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a b s t r a c t

In this paper we consider multi-criteria sorting problems where the decision maker (DM) has equity
concerns. In such problems each alternative represents an allocation of an outcome (e.g. income, service
level, health outputs) over multiple indistinguishable entities. We propose three sorting algorithms that
are different from the ones in the current literature in the sense that they apply to cases where the DM's
preference relation satisfies anonymity and convexity properties. The first two algorithms are based on
additive utility function assumption and the third one is based on the symmetric Choquet integral
concept. We illustrate their use by sorting countries into groups based on their income distributions
using real-life data. To the best of our knowledge our work is the first attempt to solve sorting problems
in a symmetric setting.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many practical problems involve the assignment of alternatives
into predefined homogeneous groups. From a multicriteria point
of view, this problem can be handled using multicriteria sorting or
classification techniques. Multicriteria sorting refers to the cases
where the groups are defined in an ordinal way starting from the
ones including the most preferred alternatives to the ones includ-
ing the least preferred alternatives while classification refers to the
cases where these groups are defined in a nominal way [1,2].
Classification/sorting problems have applications in many areas
including but not limited to medicine, pattern recognition, human
resources management and financial management and econo-
mics [1].

In this paper we consider multi-criteria sorting problems
where the criteria are like. In such problems each alternative
corresponds to an allocation of an outcome over multiple entities
and the decision maker (DM) has equity concerns. Considering the
outcome level allocated to each entity as a criterion makes the
problem a multicriteria decision making problem yet such pro-
blems differ from the classical MCDM problems discussed in the
literature. First of all, in problems with equity concerns, we
assume that the entities are indistinguishable to the DM, that is,
the identities of the entities do not affect the decision. We call this
property anonymity, impartiality or symmetry. The equity concerns
should be incorporated into the preference model and this is
achieved using a well-known axiom called the Pigou–Dalton
principle of transfers from the inequality measurement literature.

Such equity concerns arise in many real life decision making
settings (see [3] for a recent review of inequity averse optimization
in operational research). Potential applications of sorting problems
with equity concerns include policy decision making and grouping
countries with respect to their welfare, which is defined as a
function of income distribution. For example, in health care policy
decision making, the policy makers may consider a set of health
care resource allocation policies each of which is associated with a
distribution of the health outcome over different population
groups. They may want to sort the feasible policies into groups
such as acceptable policies, intermediate policies that need further
discussion, and to be rejected policies

We consider three approaches to sort a given set of alternatives
into (ordinal) classes. These approaches consider a set of utility
functions in line with the preference information provided by the
DM and sort the alternatives accordingly, taking equity concerns
into account. Our work is related to two main disciplines in the
literature, namely the economics literature on inequality measure-
ment and the operational research literature on multi-criteria
decision making as we explain below.

The economics literature on (income) inequality measurement
deals with identifying desirable axioms that appropriate social
welfare functions and inequality measures should satisfy. The
axioms we use for the inequity-averse preference model are
introduced in this literature. Also, the inequity-averse utility
function forms we assume are the ones that have been discussed
as appropriate inequity-averse social welfare function forms. There
are some attempts in this literature to compare and rank a given
set of income distributions (see e.g. [4]) based on a unanimity rule
(an alternative is better than another if it has a higher functional
value for all the functions in a predefined set of functions).
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However, these attempts do not take any preference information
into account. We extend these studies by designing sorting
algorithms which take preference information from the DM into
account and provide sorting conforming to the given preference
information.

The initial discussions on multicriteria decision making litera-
ture consider problems which do not involve equity concerns and
hence they are mostly based on rational preference models.
Recently, equitable preference relations have been introduced by
[5] and are further discussed by [6] in the multicriteria decision
making framework. These works discuss incorporating equity
concerns into the preference model in the context of multi-
objective optimization. The equitable preference models and the
underlying axioms that we use in this work are introduced in [5].
However, these works assume a multiobjective optimization set-
ting and do not include any discussions on multicriteria sorting
environments. To the best of our knowledge, our work is the first
attempt to incorporate equity concerns in a multicriteria sorting
environment, in that regard, it extends the current literature on
equitable preferences.

The multicriteria sorting literature has so far focused on sorting
problems with rational preference models. We based our first two
approaches on two models discussed in this literature; however
we extend them such that equitable preferences are considered as
we explain below.

The three sorting approaches we use consider a set of utility
functions in line with the preference information provided by the
DM and sort the alternatives accordingly, assuming that the
underlying preference model of the DM is equitable. These
approaches differ from each other in terms of how the DM's utility
(aggregation, social welfare) function is modeled. The first
approach draws on a model suggested by [7] and assumes that
the preferences of the DM can be represented by an additive utility
function. This function is basically the sum of marginal utilities
and the marginal utility functions are taken as piecewise linear
functions. The second approach is an extension of the work
suggested by [8], which is similar to the first one and assumes
additive utility function. However, this approach is more general in
the sense that it assumes nondecreasing marginal utility functions
rather than piecewise linear ones. We extend the usage of these
two models suggested by [7,8] to symmetrical settings by making
the necessary modifications to the algorithms assuming that the
DM has an equitable preference relation. As we will discuss later in
detail, the original versions of these algorithms are designed and
used for DMs with rational reference relations. We, however,
consider equitable preferences, and hence will also assume sym-
metry and convexity properties for the preference model. These
properties will restrict the set of utility functions we will consider.
Specifically, we will assume that the marginal utility functions are
concave and hence use piecewise linear concave marginal utility
functions in the first approach and use nondecreasing concave
marginal utility functions in the second approach. The third
approach uses an ordered weighted averaging (OWA) method
[5,6], which relates to the symmetric Choquet integral concept.
These approaches assume utility functions that are equitable yet
easy to use in a mathematical modeling setting. They have the
potential to provide sufficient analysis while avoiding computa-
tional difficulty of other approaches that include more complex
(e.g. nonlinear) utility function forms.

Our contributions can be summarized as follows:

� We propose multicriteria sorting methods for the case where
the DM has equity concerns hence there is symmetry. To the
best of our knowledge, this study is the first attempt to provide
sorting mechanisms for multicriteria decision making (MCDM)
problems with equity concerns.

� We propose variations of additive utility function based sorting
approaches so that they can be used in symmetrical settings
where equity is of concern.
� We propose another algorithm based on the symmetric Cho-

quet integral concept, which draws on insights from the
economics literature.
� We extend the current theory on equitable preferences by

discussing them within a multicriteria sorting framework.

The outline of the paper is as follows: in the next section we
briefly discuss the current literature in multicriteria sorting where
there is no anonymity. In Section 3 we discuss sorting environ-
ments with equity concerns and discuss the term equitable
aggregation. We propose sorting approaches based on three
different equitable aggregation function forms. The first two are
based on the well-known UTADIS method, which assumes an
additive utility function and the third one is based on the ordered
weighted averaging (OWA) method. We illustrate the use of these
approaches by implementing them on a medium scale example
problem. In Section 4 we provide the results of our computational
experiments. We conclude the discussion and mention some
future research directions in Section 5.

2. Sorting in classical MCDM problems

The multicriteria sorting problem is as follows:
A finite set of alternatives A¼ fa1; a2;…; amg is evaluated on a

family of g¼ fg1; g2;…; gng n criteria. Let the index set of the
alternatives be I¼ f1;2;…;mg and the criteria index set be
J ¼ f1;2;…;ng. Given an alternative ai, gjðaiÞ shows the perfor-
mance of alternative ai in criterion j. The DM wants to sort the
alternatives into q classes. Let Ck denote class k where C1 is the
most preferred and Cq the least preferred. Let the index set of the
classes be K ¼ f1;2;…; qg.

The above problem is the classical sorting problem. There is a
vast amount of literature on (classical) multicriteria sorting. We
refer the interested reader to [1] for a review on multicriteria
classification and sorting methods.

The sorting problems considered in this paper are different in
the sense that they include like criteria, i.e. the criteria are
measured using the same scale. Examples of such problems arise
in settings where each alternative corresponds to an allocation
profile of an output over multiple entities which are indistinguish-
able. For example in public service facility location problems, each
alternative location corresponds to a distribution that shows the
distances that customers travel to the service facility. Assuming
that the customers are indistinguishable to the DM, in a two-
customer setting he would be indifferent between the following
two alternatives:

� A location that results in the distance vector (6,2) in which
customer 1 travels 6 units of distance and customer 2 travels
2 units of distance.
� Another location that results in the distance vector (2,6) in

which customers 1 and 2 travel 2 and 6 units of distance,
respectively.

We call the MCDM problems that involve like criteria and
hence involve symmetry MCDM problems with like criteria. In these
problems all criteria are measured on the same scale (e.g. the
distance scale in our location example).

Two main issues that every sorting methodology involves are
the following [1]: the form of the criteria aggregation model
and the methodology employed to define the parameters of
the model.
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Some of the criteria aggregation models are Outranking rela-
tions, decision rules and utility function approach [1] . Outranking
relations method compares alternatives based on their “concor-
dance” and “discordance” measures. We conclude that an alter-
native ai outranks alternative aj if there are enough arguments to
confirm that ai is at least as good as aj (concordance), while there
is no significant reason to refute this statement (discordance) [1].
In the sorting environment, the DM is asked to determine
reference profiles that represent different classes. The alternatives
are compared to these reference profiles and assigned to classes
accordingly. For example, if an alternative's concordance and
discordance measures are above and below the corresponding
threshold values respectively, the alternative is concluded to
outrank the reference profile and hence can be assigned to the
class represented by the reference profile or a better class (see [1]
for details). In decision rules method, a preference model is
constructed based on a set of decision rules. The alternatives are
sorted based on this preference model (see [9–11] for more
information).

Utility function approaches assume that the DM's preferences
can be represented by implicit utility (value) functions. Different
forms are assumed for these utility functions.

