
Computers & Operations Research 67 (2016) 102–112
Contents lists available at ScienceDirect
Computers & Operations Research
http://d
0305-05

n Corr
E-m

jjsalaza@
journal homepage: www.elsevier.com/locate/caor
A branch-and-cut algorithm for two-level survivable network
design problems

Inmaculada Rodríguez-Martín a,n, Juan-José Salazar-González a, Hande Yaman b

a DMEIO, Facultad de Ciencias, Universidad de La Laguna, Tenerife, Spain
b Department of Industrial Engineering, Bilkent University, Ankara, Turkey
a r t i c l e i n f o

Available online 28 September 2015

Keywords:
Network design
Survivability
Hierarchical networks
Valid inequalities
Branch-and-cut
x.doi.org/10.1016/j.cor.2015.09.008
48/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: irguez@ull.es (I. Rodríguez-Mart
ull.es (J.-J. Salazar-González), hyaman@bilke
a b s t r a c t

This paper approaches the problem of designing a two-level network protected against single-edge
failures. The problem simultaneously decides on the partition of the set of nodes into terminals and hubs,
the connection of the hubs through a backbone network (first network level), and the assignment of
terminals to hubs and their connection through access networks (second network level). We consider
two survivable structures in both network levels. One structure is a two-edge connected network, and
the other structure is a ring. There is a limit on the number of nodes in each access network, and there
are fixed costs associated with the hubs and the access and backbone links. The aim of the problem is to
minimize the total cost. We give integer programming formulations and valid inequalities for the dif-
ferent versions of the problem, solve them using a branch-and-cut algorithm, and discuss computational
results. Some of the new inequalities can be used also to solve other problems in the literature, like the
plant cycle location problem and the hub location routing problem.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we study several two-level network design pro-
blems with survivability requirements in both levels. Tele-
communication networks are usually multilayer hierarchical net-
works where the traffic from different origins are collected and
sent to upper levels to be routed towards their destinations. In a
typical two-level network, the upper level is called the backbone
network, and connects the hubs (concentrators, switches, multi-
plexers) among themselves. The lower level networks are called
access networks and they connect the users to hubs. Klincewicz
[18] uses the notation “backbone structure/access structure” to
specify the structure of a two-level network. For instance in a
“fully connected/ring network”, the backbone network is a com-
plete graph between the hubs, and the access networks are rings,
each visiting a subset of users and one hub.

Network survivability, which is the ability of a network to
continue functioning in the case of failures, is one of the most
critical issues in the design of telecommunications networks. A
common assumption is that at most one edge can fail at a time in a
network. To ensure survivability in case of single edge failures, the
most common topology used is a ring. A ring is a special case of a
ín),
nt.edu.tr (H. Yaman).
2-edge connected subgraph where each node has degree two. A 2-
edge connected subgraph (2EC) provides the same level of survi-
vability as a ring in case of edge failures, and may result in less
redundant capacity reservation (see, e.g., Karaşan et al. [15] and
Shi and Fonseka [29]). We consider these two topologies in the
design of a two-level network with protection against a single
edge failure. As a result, we study the design problems associated
with four different networks: 2EC/2EC, 2EC/ring, ring/2EC and
ring/ring networks. We will denote all these problems with the
general term of 2-level survivable network design problem (2-
LSNDP).

In a 2-LSNDP we are given a set of nodes. The cost of con-
necting a pair of nodes by a link in the backbone or in an access
network is known. There is also a cost associated to select a node
as hub. The number of nodes in each access network is limited by
the capacity of the hubs, which is a priori given. The problem
consists of choosing the nodes to act as hubs and connecting them
through a backbone network, and of assigning the non-hub nodes
to the hubs and connecting them through access networks,
respecting the capacity and the topology requirements. The
objective is to minimize the total cost of the resulting two-level
network. Fig. 1 shows a ring/ring 2-LSNDP optimal solution for an
instance with 15 nodes where the number of nodes in each access
network is limited to 3. The solid lines represent the backbone
network and the dashed lines represent the access networks. The
nodes in the backbone network are the hubs. Fig. 2 shows the

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2015.09.008
http://dx.doi.org/10.1016/j.cor.2015.09.008
http://dx.doi.org/10.1016/j.cor.2015.09.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.09.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.09.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.09.008&domain=pdf
mailto:irguez@ull.es
mailto:jjsalaza@ull.es
mailto:hyaman@bilkent.edu.tr
http://dx.doi.org/10.1016/j.cor.2015.09.008
http://dx.doi.org/10.1016/j.cor.2015.09.008


Fig. 1. A ring/ring solution example.

Fig. 2. A 2EC/2EC solution example.

I. Rodríguez-Martín et al. / Computers & Operations Research 67 (2016) 102–112 103
optimal solution for the same instance when the required network
structure is 2EC/2EC.

Even though survivability is critical for service providers, there
are few studies on designing hierarchical survivable networks.
Most studies on survivable network design problems consider a
single layer of the network. For reviews of these studies, one can
refer to Grötschel et al. [13] and Kerivin and Mahjoub [16]. Poly-
nomially solvable special cases of the survivable network design
problem are studied in Kerivin and Mahjoub [17]. The most
common network structure in this field is a 2EC subgraph (see,
e.g., [23,24,31,33]). Problems related with designing rings of
bounded size are studied by Fortz and Labbé [7] and Fortz et al. [8–
10]. Generalizations of 2EC networks are studied by Magnanti and
Raghavan [22] and Balakrishnan et al. [2].

There are also studies on two-level networks with survivability
requirements on the backbone network. For example, Labbé et al.
[20] propose a branch-and-cut algorithm for designing a ring as
backbone network, while the access networks are direct
connections from users to a hub (i.e., star structure). Baldacci et al.
[6] address a more general problem where the backbone network
allows m rings instead of a single one. Fouilhoux et al. [11] study
the variant where the ring structure is replaced by a 2EC network.
In all these studies the access networks are forced to be star
structures.

The studies that consider survivability at both layers of the
network are few. Lee and Koh [21] study the ring/chain network
design problem with dual homing where the ring topology in the
backbone network is given. They study the design of the access
networks. They show that the problem is NP-hard, propose an
integer programming formulation and describe a tabu search
heuristic. Thomadsen and Stidsen [32] study the ring/ring network
design problem. They suggest to solve the design problems asso-
ciated with different levels sequentially. They propose a branch-
and-price algorithm for this purpose. Carroll and McGarraghy [3]
also propose to decompose the problems of designing the rings in
different levels. Shi and Fonseka [28] study the design of hier-
archical self healing rings and propose a heuristic. Proestki and
Sinclair [26] and Shi and Fonseka [29] propose heuristic algo-
rithms for the problem with dual homing. Balakrishnan et al. [1]
study a generalization of the two-level survivable network design
problem to that of multitiers. They analyze worst-case perfor-
mances of some heuristics for some special cases. Park et al. [25]
study a node clustering problem with survivability requirements.
Karasan et al. [15] propose a branch-and-cut algorithm for the
problem where the backbone network is 2EC and each user node
is connected directly to two distinct hub nodes. More recently, Hill
and Voß [14] introduce the capacitated ring tree problem where
nodes are connected with rings and trees, and rings intersect at a
distributor node.

For further related studies, we refer the readers to the follow-
ing surveys. Klincewicz [18] reviews design problems that involve
location of hubs. Gourdin et al. [12] survey location problems
encountered in telecommunications network design. Soriano et al.
[30] provide an overview of design and dimensioning problems in
survivable SDH/SONET networks. Studies on combined location
and network design problems are reviewed by Contreras and
Fernández [4].

In summary, there are few studies that consider the design of
two-level networks with survivability requirements in both levels.
Most of such studies are on designing ring/ring networks and most
of the proposed approaches are of heuristic nature. The con-
tribution of this paper is to propose strong formulations and exact
solution methods for the two-level survivable network design
problem where both rings and 2-edge connected networks are
used to ensure survivability.

