice until the size
of the slice exceeds the cache size threshold.

The SpMV operation associated with each row/column
slice is treated as an atomic task that will be executed by
a thread on a single core of the Xeon Phi architecture.
This scheme in general obtains fine-grained tasks so that
OpenMP scheduler can easily maintain balance on com-
putational loads of threads using dynamic scheduling.
This scheme also enables CRp to satisfy quality criteria
(a) and (b).

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 9

TABLE 4: Properties of test matrices and K values of their SB forms

Number of Nnz in row Nnz in col K

Matrix Kind rows cols nonzeros avg max avg max ArSB AcSB

ASIC 680ks circuit simulation 682,712 682,712 2,329,176 3 210 3 210 469 469
circuit5M dc circuit simulation 3,523,317 3,523,317 19,194,193 5 27 5 25 3,730 3,730
dbic1 linear programming 43,200 226,317 1,081,843 25 1,453 5 38 201 212
degme linear programming 185,501 659,415 8,127,528 44 624,079 12 18 1,500 1,488
fome21 linear programming 67,596 216,350 465,294 7 96 2 3 90 99
Freescale1 circuit simulation 3,428,755 3,428,755 18,920,347 6 27 6 25 3,674 3,674
image interp computer graphics 232,485 120,000 711,683 3 5 6 6 145 138
kneser 10 4 1 combinatorial 349,651 330,751 992,252 3 16 3 3 204 202
LargeRegFile circuit simulation 2,111,154 801,374 4,944,201 2 4 6 655,876 866 955
lp osa 14 linear programming 2,337 54,797 317,097 136 38,336 6 6 59 47
lp osa 30 linear programming 4,350 104,374 604,488 139 72,555 6 6 111 89
lung2 computational fluid 109,460 109,460 492,564 4 8 4 8 97 97
memchip circuit simulation 2,707,524 2,707,524 14,810,202 5 27 5 27 2,878 2,878
neos linear programming 479,119 515,905 1,526,794 3 29 3 16,220 308 312
ohne2 semiconductor device 181,343 181,343 11,063,545 61 3,441 61 3,441 2,037 2,037
para-6 semiconductor device 155,924 155,924 5,416,358 35 6,931 35 6,931 1,002 1,002
pds-100 linear programming 156,016 514,577 1,096,002 7 101 2 3 211 233
pds-80 linear programming 128,954 434,580 927,826 7 96 2 3 178 197
scircuit circuit simulation 170,998 170,998 958,936 6 353 6 353 187 187
sgpf5y6 linear programming 246,077 312,540 831,976 3 61 3 12 168 172
Stanford directed graph 261,588 281,731 2,312,497 9 38,606 8 255 440 425
Stanford Berkeley directed graph 615,384 678,711 7,583,376 12 83,448 11 249 1,427 1,348
stat96v1 linear programming 5,995 197,472 588,798 98 666 3 18 109 120
stat96v2 linear programming 29,089 957,432 2,852,184 98 3,232 3 12 525 581
watson 2 linear programming 352,013 677,224 1,846,391 5 93 3 15 360 380
web-BerkStan directed graph 680,486 617,094 7,600,595 11 249 12 84,208 1,347 1,430
web-Stanford directed graph 281,731 261,588 2,312,497 8 255 9 38,606 426 440
wheel 601 combinatorial 902,103 723,605 2,170,814 2 602 3 3 453 442

The partitioning scheme described above for the base-
line algorithms is not used for MKL. Instead, the whole
A or AT matrix is given as input to mkl_dcsrmv, which
utilizes rowwise parallelization. The latter scheme is pre-
ferred because of the dramatic performance degradation
experimentally observed for the former scheme due to
calling mkl_dcsrmv for each individual row/column
slice. The CSB library [21] is not utilized as another
baseline algorithm since it is experimentally observed
that the CSB library does not perform well on Xeon Phi
when the latter scheme is adopted.

The proposed sbCRp and sbRCp algorithms are imple-
mented as described in Sections 3.2.1 and 3.2.2, respec-
tively. The matrices are permuted into SB forms using the
HP-based method, as described in Section 3.3. The HP
tool PaToH is used with the PATOH_SUGPARAM_SPEED
parameter, which is reported in [22] as producing reason-
ably good partitions faster than the default parameter.
The allowed maximum imbalance ratio is set to 10%. K
is selected according to the cache size threshold, as in the
baseline algorithms. Since PaToH utilizes randomized
algorithms, each matrix is permuted into rowwise and
columnwise SB forms ten times for the sbCRp and sbRCp
methods, respectively; and average performance results
are reported in Table 5 and Fig. 4, given in Section 4.3.