One of the most common forms assumed is the additive utility
function form UðgðaiÞÞ ¼

Pn
j ¼ 1 ujðgjðaiÞÞA ½0;1� , where ujð:Þ is the

marginal utility function for criterion j (see [12,8] for some recent
discussions). The family of UTADIS methods is based on this
additivity assumption. In its simplest form, the sorting is based
on comparing the utility values of alternatives to the utility
thresholds that define the (lower) bounds for each class. The
methods that assume piecewise linear marginal utility functions
solve a linear model with decision variables corresponding to the
utility threshold values and the weights (or marginal utility
intervals) for partitions. The objective is minimizing the classifica-
tion errors on the reference assignments made by the DM. These
errors can be defined in various ways such as the number of
misclassifications. The optimal parameter values obtained from
this model are used to estimate utilities of the whole set of
alternatives.

Other utility function forms such as linear [13], quasiconcave
[14], and Tchebycheff [15] are also considered.

In this paper we consider utility function approaches as the
criteria aggregation method. The sorting approaches we use
involve the following two steps:

1. Decision maker's providing some information on preferences.
2. Assignment of alternatives to their classes based on the DM's

given judgements.

We now discuss these two steps in detail.
1. Decision maker's providing some information on prefer-

ences: in our algorithms we consider preference information that
involves holistic judgements of the decision maker. The DM
assigns a set of reference alternatives to their classes. This method
is called preference disaggregation or indirect elicitation [16]
method. In terms of the timing of interaction, we use prior
articulation of judgements. That is, the DM is given the reference
set at the beginning and asked to sort the alternatives in this set.
We also consider the case where the DM is requested to make a
predetermined number of reference assignments to each class. We
do not consider an interactive setting but it is straightforward to
design the corresponding interactive approaches that gather
example assignments throughout the solution process.

2. Assignment of alternatives to their classes based on DM's
given judgements: once the DM provides information, our sorting
approaches find the worst and the best class that an alternative
can belong to, which is consistent with the provided information.

Note that most of the early UTADIS methods apply a different
method. They predict the model parameters by finding the
optimal values of a mathematical model, which minimizes a
predefined optimality criterion. They then use these optimal
parameters to sort the other alternatives into classes. The criterion
can be defined in various ways such as the number of misplaced
alternatives by the model (sorting error) or the magnitude of
violations. We note here that, most of these models have alter-
native optimal solutions, i.e. different parameter settings minimize
the criterion. Moreover, if a set of “optimal” parameters based on
restricted preference information are chosen and applied to get a
final sorting for the whole set of alternatives, there is no guarantee
that this setting would be the “correct” setting. Hence we follow
the idea used in [13,7,8,17] and provide worst and best classes that
alternatives can belong to given the preference information.

3. Multicriteria sorting in environments with equity concerns

In this part we discuss the multicriteria sorting problems
where the DM has equity concerns. To the best of our knowledge
there are no sorting approaches discussed in the literature which
are specifically designed for such cases where equity is of concern.

We consider a finite set of explicitly given alternatives and use
the same notation as before: ai denotes alternative i and gjðaiÞ
denotes the performance of alternative ai in criterion (outcome) j.
We denote the vector of criteria (outcome) values for alternative ai
with gðaiÞ. That is, gðaiÞAG ðG�RnÞ is the image of ai in the criteria
space. Note that gðaiÞ (or gi) denotes the distribution over which
we want to ensure equity, i.e. jth entity in distribution i gets gjðaiÞ
(or gij).

Unlike a classical MCDM problem we consider a single outcome
type, hence all the criteria are measured in the same scale with the
same unit. The allocation of this outcome over multiple entities makes
the problem a multi-criteria problem. To illustrate the data setting
assumed in this paper consider a health care decisionmaking problem
in which there are five potential health care projects, each of which is
associated with a distribution of benefits to three different population
groups (for simplicity assume that the groups are of equal size). These
groups may be constructed based on geographical location of the
users of the healthcare system (e.g. different neighborhoods), or based
on some other demographic factor (e.g. age, income level). In this
small example m¼5, n¼3, gða1Þ ¼ g1 ¼ ð10;30;40Þ, gða2Þ ¼
g2 ¼ ð25;15;25Þ and so on (see Table 1).

We assume that the DM has a preference model in which the
weak preference relation ⪯ (with the corresponding strict pre-
ference and indifference relations denoted as ! and � , respec-
tively) satisfies the following axioms (see [5,6] for a more detailed
discussion of these axioms):

For any vector (alternative in the criteria space) gAG
1. Reflexivity (R) g⪯g for all gAG:
2. Transitivity (T) If g1⪯g2 and g2⪯g3 then g1⪯g3 for all

g1; g2; g3AG:

Table 1
Illustrative example.

Project (alternative ai) Benefits to groups

G1 G2 G3

1 10 30 40
2 25 15 25
3 5 50 50
4 15 15 35
5 30 40 10
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3. Strict monotonicity (SM) g!gþεek for ε40 , where ek; is the
kth unit vector in Rn.

4. Impartiality (IM): ðgÞ �ΠkðgÞ for all k¼ 1;…;n!; for all gAG;
where ΠkðgÞ stands for an arbitrary permutation of the g vector.

This axiom ensures that the identities of the entities are not
important and do not affect the decision. In our small example
g1 � g5 (that is, gða1Þ � gða5Þ) due to symmetry.

5. Pigou–Dalton principle of transfers (PT): gj4gk )
g!g�εejþεek; for all gðaiÞ AG; where 0oεogj�gk; where ej,
ek are the jth and kth unit vectors in Rn.

This axiom ensures that any transfer from a relatively well-off
entity to a worse-off one (without changing the relative positions
of these two entities with respect to each other) results in a more
preferred allocation. In our example, g4!g2 due to PT since g2

could be obtained by transferring 10 units of benefit from G3 to G1
in g4 .

The preference relations that satisfy axioms R, T, SM, IM, and PT
are called equitable rational preference relations. Using equitable
rational preference relations, the relations of equitable dominance,
equitable indifference and equitable weak dominance can be defined
as follows [5]:

Definition 1. For any two criteria vectors g1 and g2;
g1! eð=⪯e=� eÞg2 ðg2 equitably dominates/equitably weakly

dominates/is equitably indifferent to g1Þ iff g1! ð=⪯=� Þg2 for all
equitable rational preference relations ⪯. Equitable dominance is
also called generalized Lorenz dominance (see [4]).

Definition 2. An alternative is equitably efficient if there is no
alternative that equitably dominates it.

Following [5], we can introduce the ordered vector and
cumulative ordered vector for an alternative g as follows:

Definition 3. Given gARn, let g! denote the permutation of g such
that g! : g!1r g!2r⋯r g!n. g! is called the ordered vector of g
and R
!p
¼ f g! : gARng is called the ordered space.

Definition 4. Given gARn, let Θ : Rn-Rn be the cumulative
ordering map defined as follows:

ΘðgÞ ¼ ðθ1ðgÞ; θ2ðgÞ;…; θnðgÞÞ where θjðgÞ ¼
Pj

i ¼ 1 g!i for
j¼ 1;2;…;n. ΘðgÞ is called the cumulative ordered vector of g.

Theorem 5 (Kostreva and Ogryczak [5]). For any two alternatives g1

and g2;
g1! e g2 ⟺ Θðg1ÞrΘðg2Þ for all jA J where at least one strict

inequality holds.
g1⪯e g2⟺ Θðg1ÞrΘðg2Þ for all jA J.

This theorem shows the relation between rational (vector)
dominance that is used in the classical MCDM literature and the
equitable dominance. An alternative equitably dominated another
one if and only if its cumulative ordered vector rationally dom-
inates the latter's cumulative ordered vector.

We will refer to the aggregations that respect axioms R, T, SM,
IM, and PT as equitable aggregations.

Definition 6. An equitable aggregation function is a function
U : Rn-R for which the following holds: g1! eð=⪯e=

� eÞg2⟹Uðg1Þo ð=r=¼ ÞUðg2Þ.
An equitable aggregation function should be strictly increasing

(due to SM), symmetric (due to IM) and should satisfy PT. All
equitable aggregation functions are Schur-concave functions,
which are symmetric by definition [6,3]. Schur-concavity relates
to more familiar concavity concepts in the following way: all
symmetric (strictly) quasi-concave and symmetric (strictly) con-
cave functions are (strictly) Schur-concave [3].

Different Schur-concave utility functions such as symmetric
additive concave (that is UðgðaiÞÞ ¼

Pn
j ¼ 1 ujðgjðaiÞÞ where

ujðgjðaiÞÞ ¼ uðgjðaiÞÞ for all j and uð:Þ is concave), symmetric concave
and symmetric quasi-concave functions have been discussed as
appropriate forms of inequity averse social welfare (aggregation)
functions in the economics literature (see e.g. [4,18–20]). More-
over, [6] note that increasing functions of cumulative ordered
outcomes can be used to obtain equitably efficient solutions in a
multi-objective optimization context (based on Theorem 5, the
alternatives whose cumulative ordered vectors are (rationally)
nondominated will be equitably efficient). Specifically, the
weighted sum function (

Pn
j ¼ 1 wjθjðgÞ) provides a family of linear

aggregations over the cumulative ordered vectors, which can be
converted to Schur-concave functions of the original vectors
(namely the OWA functions), as we will show in Section 3.2.
Kostreva and Ogryczak [6] suggest using these linear functions of
the cumulative ordered vectors as scalarization functions since
maximizing this function using different weights will (possibly)
result in different equitably efficient solutions. In this study, we
use these functional forms in a sorting environment, in which we
restrict the feasible weight space using the DM's preference
information.