The remainder of the paper is organized as follows. The
mathematical model for the different variants of the problem is
given in Section 2. Section 3 presents several families of valid
inequalities to strengthen the linear-programming relaxations.
Section 4 details a branch-and-cut approach based on the for-
mulation and inequalities presented in the previous sections. The
performance of this approach is analyzed in Section 5 on a large
collection of instances. Finally, the paper ends with conclusions in
Section 6.
2. MIP models

We first introduce the notations. Let V ¼ f0;1;…;n�1g be the
set of nodes, where node 0 stands for the root and is considered to
be a hub. Note that this is not a restrictive assumption as one can
solve the problem for different root nodes if one has not been a
priori fixed. Let E¼ ffi; jg : i; jAV ; io jg be the set of potential links.
We assume G¼ ðV ; EÞ to be an undirected graph and we do not



I. Rodríguez-Martín et al. / Computers & Operations Research 67 (2016) 102–112104
allow multiple edges. Installing a hub at node jAV has a cost fj. For
each edge eAE, the cost of installing a backbone link or an access
link on e is denoted by be and ae, respectively. For SDV , let δðSÞ be
the set of edges with one endpoint in S, and let E(S) be the set of
edges with both endpoints in set S. When S is a singleton, i.e.,
S¼ fig, we use δðiÞ for δðfigÞ.

The aim of the 2-LSNDP is to partition the set of nodes V into
disjoint subsets, each with at most q nodes, choose one node from
each subset to locate a hub, and connect the hubs and the subsets
with survivable networks at minimum cost. The survivable net-
work may be either a 2EC structure or a ring, depending on the
problem variant. For simplicity in notation, rings or 2EC structures
are assumed to involve at least three nodes. The four variants of
the problem can be described with the same mathematical vari-
ables as follows. Let us define zij to be 1 if node iAV is assigned to
hub jAV , and to be 0 otherwise. Node j is a hub when zjj is 1. In
addition, we define xe to be 1 if edge eAE is used in an access
network and 0 otherwise, and ye to be 1 if edge e is used in the
backbone network, and 0 otherwise. For brevity in notation, we
write xðE0Þ ¼PeAE0xe and yðE0Þ ¼PeAE0ye for all E0DE, and zðS : TÞ
instead of

P
iA S;jATzij for all S; TDV .

The 2EC/2EC design problem, where the backbone and access
networks are required to be 2-edge connected, can be modeled as
follows:

min
X
iAV

f iziiþ
X
eAE

aexeþ
X
eAE

beye ð1Þ

s:t: zði : VÞ ¼ 1 8 iAV ; ð2Þ

zðV : iÞrqzii 8 iAV ; ð3Þ

z00 ¼ 1; ð4Þ

zijþyfi;jgrzjj 8fi; jgAE; ð5Þ

zjiþyfi;jgr zii 8 fi;jgAE; ð6Þ

yðδðSÞÞZ2zði : SÞ 8SDV⧹f0g; iAS; ð7Þ

xðδðSÞÞZ2zði : V⧹SÞ 8S� V ; iAS; ð8Þ

xfi;jg þzii0 þzjj0 r2 8fi; jgAE; i0; j0AV : i0a j0; ð9Þ

xe; yeAf0;1g 8eAE; ð10Þ

zijAf0;1g 8 i; jAV : ð11Þ
The objective function (1) is the sum of the cost of locating

hubs and the cost of installing access and backbone links. Con-
straints (2) ensure that each node is either a hub or it is assigned to
another node. Constraints (3) are capacity constraints that limit to
q the number of nodes assigned to a hub. They also ensure that no
node is assigned to a non-hub node. Constraint (4) forces the root
node to be a hub. If an edge is used in the backbone network then,
due to constraints (5) and (6), both endpoints should be hubs.
Otherwise, one endpoint can be assigned to the other only if the
latter is a hub. Constraints (7) impose 2-edge connectedness of the
backbone network. If node i is a hub or if it is assigned to a hub
node in set S, then there exists at least one hub in set S and the
constraint asks for at least two backbone edges on the cut δðSÞ
since the root is in V⧹S. Similarly, constraints (8) ensure 2-edge
connectedness of the access networks. If node iAS is allocated to a
hub node in V⧹S then there should be at least two access links
between S and V⧹S. Constraints (9) make sure that if the access
link fi; jg is used then i and j are allocated to the same hub. Finally,
constraints (10) and (11) are variable restrictions.

The above formulation needs minor modifications to model the
other 2-LSNDP variants. In particular, to model the 2EC/ring and
ring/ring design problems we add the degree constraints

xðδðiÞÞr2 8 iAV : ð12Þ

These constraints limit to at most two the degree of a node in an
access network and, together with the connectivity constraints (8),
force those networks to be rings. Note that we cannot use an
equation in (12) because not all nodes must be necessarily on an
access network.

Similarly, to model the ring/2EC and ring/ring design problems
we add the degree equations

yðδðiÞÞ ¼ 2zii 8 iAV ; ð13Þ

to ensure that each hub node i has two backbone edges adjacent to
it.
3. Valid inequalities

This section presents several families of valid inequalities for
the four variants of the 2-LSNDP. We first give valid inequalities
that are adopted from the literature. Validity proofs are omitted as
they are very similar to the ones that appear in the cited refer-
ences. Later the section presents theorems with new inequalities,
some of which generalize other inequalities for different problems
in the literature.

Rodríguez-Martín et al. [27] study the hub location routing
problem. Several families of valid inequalities for that problem are
also valid for our problems. In particular, let ½i; j�AE and S� V such
that iAS and jAV⧹S. The inequality

xfi;jgrzði : V⧹SÞþzðj : SÞ ð14Þ

is valid for 2-LSNDP. The inequality says that if node i is assigned to
a hub in S and j to a hub in V⧹S, i.e., if zði : V⧹SÞ ¼ 0 and zðj : SÞ ¼ 0,
then as they are in separate access networks, edge fi; jg cannot be
used as an access edge. Note that these inequalities are stronger
than constraints (9).

Fouilhoux et al. [11] derive F-partition inequalities for the
network design problemwhere the backbone is 2EC and the access
networks are stars. The feasible set of this problem is a relaxation
of the 2EC/2EC network design problem obtained by dropping the
constraints related with xe variables. Hence the valid inequalities
proposed by Fouilhoux et al. [11] are also valid for our problems.
Let V0;…;Vp be a partition of V such that Vla∅, for l¼0,…,p and
0AV0. Let ilAVl for l¼1,…,p and FDδðV0Þ such that j F j ¼ 2kþ1
for some integer kZ0. Let δðV0;…;VpÞ be the set of edges whose
endpoints are in different sets of the partition. The inequality

yðδðV0;…;VpÞ⧹FÞþ
Xp
l ¼ 1

zðil : V⧹VlÞZp�k ð15Þ

is called F-partition and it is valid for 2-LSNDP.
Baïou and Mahjoub [5] use the following constraints to avoid

the occurrence of bridges, i.e., of cuts of cardinality one:

yðδðSÞÞZ2ye 8S� V ; eAδðSÞ; ð16Þ

which are valid for 2-LSNDP. Clearly a network is protected against
the failure of an edge when no edge is a bridge.

We now present three new families of inequalities. The first
family extends the classical subtour elimination constraints.

Theorem 1. Let S� V be a non-empty set. Let ðS1;…; Sm1 Þ be a
partition of S and ðT1;…; Tm2 Þ be a partition of V⧹S. Consider i1;…;

im2 distinct nodes in S and j1;…; jm1
distinct nodes in V⧹S. Then the



I. Rodríguez-Martín et al. / Computers & Operations Research 67 (2016) 102–112 105
inequality

xðδðSÞÞZ2
Xm2

k ¼ 1

zðik : TkÞþ
Xm1

l ¼ 1

zðjl : SlÞ
 !

ð17Þ

is valid for 2-LSNDP.

Proof. If zðik : TkÞ ¼ 0 and zðjl : SlÞ ¼ 0 for all k and l then the
constraint vanishes. Otherwise, each ik assigned to a hub in Tk and
each jl assigned to a hub in Sl involves a different access network,
which implies that at least two access edges cross the cut δðSÞ
for each.□

Inequalities (17) generalize the following inequalities intro-
duced by Labbé et al. [19] for the plant cycle location problem:

xðδðSÞÞZ2 zði : V⧹SÞþzðj : SÞ� � 8S� V ; iAS; jAV⧹S: ð18Þ

Note that inequalities (18) dominate constraints (8).
The second family of inequalities exploits the capacity limita-

tion, as in the classical vehicle routing problem.

Theorem 2. Consider S� V, a partition ðS1;…; SmÞ of S and distinct
nodes j1;…; jm be in V⧹S. Let r(S) be a lower bound on the number of
access networks serving nodes in S. Then the inequality

xðδðSÞÞZ2 rðSÞ�
X
iA S

ziiþ
Xm
k ¼ 1

zðjk : SkÞ
 !