The experiments are carried out on a system with
an Intel Xeon Phi P5110 coprocessor. The coprocessor
is used in offload mode so 59 out of 60 cores are used.

The Level 2 (L2) cache of each core is private to the core,
eight-way set associative, and 512 KB in size. Each core
can handle up to four hardware threads, so the effective
cache size per thread can be estimated as 128 KB when
four threads run on the same core. In the experiments,
the cache size threshold utilized by the partitioning
algorithms for the baseline and proposed methods is
selected as 64 KB, which is half of the effective cache
size per thread.

All of the proposed and baseline parallel SpMMTV

algorithms are implemented in C using OpenMP and
compiled with icc (Intel’s C Compiler) version 13.1.3
with the O1 optimization flag. Double precision arith-
metic is used. In Table 5, the best performance re-
sult for 59, 118, 177, and 236 threads are reported;
and in Fig. 4, performance results for 1, 10, 20,
30, 40, 59, 118, 177, and 236 threads are reported.
We utilize dynamic scheduling with chunksizes 1, 2,
4, and 8; and the best results are given. Environ-
ment variables for the coprocessor are set as fol-
lows: KMP_AFFINITY=granularity=fine,balanced to
prevent OpenMP threads from floating between different
thread contexts and to provide balanced assignments of
threads to cores; and MKL_DYNAMIC=false for forcing the
library to not automatically determine and change the
number of threads [20]. For each SpMMTV computation,
we report the average execution time of 1000 iterations
after performing 10 iterations as a warm-up. OpenMP’s

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 10

TABLE 5: Performance results normalized wrt those of RRp for original order and normalized border sizes