In this paper, we consider two subsets of the set of Schur-
concave functions: additive concave functions and linear aggrega-
tion functions over the cumulative ordered vectors. Note that
these functions are symmetric concave (symmetric quasi-con-
cave), hence they respect the following convexity axiom for the
preferences:

6. Convexity (C): g1⪯g2 and g3 ¼ αg1þð1�αÞg2, for a real α :
0oαo1⟹ g1!g3.

The convexity axiom is not necessary but sufficient for a
preference relation that satisfies R, T, SM and IM to be equitable.
This is because C together with IM imply that PT holds. To sum up,
the two equitable utility function forms we consider are as
follows:

� An additive function, defined as the sum of concave marginal
utility functions. These marginal utility functions will be the
same for each criterion since we have impartiality. In the first
model we assume piecewise concave marginal utility functions
and in the second one we relax this assumption and assume
nondecreasing concave functions. We assume that these func-
tions are concave and the underlying preference relation
satisfies the convexity axiom and hence ensure an equitable
rational preference model.
� A linear utility function over the cumulative ordered vectors.

This is an OWA based approach as discussed in Section 3.2.

3.1. Additive utility function based approach

Additive utility function based approaches have been used in
classical sorting problems [7,8,17]. In order to ensure equitability,
we make two main modifications to the existing models that are
designed for classical sorting settings. First, impartiality implies
that UðgðaiÞÞ ¼

Pn
j ¼ 1 ujðgjðaiÞÞ where ujðgjðaiÞÞ ¼ uðgjðaiÞÞ for all j.

That is, the marginal utility function for each criterion (marginal
utility function of each entity) is the same. Second, we ensure that
the utility function respects equitable preferences by assuming
that uðgjðaiÞÞ is concave.

We first use concave piecewise linear form for marginal utility
functions, which is an extension of the method suggested for
classical MCDM sorting problems in [7].

Compared to the model suggested by [7], we have the following
differences: we assume that u is the same for all criteria, as we do
not distinguish entities with respect to their utility function. We
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assume that u is concave and approximate it using piecewise
linear approximations. This implies a further restriction on the
parameters of the piecewise linear function. The weight vector
corresponding to the slopes of the intervals will be decreasing. We
also assume that a limited amount of preference information is
taken at the beginning, while they use an interactive approach.
Also, as in [8,17], we use linear models rather than MILP models
used in [7].

We approximate the concave marginal utility function u, using
piecewise linear approximation. Let the number of partitions used
for the piecewise linearization be P. Let bp denote the lengths of the
partitions used for piecewise linear approximation with slopes wp

for p¼ 1;2;…; P. We partition the interval so that
PP

p ¼ 1 bp ¼Maxi;j
gjðaiÞ (maximum outcome value in the set) and the first interval is
between Mini;j gjðaiÞ (minimum outcome value in the set) and b1.
Let bji show the starting point of the interval to which gjðaiÞ belongs
and rij the corresponding interval number. Fig. 1 shows the graph
of the marginal utility function and the parameters we discuss for
an example case where P¼3. As an example, point g3ða4Þ is shown.
For this point b43 ¼ b1þb2 and r43 ¼ 3:

We now discuss our algorithm, which is a variation of the
algorithm used in [7] for the settings where we have equity
concerns. These concerns are incorporated by changing the mod-
eling of the utility function. Let R� A be the set of reference
alternatives assigned to classes by the DM. Consider the following
model for an alternative at in A=R and class Ch. Note that the s and γ
values are two parameters and that the marginal utility values are
scaled so that UA ½0;1�
Model 1ðat ;ChÞ

Max ε

vi ¼
Xn
j ¼ 1

Xrij�1

p ¼ 1

wpbpþðgjðaiÞ�bijÞwrij Þ
 !

8aiAA ð1Þ

wp�wpþ1Zγ for p¼ 1;2;…; P�1 ð2Þ

n
XP
p ¼ 1

wpbp ¼ 1 ð3Þ

uk�ukþ1Zs for k¼ 1;2;3;…; q�2 ð4Þ

uq�1Zs ð5Þ

u1rvi; 8aiAC1 ð6Þ

ukrviruk�1�ε; k¼ 2;…; q�1; 8aiACk ð7Þ

viruq�1�ε; 8aiACq ð8Þ

vtruh�ε ð9Þ

εZ0 ð10Þ

viZ08aiAA ð11Þ

wpZ08p ð12Þ

The variables of the model are as follows:
vi is the estimated utility value for alternative ai, uk is the

estimated lower (upper) threshold value for class Ck ðCk�1Þ and wp

is the slope for partition p. This model has mþpþq decision
variables.

The model checks whether there is a sorting which is consis-
tent with the provided reference assignments and which assigns
alternative at to a class worse than Ch.

Constraint set 1 assigns a value to each alternative based on
the assumption on the form of the marginal utility functions.
Constraint set 2 ensures that the weights are decreasing (hence we
have piecewise concave marginal utility functions). Constraint set
3 is for normalization and ensures that the utility values are all in
[0,1]. Constraint sets 4 and 5 ensure that the utility thresholds of
consecutive classes are sufficiently far way from each other.
Constraint sets 6, 7 and 8 incorporate the provided information
by the DM and ensure that the values of the alternatives that are
already assigned to classes by the DM are within the limits of these
classes. Constraint 9 forces the value of alternative t (vt) to be less
than the utility threshold of class h. If this is not possible given the
preference information and the other constraints, we can conclude
that the utility of alternative tmust be above the threshold and the
worst class that alternative t can be in is h. That is, if Model 1 is
infeasible for any (at,Ch), then there is no additive utility function
that satisfies the constraints and places alternative at to a
class which is worse than Ch. Hence the worst class that at can
be in is Ch.

Similarly one can formulate Model 2 (at,Ch) by changing the
constraint vtruh�ε as vtZuh�1. Model 2 checks whether there is
a feasible solution where alternative at is assigned to a class better
than Ch. If Model 2 is infeasible we conclude that the best class at
can be in is Ch.

Parameter γ determines the “degree” of concavity we impose
on the marginal utility function. The larger the value of γ, the
higher the level of concavity we assume. When γ is increased, a
smaller set of utility functions is considered while making the
sorting decisions. This results in the algorithm to make more
assignments to a single class or restrict the number of classes that
an alternative can belong to. In that sense, choosing a large value
for γ might be attractive. However, if the underlying value function
of the DM is not as concave as assumed, this might result in
misclassification. Choosing a suitable value for γ is left to the
decision analyst (DA). If the DA has the chance to interact with the
DM, a relatively large γ value might be used and the results could
be presented to the DM. If the DM is not satisfied with the
assignments, smaller values for γ could be tried. Another approach
would be presenting the results for different choices of γ and
let the DM decide on the sorting that better reflects his
preference model.

It is also possible to include further restrictions on weights if
such information is available.

The sorting algorithm. The algorithm suggested in [7] picks a
not-yet assigned alternative and starting from the worst class
solves the corresponding version of model 1, which does not
account for equity considerations, until it finds an infeasible case.
In this way, the algorithm finds the worst class an alternative can
be in. It also solves the corresponding version of model 2 to detect
the best class an alternative can be in. If the best and worst classes
the alternative can be assigned are not the same, the DM is asked
to place the alternative into a class between the worst and the best
classes the model finds.Fig. 1. Marginal utility function.
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Our sorting algorithm considers the case where the DM provides
the reference assignments at the beginning of the algorithm. Then,
using this information the algorithm returns the worst and best
classes alternatives can be in. Note that it is possible to design an
interactive algorithm but we prefer to see the extent to which we can
narrow down possible assignments to classes given some limited
information.

Below we give a description of the sorting algorithm. We keep
the best and worst categories for the alternatives in arrays ABEST
and AWORST, respectively. The algorithm assumes that a set of
reference assignments has already been made by the DM.

We now provide an example of sorting countries into classes
with respect their welfare levels using Algorithm 1, where the
social welfare (utility) is assumed to be a function of the income
distributions of the countries.

Algorithm 1.

Step 1. Initialization. Set ABEST ½t� ¼ 1 and AWORST ½t� ¼ q for all
atAA. For each atAR set ABEST ½t� ¼ AWORST ½t� ¼ the index
of the assigned class for these alternatives.

Step 2. Choose the next alternative at AA⧹R. If there is none, go
to Step 3. Set h¼0.
Step 2.1. Set h¼ hþ1
Solve Model 1 (at,Ch).

If infeasible and h¼1 set AWORST ½t� ¼ ABEST ½t� ¼ 1 and go to
Step 2.

If infeasible and h41 set AWORST ½t� ¼ h, h¼ hþ1 and go to
STEP 2.2.

If feasible and hr AWORST ½t��2, repeat this Step.

If feasible and h4AWORST ½t��2, h¼ AWORST ½t�þ1 and go to
Step 2.2.
Step 2.2. Set h¼ h�1.
Solve Model 2 (at,Ch).

If infeasible set ABEST ½t� ¼ h and go to Step 2.
If feasible and hZABEST ½t�þ2 repeat this Step. Otherwise, go to

Step 2.
Step 3. Stop and report ABEST and AWORST.

Example 7. We use income distribution information of 66 coun-
tries from the World Bank [21] and UNU-WIDER (United Nations
University- World Institute for Development Economics Research)
[22] databases. We represent a country's income distribution using
the quintile values. The quintile values are obtained as follows: for
each country we take the percentage share of income that accrues
to subgroups of population indicated by quintiles. We denote
these percentage shares as Si i¼ 1;…;5, where Si% is the income
share received by the ith 20% of the population. Given these
percentage shares, for each country, we find mean income levels
for each quintile, μi: i¼ 1;…;5 as follows:

μi ¼
Total IncomenSi

Total Populationn20
; i¼ 1;…;5

We use Gross National Income (GNI) [23] values to estimate Total
Income/Total Population. Hence for each country we use a distribu-
tion vector of size 5 consisting of the mean income levels of each
quintile. One can think of these μi values as the income levels of
5 representative people in the population. Table 9 in Appendix
Appendix A shows the data. Suppose that we want to sort these
distributions into 3 categories.