ð19Þ

is valid for 2-LSNDP.

Proof. There are at least rðSÞ�PiA Szii distinct hubs in set V⧹S that
serve nodes in S. There are also at least

Pm
k ¼ 1 zðjk : SkÞ distinct

hubs in S serving nodes in V⧹S. Hence, overall at least 2
rðSÞ�PiA Sziiþ

Pm
k ¼ 1 zðjk : SkÞ

� �
access edges cross the cut δðSÞ.□

Examples of lower bounds r(S) are ⌈j S jq ⌉ and j S j þ xðδðSÞÞ=2
q , though

the latter is valid only when the access networks are required to be
rings and not for the general 2-LSND. Rodríguez-Martín et al. [27]
use the inequalities

xðδðSÞÞZ2 ⌈
jSj
q
⌉�
X
iA S

zii

 !
ð20Þ

xðδðSÞÞZ2
j Sj þxðδðSÞÞ=2

q
�
X
iA S

zii

 !
ð21Þ

to solve the hub location routing problem. Note that inequalities
(19) dominate these inequalities.

A particular case of inequalities (19) are

xðδðSÞÞZ2 ⌈
jSj
q
⌉�
X
iA S

ziiþzðj : SÞ
 !

8S� V ; jAV⧹S: ð22Þ

Finally, the next result proposes a third family of inequalities.
These inequalities are different from previous inequalities as they
involve variables associated with both access and backbone edges.

Theorem 3. Let SDV⧹f0g be such that Sa∅, let ðS1;…; SmÞ be a
partition of S, and consider j1;…; jm be distinct nodes in V⧹S. Let r(S)
be a lower bound on the number of access networks serving nodes in
S. The inequality

yðEðSÞÞþyðδðSÞÞþxðδðSÞÞZrðSÞþ1þ2
Xm
k ¼ 1

zðjk : SkÞ ð23Þ

is valid for 2-LSNDP.

Proof. Given a feasible solution, let S01;…; S0p be the partition of the
set S into access networks. We know that pZrðSÞ since each access
network can have at most q nodes. Let ik be the hub serving the
access network S0k, K ¼ f1;…;pg, K 0 ¼ fkAK : ikAS0kg and
S0 ¼ [kAK 0S0k.

If K 0a∅, then yðEðSÞÞþyðδðSÞÞ ¼ yðEðS0ÞÞþyðδðS0ÞÞZ jK 0 j þ1. For
kAK⧹K 0, we know that there are at least two access edges
between S0k and V⧹S, i.e., xðS0k : V⧹SÞZ2. In addition xðδðSÞÞZPk
AK⧹K 0xðS0k : V⧹SÞ. So yðEðSÞÞþyðδðSÞÞþxðδðSÞÞZ jK 0 j þ 1þ2ðjK⧹
K 0 j Þ. If K 0 ¼∅, then since xðS0k : V⧹SÞZ2 for k¼ 1;…;p, we have
yðEðSÞÞþyðδðSÞÞþxðδðSÞÞZ2p. Both jK 0 j þ1þ2ðjK⧹K 0 j Þ and 2p are
greater than or equal to pþ1, and pþ1ZrðSÞþ1. So inequality yð
EðSÞÞþyðδðSÞÞþxðδðSÞÞZrðSÞþ1 is satisfied.

Now there are at least
Pm

k ¼ 1 zðjk : SkÞ distinct nodes in V⧹S that
are assigned to distinct hub nodes in S. Hence there are also 2Pm

k ¼ 1 zðjk : SkÞ access edges crossing the cut.□

A particular case of inequality (23) is

yðEðSÞÞþyðδðSÞÞþxðδðSÞÞZ⌈j Sj
q
⌉þ1þ2zðj : SÞ ð24Þ

where jAV⧹S. When S a is singleton, inequality (24) becomes

xðδðiÞÞþyðδðiÞÞZ2þ2zji ð25Þ
where i; jAV and ia j.
4. Branch-and-cut algorithm

We propose an exact branch-and-cut algorithm to solve the 2-
LSNDP based on the MIP model strengthened with the valid
inequalities presented in the previous section. The branch-and-cut
approach consists of a cutting plane technique embedded into a
branch-and-bound framework. We describe next the main fea-
tures of the algorithm.

4.1. Initialization

To start the optimization we solve the linear program (LP) given
by the constraints (2)–(6) and variable bounds. To these inequal-
ities, we add the degree inequalities (12) when the access net-
works are required to be rings, i.e., when the variant to solve is the
2EC/ring or the ring/ring. Similarly, to solve the design problems
with required ring structure in the backbone network (i.e., ring/
2EC and ring/ring) we add constraints (13). When the backbone
network does not need to be a ring, we replace (13) by (7) with
S¼ fig for all iAV in the initial LP.

4.2. Cutting plane phase

If the optimal solution of the LP relaxation is integer, we check
whether it is a feasible solution for the 2-LSNDP by applying the
separation routines for constraints (14), (7) and (8). Otherwise, we
apply the separation procedures for constraints (14), (25), (7), (8),
(24), (22), (16), (15), and (18), in this sequence. The separation
procedure for the last family of constraints is applied only if no
other violated cuts have been found, due to its computational cost.
The cutting plane phase is performed only each 10 branch-and-cut
nodes. Moreover, the number of violated cuts of each family added
to the model is limited to 15, and the total number of cuts added in
each cut generation step is limited to 75.

Constraints (25) are separated in Oðn2Þ by complete enumera-
tion. To separate constraints (7), (8), (14), and (18), we follow
approaches presented in [20] and [27]. We devised separation
methods for constraints (16), (22), and (24). To separate the F-
partition inequalities (15) we use a heuristic algorithm given in
[11].

Finally, constraints (17) are not directly separated, but their
violation is checked each time a violated inequality (8) or (18) is



I. Rodríguez-Martín et al. / Computers & Operations Research 67 (2016) 102–112106
found. The left hand side of all these inequalities is the same and
they do not involve variables related to the backbone network. The
violation test for (17) is done heuristically by checking whether

xðδðSÞÞZ2
X

kAV⧹S

max
iAS

zði : kÞþ
X
lA S

max
jAV⧹S

zðj : lÞ
0
@

1
A:

We next outline the separation procedures we have imple-
mented. We refer to the variable values of the current fractional
solution by ðxn; yn; znÞ.

4.2.1. Separation of inequalities (7)
To separate constraints (7) we use an exact and polynomial

procedure presented in [20], and inspired by the known separa-
tion algorithm for the subtour elimination constraints for the
travelling salesman problem. The procedure consists of solving
max-fow/min-cut problems on an appropriately defined support
graph. Note that inequalities (7) can be written as

yðδðSÞÞþ2zði : V⧹SÞZ2 8SDV⧹f0g; iAS:

For each node iAV⧹f0g, we define a support graph G0 ¼ ðV 0; E0Þ
with V 0 ¼ V and E0 ¼ E. The capacity of edges fi; jgAE with ja i is
set to yn

ijþ2znij, and all other edges eAE are assigned a capacity
equal to yn

e . Next we determine a min-cut set S� V 0 with iAS and
0=2S, and finally we check the violation of inequality (7) for
that set.

4.2.2. Separation of inequalities (8)
Constraints (8) can be separated in polynomial time with a

procedure similar to the previous one. Just note that inequalities
(8) can be written as

xðδðSÞÞþ2zði : SÞZ2 8S� V ; iAS:

Since constraints (8) are dominated by constraints (18), each
time we find a violated inequality (8) we replace it by the con-
straint (18) defined as

xðδðSÞÞZ2 zði : V⧹SÞþzðj : SÞ� �
;

where j is a node in V⧹S that maximizes znðj : SÞ.

4.2.3. Separation of inequalities (14)
Inequalities (14) can be separated in polynomial time. For a

given edge fi; jgAE, we define S¼ fig [ fkAV⧹fjg : znikZznjkg. If the
inequality for this choice of S is not violated, then there exists no
violated inequality (14) for edge fi; jg.