Matrix

Parallelization schemes

Row-Row (RRp) Col.-Row (CRp) Row-Col. (RCp) Border sizes The best of

org.
RCM

MKL
org. RCM SB org. RCM SB ArSB AcSB RRp

CRp/RCp

(ms) org. RCM org. RCM SB

ASIC 680ks 2.067 0.88 1.73 1.38 1.68 1.54 0.70 1.79 1.66 0.79 0.06 0.06 0.88 1.68 1.54 0.70
circuit5M dc 10.535 0.93 2.20 2.14 1.54 1.37 0.83 1.62 1.64 0.90 0.06 0.06 0.93 1.54 1.37 0.83
dbic1 1.367 0.93 1.79 1.48 1.18 0.84 0.50 2.84 2.23 1.91 0.28 0.67 0.93 1.18 0.84 0.50
degme 15.295 0.89 0.82 0.80 0.43 0.29 0.20 7.09 6.71 6.44 0.53 0.97 0.80 0.43 0.29 0.20
fome21 1.002 0.64 0.95 0.77 1.05 0.81 0.62 2.02 1.36 0.75 0.24 0.15 0.64 1.05 0.81 0.62
Freescale1 12.514 0.78 1.92 1.75 1.49 1.14 0.70 1.61 1.37 0.76 0.06 0.06 0.78 1.49 1.14 0.70
image interp 0.712 0.83 0.86 0.82 1.43 1.42 0.73 2.28 1.23 0.89 0.06 0.12 0.82 1.43 1.23 0.73
kneser 10 4 1 2.455 0.52 0.99 0.63 1.66 0.73 0.48 1.64 1.04 0.73 0.07 0.13 0.52 1.64 0.73 0.48
LargeRegFile 18.158 0.96 2.55 1.15 8.15 8.55 5.74 0.21 0.39 0.17 0.74 0.01 0.96 0.21 0.39 0.17
lp osa 14 0.949 0.97 2.95 1.79 0.64 0.68 0.59 20.42 17.46 11.38 0.64 0.96 0.97 0.64 0.68 0.59
lp osa 30 1.637 1.01 4.61 1.37 0.55 0.55 0.48 18.49 11.59 11.65 0.61 0.96 1.00 0.55 0.55 0.48
lung2 0.417 1.08 0.96 1.06 1.62 2.34 0.88 1.78 2.36 1.04 0.01 0.01 0.96 1.62 2.34 0.88
memchip 7.559 1.04 2.31 2.27 1.61 1.52 0.94 1.71 1.83 1.03 0.07 0.08 1.00 1.61 1.52 0.94
neos 1.769 0.96 3.47 2.00 5.01 3.61 3.02 1.18 1.39 0.76 0.51 0.04 0.96 1.18 1.39 0.76
ohne2 3.637 0.77 1.38 0.87 2.11 1.50 1.40 2.24 1.62 1.48 0.98 0.98 0.77 2.11 1.50 1.40
para-6 2.824 0.70 1.48 0.86 2.12 1.50 1.42 2.23 1.61 1.62 0.88 0.88 0.70 2.12 1.50 1.42
pds-100 1.578 0.64 1.13 0.82 1.05 1.00 0.56 1.89 1.49 0.75 0.25 0.16 0.64 1.05 1.00 0.56
pds-80 1.565 0.63 1.02 0.72 0.91 0.82 0.58 1.65 1.49 0.75 0.26 0.16 0.63 0.91 0.82 0.58
scircuit 1.141 0.61 1.08 0.63 1.72 1.06 0.58 1.83 1.14 0.67 0.08 0.08 0.61 1.72 1.06 0.58
sgpf5y6 1.605 0.50 0.63 1.12 2.94 0.98 0.41 0.65 1.08 0.59 0.06 0.16 0.50 0.65 0.98 0.41
Stanford 6.992 0.26 1.12 0.73 1.40 0.32 0.20 2.77 1.84 2.37 0.06 0.49 0.26 1.40 0.32 0.20
Stanford Berkeley 4.113 1.01 1.60 1.90 1.03 1.17 0.76 5.00 8.96 8.20 0.08 0.59 1.00 1.03 1.17 0.76
stat96v1 0.387 1.07 1.17 1.17 1.93 1.73 0.88 1.93 2.87 1.19 0.29 0.03 1.00 1.93 1.73 0.88
stat96v2 1.335 1.05 1.40 1.30 1.24 1.43 0.83 2.33 3.20 1.18 0.28 0.03 1.00 1.24 1.43 0.83
watson 2 1.711 1.01 1.02 1.41 2.23 1.46 0.76 1.41 2.28 0.78 0.05 0.08 1.00 1.41 1.46 0.76
web-BerkStan 4.124 1.02 1.62 2.23 4.55 10.36 7.94 1.12 1.26 0.83 0.59 0.08 1.00 1.12 1.26 0.83
web-Stanford 6.796 0.27 1.16 0.66 2.66 2.06 1.91 1.47 0.35 0.25 0.49 0.06 0.27 1.47 0.35 0.25
wheel 601 4.290 0.51 0.91 1.60 1.69 0.88 0.36 1.58 1.00 1.06 0.03 0.43 0.51 1.58 0.88 0.36

Average – 0.76 1.42 1.16 1.61 1.28 0.81 2.09 1.88 1.20 0.17 0.14 0.74 1.16 0.96 0.58

atomic construct is used for handling concurrent writes.

4.3 Performance Evaluation
Table 5 displays the running times of the SpMMTV

algorithms on the Xeon Phi processor for the 28 test
matrices given in Table 4. In the table, running times
of orgRRp are given in terms of milliseconds, whereas
running times of all other algorithms are displayed as
normalized values. Each normalized value is calculated
through dividing the running time of the respective
algorithm for a given matrix by that of the orgRRp
algorithm for the same matrix. The last row of Table 5
displays the average of the normalized running times
of each algorithm over all test matrices. The averages
are computed using the geometric mean. Note that the
average normalized running time of orgRRp is effectively
1.00. In each row of the table, a bold value indicates
the minimum normalized running time attained for the
respective matrix.

Table 5 also displays the normalized border sizes of
the SB forms of the test matrices in the “Border size”
columns. For the rowwise SB form ArSB of a given ma-
trix, a normalized value is calculated through dividing
the number of rows in the border by the total number of
rows of the same matrix. Similarly, for the columnwise

SB form AcSB of a given matrix, a normalized value is
calculated through dividing the number of columns in
the border by the total number of columns of the same
matrix.

As seen in Table 5, RCM ordering substantially im-
proves the running times of all baseline algorithms. On
average, RCM ordering respectively improves the run-
ning times of RRp, MKL, CRp, and RCp by 24%, 18.3%,
20.5%, and 10%. These experimental findings show the
validity of quality criteria (c) and (d) (temporal locality
in SpMV operations) on the performance of SpMMTV.

Although both rcmCRp and sbCRp satisfy quality
criteria (c) and (d), as seen in Table 2, sbCRp per-
forms 36.7% faster than rcmCRp on average, as seen in
Table 5. This significant performance improvement of
sbCRp over rcmCRp mainly stems from the topological
property of the SB form, which minimizes the number of
costly concurrent writes. A similar discussion holds for
the performance difference between rcmRCp and sbRCp.
These experimental findings show the importance of
quality criterion (e) on minimizing concurrent writes for
increasing the performance of parallel SpMMTV opera-
tions.