We assume that the social welfare function is of the form
UðgðaiÞÞ ¼

Pn
j ¼ 1 uðgjðaiÞÞ , where u is piecewise linear. We simulate

UðgðaiÞÞ using randomly generated weights. We generate the
weight values according to the following scheme:

Weight parameter generation scheme 1:
1. Generate random numbers from a uniform distribution

Uð0;1Þ.
2. Scale the generated weight values such that n

PP
p ¼ 1 wpbp ¼ 1

where P ¼ 5; where bp ¼ ðMaxi;jgjðaiÞ�Mini;jgjðaiÞÞ=P for all p. That
is, for piecewise linearization we use partitions of equal length.

3. Re-order the scaled weight values from maximum to mini-
mum. Hence w1¼Maxp wp and wp¼Minp wp.

We calculate the utility values of the alternatives using the
generated weights. We then divide the interval between the
maximum and minimum utility values to q subintervals of
equal length and use the end points of these intervals as
the utility thresholds for classes. That is, uq�k ¼minutilityþ
ðknððmaxutility�minutilityÞ=qÞÞ for k¼ 1;…; q�1; where minutility
and maxutility are the minimum and the maximum utility values

Table 2
Best (B) and worst (W) classes of alternatives using approach 1.

Alt. B W Alt. B W Alt. B W Alt. B W Alt. B W Alt. B W Alt. B W

1 2 3 11 3 3 21 2 3 31 3 3 41 1 2 51 1 2 61 1 2
2 1 1 12 2 2 22 3 3 32 1 1 42 2 3 52 2 2 62 3 3
3 2 3 13 2 3 23 2 3 33 3 3 43 3 3 53 3 3 63 2 3
4 2 2 14 3 3 24 3 3 34 1 1 44 3 3 54 2 2 64 2 2
5 1 1 15 2 2 25 3 3 35 2 2 45 3 3 55 1 1 65 2 2
6 2 3 16 3 3 26 1 1 36 1 2 46 2 2 56 2 3 66 3 3
7 2 2 17 1 1 27 3 3 37 3 3 47 2 3 57 3 3
8 2 2 18 2 3 28 2 3 38 1 2 48 2 3 58 2 3
9 2 2 19 2 2 29 2 2 39 3 3 49 3 3 59 3 3
10 3 3 20 2 3 30 3 3 40 3 3 50 1 1 60 3 3

Fig. 2. Marginal utility function example.
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in the feasible utility set. These reference alternatives are ran-
domly selected and are R¼ f2;5;16;19;27;33;52;54;64g.

Based on the simulated utility function and the generated
utility thresholds the DM provides the following reference assign-
ments: a2; a5-C1; a19; a52; a54; a64-C2 and a16; a27; a33-C3. Given
this information, the algorithm returns the assignments reported
in Table 2 for γ ¼ 0:005 and s¼0.00001.

Out of 57 alternatives, 37 are assigned to a single class and the
number of possible classes for the remaining 20 alternatives is
reduced to 2.

This approach uses pre-determined partitions (intervals) with
equally distanced boundary points to represent the piecewise
linear marginal utility function in the mathematical model as in
[7]. Refs. [8,17] consider nondecreasing marginal utility functions
and model these functions by using the attribute values of the
alternatives as boundary points. Their model is more general as
they do not restrict the analysis to piecewise linear functions. The
models used in [8,17] are for the classical sorting problems and do
not consider symmetric settings. We modify these models such
that the utility functions respect equitable preferences by ensuring
that the marginal utility functions are nondecreasing concave.

The general framework of the algorithm that is based on the
additive utility function model with nondecreasing concave mar-
ginal utility functions is the same as Algorithm 1. Instead of
models 1 and 2, we solve models 3 and 4 described below. We
solve model 3 to check whether category Ch is the worst category
that an alternative at can be in. In this model set L denotes the set
of different output levels observed in the set of alternatives in the
increasing order. For example when n¼3 and m¼2 with
a1 ¼ ð25;30;40Þ a2 ¼ ð30;40;10Þ L¼ f10;25;30;40g. We denote
the jth element of this set as Lj. For an alternative i, we denote
the rank of the output level that entity j receives as Laij: The
minimum value has a rank of 1. In our simple example, La23 ¼ 1
since g3ða2Þ ¼ 10 and 10 is the first level in set L. See Fig. 2 for an
example graph

Model 3 ðat ;ChÞ
Maxε

vi ¼
Xn
j ¼ 1

vmLaij
8aiAA ð13Þ

ðLlþ2�Llþ1Þðvmlþ1�vmlÞ�ðLlþ1�LlÞðvmlþ2�vmlþ1Þ
ðLlþ1�LlÞðLlþ2�Llþ1Þ

Zγ for l¼ 1;…; j Lj �2 ð14Þ

vmlþ1�vmlZ0 for l¼ 1;…; j Lj �1 ð15Þ

nvm1 ¼ 0 ð16Þ

nvmj Lj ¼ 1 ð17Þ

vmlZ0 for all l¼ 1;…; j Lj ð18Þ

Constraint sets 4–11

The variables of the model are as follows: vi and uk are as in
model 1. vml is the marginal utility value associated with the lth
output level. This model has mþj Lj þq decision variables.

Constraint set (13) assigns values to the alternatives based on
the assumption on the form of the utility function. Constraint sets
(14) and (15) ensure that we have nondecreasing concave mar-
ginal utility functions. Constraint sets (16) and (17) are used for
normalization purposes.

If model 3 (at,Ch) is infeasible, then the worst class that at can
be in is h. Similarly, we solve a model 4 (at,Ch) by changing the
constraint (vtruh�εÞ as vtZuh�1. If this model is infeasible then
the best class at can be in is Ch. We call the algorithm using these
models Algorithm 2. Again, parameter γ shows the degree of
concavity we assume for the marginal utility function.

This model considers a larger set of utility functions hence is
more general than model 1. This comes with a possible increase in
the computational burden since the number of intervals (decision
variables) is expected to increase as the number of alternatives
increases. We also expect Algorithm 2 to be more indecisive in
terms of assigning alternatives to a single class since a larger set of
functions is considered as compatible utility functions.

For the example setting, using the same underlying function
and the same reference points, the results returned by this
algorithm are as in Table 3. Out of 57 alternatives, 3 are assigned
to a single class and the number of possible classes for 35
alternatives is reduced to 2. We set s¼0.00001 as before and set
γ to (5n0.005)/(100n(j Lj �1ÞÞ. 5 and 0.005 are the number of
partitions and the γ value used in Example 7, respectively.
Compared to Model 1, we use a smaller γ value here. This is
because, the number of weights considered increases as j Lj
increases so a smaller difference between consecutive weights
should be ensured in Model 3.

3.2. Generalized Gini utility function based approach

This approach assumes that the utility function is of the form
UðgðajÞÞ ¼

Pn
j ¼ 1 wjθjðgðaiÞÞ. Since this function is an increasing

function of the cumulative ordered vectors of the alternatives, it
is an equitable aggregation and respects equitable dominance (see
Theorem 5).

In this approach we do not assume additive utility over
marginal utilities: we define the utility directly over the criteria
(outcome) space (for all gðaiÞAG). This social evaluation function is
a generalized Gini social evaluation function [24] and is symmetric
quasiconcave (hence Schur-concave).

Consider now a rank based utility function of the form
UðgðajÞÞ ¼

Pn
j ¼ 1 w

0
jð g
!

jðaiÞÞ where w0jZw0jþ18 j. Since w0A R
 n

, in
such a function the maximumweight is assigned to the entity that
receives the minimum outcome, the second maximum weight is

Table 3
Best and worst classes of alternatives using approach 2.

Alt. B W Alt. B W Alt. B W Alt. B W Alt. B W Alt. B W Alt. B W

1 1 3 11 2 3 21 2 3 31 2 3 41 1 3 51 1 2 61 1 2
2 1 1 12 1 3 22 2 3 32 1 2 42 2 3 52 2 2 62 2 3
3 1 3 13 1 3 23 2 3 33 3 3 43 2 3 53 2 3 63 1 3
4 1 3 14 3 3 24 2 3 34 1 2 44 3 3 54 2 2 64 2 2
5 1 1 15 1 3 25 2 3 35 1 3 45 2 3 55 1 1 65 1 3
6 2 3 16 3 3 26 1 2 36 1 3 46 1 3 56 1 3 66 2 3
7 1 3 17 1 2 27 3 3 37 2 3 47 2 3 57 2 3
8 1 3 18 1 3 28 1 3 38 1 2 48 1 3 58 2 3
9 1 2 19 2 2 29 1 3 39 2 3 49 2 3 59 2 3
10 2 3 20 2 3 30 2 3 40 2 3 50 1 2 60 2 3
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assigned to the entity that receives the second minimum outcome
and so on. This makes the function inequity-averse. Note that
while in the first two approaches the weights correspond to the
slopes of the marginal utility function, in this function the weights
w0A R
 n

are used to represent the relative importance of entities
based on their rank within the allocation vector. This function is an
OWA operator as defined below.

Definition 8. Let w01;w
0
2;…;w0n be the set of weights such thatPn

j ¼ 1 w
0
j ¼ 1. The OWA operator for a vector gARn is defined as

OWAw01 ;…;w0n ¼
P

w0j g
!

j.

Theorem 9 below shows that weighted sum of the elements of
the cumulative ordered vector where weights are nonnegative is
actually an ordered weighted averaging (OWA) function of the
original vector with nondecreasing weights and vice versa. Hence
there is a one-to-one correspondence between inequity averse
OWA operators (these are OWA operators where w0A R

 n
) and

linear utility functions we defined over the cumulative ordered
vectors. This relation is also discussed in [5].