4.2.4. Separation of inequalities (15)
Constraints (15) are heuristically separated using a procedure

presented in [11] that works as follows. Let G0 ¼ ðV 0; E0Þ be a sup-
port graph with V 0 ¼ fiAV : znii40g [ fiAV : znði : V⧹figÞ4 0 and
ynðδðiÞÞ40g and E0 ¼ ffi; jgAE : yn

ij40g. We look for sets of nodes
fv1;…; vpg that determine odd cycles in G0. For each such set, we
define V0 ¼ V⧹fv1;…; vpg, and Vi ¼ fvig for i¼ 1;…; p. The set F is
formed by taking an odd number of edges from δðV0Þ with frac-
tional values yn

e41=2. Then, the corresponding inequality is
checked for violation.

4.2.5. Separation of inequalities (16)
The bridge inequalities (16) can be separated exactly in poly-

nomial time with the following algorithm. For each edge eAE with
yn
e40 we determine in the support graph G0 ¼ ðV 0; E0Þ with V 0 ¼ V

and E0 ¼ fe0AE : yn
e0 40g the min-cut set S separating the two nodes

associated with e. If the capacity of this cut is less than 2yn
e , the

corresponding inequality (16) is violated.
Although this algorithm is polynomial it might produce a large

number of similar violated inequalities, with the consequent loss
of time. Therefore we use the following strategy to reduce the
number of min-cut computations. We consider only edges e¼ fi; j
gAE with yn

e40:5 and such that i and j have not been extremes of
an edge producing a violated inequality previously. Moreover, we
associate to each set S in a violated inequality a given label, and we
check for duplicates before adding the new cut to the LP. Note that,
with these changes, the separation procedure for inequalities (16)
becomes heuristic.

4.2.6. Separation of inequalities (18)
Constraints (18) can be written as

xðδðSÞÞþ2zði : SÞþ2zðj : V⧹SÞZ4 8S� V ; iAS; jAV⧹S:

For each pair of nodes i; jAV let us define a support graph G0 ¼ ð
V 0; E0Þ where V 0 ¼ V and E0 contains all edges fi; kgAE such that
kAV and xnikþ2znjk40, all edges fj; kgAE such that kAV and
xnjkþ2znik40, and all other edges eAE such that xne40. The capa-
city of the edges in E0 is set to the positive value considered for
their definition. Let S� V 0 be such that iAS, j=2S, and δðSÞ is the
minimum cut between i and j in G0. If the capacity of δðSÞ is smaller
than 4, S defines the most violated constraint (18) for i and j.
Therefore, again the separation problem can be solved exactly by
performing a min-cut computation for each pair of nodes.

4.2.7. Separation of inequalities (22)
To separate constraints (22) we use a heuristic procedure based

on the separation algorithm for (20) described in [27]. It starts by
separating exactly and in polynomial-time the inequalities with-
out the rounding up operator, i.e.

xðδðSÞÞZ2
jSj
q

�
X
iAS

ziiþzðj : SÞ
 !

with S� V⧹f0g and jAV⧹S. These inequalities are equivalent to

xðδðSÞÞþ2jV⧹Sj
q

þ2zðj : V⧹SÞþ
X
iA S

2ziiZ2
jV j
q

þ1
� �

:

Then, for each jAV , finding a set S defining the most violated
inequality (if any) by a given solution ðxn; yn; znÞ aims at performing
a s–t min-cut computation on a capacitated network G0 ¼ ðV 0; E0Þ
with V 0 ¼ V [ fsg [ ftg, being s and t two dummy nodes. The edges
in E0 are the edges in E, with capacity xne ; the edges connecting s
with each iAV , with capacity 2ðznjiþ1=qÞ; and the edges connect-
ing each iAV with t, with capacity 2znii. To guarantee that j=2S we
must increase the capacity of the edge fj; tg by adding a large
amount. We finally check the potential violation of the inequality
(22) defined by the set S in the side of s generated by the s–t min-
cut computation.

4.2.8. Separation of inequalities (24)
This section describes a heuristic separation for (24) based on

an exact and polynomial-time separation for a closely related
family of inequalities. These inequalities are the ones obtained by
not considering the rounding up operator in (24), i.e.

yðEðSÞÞþyðδðSÞÞþxðδðSÞÞZ jSj
q

þ1þ2zðj : SÞ;

with S� V⧹f0g and jAV⧹S. These inequalities are equivalent to

yðEðSÞÞþyðδðSÞÞ
2

�j Sj
q

þxðδðSÞÞþyðδðSÞÞ
2

þ2zðj : V⧹SÞZ3;

and the first three terms in the left-hand side can be written as

yðEðSÞÞþyðδðSÞÞ
2

�j Sj
q

¼
X
iA S

yðδðiÞÞ
2

�1
q

� �
¼
X
iA S:

yðδðiÞÞ4 2=q

yðδðiÞÞ
2

�1
q

� �



I. Rodríguez-Martín et al. / Computers & Operations Research 67 (2016) 102–112 107
þ
X
i =2 S:

yðδðiÞÞo 2=q

1
q
�yðδðiÞÞ

2

� �
�
X
iA V :

yðδðiÞÞo 2=q

1
q
�yðδðiÞÞ

2

� �
:

Then, for each jAV , finding a set S defining the most violated
inequality (if any) by a given solution ðxn; yn; znÞ aims at performing
a s–t min-cut computation on a capacitated network G0 with V 0 ¼
V [ fsg [ ftg and where each edge eAE has capacity xneþyn

e=2;
each edge connecting s with iAV has capacity 2znji, plus 1=q�ynð
δðiÞÞ=2 if this value is positive; and each edge connecting t with
iAV has capacity ynðδðiÞÞ=2�1=q if this value is positive. In addi-
tion, to guarantee that j=2S and 0=2S, we must increase the capacity
of the edges fj; tg and f0; tg by adding a large amount. We check the
potential violation of the inequality (24) defined by the set S in the
side of s generated by this min-cut computation.

This separation algorithm can be adapted to deal with other
inequalities (23) with m¼1, like for example when r(S) is defined
as in (21).

4.3. Branching strategy

The branching strategy we devised prioritizes the set of vari-
ables zjj. This is done because fixing the set of hubs contributes to
determine other features of the solution. Branching on the other
variables is done only when all variables zjj are integral. In any
case, we choose to branch on the fractional variable whose value
in the linear relaxation solution is closer to 0.5.
Table 1
Results for the ring/ring network design problem.

f j n q Class I instances

opt %-gap cpu n

15 ⌈3n=4⌉ 825 0.85 0.22 7
⌈n/2⌉ 825 0.97 0.16 3
⌈n/4⌉ 1105 6.78 2.57 1

20 ⌈3n=4⌉ 1193 0.21 0.34 4
⌈n/2⌉ 1198 0.60 0.44 1
⌈n/4⌉ 1359 4.25 33.56 4

½1;500� 30 ⌈3n=4⌉ 963 0.03 2.59 1
⌈n/2⌉ 967 0.34 1.62 1
⌈n/4⌉ 1139 3.92 87.77 7

40 ⌈3n=4⌉ 728 0.10 2.09 3
⌈n/2⌉ 731 0.51 13.98 1
⌈n/4⌉ 852 2.75 3484.22 6

15 ⌈3n=4⌉ 2533 0.34 0.16 1
⌈n/2⌉ 2553 1.21 0.37 6
⌈n/4⌉ 3284 1.94 1.89 5

20 ⌈3n=4⌉ 2682 0.21 0.27 8
⌈n/2⌉ 2686 0.41 0.97 5
⌈n/4⌉ 3497 1.41 11.61 9

½500;1000� 30 ⌈3n=4⌉ 2551 0.32 1.37 4
⌈n/2⌉ 2560 0.47 7.64 1
⌈n/4⌉ 3262 2.73 145.24 9

40 ⌈3n=4⌉ 2446 0.20 2.64 3
⌈n/2⌉ 2446 0.14 11.95 1
⌈n/4⌉ 3207 3.33 1869.63 2

15 ⌈3n=4⌉ 4425 0.23 0.14 1
⌈n/2⌉ 4425 0.27 0.17 1
⌈n/4⌉ 5905 1.21 3.21 1

20 ⌈3n=4⌉ 4793 0.04 0.62 3
⌈n/2⌉ 4798 0.13 0.48 3
⌈n/4⌉ 6159 0.86 27.22 3

½1200;1700� 30 ⌈3n=4⌉ 4563 0.01 1.33 3
⌈n/2⌉ 4567 0.09 2.34 1
⌈n/4⌉ 5939 0.73 72.07 6

40 ⌈3n=4⌉ 4328 0.02 1.78 6
⌈n/2⌉ 4331 0.09 15.85 1
⌈n/4⌉ 5652 0.41 1942.87 4
5. Computational results

The branch-and-cut algorithm described in the previous sec-
tion was coded in Cþþ and ran on a personal computer with a
processor Intel Core i7 CPU at 3.4 GHz and 16 GB of RAM. We used
CPLEX 12.5 as mixed integer linear programming solver. Default
settings for CPLEX were used, except for the variable selection
strategy that we set to “strong branching”.