As seen in Table 5, out of the 28 test matrices, the
proposed methods attain the highest performance for

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 11

A ArSB AcSB

Fig. 3: The web-Stanford matrix A and its rowwise
and columnwise SB forms ArSB and AcSB .

26 test matrices, whereas rcmRRp attains the highest
performance for only two matrices. These results can be
attributed to the quality of the SB forms of these two
matrices, ohne2 and para-6. An SB form of a given
matrix is said to be “good” if its border submatrix is
small. Good rowwise SB forms do not exist for matrices
that have many dense columns. Good columnwise SB
forms do not exist for matrices that have many dense
rows. Neither good rowwise nor good columnwise SB
forms exist for matrices that have both many dense
columns and rows. Note that the number of nonzeros
in a dense column/row of a given matrix already es-
tablishes a lower bound on the size of the row/column
border of the rowwise/columnwise SB form. As seen in
Table 4, ohne2 and para-6 have dense columns and
dense rows and a relatively large average number of
nonzeros per column and row. As also seen in the “Bor-
der size” column of Table 5, 98% of ohne2’s rows and
88% of para-6’s rows constitute the row borders of their
respective rowwise SB forms; and the same percents of
columns constitute the column borders of their respec-
tive columnwise SB forms. These consequences explain
the inferior performance of the SB-based methods for
these two matrices.

As seen in Table 5, out of the 26 test matrices for
which SB-based methods show superior performance,
sbCRp attains the highest performance for 22 test ma-
trices. The inferior performance of sbRCp is already
expected since it incurs an additional synchronization
point, as seen in Algorithm 2 and partially satisfies
quality criteria (a) and (b), as shown in Table 2. Despite
these disadvantages, sbRCp attains the highest perfor-
mance for the four matrices LargeRegFile, neos,
web-BerkStan, and web-Stanford. These matrices
have dense columns but not dense rows. As also seen in
Table 5, the normalized border sizes of the columnwise
SB forms of these matrices are significantly smaller than
those of their rowwise SB forms. As an example, Fig. 3
displays the significant quality difference between row-
wise and columnwise SB forms of the web-Stanford
matrix.

As discussed above, despite the advantages of sbCRp
over sbRCp, sbCRp may show inferior performance for
some matrices. For this reason, it will be more meaning-
ful to compare the best results obtained by sbCRp and
sbRCp against RRp. In Table 5, “The-best-of-CRp/RCp-

SB” column displays the minimum of the running times
of sbCRp and sbRCp for each matrix. For the sake of a fair
comparison, a similar “Best-of” approach is adopted for
all baseline algorithms. For each matrix, the minimum
of the running times of orgRRp, rcmRRp, orgMKL, and
rcmMKL is displayed in the “RRp” column, the mini-
mum of the running times of orgCRp and orgRCp is
displayed in the “org.” column, and the minimum of
the running times of rcmCRp and rcmRCp is displayed
in the “RCM” column.

As seen in Table 5, reporting the best performance re-
sults of the CRp/RCp algorithms significantly improves
the average normalized performances of the original,
RCM, and SB schemes from 1.61/2.09 to 1.16, from
1.28/1.88 to 0.96, and from 0.81/1.20 to 0.58, respec-
tively. Considering that the best-of-RRp achieves the
average normalized performance of 0.74, these results
show that neither the original nor RCM ordering of the
best-of-CRp/RCp can attain better average performance
than the best-of-RRp, whereas the best-of-sbCRp/sbRCp
attains significantly better average performance (22%
better) than the best-of-RRp. These results in turn show
the validity of the proposed SB approach in the sbCRp
and sbRCp methods.

There are two distinct approaches for deciding on the
best of the sbCRp and sbRCp algorithms for a given
matrix. The first is to run both algorithms for a few
iterations and decide on the best one, as adopted in
OSKI’s offline optimization [23]. Although this scheme
works fine in practice, it suffers from doubling the
preprocessing overhead due to row/column reordering
and partitioning. The second is to devise a simple recipe
based on analyzing the sparsity pattern of matrix A,
which is beyond the scope of this work.