Theorem 9 (Kostreva and Ogryczak [5]). (i) For any utility function
U : UðgðaiÞÞ ¼

Pn
j ¼ 1 wjθjðgðaiÞÞ where wARn, there exists w0A R

 n

such that UðgðaiÞÞ ¼
Pn

j ¼ 1 w
0
jgðaiÞj
���!

, where w0A R
 n

and gðaiÞj
���!

is the
jth element of the ordered vector gðaiÞ

��! ðsuch that gðaiÞ
��!

1rgðaiÞ
��!

2r⋯rgðaiÞ
��!

nÞ.
(ii) For any utility function U : UðgðaiÞÞ ¼

Pn
j ¼ 1 w

0
jgðaiÞj
���!

, where
w0A R
 n

, there exists wARn such that UðgðaiÞÞ ¼
Pn

j ¼ 1 wjθjðgðaiÞÞ.

Proof. Part (i) Given wARn define w0j ¼
Pn

h ¼ j wh (note that

w0A R
 n

holds). Then UðgðaiÞÞ ¼
Pn

j ¼ 1 wjθjðgðaiÞÞ ¼
Pn

j ¼ 1 wj
Pj

h ¼ 1

gðaiÞh
���!¼w1gðaiÞ1

���!þw2ðgðaiÞ1
���!þgðaiÞ2���!Þþ⋯ þwnðgðaiÞ1

���!þgðaiÞ2���!þ⋯þ
gðaiÞn
���!Þ¼w01gðaiÞ1

���!þw02gðaiÞ2���!þ⋯þw0ngðaiÞn���!¼ Pn
j ¼ 1 w

0
jgðaiÞj
���!

.

Part (ii) w0A R
 n

hence w01Zw02Z⋯Zw0n. Define wj ¼
w0j�w0jþ1 8 j and set w0nþ1 ¼ 0. UðgðaiÞÞ ¼

Pn
j ¼ 1 w

0
jgðaiÞj
���!

¼ ðw01�w02ÞgðaiÞ1
���!þðw02�w03ÞðgðaiÞ1���!þgðaiÞ2���!Þþ⋯þðw0n�1�w0nÞ-

ðgðaiÞ1
���!þgðaiÞ2���!þ⋯þgðaiÞn�1

�����!Þþðw0nÞðgðaiÞ1���!þgðaiÞ2���!þ⋯þ gðaiÞn
���!Þ¼P

j ¼
1nðw0j�w0jþ1Þ

Pj
h ¼ 1 gðaiÞh

���!¼ Pn
j ¼ 1 wjθjðgðaiÞÞ.□

Theorem 9 shows that assuming a linear utility function over
the cumulative ordered vectors is actually assuming an inequity-
averse OWA utility function over the original vectors. Using
inequity-averse OWA operators as social welfare functions has
also been discussed in the economics literature (see e.g. [24]). An
inequity-averse OWA operator is also a symmetric Choquet inte-
gral with a concave frequency distortion function [25] as discussed
below.

Definition 10 (Grabisch [26]). Consider a finite set of criteria, that
is the set of entities involved, J¼{1,2,…,n} and its power set. A
fuzzy measure μ defined on J is a set function μ : 2j J j⟶½0;1�
satisfying the following axioms: μð∅Þ ¼ 0, μðJÞ ¼ 1, ADB⟹
μðAÞrμðBÞ.

In an MCDM setting, for any ADM we can interpret μðAÞ as the
weight or degree of importance of the combination A of criteria.
That is, in addition to the weights used for each criterion
separately, we also use weights defined for any combination of
the criteria [25]. In an impartial MCDM setting this would
correspond to defining weights for any combination of the entities
involved.

Definition 11. The Choquet integral of g with respect to μ is as
follows : CμðgÞ :

Pn
j ¼ 1ð g
!

j� g!j�1ÞμðAðjÞÞ where g!0 ¼ 0 and AðjÞ ¼
fðjÞ; ðjþ1Þ;…; ðnÞg and Aðnþ1Þ ¼∅.

Theorem 12 (Grabisch [26]). OWAw01 ;…;w0n ¼
P

w0j g
!

j ¼ CμðgÞ where
μ is defined by μðAÞ ¼ Pj�1

i ¼ 0 w
0
n� i; 8A : jAj ¼ j. That is, the weight of

coalitions of size j is the sum of the weights corresponding to entities
in the rank orders from ðnþ1� jÞth to nth.

Example 13. Consider the following case: we have three people
(P1, P2 and P3) in the population with allocated output values 0.5,
0.2 and 0.7, respectively. Hence g ¼ ð0:5;0:2;0:7Þ and
g!¼ ð0:2;0:5;0:7Þ. Suppose the weights for the OWA opera-
tor are w01 ¼ 0:7; w02 ¼ 0:2; w03 ¼ 0:1. Then OWA0:7;0:2;0:1 ¼
0:7n0:2þ0:2n0:5þ0:1n 0:7¼ 0:14þ0:1þ0:07¼ 0:31:

Define the following: μð1Þ ¼ μð2Þ ¼ μð3Þ ¼w03 ¼ 0:1 μðf1;2gÞ ¼
μðf1;3gÞ ¼ μðf2;3gÞ ¼w02þw03 ¼ 0:3 μðf1;2;3gÞ ¼w01þw02þw03 ¼ 1.

Then we have Cμ ¼ g!1n1þð g!2� g!1Þn0:3þð g!3� g!2Þn0:1¼
0:2n1þ0:3n0:3þ0:2n0:1¼ 0:2þ0:09þ0:02¼ 0:31. Fig. 3 illus-
trates the output values enjoyed by the coalitions.

Showing the relation between this type of utility function and
the Choquet integral has some advantages in understanding the
preference model structure that is assumed. Choquet integral has
direct links with envy, hence it may be used as a way to bring envy
into discussion by attempting to quantify it. In the example above,
the contribution of the welfare of a coalition (group of entities) is
the amount of outcome that is enjoyed by everyone in that
coalition multiplied by the weight given to the coalition. In
Example 13 all persons 1, 2 and 3 enjoy an outcome of 0.2, hence
the contribution to the overall welfare is 0.2nμðf1;2;3g, similarly,
persons 2 and 3 both enjoy an extra of 0.3 and the contribution is
0.3nμðf2;3gÞ (see Fig. 3). In the symmetric Choquet integral case
that we assumed, the larger the cardinality of a coalition the larger
the given weight and coalitions of the same cardinality have equal
weights. As coalitions get smaller implying less people in the
society enjoy the corresponding amount, the corresponding
weight gets smaller. In that sense the model is envy-averse.

The general framework of the algorithm that is based on the
generalized-Gini utility function will be the same as Algorithms
1 and 2. We solve models 5 and 6 described below. To check
whether category Ch is the worst category that an alternative at
can be in we solve model 5, which is as follows:

Model 5 ðat ;ChÞ
Maxε

vi ¼
Xn
j ¼ 1

wj

Xj
k ¼ 1

gkðaiÞ
 !0

@
1
A8aiAA ð19Þ

Xn
j ¼ 1

wjnðjnMaxiθnðgðaiÞÞ=nÞ ¼ 1 ð20Þ

Constraint sets 4 – 12

Fig. 3. Choquet integral example.
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Constraint set (19) assigns values to the alternatives based on
the assumption on the form of the utility function. Constraint set
(20) normalizes the utility values such that the maximum utility
value is 1, which would be attained by a (possibly dummy)
alternative that has the largest total value distributed in equal
amounts to the recipients.

If model 5 (at,Ch) is infeasible, then the worst class that at can
be in is h. Similarly, we solve a model 6 (at,Ch) by changing the

constraint (vtruh�εÞ as vtZuh�1. If this model is infeasible then
the best class at can be in is Ch. We call the algorithm using these
models Algorithm 3.

Example 14. Consider the problem described in Example 7. We
now solve it assuming that the social welfare function is of the
form UðgðajÞÞ ¼

Pn
j ¼ 1 wjθjðgðaiÞÞ. In order simulate DM's reference

assignments, we use the following weight generation scheme.

Table 4
Best and worst classes of alternatives using approach 3.

Alt. B W Alt. B W Alt. B W Alt. B W Alt. B W Alt. B W Alt. B W

1 2 3 11 3 3 21 2 3 31 3 3 41 2 2 51 2 2 61 2 2
2 2 2 12 2 2 22 3 3 32 1 2 42 2 3 52 1 1 62 3 3
3 2 3 13 2 3 23 2 3 33 3 3 43 3 3 53 3 3 63 2 3
4 2 3 14 3 3 24 3 3 34 1 2 44 3 3 54 2 2 64 2 2
5 2 2 15 2 2 25 3 3 35 2 2 45 3 3 55 1 1 65 2 2
6 2 3 16 3 3 26 1 1 36 2 2 46 2 2 56 2 3 66 3 3
7 2 3 17 1 2 27 3 3 37 3 3 47 2 3 57 3 3
8 2 2 18 2 3 28 2 3 38 2 2 48 2 3 58 2 3
9 2 2 19 2 2 29 2 2 39 3 3 49 3 3 59 3 3
10 3 3 20 2 3 30 3 3 40 3 3 50 1 2 60 3 3

Table 5
Results of algorithm 1, 3 classes.