The performance of the algorithm was tested on two different
classes of instances. They consist of networks with a number of
nodes n in f15;20;30;40g. In the instances of the Class I, edge costs
cij are randomly generated in ½1;100�, while in the instances of the
Class II the nodes are placed in a plane with the coordinates uni-
formly distributed in ½0;100� and the edge costs cij are computed
as the Euclidean distance between the points i and j. In all cases,
the access and backbone link costs are defined as ae ¼ ce and be ¼
4ce respectively. Thus, on our benchmarks, the construction costs
of the links are symmetric and the cost of installing a backbone
link between two nodes is four times higher than the cost of
installing an access link. The hub capacity q takes values in
f⌈3n=4⌉; ⌈n=2⌉; ⌈n=4⌉g. For each combination of number of nodes
and capacity, we tried three different hub fix cost settings, ran-
domly generating f j in ½1;500�, ½500;1000� or ½1200;1700�. So there
are 36 different instances in each class.

For each instance we solved the four 2-LSNDP variants given by
the different possible combinations of backbone and access
Class II instances

odes nCuts opt %-gap cpu nodes nCuts

143 1386 0.00 0.14 0 159
133 1444 2.88 0.73 73 349

05 598 1792 2.51 1.97 13 460
214 1291 3.15 2.28 117 629

6 187 1323 5.38 12.07 313 1196
21 1988 1713 6.84 319.96 1294 4340
7 589 1315 2.21 3.93 95 813
6 487 1336 2.21 12.29 143 1158
01 2034 1633 7.74 362.87 959 5024

483 1426 1.15 56.16 373 2113
51 948 1438 1.16 62.48 371 2056
311 5683 1715 5.12 2368.50 2124 7460

1 191 2737 0.00 0.08 0 168
3 252 2752 0.38 0.17 5 204
3 497 3581 1.83 1.00 35 370

185 2733 0.59 0.64 58 290
8 318 2799 2.91 10.80 254 1178
8 1051 3775 2.69 93.46 466 2617
4 395 2735 1.48 14.21 238 927
75 859 2763 1.54 62.07 973 2038
39 2526 3564 3.17 1186.59 1609 7058
1 540 2482 0.58 23.81 211 1304
18 764 2505 0.95 66.44 602 2149
420 6306 3364 3.12 (1.25) t.l. 3307 11003

1 125 4986 0.00 0.11 0 111
2 145 5044 0.77 0.83 89 406
59 561 6592 0.47 1.61 11 586
1 366 4891 0.66 1.28 46 375
0 216 4923 1.46 5.29 169 994
94 1568 6513 1.38 101.46 700 2667

475 4677 0.63 9.06 213 973
2 528 4682 0.37 7.27 108 962
14 1838 6215 1.29 947.82 2411 5403

484 5026 0.33 31.40 257 1693
13 1040 5038 0.56 70.37 454 2541
708 5514 6515 1.66 1496.46 1835 9233



Table 2
Results for the ring/2EC network design problem.

f j n q Class I instances Class II instances

opt %-gap cpu Nodes nCuts opt %-gap cpu Nodes nCuts

15 ⌈3n=4⌉ 813 0.68 0.17 11 132 1386 0.00 0.09 0 150
⌈n/2⌉ 824 2.00 0.30 25 174 1444 1.55 0.59 41 365
⌈n/4⌉ 1105 7.25 5.46 202 761 1792 3.03 1.44 17 563

20 ⌈3n=4⌉ 1190 0.62 0.58 14 366 1291 2.99 0.98 78 326
⌈n/2⌉ 1198 1.05 0.62 32 276 1323 5.45 12.78 274 1224
⌈n/4⌉ 1359 5.14 13.45 311 829 1713 5.44 154.16 865 2974

½1;500� 30 ⌈3n=4⌉ 960 0.15 0.58 3 357 1315 2.18 11.78 161 1147
⌈n/2⌉ 963 0.23 1.51 10 535 1336 0.90 7.04 82 851
⌈n/4⌉ 1139 4.00 122.68 845 2637 1633 8.21 137.36 510 3166

40 ⌈3n=4⌉ 727 0.61 4.10 81 616 1426 1.15 23.63 352 1116
⌈n/2⌉ 728 0.75 3.39 45 514 1438 1.04 23.15 210 1230
⌈n/4⌉ 844 2.37 985.26 2703 3560 1715 5.33 5406.92 2404 14,500

15 ⌈3n=4⌉ 2529 0.66 0.27 21 220 2737 0.00 0.11 0 188
⌈n/2⌉ 2532 0.84 0.20 21 182 2752 0.21 0.37 4 283
⌈n/4⌉ 3284 1.62 3.67 39 604 3581 2.69 3.51 23 467

20 ⌈3n=4⌉ 2674 0.15 0.30 5 177 2733 0.59 0.42 29 213
⌈n/2⌉ 2683 0.54 0.53 33 232 2799 2.93 13.17 392 1145
⌈n/4⌉ 3497 1.74 13.60 156 1078 3775 2.63 119.17 638 2598

½500;1000� 30 ⌈3n=4⌉ 2551 0.23 1.26 36 364 2735 0.94 27.71 282 1803
⌈n/2⌉ 2559 0.69 5.12 173 719 2763 1.44 55.99 761 1984
⌈n/4⌉ 3261 2.22 164.25 1236 2161 3564 3.85 1099.14 1653 6886

40 ⌈3n=4⌉ 2438 0.08 2.31 17 427 2482 0.37 13.99 76 1577
⌈n/2⌉ 2444 0.32 5.60 89 579 2505 1.36 49.06 302 1908
⌈n/4⌉ 3206 3.34 4396.75 6173 6741 3384 3.62 (1.74) t.l. 2970 13,259

15 ⌈3n=4⌉ 4413 0.07 0.17 7 136 4986 0.00 0.12 0 107
⌈n/2⌉ 4424 0.32 0.23 13 151 5044 0.82 1.08 121 392
⌈n/4⌉ 5905 1.94 2.84 142 610 6592 0.78 1.17 11 537

20 ⌈3n=4⌉ 4790 0.16 0.55 19 282 4891 0.66 2.36 90 644
⌈n/2⌉ 4798 0.19 1.64 67 423 4923 1.44 8.67 330 1062
⌈n/4⌉ 6159 1.21 9.02 241 869 6513 1.48 155.66 969 2834

½1200;1700� 30 ⌈3n=4⌉ 4560 0.00 0.39 0 329 4677 0.42 5.21 124 752
⌈n/2⌉ 4563 0.07 4.17 88 744 4682 1.04 29.30 299 1944
⌈n/4⌉ 5939 0.71 175.17 1353 2539 6215 1.18 2794.35 4670 6806

40 ⌈3n=4⌉ 4327 0.10 5.05 68 596 5026 0.33 59.02 524 2213
⌈n/2⌉ 4328 0.13 11.14 131 890 5038 0.32 19.47 232 1026
⌈n/4⌉ 5644 0.35 1346.27 3711 4026 6515 1.48 1826.69 2043 7920

I. Rodríguez-Martín et al. / Computers & Operations Research 67 (2016) 102–112108
network topologies. The detailed results for all the instances are
shown in Tables 1–4. Column headings stand for:

� f j: Hub fix cost.
� n: Number of nodes.
� q: Hub capacity.
� opt: Optimal objective function value.
� %-gap: Percentage gap between the optimal value (opt) and the

lower bound (lb) at the end of the root node, that is,
100ðopt� lbÞ=opt.

� cpu: Total computing time, in seconds.
� nodes: Number of nodes in the search tree.
� nCuts: Total number of generated cuts.

We imposed a time limit of two hours for each run. When this
time limit is exceeded, we report “t.l.” in column cpu, use the best
solution at the end of the computation instead of the optimal to
compute the figure in %-gap, and report in brackets the final gap
(i.e., the percentage gap between the best solution found and the
lower bound at the end of the computation).