Fig. 4 shows the strong scaling results as speedup
curves for the best-of-RRp, best-of-CRp/RCp, and best-
of-sbCRp/sbRCp schemes on four matrices in terms of
giga flops per second (GFlops). As seen in the figure,
the proposed best-of-sbCRp/sbRCp scheme shows good
scalability and outperform the baseline best-of-RRp and
best-of-CRp/RCp schemes.

The preprocessing overhead of the methods is also
investigated. For each matrix, PaToH’s running time on
the host system is divided by the best SpMMTV time on
the Xeon Phi processor. On the average, the overhead of
the best of sbCRp and sbRCp is 1121 kernel invocations,
whereas the overhead of the RCM algorithm [24] is 84 in-
vocations. The relatively high overhead of the proposed
sophisticated methods over the simple RCM algorithm
are expected to amortize for large number of repeated
SpMMTV computations that involve matrix A with the
same sparsity pattern.

5 RELATED WORK

5.1 SpMV

For thread-level parallelism of SpMV on the recently-
released Xeon Phi processor, Cramer et al. [25] ex-

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 12

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 20 30 40 59 118 177 236

G
F

lo
p
s

Number of Threads

wheel
6
01

best-of-RRp best-of-CRp/RCp best-of-sbCRp/sbRCp

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 10 20 30 40 59 118 177 236

G
F

lo
p

s

Number of Threads

degme

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 20 30 40 59 118 177 236

G
F

lo
p

s

Number of Threads

Stanford

 0

 1

 2

 3

 4

 5

 6

 7

 1 10 20 30 40 59 118 177 236

G
F

lo
p

s

Number of Threads

LargeRegFile

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 10 20 30 40 59 118 177 236

G
F

lo
p

s

Number of Threads

web-BerkStan

Fig. 4: Speedup curves for four test matrices: degme, Stanford, LargeRegFile, and web-BerkStan.

periment with the conjugate gradient method, which
involves SpMV, and analyze the experimental results
on the Xeon Phi architecture according to the Roofline
model [10].

Saule et al. [12] evaluate the performance of SpMV

with multiple dense right-hand-side vectors (SpMM) on
the Xeon Phi. They also investigate the performance
effect of row/column reordering for exploiting cache lo-
cality via utilizing the widely used bandwidth-reduction
method, RCM.

Liu et al. [13] use the ELLPACK Sparse Block (ESB)
format for SpMV operation on the Xeon Phi. The ESB
format uses bitmasks for storing the sparsity pattern
and sorts rows within blocks according to their nonzero
counts – instead of sorting whole matrix – with the pur-
pose of increasing the nonzero density of the columns
of compressed row blocks, as well as reducing dis-
turbance of the input-vector locality provided by the
original matrix. The column blocks are multiplied in
parallel, so thread-local temporary output vectors are
used and hence a reduction operation is performed
after the computation. The authors use three schedulers
for load balancing: partitioning based on cache-miss
simulation; hybrid scheduling consisting of sharing and

stealing tasks; and 1D partitioning [26] of rows according
to their computational loads, which are determined via
executing SpMV operations.

Sarıyüce et al. [27] use an SpMM-based formulation for
the closeness centrality of a given graph to fully utilize
the vector units of Xeon processors and the Xeon Phi
architecture. The SpMM-based formulation is obtained
via processing multiple vertices of the graph in simulta-
neous breadth-first search operations.

Pichel and Rivera [28] analyze the effects of SpMV

optimization techniques (reordering, blocking, and com-
pression) on an experimental processor with 48 cores
connected through a mesh network. They report that the
subject architecture benefits considerably from locality
improvements in parallel SpMV computations.

Park et al. [29] run the newly established high-
performance conjugate gradient (HPCG) benchmark [30]
on a Xeon Phi cluster. They apply optimization tech-
niques such as task scheduling and matrix reordering.

Kreutzer et al. [11] show that a unified storage format
can perform ideally for a wide range of matrix types
involved in parallel SpMV operation on various archi-
tectures, including CPU, GPU, and Xeon Phi.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 13

5.2 SpMMTV

For improving performance of the sequential SpMMTV

operation, Vuduc et al. [31] propose reusing A-matrix
nonzeros. The intermediate subvector zk is computed
as zk ← CT

k x, using nonzeros of the kth column slice
Ck, then partial results for output vector y is computed
as y ← Ck zk, using the same nonzeros. A naive par-
allelization of this scheme (our CRp scheme) results
in concurrent writes to the whole output vector, so
scalability of this parallel algorithm is limited.