Gamma Scenario m Random Middle Boundary

Single Two CPU Single Two CPU Single Two CPU

Avg Min Avg Min Avg Max Avg Min Avg Min Avg Max Avg Min Avg Min Avg Max

0 1(10, 40, 50) 50 13.8 11 30.6 14 1.81 1.89 13.2 11 29.8 17 1.78 2.00 34.2 26 15.6 10 1.53 1.67
100 41.4 15 54.8 31 4.01 4.38 38.6 21 51 29 4.07 4.26 65.8 39 33.6 9 3.62 3.92
150 78.8 62 68.2 54 6.59 6.96 60.6 43 80.8 76 6.87 7.16 105.8 48 42.8 27 6.31 6.94
200 128.8 109 70.6 47 10.38 10.97 98.4 69 97.2 73 10.10 10.40 159 123 40.8 30 9.37 10.05
250 132.4 75 114.2 83 14.43 15.15 161.4 120 88.2 51 13.59 14.23 218.6 204 31.4 10 12.80 13.20
300 185.2 166 114 92 18.50 18.95 204.6 175 95.2 67 17.95 18.47 248.2 222 51.8 0 15.06 17.82

2(20, 30, 50) 50 15.2 11 31.8 21 1.76 1.87 13.8 10 31.6 27 1.74 1.83 25.8 14 22.8 13 1.49 1.65
100 38.6 26 55.2 47 3.84 4.07 39.6 25 50.6 39 3.86 4.15 64 34 33.2 17 3.43 3.92
150 81.8 68 66.4 46 6.43 6.80 72.6 60 72.2 42 6.36 6.64 113.8 104 36.2 24 5.74 5.90
200 126.4 109 73.4 55 10.05 10.47 114 94 83.6 57 9.41 9.88 163.8 143 36 18 8.48 8.66
250 151.4 135 96.4 69 13.24 14.06 153.8 117 95.2 80 12.96 13.57 212.6 172 37 15 11.86 12.81
300 205 186 94.4 74 17.24 17.83 191 155 106.6 81 16.90 17.83 247 230 52.8 22 15.96 16.16

3 (33, 33, 33) 50 13.4 10 33 29 1.62 1.76 15.8 10 26.4 21 1.54 1.65 25.4 16 23.2 12 1.40 1.53
100 44.4 21 49.8 43 3.47 3.88 49 38 44.2 26 3.26 3.42 69.4 59 30.2 17 3.04 3.28
150 73 59 73.8 69 5.88 6.24 81.4 60 63.2 57 5.68 6.18 120.4 114 29.6 18 5.19 5.38
200 111.2 94 88 67 9.04 9.83 126.2 109 70.6 47 8.07 8.28 147.8 138 52.2 33 7.97 8.16
250 164.4 144 85.2 60 11.89 12.32 150.2 121 98.2 76 11.57 12.26 198.4 183 51.6 33 10.80 11.15
300 182 157 116.4 92 15.94 16.66 201.2 196 98.6 94 15.02 15.71 235.8 226 64.2 47 14.66 15.02

0.005 1(10, 40, 50) 50 19 12 30.6 14 1.63 1.86 18 15 31 28 1.71 1.76 44.8 41 5 3 1.42 1.53
100 51.8 30 48.2 24 3.66 3.95 52.8 40 47 33 3.89 4.27 84.6 74 15.4 3 3.44 3.60
150 96.6 75 53.2 32 6.12 6.37 77.2 66 72 61 6.68 6.99 126.4 94 23.2 10 6.07 6.52
200 147.2 128 52.6 32 9.50 9.84 118.8 101 80.6 53 9.92 10.28 174.2 150 25.6 16 9.08 9.64
250 165.4 137 84.4 51 13.51 13.81 179.8 134 70.2 37 13.43 14.27 224.6 213 25.4 15 12.78 13.07
300 205 184 94.8 65 17.71 18.14 230.4 208 69.6 45 17.71 18.21 262.6 235 37.4 22 17.17 17.68

2(20, 30, 50) 50 19 13 30 16 1.56 1.65 19.4 14 29.8 26 1.63 1.73 35.2 32 14.8 8 1.39 1.47
100 45.2 32 53 44 3.53 3.67 46.8 37 48.8 37 3.71 3.90 80.2 68 19.8 4 3.24 3.45
150 94 85 55.8 40 6.13 6.27 84.8 68 63.2 33 6.23 6.55 124.4 114 25.6 14 5.64 5.74
200 141 127 59 39 8.86 9.28 127 107 72.2 44 9.16 9.70 175 152 25 5 8.26 8.52
250 166.6 147 82.8 52 12.50 13.15 172.2 134 77.8 64 12.71 13.32 223.4 183 26.6 14 11.84 12.92
300 225 200 75 49 16.36 16.97 218 202 81.8 67 16.55 16.74 270.6 258 29.4 10 15.55 15.77

3(33, 33, 33) 50 18.4 13 30.8 25 1.46 1.51 20.8 18 26.6 23 1.43 1.51 33.6 28 16.4 7 1.33 1.45
100 52.6 29 46.2 35 3.12 3.49 59.4 48 37.4 22 3.16 3.37 79.6 74 20.4 13 2.93 3.07
150 86.2 74 63.4 53 5.67 5.90 96.4 70 52.4 31 5.42 5.93 132.8 125 17.2 6 4.95 5.07
200 130.8 108 69 39 8.18 8.66 138.8 113 60.2 21 7.93 8.25 171.8 154 28.2 14 7.66 7.96
250 189.6 165 60.4 39 10.89 11.26 171 136 79 44 11.24 11.87 217 199 33 10 10.45 10.76
300 208.2 178 91.4 56 14.82 15.62 222.8 213 77 68 14.76 15.37 261.4 246 38.6 25 14.26 15.05
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Weight parameter generation scheme 2:
1. Generate random numbers from a uniform distribution

Uð0;1Þ.
2. Scale the generated weight values such that

Pn
j ¼ 1 wjnðjnMaxi

θjðgðaiÞÞ=nÞ ¼ 1.
We find the utility values accordingly and set uq�k ¼

minutilityþðknððmaxutility�minutilityÞ=qÞÞ for k¼ 1;…; q�1 as
before. We use the same reference alternatives as in Example 7.
Based on the simulated utility function and the generated utility
thresholds the DM provides the following reference assignments:
a52-C1; a2; a5; a19; a54; a64-C2 and a16; a27; a33-C3. Given this

information, the algorithm returns the assignments reported in
Table 4 for s¼0.00001.

Out of 57 alternatives, 36 are assigned to a single class and the
number of possible classes for the remaining 21 alternatives is
reduced to 2.

4. Computational experiments

We performed experiments to see whether the proposed
algorithms are computationally feasible and provide satisfactory

Table 6
Results of algorithm 2, 3 Classes.

Scenario m Random Middle Boundary

Single Two CPU Single Two CPU Single Two CPU

Avg Min Avg Min Avg Max Avg Min Avg Min Avg Max Avg Min Avg Min Avg Max

1 (10, 40, 50) 50 11.8 7 28.2 19 5.60 5.85 10.8 9 27.6 18 5.44 5.66 31.2 23 15.6 11 5.42 5.83
100 37.8 17 45.6 32 29.54 30.30 26.2 19 48.4 34 27.17 28.70 58.8 33 35 17 28.58 30.97
150 65.6 49 77.2 64 88.90 96.00 49.2 38 81.8 72 88.39 97.41 85 37 62 42 87.75 94.07
200 102.8 76 93.8 74 194.14 205.03 79.4 50 105.8 74 172.10 189.63 123.2 64 71.6 46 193.55 206.31
250 95 49 131.6 107 385.77 426.69 124.8 88 120.4 98 414.80 469.70 162 99 77.4 45 511.54 583.46
300 121.2 90 156.8 137 616.26 693.72 119.6 63 165.4 135 601.45 733.68 177.2 148 119.2 80 795.68 896.22

2 (20, 30, 50) 50 11 5 25.6 22 5.40 5.90 12 6 29.4 25 5.35 5.71 24 15 22 13 5.02 5.34
100 29 24 62 54 28.77 32.29 34 26 49.4 41 28.48 31.12 54.8 31 33.6 21 29.46 31.65
150 68.8 52 73 65 86.99 90.29 55 45 82.6 71 90.15 100.48 91.6 79 56.2 46 90.69 94.47
200 105.2 90 90.8 63 188.28 197.98 86.2 57 100.2 78 175.34 180.99 139.6 127 57 36 198.91 210.63
250 134 115 106.8 85 412.20 447.53 133.8 97 110.8 90 401.78 455.88 196.6 173 51.4 0 455.83 537.03
300 172.6 151 120 92 682.70 740.56 143.8 84 143.8 108 656.08 760.14 209.2 183 86.4 65 801.74 903.55

3 (33, 33, 33) 50 12.6 9 29.6 24 5.46 5.71 15.8 8 25 19 5.31 5.69 21.4 12 23.4 12 4.93 5.20
100 33.6 14 50.2 46 29.80 31.01 41.4 33 45.2 34 30.83 31.93 54.4 28 39.8 28 30.91 31.70
150 60.6 50 80 74 87.42 98.30 49.25 24 69.75 58 84.28 91.93 107.75 101 39.5 25 93.68 99.54
200 91.8 68 100.2 84 191.12 205.66 103.4 80 89.6 63 192.27 208.15 114.4 88 80.8 59 198.97 207.93
250 132.6 126 111.6 106 392.12 431.76 143.4 105 96.4 0 342.90 430.00 169.8 157 78.4 65 481.13 518.76
300 143.8 134 143.4 124 630.48 756.23 174.8 146 120.8 90 766.02 806.13 188.6 175 109.4 95 786.80 866.72

Table 7
Results of algorithm 3, 3 classes.