For the instances with random distances (Class I) we observe
that as the hub fix costs increase, the LP gaps tend to decrease.
Note that the maximum gap for the solved instances with f jA ½1;
500� is 8.33%, and it is 1.94% (though it is usually below 1%) for the
instances with f jA ½1200;1700�. All the problems but one were
solved within the time limit. Regarding the computing times, the
hardest instances are those with 40 nodes and the most restrictive
capacity ðq¼ ⌈n=4⌉Þ. Note as well that, when the optimal values of
the four problems over the same instance are different (see, for
example, the case of instance with n¼30 and q¼ ⌈n=2⌉), the
minimum optimal value is attained at problem 2EC/2EC, as
expected when the edge costs do not satisfy the triangular
inequality.

For the instances with Euclidean distances (Class II), the four 2-
LSND problems have an optimal solution with rings at the two
levels, even if we do not explicitly ask for it, because of the edge
cost characteristics. In other words, the optimal solutions of the
four variants coincide in all cases. These instances are more diffi-
cult to tackle, though only the problems dealing with the one with
n¼40, q¼ ⌈n=4⌉ and f jA ½500;1000� were unsolved within the
time limit. The gaps are higher in general than for Class I, but it
also holds that they decrease when costs f j increase. For a given
number of nodes n and fix hub cost setting f j, the hardest
instances are those with tighter capacity.

To assess the influence of the different sets of valid inequalities
proposed in this work, we compare four versions of the branch-
and-cut algorithm that differ by the sets of valid inequalities
considered. Tables 5 and 6 show the result obtained for a subset of
instances, concretely the instances of Class I and Class II with 15
nodes and f jA ½1;500�. We also conducted the experiment on lar-
ger instances, but we omit the results here because the findings
are analogous to those derived from these small instances. The
four branch-and-cut versions compared are:



Table 3
Results for the 2EC/ring network design problem.

f j n q Class I instances Class II instances

opt %-gap cpu Nodes nCuts opt %-gap cpu Nodes nCuts

15 ⌈3n=4⌉ 825 1.25 0.22 15 140 1386 0.14 0.12 0 145
⌈n/2⌉ 825 0.84 0.23 5 147 1444 2.69 0.45 54 299
⌈n/4⌉ 1105 8.33 4.95 158 810 1792 2.09 2.00 18 570

20 ⌈3n=4⌉ 1193 0.17 0.33 4 196 1291 3.15 2.98 126 730
⌈n/2⌉ 1198 0.50 0.95 31 427 1323 4.01 16.18 313 1257
⌈n/4⌉ 1359 4.65 17.00 339 1003 1713 7.02 554.37 1907 4459

½1;500� 30 ⌈3n=4⌉ 963 0.03 1.83 3 496 1315 2.58 5.21 104 815
⌈n/2⌉ 967 0.34 2.20 15 505 1336 1.58 70.29 463 2983
⌈n/4⌉ 1139 4.07 153.75 1100 2358 1633 7.84 281.52 737 4359

40 ⌈3n=4⌉ 728 0.09 1.79 4 461 1426 1.01 77.80 385 2628
⌈n/2⌉ 731 0.51 6.61 54 649 1438 2.15 92.40 420 2704
⌈n/4⌉ 852 2.75 (0.18) t.l. 8723 7370 1715 5.76 2601.74 1805 10,206

15 ⌈3n=4⌉ 2533 0.42 0.27 16 182 2737 0.00 0.11 0 196
⌈n/2⌉ 2553 1.26 0.56 37 280 2752 0.24 0.16 5 206
⌈n/4⌉ 3284 1.41 2.11 47 725 3581 1.55 0.69 14 348

20 ⌈3n=4⌉ 2682 0.22 0.27 9 196 2733 0.61 1.17 83 632
⌈n/2⌉ 2686 0.51 0.56 52 267 2799 2.93 3.12 138 578
⌈n/4⌉ 3497 1.35 11.36 118 973 3775 2.92 102.49 618 2944

½500;1000� 30 ⌈3n=4⌉ 2551 0.12 2.03 27 393 2735 1.57 33.96 420 2199
⌈n/2⌉ 2560 0.50 10.05 192 884 2763 1.41 52.48 823 2062
⌈n/4⌉ 3262 2.02 204.91 1230 2584 3564 3.21 370.49 864 5263

40 ⌈3n=4⌉ 2446 0.25 2.11 31 473 2482 0.58 12.57 182 1110
⌈n/2⌉ 2446 0.14 1.92 22 438 2505 0.93 35.38 318 1721
⌈n/4⌉ 3207 3.26 968.30 1579 5088 3394 4.07 (2.09) t.l. 3434 14,271

15 ⌈3n=4⌉ 4425 0.12 0.34 17 191 4986 0.00 0.17 0 134
⌈n/2⌉ 4425 0.28 0.22 7 138 5044 0.77 0.55 66 275
⌈n/4⌉ 5905 1.08 4.77 110 714 6592 0.82 3.53 27 569

20 ⌈3n=4⌉ 4793 0.06 0.27 4 214 4891 0.77 1.19 108 400
⌈n/2⌉ 4798 0.15 0.70 39 275 4923 1.41 4.88 263 774
⌈n/4⌉ 6159 0.92 10.30 241 876 6513 1.30 152.02 939 2643

½1200;1700� 30 ⌈3n=4⌉ 4563 0.05 1.28 6 450 4677 0.82 11.67 271 1098
⌈n/2⌉ 4567 0.07 1.39 13 460 4682 0.26 1.42 17 484
⌈n/4⌉ 5939 0.99 120.56 957 2406 6215 1.17 890.66 2128 6665

40 ⌈3n=4⌉ 4328 0.02 2.12 9 459 5026 0.33 53.79 410 2303
⌈n/2⌉ 4331 0.09 10.44 70 886 5038 0.56 141.62 547 3542
⌈n/4⌉ 5652 0.41 6745.20 8728 7846 6515 1.56 2454.00 2005 10,605

I. Rodríguez-Martín et al. / Computers & Operations Research 67 (2016) 102–112 109
� basic1 B and C: It just solves model (1)–(11). Constraints (9) are
incorporated to the initial LP, and inequalities (7) and (8) are
separated. In the separation procedure for (8), the replacement
of these constraints by (18) is deactivated.

� basic2 B and C: Like the previous one, but constraints (9) are
removed from the initial LP, and instead constraints (14) are
separated.

� basic3 B and C: Includes also inequalities (18), that replace the
violated constraints (8), and that are as well separated but only
if no other violated cuts have been found.

� complete B and C: Complete branch-and-cut algorithm
described in Section 4.

For each branch-and-cut version we report the gap of the linear
programming relaxation at the end of the root node and the total
computing time. Note that the gaps and the computing times are
large for the first and most basic algorithm, and that they decrease
as we add new families of valid inequalities. The incorporation of
the separation procedure for constraints (14) substantially reduces
the computing times, though does not have a great impact in the
gaps. In fact, in a few cases, the gaps slightly worsen. This is
because the separation procedure adds to the model only those
cuts whose violation exceeds a given threshold. The addition of
constraints (18) reduces the gaps and the running times, this being
more evident for Class II instances. The inclusion of the remaining
families of valid inequalities in the complete branch-and-cut
serves to further improve the results, as shown in the last two
columns.

Finally, Table 7 shows the average percentage of cuts generated.
The column with heading (18)' shows the number of violated
constraints (18) found by applying the separation procedure for
constraints (8), as described in Section 4.2.2. For each hub fix cost
setting, we report in a single line the data corresponding to the 12
instances with that setting. The number of violated cuts of each
family found during the branch-and-cut algorithm is highly
dependant on the sequence in which the different separation
procedures are applied. Taking this in mind, we observe that the
most numerous cuts are, by far, (14). This may be due to the own
statement of constraints (14) together with the fact that they
replace constraints (9), which are necessary to define the problem,
and they are separated at the beginning of the cutting plane phase.
The second position corresponds to constraints (18) and (17),
whose number approximately coincides. This happens because the
violation of constraints (17) is checked inside the separation rou-
tines for (8) and (18), and we are certain to find a violated con-
straint of the first type when any of the two latter is violated. On
the other extreme, only very few cuts (15) and (16) are generated.
We separate them, nevertheless, because they contribute to reduce
the gaps in some particular cases.