For the parallel SpMMTV operation on many-core pro-
cessors, Buluç et al. [21] propose a blocking method
called Compressed Sparse Blocks (CSB) with a schedul-
ing algorithm for dynamically assigning the blocks to
threads. Using the same data structure for performing
both y ← A z and z ← ATx with no performance degra-
dation is non-trivial, and this is successfully achieved
by CSB via using a triple for each nonzero and using
indices relative to the block. Their method performs
y ← AATx as two separate row-parallel SpMVs (with no
A-matrix nonzero reuse) and recursively divides row-
slices into blocks, yielding a two-dimensional paral-
lelization scheme for reducing load imbalance due to
irregularity in sparsity pattern of the input matrix. Their
method handles concurrent writes via using temporary
arrays for each thread that contributes to the same
output subvector. Although the CSB scheme uses a single
storage of matrix A, authors’ multiplication algorithm
cannot simultaneously perform y ← A z and z ← ATx.
Our proposed methods perform these two SpMV op-
erations simultaneously, and hence satisfy the quality
criterion of reusing A-matrix nonzeros as well as other
quality criteria via casting the efficient parallelization of
SpMMTV as a combinatorial optimization problem. The
CSB scheme can also be integrated into our proposed
methods for handling diagonal blocks.

Yang et al. [8] propose a tiling-based method to
increase data reuse in GPUs for data mining algo-
rithms such as PageRank, HITS, and Random Walk with
Restart. These data mining algorithms utilize SpMV oper-
ations that involve sparse matrices representing power-
law graphs. In [8], A and AT are stored separately, i.e.,
A-matrix nonzeros are not reused. One of the baseline
SpMV algorithms assigns each row to a thread, which in
turn corresponds to our RRp algorithm with a row-level
thread assignment.

Martone [32] compares the performance of Recursive
Sparse Blocks (RSB) format [33], which is based on
space filling curves, against those of MKL and CSB [21]
for SpMV and SpMMTV operations. Although a single
storage of matrix A is used in [32], SpMV and SpMTV op-
erations are performed separately, without any nonzero
reuse. The scheduling algorithm in [32] does not assign
submatrices that will write to the subvector, which is
currently being written by another thread. It is reported
in [32] that this scheduling algorithm is not scalable
because critical sections are used in assigning blocks

to threads. The use of space-filling curves is expected
to further increase data locality while multiplying each
block in our proposed SpMMTV algorithms.

The above-mentioned works on parallel SpMV and
SpMMTV generally aim to increase utilization of vector
units, and some also provide algorithmic contributions.
Although one must use vectorization to efficiently use
vector units, vectorization provided by compilers or
hand-tuned code is not used in the current work because
its scope is mainly to achieve data reuse. Data structures
and kernels based on vectorization can also benefit such
locality improvements.

Our work differs from the above-mentioned works on
SpMMTV in that we encode the efficient parallelization
of SpMMTV as a combinatorial optimization problem via
using the identified five quality criteria. None of the
existing parallel SpMMTV algorithms can reuse matrix
nonzeros. Additionally, to our knowledge, there is no
previous study on parallel SpMMTV algorithms for the
Xeon Phi processor.

6 CONCLUSION

For cache-coherent many-core processors, we presented
a parallel sparse matrix-vector and matrix-transpose-
vector multiplication (SpMMTV) framework based on
one-dimensional matrix partitioning, and identified five
quality criteria that affect performance. In various iter-
ative methods, SpMMTV operations are repeatedly per-
formed as consecutive sparse matrix-vector and sparse
matrix-transpose-vector multiplication operations on the
same matrix. We proposed two novel methods based on
permuting sparse matrices into singly bordered block-
diagonal (SB) forms. The two SB-based methods simul-
taneously achieve reducing the memory bandwidth re-
quirement of SpMMTV operations via utilizing data reuse
opportunities and minimizing the number of concurrent
writes.

We tested the validity of the identified quality criteria
and the proposed methods within the framework on a
wide range of sparse matrices. Experiments on a 60-
core cache-coherent Intel Xeon Phi processor verified the
validity of the proposed framework through showing the
performance improvements from data reuse opportuni-
ties on processors with many cores and complex cache-
coherency protocols. The experiments also showed that
reusing matrix nonzeros compensates for the overhead
of concurrent writes through the proposed SB-based
methods.

REFERENCES

[1] N. Karmarkar, “A new polynomial-time algorithm for linear
programming,” Proc. 16th annual ACM symposium on Theory of
computing, pp. 302–311, 1984.

[2] S. Mehrotra, “On the implementation of a primal-dual interior
point method,” SIAM Journal on Optimization, vol. 2, no. 4, pp.
575–601, 1992.