Scenario m Random Middle Boundary

Single Two CPU Single Two CPU Single Two CPU

Avg Min Avg Min Avg Max Avg Min Avg Min Avg Max Avg Min Avg Min Avg Max

1 (10, 40, 50) 50 11.4 7 36 27 1.62 1.76 11 9 31.4 26 1.70 1.83 34.2 29 15.8 9 1.33 1.37
100 56.6 53 41 33 3.31 3.43 35 27 62.4 52 3.57 3.71 70.8 53 28.8 12 3.17 3.37
150 81.4 56 67.8 35 5.78 6.04 65.8 49 77.8 56 5.79 6.04 123 103 27 10 5.31 5.62
200 118 97 81.8 62 8.48 8.66 118.6 70 81 56 8.02 8.25 163.4 152 36.6 26 7.50 7.66
250 156.6 135 93.2 60 11.5 11.75 155.8 130 94.2 78 11.31 11.65 207 190 43 23 10.23 10.53
300 171 143 127.8 90 14.4 14.71 189.4 159 110.4 92 14.12 14.48 237.4 212 62.6 38 13.53 13.96

2(20, 30, 50) 50 14 10 32.4 23 1.59 1.67 12.2 7 35.2 32 1.60 1.72 31.8 22 17.6 3 1.23 1.37
100 41.6 24 53.2 40 3.36 3.56 39.8 29 55 45 3.49 3.63 64.6 54 32.6 28 3.08 3.20
150 77.2 67 70.6 63 5.63 5.79 77.2 68 69.8 56 5.28 5.44 113.8 97 35 25 4.89 5.29
200 107.4 61 92 72 7.77 8.21 106.6 60 91 66 7.90 8.44 150.8 140 49.2 37 7.14 7.35
250 150.4 125 99.2 79 10.75 11.04 145.8 102 102.8 79 10.53 10.86 190.4 165 59.6 29 9.53 9.81
300 207 183 93 71 13.03 13.21 187.6 174 111.8 95 13.73 14.27 244 221 56 37 12.63 12.99

3 (33, 33, 33) 50 10.8 8 33.8 27 1.49 1.59 17 12 25.6 15 1.43 1.59 31 23 16.6 10 1.19 1.42
100 47.8 27 45.6 36 2.97 3.35 48.6 40 42 34 2.89 3.09 69.4 58 29.8 12 2.67 2.79
150 56.8 37 85.8 76 5.20 5.47 85.2 74 62.4 56 4.85 5.15 103 83 46.2 25 4.37 4.51
200 99.6 85 97.6 84 7.22 7.58 126.6 107 71.6 56 6.81 7.04 138.6 122 61.4 41 6.48 6.83
250 159 147 89.6 84 9.70 10.13 164.8 134 84.2 56 9.40 9.78 188.4 169 61.6 46 8.86 9.28
300 184.8 150 113.8 103 12.09 12.64 191 169 108.4 91 12.10 12.54 245.2 228 54.8 35 11.19 11.42
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results. We generate problem instances with 50, 100, 150, 200, 250
and 300 alternatives, where we set n¼5 and q¼3. Below we
summarize our data generation scheme.

Step 0. Generate gjðaiÞ values from a uniform distribution:
Uð1;10Þ.

Step 1. Generate weights using the weight parameter genera-
tion schemes described in Examples 7 and 14.

Step 2. Assign alternatives to their classes.
Step 3. Choose reference alternatives.

We assigned the alternatives to classes under three scenarios:
in the first scenario 10% of the alternatives are assigned to class 1
(the best class), 40% are assigned to class 2 and 50% are to class 3.
In the second scenario 20% , 30% and 50% of the alternatives are
assigned to classes 1, 2 and 3, respectively. In the third scenario,
we consider the case where all three classes are of equal size, i.e.
each class contains 33% of the alternatives. For each parameter
setting (m¼ f50;100;150g and scenario¼ f1;2;3gÞ, we generate
5 problem instances.

Table 8
Results for 4 classes.

Algorithm Scenario m Single Two Three CPU

Avg Min Avg Min Avg Min Avg Max

1 1 (5, 5, 40, 50) 50 17.4 10 23.2 1 8.2 1 2.38 2.64
100 52.6 44 44.4 36 3 1 5.17 5.3
150 91.2 64 56.6 43 2.2 0 8.81 9.28
200 118 99 81.2 49 0.8 0 13.47 13.81
250 157.4 129 92 48 0.6 0 18.97 19.64
300 221.4 152 77.6 52 1 0 24.77 25.99

2 (20, 30, 25, 25) 50 15.8 13 15 2 16.8 4 2.32 2.61
100 26.8 20 52.4 41 20.8 18 5.14 5.3
150 65.4 46 73.2 46 11.4 2 8.33 8.52
200 89.2 55 95.8 57 15 0 12.92 13.82
250 140 114 88 45 22 0 17.71 18.11
300 162.8 111 129.6 90 7.6 0 22.67 23.98

3 (25, 25, 25, 25) 50 19 14 14.2 5 13.8 11 2.13 2.2
100 41.4 36 42.4 35 14.4 9 4.40 4.57
150 58.6 45 81.6 59 9.4 0 7.91 8.39
200 93.4 70 85.6 77 20.8 11 11.73 12.62
250 137 108 100.4 65 12.6 0 15.95 16.97
300 167 131 129.4 99 3.6 0 20.98 22.26

2 1 (5, 5, 40, 50) 50 11.4 6 21.6 2 11.2 1 7.07 7.88
100 36.2 22 49.8 45 12 5 36.39 37.71
150 72.6 38 68 0 8.2 0 95.73 115.74
200 97.2 65 93.6 0 9 0 202.46 244.34
250 116.4 91 123.2 95 10.2 0 499.64 520.21
300 179.4 125 111.4 99 9.2 2 965.24 1054.23

2 (20, 30, 25, 25) 50 11.2 6 10.4 5 21 8 7.50 8.19
100 18.6 15 35.8 30 37.6 32 38.62 39.98
150 42 30 72.2 51 33.6 29 112.88 126.72
200 48.4 33 85.2 56 60.2 38 245.41 269.16
250 85 61 107.4 73 56 28 520.71 628.20
300 106.4 79 141 113 51.8 7 1076.56 1172.65

3 (25, 25, 25, 25) 50 14.2 10 12.6 9 14.4 4 7.12 7.43
100 32 28 33.4 19 25.4 19 36.79 40.78
150 36 24 73.2 52 37.2 20 110.71 116.59
200 64.2 43 72.4 56 54.6 37 256.84 281.16
250 100.2 79 98.2 55 49.6 10 525.10 571.40
300 117.8 94 146.6 133 34.2 7 978.74 1194.70

3 1 (5, 5, 40, 50) 50 16 10 14.8 1 18.6 6 2.28 2.39
100 40.2 25 44 31 15.6 0 5.02 5.59
150 71.2 54 75.2 56 3.6 0 7.81 7.94
200 103.4 76 93.6 71 3 0 11.39 12.29
250 146.6 136 101.2 78 2.2 0 15.26 15.60
300 203.8 172 95.8 74 0.4 0 18.70 19.17

2 (20, 30, 25, 25) 50 10.6 6 9.8 2 22.6 17 2.31 2.40
100 22.8 18 47.2 33 27 17 4.72 5.09
150 44.8 29 78.4 56 26 7 7.59 8.19
200 77 55 70.2 47 52.8 35 11.10 11.50
250 117 106 96.2 80 36.8 1 13.75 14.98
300 123.4 105 141 124 35.6 28 18.48 19.45

3 (25, 25, 25, 25) 50 10.4 8 10.2 2 18.6 10 2.38 2.57
100 35.4 28 40.8 32 22.2 14 4.48 4.71
150 52 44 77.8 71 20.2 13 7.09 7.43
200 76.4 68 94 69 29.2 9 9.65 10.23
250 107.4 88 109.6 83 33 2 13.25 13.98
300 150.4 122 125.2 95 24.4 0 16.96 17.80
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We assume that the DM places 10% of the alternatives into their
classes and the number of reference alternatives to be assigned to
each class is determined before the algorithms begin. For example,
when m¼50, the DM is asked to place 1 alternative in class 1,
3 alternatives in class 2, and 1 alternative in class 3. In order to see
the effect of the choice of the reference set, we investigate three
different cases:

In the first case, the reference alternatives are chosen ran-
domly. We refer to this case as “Random”.

In the second case, the reference set is chosen such that it
includes the middlemost alternative(s) in each class. If the size of
the reference set is greater than the total number of middlemost
alternatives, the rest of the alternatives are chosen randomly,
again ensuring that a predetermined ratio of reference alternatives
per class is satisfied. We refer to this case as “Middle”.

In the third case the reference set is chosen such that it
includes the worst alternative in class 1, the best and worst
alternatives in class 2 and the best alternative in class 3. If the
size of the reference set is greater than three, the rest of the
alternatives are chosen randomly respecting the ratios. We refer to
this case as “Boundary”.

We call the algorithms based on the additive utility with
piecewise linear concave marginal utility functions, with general
concave marginal utility functions and generalized-Gini utility
functions Algorithm 1, Algorithm 2, and Algorithm 3 respectively.
The algorithms are coded in Visual Cþþ and solved by a dual core
(Intel Core i5 2.27 GHz) computer with 4 GB RAM. All models are
solved by CPLEX 12.2. Tables 5–7 show the results for Algorithms
1, 2 and 3 respectively. We report the average and minimum

values for the number of alternatives that could be assigned to a
single class, and for the number of alternatives for which there are
two possible classes. We also report the average and maximum
solution times of the algorithms. The solution times are expressed
in central processing unit (CPU) seconds. We set s¼0.001 in all
experiments. In order to see the effect of parameter γ we use two
different levels (0 and 0.005, respectively) for Algorithm 1. Also in
Algorithm 2, we set parameter γ to (5n0.005)/(100n(�1))). We
also tried γ¼0 (hence considered concave functions rather than
strictly concave functions) but the results did not change signifi-
cantly. We use the same problem instances (the same reference
assignments) for Algorithms 1 and 2 in our experiments.