Table 4
Results for the 2EC/2EC network design problem.

f j n q Class I instances Class II instances

opt %-gap cpu Nodes nCuts opt %-gap cpu Nodes nCuts

15 ⌈3n=4⌉ 813 0.68 0.17 9 129 1386 0.00 0.11 0 155
⌈n/2⌉ 824 1.92 0.30 24 227 1444 2.88 1.33 127 492
⌈n/4⌉ 1105 7.13 4.80 114 708 1792 2.05 1.78 11 655

20 ⌈3n=4⌉ 1190 0.41 0.83 23 437 1291 2.99 1.34 94 439
⌈n/2⌉ 1198 0.75 1.11 36 346 1323 5.45 5.93 233 975
⌈n/4⌉ 1359 5.13 25.19 294 1501 1713 6.18 112.66 876 2614

½1;500� 30 ⌈3n=4⌉ 960 0.00 0.55 0 389 1315 2.21 7.11 116 868
⌈n/2⌉ 963 0.30 1.28 12 457 1336 1.25 6.10 99 870
⌈n/4⌉ 1139 2.44 129.78 1183 2319 1633 7.70 217.26 740 4251

40 ⌈3n=4⌉ 727 0.61 5.46 68 649 1426 1.45 42.84 325 2646
⌈n/2⌉ 728 0.75 18.97 175 1258 1438 1.96 134.57 469 4047
⌈n/4⌉ 844 2.37 1113.05 2538 4559 1715 5.99 2261.41 2293 9523

15 ⌈3n=4⌉ 2529 0.72 0.25 11 183 2737 0.00 0.08 0 162
⌈n/2⌉ 2532 1.10 0.39 15 210 2752 0.24 0.22 10 208
⌈n/4⌉ 3284 1.93 2.03 50 556 3581 1.77 0.58 12 370

20 ⌈3n=4⌉ 2674 0.26 0.39 18 222 2733 0.59 0.30 24 209
⌈n/2⌉ 2683 0.60 0.61 39 237 2799 2.38 7.30 268 1085
⌈n/4⌉ 3497 1.11 27.57 149 1579 3775 2.89 90.04 560 2859

½500;1000� 30 ⌈3n=4⌉ 2551 0.42 2.87 79 478 2735 1.67 19.97 208 1704
⌈n/2⌉ 2559 0.69 5.40 177 710 2763 1.42 42.06 609 2199
⌈n/4⌉ 3261 2.29 231.94 1053 3366 3564 5.06 334.62 1069 5905

40 ⌈3n=4⌉ 2438 0.27 1.34 20 381 2482 0.64 9.53 149 1153
⌈n/2⌉ 2444 0.49 7.63 157 655 2505 1.37 43.42 327 2616
⌈n/4⌉ 3206 3.38 1641.08 2842 5702 3368 3.35 (1.50) t.l. 3944 12,624

15 ⌈3n=4⌉ 4413 0.04 0.25 4 184 4986 0.00 0.08 0 111
⌈n/2⌉ 4424 0.35 0.33 24 252 5044 0.82 1.20 127 474
⌈n/4⌉ 5905 1.31 3.59 142 531 6592 0.81 2.87 26 574

20 ⌈3n=4⌉ 4790 0.16 1.19 54 459 4891 0.66 2.28 81 638
⌈n/2⌉ 4798 0.23 0.89 34 286 4923 1.46 6.94 245 1068
⌈n/4⌉ 6159 1.09 13.56 299 967 6513 1.59 93.57 755 2551

½1200;1700� 30 ⌈3n=4⌉ 4560 0.03 1.31 19 432 4677 0.69 7.99 154 992
⌈n/2⌉ 4563 0.06 1.73 21 438 4682 0.11 5.35 81 770
⌈n/4⌉ 5939 0.51 130.45 1533 1990 6215 4.52 1077.12 2834 6661

40 ⌈3n=4⌉ 4327 0.10 2.76 51 593 5026 0.29 12.29 181 1091
⌈n/2⌉ 4328 0.13 8.28 101 759 5038 0.37 182.26 582 4226
⌈n/4⌉ 5644 0.35 1085.06 2788 3893 6515 1.45 1719.02 1616 9560

Table 5
Effect of adding valid inequalities on the Class I instance with n¼15 and f jA ½1;500�.

q basic1 B&C basic2 B&C basic3 B&C Complete B&C

%-gap cpu %-gap cpu %-gap cpu %-gap cpu

ring/ring ⌈3n=4⌉ 1.57 3.39 1.60 0.23 1.56 0.19 0.85 0.22
⌈n=2⌉ 1.51 3.60 1.50 0.14 1.48 0.16 0.97 0.16
⌈n=4⌉ 14.89 200.96 12.58 13.32 11.63 7.46 6.78 2.57

ring/2EC ⌈3n=4⌉ 0.86 5.10 0.68 0.11 0.68 0.12 0.68 0.17
⌈n=2⌉ 2.18 4.23 2.21 0.16 2.14 0.14 2.00 0.30
⌈n=4⌉ 15.02 252.50 13.09 19.38 12.81 12.96 7.25 5.46

2EC/ring ⌈3n=4⌉ 1.56 6.80 1.60 0.16 1.56 0.19 1.25 0.22
⌈n=2⌉ 1.62 4.37 1.47 0.17 1.47 0.14 0.84 0.23
⌈n=4⌉ 14.64 195.94 12.87 16.88 12.03 12.68 8.33 4.95

2EC/2EC ⌈3n=4⌉ 0.86 3.67 0.82 0.11 0.82 0.12 0.68 0.17
⌈n=2⌉ 2.21 3.28 1.92 0.23 1.92 0.20 1.92 0.30
⌈n=4⌉ 14.48 275.81 14.01 12.92 12.43 15.30 7.13 4.80

I. Rodríguez-Martín et al. / Computers & Operations Research 67 (2016) 102–112110
6. Conclusions

This paper addresses a two-level survivable network design
problem in which location, assignment, and network design tasks
are jointly tackled. Moreover, survivability is required in the two
levels of the network, and not only in one of them as in most other
works in the literature.
We present an integer programming formulation and valid
inequalities for the problem. This formulation models, with minor
modifications, the four possible combinations of the two single-
edge protected topologies considered (rings and two-edge con-
nected networks). Several valid inequalities generalize inequalities
given in the literature for related problems, and therefore they can
also be used to solve them. We have designed an exact branch-



Table 6
Effect of adding valid inequalities on the Class II instance with n¼15 and f jA ½1;500�.

q basic1 B&C basic2 B&C basic3 B&C Complete B&C

%-gap cpu %-gap cpu %-gap cpu %-gap cpu

ring/ring ⌈3n=4⌉ 0.22 2.40 0.22 0.17 0.00 0.12 0.00 0.14
⌈n=2⌉ 4.22 12.68 4.09 0.98 2.88 0.70 2.88 0.73
⌈n=4⌉ 8.13 178.08 8.58 21.09 4.33 6.47 2.51 1.97

ring/2EC ⌈3n=4⌉ 0.22 2.00 0.07 0.12 0.00 0.11 0.00 0.09
⌈n=2⌉ 4.22 23.77 4.10 0.67 2.88 1.15 1.55 0.59
⌈n=4⌉ 8.13 222.49 8.43 8.38 4.33 6.07 3.03 1.44

2EC/ring ⌈3n=4⌉ 0.22 2.54 0.22 0.12 0.00 0.11 0.14 0.12
⌈n=2⌉ 4.22 15.04 4.22 0.94 2.88 0.78 2.69 0.45
⌈n=4⌉ 8.13 143.01 8.04 16.21 3.05 4.99 2.09 2.00

2EC/2EC ⌈3n=4⌉ 0.22 2.25 0.07 0.12 0.00 0.08 0.00 0.11
⌈n=2⌉ 4.22 22.28 4.22 1.50 2.88 1.19 2.88 1.33
⌈n=4⌉ 8.13 227.56 8.04 22.21 3.19 4.88 2.05 1.78

Table 7
Average percentages of cuts added during de branch-and-cut algorithm.

f j (7) (14) (15) (16) (17) (18)' (18) (22) (24) (25)

Class I ½1;500� 4.59 47.55 0.02 0.07 14.36 11.63 2.73 8.31 6.60 4.15
½500;1000� 4.41 47.63 0.00 0.04 13.95 11.82 2.13 8.23 6.37 5.41
½1200;1700� 4.29 48.71 0.03 0.05 14.10 11.30 2.79 8.26 6.31 4.14

Class II ½1;500� 5.12 40.78 0.04 0.19 17.62 10.24 7.37 7.52 5.63 5.48
½500;1000� 4.66 37.76 0.02 0.13 19.19 10.67 8.52 8.48 5.85 4.71
½1200;1700� 3.65 40.43 0.02 0.15 18.00 10.84 7.16 8.77 6.08 4.90

I. Rodríguez-Martín et al. / Computers & Operations Research 67 (2016) 102–112 111
and-cut algorithm and we have tested its performance on two sets
of instances with different degree of difficulty. The results are
satisfactory since they show that instances with up to 40 nodes,
which is already a large size for this kind of problems, are solved to
optimality in a reasonable amount of time.
Acknowledgements

This research has been supported by “Ministerio de Economía y
Competitividad”, Spain (research project MTM2012-36163-C06-
01). The research of the third author is supported by the Turkish
Academy of Sciences.
References

[1] Balakrishnan A, Magnanti TL, Mirchandani P. Designing hierarchical survivable
networks. Oper Res 1998;46(1):116–36.