[3] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

1045-9219 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2015.2453970, IEEE Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 Friday 29th May, 2015 17:21:54 14

[4] C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse
linear equations and sparse least squares,” ACM Transactions on
Mathematical Software (TOMS), vol. 8, no. 1, pp. 43–71, 1982.

[5] K. Yang and K. G. Murty, “New iterative methods for linear in-
equalities,” Journal of Optimization Theory and Applications, vol. 72,
no. 1, pp. 163–185, 1992.

[6] B. Uçar, C. Aykanat, M. Ç. Pınar, and T. Malas, “Parallel image
restoration using surrogate constraint methods,” Journal of Parallel
and Distributed Computing, vol. 67, no. 2, pp. 186–204, 2007.

[7] J. M. Kleinberg, “Authoritative sources in a hyperlinked environ-
ment,” Journal of the ACM (JACM), vol. 46, no. 5, pp. 604–632,
1999.

[8] X. Yang, S. Parthasarathy, and P. Sadayappan, “Fast sparse matrix-
vector multiplication on GPUs: Implications for graph mining,”
Proc. VLDB Endow., vol. 4, no. 4, pp. 231–242, Jan. 2011.

[9] T.-Y. Chen and J. W. Demmel, “Balancing sparse matrices for
computing eigenvalues,” Linear Algebra and its Applications, vol.
309, no. 13, pp. 261 – 287, 2000.

[10] S. Williams, A. Waterman, and D. Patterson, “Roofline: An in-
sightful visual performance model for multicore architectures,”
Communications of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[11] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. Bishop,
“A unified sparse matrix data format for efficient general sparse
matrix-vector multiplication on modern processors with wide
SIMD units,” SIAM Journal on Scientific Computing, vol. 36, no. 5,
pp. C401–C423, 2014.

[12] E. Saule, K. Kaya, and U. V. Catalyürek, “Performance evaluation
of sparse matrix multiplication kernels on Intel Xeon Phi,” in
Parallel Processing and Applied Mathematics, ser. Lecture Notes in
Computer Science, R. Wyrzykowski, J. Dongarra, K. Karczewski,
and J. Waniewski, Eds. Springer Berlin Heidelberg, 2014, pp.
559–570.

[13] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-core processors,”
Proc. the International conference on supercomputing, pp. 273–282,
2013.

[14] K. Akbudak, E. Kayaaslan, and C. Aykanat, “Hypergraph parti-
tioning based models and methods for exploiting cache locality
in sparse matrix-vector multiplication,” SIAM Journal on Scientific
Computing, vol. 35, no. 3, pp. C237–C262, 2013.

[15] C. Aykanat, A. Pinar, and U. V. Catalyurek, “Permuting sparse
rectangular matrices into block-diagonal form,” SIAM Journal on
Scientific Computing, vol. 25, pp. 1860–1879, 2002.

[16] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-
based decomposition for parallel sparse-matrix vector multiplica-
tion,” IEEE Transactions on Parallel and Distributed Systems, vol. 10,
no. 7, pp. 673–693, 1999.

[17] M. Krotkiewski and M. Dabrowski, “Parallel symmetric sparse
matrix–vector product on scalar multi-core CPUs,” Parallel Com-
puting, vol. 36, no. 4, pp. 181–198, 2010.

[18] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software (TOMS),
vol. 38, no. 1, p. 1, 2011.

[19] G. M. D. Corso, A. Gull, and F. Romani, “Comparison of Krylov
subspace methods on the PageRank problem,” Journal of Compu-
tational and Applied Mathematics, vol. 210, no. 12, pp. 159 – 166,
2007.

[20] “MKL,” http://software.intel.com/en-us/articles/intel-mkl/.
[21] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leis-

erson, “Parallel sparse matrix-vector and matrix-transpose-vector
multiplication using compressed sparse blocks,” Proc. 21st annual
symposium on Parallelism in Algorithms and Architectures, pp. 233–
244, 2009.

[22] U. V. Catalyürek and C. Aykanat, “PaToH: A multilevel hyper-
graph partitioning tool, version 3.0,” Bilkent University, Department
of Computer Engineering, Ankara, 1999, 1999.

[23] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library
of automatically tuned sparse matrix kernels,” Journal of Physics:
Conference Series, vol. 16, no. 1, pp. 521+, 2005.

[24] J. Burkardt, “Reverse cuthill mckee ordering,” http://people.sc.fsu.
edu/∼jburkardt/cpp src/rcm/rcm.html, 2003.