It is observed from Tables 5–7 that the algorithms perform well
in terms of reducing the number of possible classes for the
alternatives. For almost all of the alternatives, the number of
possible classes is reduced to either one or two. As seen in Table 5 ,
as the value of γ increases, more alternatives are assigned to a
single class. The choice of the reference set also has a noticeable
effect on the amount of the reduction in the number of possible
classes. If the reference set includes alternatives which are the
worst and best alternatives in each class (boundary case), the
performances of both algorithms increase in terms of the number
of solutions assigned to a single class compared to a random
selection of the reference set. Including middlemost alternatives of
each class decreases the performance of the algorithms compared
to the random selection, especially when the classes are not of
equal size. Note that asking the DM to detect the best and worst
alternatives in each class might be cognitively demanding. A
possible approach would be estimating a utility function and

Table 9
Data for the example problem.a

Alt. ai g1ðaiÞ g2ðaiÞ g3ðaiÞ g4ðaiÞ g5ðaiÞ Alt. ai g1ðaiÞ g2ðaiÞ g3ðaiÞ g4ðaiÞ g5ðaiÞ

1 3580 5350 7030 9240 19,010 34 5900 9920 14,040 19,760 39,690
2 2920 6480 10,490 16,630 39,200 35 2870 5220 7720 11,510 26,830
3 2370 3510 4610 6000 10,760 36 3230 6250 9840 15,510 36,980
4 3690 5580 7470 10,000 19,410 37 330 550 770 1100 2350
5 6310 9530 12,370 15,950 25,970 38 3190 6190 9640 14,900 41,090
6 640 1460 2530 4290 13,910 39 1130 1840 2590 3650 7510
7 3000 5070 7220 10,180 19,380 40 1310 2070 2890 4090 8140
8 1690 3790 6410 10,650 32,090 41 4770 7780 10,580 14,170 26,210
9 3300 6010 9180 13,870 33,690 42 1480 2390 3310 4700 10,920

10 180 230 300 410 840 43 240 440 630 920 2370
11 670 960 1340 1960 5270 44 290 420 550 740 1500
12 2850 5420 8440 13,230 39,520 45 1250 1720 2200 2880 5850
13 1130 2700 4810 8420 27,950 46 1970 4530 7860 13,230 37,140
14 90 140 210 320 780 47 980 2080 3340 5310 15,460
15 2340 4430 6850 10,830 29,920 48 1700 3610 5930 9430 24,050
16 460 830 1230 1800 3930 49 1100 1790 2690 4170 9900
17 7580 11,410 15,160 20,210 39,290 50 7230 11,410 15,500 20,920 40,130
18 1800 3480 5520 8760 23,950 51 5620 8960 11,910 15,810 27,960
19 1760 3590 5790 9180 26,050 52 5560 9310 13,530 19,960 47,540
20 1370 2880 4440 6680 16,580 53 250 450 690 1070 3430
21 1320 2570 3790 5500 11,750 54 5110 7580 9830 12630 21,000
22 420 780 1180 1750 3860 55 11,050 16,070 20,370 24,770 30,090
23 780 1660 2770 4500 13,320 56 1750 2640 3650 5200 12,120
24 310 510 740 1070 2260 57 480 790 1110 1540 3180
25 420 1180 2180 3770 11,110 58 1610 2880 4700 7910 24,140
26 8100 12,440 16,290 21,210 38,460 59 930 1290 1660 2180 4250
27 1610 2400 3230 4560 9720 60 210 410 600 870 1860
28 2080 3200 4390 6090 13,100 61 4050 7690 11,230 16,070 33,860
29 4620 6790 8860 11,670 21,170 62 360 590 850 1230 3120
30 960 1290 1690 2310 4670 63 3090 4470 5760 7400 12,210
31 870 1300 1760 2400 5150 64 3330 6270 9750 14,960 35,140
32 5520 9490 13,170 18,410 35,260 65 2930 5740 8780 13,030 29,280
33 110 190 260 360 740 66 1050 1580 2200 3120 6610

a All outcome values are divided by 5000 in the experiments for normalization purposes. This is to ensure that the outcome values are in the same range (less than 10)
we used in our experiments with randomly generated data. One can also use the outcome values as they are, arranging parameters of the models accordingly.
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updating the estimate as the DMmakes assignments. This function
can be used to guess the best and worst alternatives of each class
and such alternatives can be added to the reference set.

The solution times are not excessive for the problem sizes
selected but they are expected to increase as the problems get
larger. One can observe the increase in solution times when
Algorithm 2 is used. This is mostly due to the increase in the
number of decision variables. Moreover, as expected, the number
of alternatives assigned to a single class is smaller in Algorithm 2.

In order to see the effect of increasing the number of classes on
the performances of our algorithms, we performed experiments
for the problem instances where the alternatives are sorted into
4 classes. We assigned the alternatives to classes under three
scenarios: in the first scenario 5% of the alternatives are assigned
to class 1 (the best class), 5% of the alternatives are assigned to
class 2, 40% are assigned to class 3 and 50% are assigned to class 4.
That is, we divided the best class in the first scenario of our
previous analysis into two classes. In the second scenario 10%, 40%,
25% and 25% of the alternatives are assigned to classes 1, 2, 3 and
4, respectively. We obtained this scenario by dividing the worst
class into two classes in the second scenario of our previous
analysis. In the third scenario, we consider the case where all four
classes are of equal size, i.e. each class contains 25% of the
alternatives. For each parameter setting (m¼ f50;100;150;
200;250;300g and scenario¼ f1;2;3gÞ, we generate 5 problem
instances.

We again assume that the DM places 10% of the alternatives
into their classes before the algorithms begin. In this part we
report the results for the case where the reference alternatives are
chosen randomly. Table 8 shows the results of our experiments for
s¼0.001 and the same γ values that are used for the 3 classes case
for Algorithms 1 and 2.

It is observed in Table 8 that the solution times of all algorithms
increase as the number of classes increases. Also, the perfor-
mances of the algorithms seem to be worse than those of the
previous case in terms of the number of alternatives assigned to a
single class and the number of alternatives for which the number
of potential classes is reduced to two. Some exceptions to this are
observed in the larger problem instances.

The three utility function forms that we considered are easy to
understand and have intuitive interpretations. Moreover, they
respect the equitable dominance relation. They may prove valu-
able in providing support to the DMs faced with sorting decisions
with equity concerns.

In this work we do not attempt a direct comparison between
approaches (1–2) and 3 as the conceptual framework behind these
approaches are different and each might be considered appro-
priate in different settings. In the first two approaches a (single)
marginal utility function is assumed. One can think of this as the
utility function of an entity. Inequity-aversion is ensured by
enforcing a concave structure for these marginal utility functions.
The overall utility of the allocation (the social welfare) is taken as
the sum of these individual utilities. In that sense, they are
utilitarian approaches. If the decision maker finds such a utilitar-
ian framework appropriate for structuring his/her preference
model then these two approaches could be used. In settings where
the number of observed levels of the outcome is low, Algorithm
2 may be preferred as it is based on less restrictive assumptions on
the form of the marginal utility function. If the number of different
outcome levels is high, using a piecewise linear function with a
predetermined number of equally sized intervals as in approach
1 may be preferred. In the third approach, however, the social
welfare function is modeled as a linear function of cumulative
ordered vectors, which implies an inequity-averse ordered
weighted averaging function. Weights are assigned to the ordered
outcome values rather than outcome values allocated to specific

entities, which makes them rank dependent and the resulting
function symmetric and non-additive. We ensure inequity-
aversion by assuming that the weights are nondecreasing. Being
symmetric Choquet integrals, such functions also explicitly assign
weights to coalitions and quantify envy resulting from an
allocation.

The proposed algorithms may be used as heuristic approaches
for the case where the DM's utility function is Schur-concave. In
that case if inconsistencies arise due to approximation of a non-
linear function with a linear one, one can interact with the DM and
request him/her to assign the alternative leading to inconsistency.
The corresponding assignment constraints can be ignored for the
following iterations.

5. Conclusion

In this study we discussed multicriteria sorting problems with
equity concerns and proposed three solution approaches based on
different assumptions on the form of the utility function. The first
two methods are based on the additive utility function assumption
and the third approach uses a rank dependent utility function. The
additive utility (social welfare) functional forms have been dis-
cussed in the economics literature. However, to the best of our
knowledge, it is the first time they are used in a decision support
framework for sorting purposes which includes preferences of the
DM (for the problem types that we consider). Also, our models
extend the current models in the multicriteria sorting literature
such that equitable preferences are considered rather than rational
preferences.

The appropriate form of the utility function can be determined
through interactions with the DM. The first two approaches
attempt to quantify individual utilities and then aggregate them
to find the total utility in an allocation whereas the third avoids
such a reduction to individual utilities. If the DM is more
comfortable with conceptualizing the social utility as the aggrega-
tion of individual utilities and may provide information on the rate
of increase in the entity's (recipients) utility as a result of an
increase in the amount of good it receives, then the first or the
second approach can be used. The second approach is more
general since it assumes that the marginal utility functions are
concave rather than piecewise linear concave. However consider-
ing a larger set of marginal utility functions may result in an
increase in the computational burden as well as a decrease in the
number of alternatives assigned to a single class or to a small
number of classes. This is also observed in our computational
experiments. If the DM finds it easier to provide information on
the relative importance of the entities with respect to their rank in
the allocation then the third approach would be appropriate.

We have shown that all approaches lead to tractable computa-
tions. Moreover, the algorithms avoid direct elicitation of the
parameters, hence the DM's cognitive effort is kept as small as
possible. The information from the DM is gathered by requesting
reference assignments which is a more natural way than asking
parameters directly. We investigated different strategies for the
selection of the reference set. We observed that the performance
increase in the algorithms is noticeable when the reference set
includes the worst and best alternatives of classes.

Future research might consider the cases where the equitable
utility functions are nonlinear. Also computational experiments
and real life tests can be performed to compare the performances
of an interactive approach in which the assignments are requested
in a progressive way with the performance of the a priori approach
we use in which the assignments are gathered at the beginning of
the process.
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