[2] Balakrishnan A, Mirchandani P, Natarajan HP. Connectivity upgrade models
for survivable network design. Oper Res 2009;57(1):170–86.

[3] Carroll P, McGarraghy S. A decomposition algorithm for the ring spur
assignment problem. Int Trans Oper Res 2013;20:119–39.

[4] Contreras I, Fernández E. General network design: a unified view of combined
location and network design problems. Eur J Oper Res 2012;219:680–97.

[5] Baïou M, Mahjoub AR. Steiner 2-edge connected subgraph polytopes on ser-
ies–parallel graphs. SIAM J Discrete Math 1997;10(3):505–14.

[6] Baldacci R, Dell'Amico M, Salazar-González JJ. The capacitated m-ring star
problem. Oper Res 2007;55(6):1142–62.

[7] Fortz B, Labbé M. Two-connected networks with rings of bounded cardinality.
Comput Optim Appl 2004;27:123–48.

[8] Fortz B, Labbé M, Maffioli F. Solving the two-connected network with bounded
meshes problem. Oper Res 2000;48:866–77.

[9] Fortz B, Mahjoub AR, McCormick S, Pesneau P. Two-edge connected subgraphs
with bounded rings: polyhedral results and branch-and-cut. Math Program
2006;105:85–111.
[10] Fortz B, Soriano P, Wynants C. A tabu search algorithm for self-healing ring
network design. Eur J Oper Res 2003;151:280–95.

[11] Fouilhoux P, Karasan OE, Mahjoub AR, Ozkok O, Yaman H. Survivability in
hierarchical telecommunications networks. Networks 2012;59(1):37–58.

[12] Gourdin E, Labbé M, Yaman H. Telecommunication and location. In: Drezner Z,
Hamacher HW, editors. Facility location: applications and theory. Berlin,
Heidelberg: Springer; 2002. p. 275–305.

[13] Grötschel M, Monma CL, Stoer M. Design of survivable communications net-
works. In: Ball MO, Magnanti TL, Monma CL, Nemhauser GL, editors. Network
models. Amsterdam: North-Holland; 1995. p. 617–71.

[14] Hill A, Voß S. Optimal capacitated ring trees. Technical report. University of
Antwerp, Faculty of Applied Economics; 2014.

[15] Karasan O, Mahjoub AR, Ozkok O, Yaman H. Survivability in hierarchical tel-
ecommunications networks under dual homing. INFORMS J Comput
2014;26:1–15.

[16] Kerivin H, Mahjoub AR. Design of survivable networks: a survey. Networks
2005;46:1–21.

[17] Kerivin H, Mahjoub AR. On survivable network polyhedra. Discrete Math
2005;290:183–210.

[18] Klincewicz JG. Hub location in backbone/tributary network design: a review.
Locat Sci 1998;6:307–35.

[19] Labbé M, Rodríguez-Martín I, Salazar-González JJ. A branch-and-cut algorithm
for the plant-cycle location problem. J Oper Res Soc 2004;55:513–20.

[20] Labbé M, Laporte G, Rodríguez-Martín I, Salazar-González JJ. The ring star
problem: polyhedral analysis and exact algorithm. Networks 2004;43:177–89.

[21] Lee CY, Koh SJ. A design of the minimum cost ring-chain network with dual-
homing survivability: a tabu search approach. Comput Oper Res 1997;24:883–
97.

[22] Magnanti TL, Raghavan S. Strong formulations for network design problems
with connectivity requirements. Networks 2005;45:61–79.

[23] Mahjoub AR. Two-edge connected spanning subgraphs and polyhedra. Math
Program 1994;64:199–208.

[24] Mahjoub AR, Pesneau P. On the Steiner 2-edge connected subgraph polytope.
RAIRO Oper Res 2008;42:259–83.

[25] Park K, Lee K, Park S, Lee H. Telecommunication node clustering with node
compatibility and network survivability requirements. Manag Sci
2000;46:363–74.

[26] Proestki A, Sinclair MC. Design and dimensioning of dual-homing hierarchical
multi-ring networks. IEEE Proc Commun 2000;147:96–104.

[27] Rodríguez-Martín I, Salazar-González JJ, Yaman H. A branch-and-cut algorithm
for the hub location and routing problem. Comput Oper Res 2014;50:161–74.

http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref1
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref1
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref1
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref2
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref2
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref2
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref3
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref3
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref3
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref4
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref4
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref4
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref5
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref5
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref5
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref6
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref6
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref6
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref7
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref7
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref7
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref8
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref8
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref8
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref9
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref9
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref9
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref9
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref10
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref10
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref10
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref11
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref11
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref11
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref12
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref12
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref12
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref12
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref13
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref13
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref13
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref13
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref15
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref15
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref15
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref15
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref16
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref16
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref16
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref17
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref17
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref17
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref18
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref18
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref18
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref19
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref19
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref19
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref20
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref20
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref20
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref21
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref21
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref21
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref21
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref22
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref22
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref22
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref23
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref23
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref23
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref24
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref24
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref24
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref25
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref25
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref25
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref25
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref26
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref26
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref26
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref27
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref27
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref27


I. Rodríguez-Martín et al. / Computers & Operations Research 67 (2016) 102–112112
[28] Shi JJ, Fonseka JP. Hierarchical self-healing rings. IEEE/ACM Trans Netw
1995;3:690–7.

[29] Shi JJ, Fonseka JP. Analysis and design of survivable communications net-
works. IEEE Proc Commun 1997;144:322–30.

[30] Soriano P, Wynants C, Seguin R, Labbé M, Gendreau M, Fortz B. Design and
dimensioning of survivable SDH/sonet networks. In: Sanso B, Sariano P, edi-
tors. Telecommunications network planning. New York: Springer; 1999.
p. 147–67.
[31] Stoer M. Design of survivable networks. Lecture notes in mathematics, vol.
1531. Berlin, Heidelberg: Springer-Verlag; 1992.

[32] Thomadsen T, Stidsen T. Hierarchical ring network design using branch-and-
price. Telecommun Syst 2005;29:61–76.

[33] Vandenbussche D, Nemhauser GL. The 2-edge-connected subgraph poly-
hedron. J Comb Optim 2005;9:357–79.

http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref28
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref28
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref28
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref29
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref29
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref29
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref30
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref30
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref30
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref30
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref30
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref32
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref32
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref32
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref33
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref33
http://refhub.elsevier.com/S0305-0548(15)00218-X/sbref33

	A branch-and-cut algorithm for two-level survivable network design problems
	Introduction
	MIP models
	Valid inequalities
	Branch-and-cut algorithm
	Initialization
	Cutting plane phase
	Separation of inequalities (7)
	Separation of inequalities (8)
	Separation of inequalities (14)
	Separation of inequalities (15)
	Separation of inequalities (16)
	Separation of inequalities (18)
	Separation of inequalities (22)
	Separation of inequalities (24)

	Branching strategy

	Computational results
	Conclusions
	Acknowledgements
	References