[25] T. Cramer, D. Schmidl, M. Klemm, and D. an Mey, “OpenMP pro-
gramming on Intel Xeon Phi coprocessors: An early performance
comparison,” Proc. the Many-core Applications Research Community
(MARC) Symposium at RWTH Aachen University, 2012, 2012.

[26] A. Pınar and C. Aykanat, “Fast optimal load balancing algorithms
for 1D partitioning,” Journal of Parallel and Distributed Computing,
vol. 64, no. 8, pp. 974–996, 2004.

[27] A. E. Sarıyüce, E. Saule, K. Kaya, and U. V. Catalyürek, “Hard-
ware/software vectorization for closeness centrality on multi-
/many-core architectures,” Proc. the 2014 IEEE International Paral-
lel & Distributed Processing Symposium Workshops, 2014, May, 2014.

[28] J. C. Pichel and F. F. Rivera, “Sparse matrix–vector multiplication
on the single-chip cloud computer many-core processor,” Journal
of Parallel and Distributed Computing, vol. 73, no. 12, pp. 1539–1550,
2013.

[29] J. Park, M. Smelyanskiy, K. Vaidyanathan, A. Heinecke, D. D.
Kalamkar, X. Liu, M. M. A. Patwary, Y. Lu, and P. Dubey, “Efficient
shared-memory implementation of high-performance conjugate
gradient benchmark and its application to unstructured matrices,”
Proc. the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 945–955, 2014.

[30] J. Dongarra and M. A. Heroux, “Toward a new metric for ranking
high performance computing systems,” Sandia Report, SAND2013-
4744, vol. 312, 2013.

[31] R. Vuduc, A. Gyulassy, J. Demmel, and K. Yelick, Memory Hi-
erarchy Optimizations and Performance Bounds for Sparse ATAx,
ser. Lecture Notes in Computer Science, P. Sloot, D. Abramson,
A. Bogdanov, Y. Gorbachev, J. Dongarra, and A. Zomaya, Eds.
Springer Berlin Heidelberg, 2003, vol. 2659.

[32] M. Martone, “Efficient multithreaded untransposed, transposed
or symmetric sparse matrix-vector multiplication with the recur-
sive sparse blocks format,” Parallel Computing, vol. 40, no. 7, pp.
251 – 270, 2014.

[33] M. Martone, S. Filippone, S. Tucci, M. Paprzycki, and
M. Ganzha, “Utilizing recursive storage in sparse matrix-vector
multiplication- preliminary considerations,” 25th International
Conference on Computers and Their Applications 2010, CATA 2010,
pp. 300–305, 2010.

M. Ozan Karsavuran received his BS (2012)
and MS (2014) degrees in computer engineering
from Bilkent University, Ankara, Turkey, where
he is currently a PhD student. His research
interests are parallel computing, cache-aware
methods, and high performance computing.

Kadir Akbudak received his BS (2007) and
MS (2009) degrees in computer engineering
from Hacettepe and Bilkent Universities, Ankara,
Turkey, respectively. He is a PhD candidate at
Bilkent University Computer Engineering De-
partment. His research interests are locality-
aware partitioning and scheduling methods for
exascaling irregular applications, cache-locality
exploiting methods for scientific computational
kernels.

Cevdet Aykanat Cevdet Aykanat received the
BS and MS degrees from Middle East Technical
University, Ankara, Turkey, both in electrical en-
gineering, and the PhD degree from Ohio State
University, Columbus, in electrical and com-
puter engineering. He worked at the Intel Super-
computer Systems Division, Beaverton, Oregon,
as a research associate. Since 1989, he has
been affiliated with the Department of Computer
Engineering, Bilkent University, Ankara, Turkey,
where he is currently a professor. His research

interests mainly include parallel computing, parallel scientific computing
and its combinatorial aspects. (co)authored about 80 articles published
in academic journals indexed in ISI and his publications received above
700 citations in ISI indexes. He is the recipient of the 1995 Young
Investigator Award of The Scientific and Technological Research Council
of Turkey and 2007 Parlar Science Award. He has served as a member
of IFIP Working Group 10.3 (Concurrent System Technology) since
2004 and as an Associate Editor of IEEE Transactions of Parallel and
Distributed Systems between 2009 and 2013.

http://software.intel.com/en-us/articles/intel-mkl/
http://people.sc.fsu.edu/~jburkardt/cpp_src/rcm/rcm.html
http://people.sc.fsu.edu/~jburkardt/cpp_src/rcm/rcm.html

