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a b s t r a c t

Hubs are consolidation and dissemination points in many-to-many flow networks. Hub location problem is to

locate hubs among available nodes and allocate non-hub nodes to these hubs. The mainstream hub location

studies focus on optimal decisions of one decision-maker with respect to some objective(s) even though the

markets that benefit hubbing are oligopolies. Therefore, in this paper, we propose a competitive hub location

problem where the market is assumed to be a duopoly. Two decision-makers (or firms) sequentially de-

cide locations of their hubs and then customers choose one firm with respect to provided service levels. Each

decision-maker aims to maximize his/her own market share. We propose two problems for the leader (former

decision-maker) and follower (latter decision-maker): (r|Xp)hub − medianoid and (r|p)hub − centroid prob-

lems, respectively. Both problems are proven to be NP-complete. Linear programming models are presented

for these problems as well as exact solution algorithms for the (r|p)hub − centroid problem. The performance

of models and algorithms are tested by computational analysis conducted on CAB and TR data sets.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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. Introduction

Hubs are consolidation and dissemination points in many-to-

any flow networks. Consolidation generates economies of scale and

hus, unit transportation cost is discounted between hubs. Hubbing

lso reduces number of required links to ensure that each flow is

outed to its desired destination. Hub networks are used in many ap-

lications in airline, cargo and telecom industries.

The hub location problem is to determine location of hubs and

llocation of non-hub nodes to these hubs with respect to a given al-

ocation structure and objective(s). A single decision-maker can de-

ermine locations of hubs depending on problem parameters such

s amount of flow and unit transportation cost between each pair

f nodes, interhub transportation discount factor, allocation strategy

single- or multiple-allocation), and structure of hub network (in-

omplete, star network etc.). In single-allocation case, whole flow

riginating from and destined to a node is routed via a unique hub.

n the other hand, in multiple-allocation case, different hubs can be

sed to route different flows with same origin. However, in a compet-

tive environment, a decision-maker should also consider decisions of

is/her rivals and customer preferences. In this study, we consider a

uopolistic market -a special case of oligopoly- where there are two

perating firms. The decision-maker who makes the initial location
∗ Corresponding author. Tel.: +905336164923.
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ecision is called leader and the other one is called as follower. We

ssume a multiple-allocation structure.

Then by combining retail location from marketing, spatial compe-

ition in economics and location theory in operations research, in this

aper, we propose a discrete Stackelberg hub location problem where

rms make sequential decisions. Each decision-maker (or firm) de-

ides location of hubs and allocation of non-hub nodes to maximize

heir market share.

. Literature review

.1. Competitive location literature

The pioneering study of competition in economics is due to

ournot (1838). He studied a market operated by two competing

rms where each firm decides amount of production of a single prod-

ct. Later, Bertrand (1883) considered a duopoly model where the

ompetitors decide price of a single product. Hotelling (1929) pre-

ented the first competitive model that includes location decisions.

e investigated location and price decisions of two ice cream ven-

ors operating on a beach in which each customer prefers the vendor

hat offers lower price.

In duopoly models presented by Cournot (1838), Bertrand (1883)

nd Hotelling (1929), decisions of two firms are made simultaneously.

nother streamline of research in competitive models deals with se-

uential decision making. The preliminary work of sequential deci-

ion making of location was first proposed in a book by Von Stack-

lberg (1951). Since sequential decisions result in an asymmetry
EURO) within the International Federation of Operational Research Societies (IFORS).
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between decision makers, we need to differentiate identities of the

decision makers. Von Stackelberg (1951) studied a duopoly where the

firm that makes the initial decision is called as leader and other one

is called as follower. He suggested three major assumptions:

• Decisions are permanent.
• Decisions are made sequentially.
• The leader and the follower have full and complete knowledge

about the system.

If leader’s decisions are given, follower makes decisions with re-

spect to his/her own objective. These decisions are called reaction

function of the follower. Since both parties have complete informa-

tion of the system, the leader observes reaction function of the fol-

lower and hence the leader makes his/her decisions based on this re-

action function. These leader–follower situations can be modeled as

bilevel optimization problems. Bilevel optimization models consider

the follower’s reaction function an input to the leader’s decisions.

Bard (1999) and Dempe (2002) gave detailed discussion on bilevel

programming models and solution techniques.

Teitz and Bart (1968) studied sequential location problem on a

line segment. Moreover, Teitz and Bart (1968) considered an exten-

sion of Hotelling’s model by allowing each decision maker to locate

more than one facility.

Drezner (1982) and Hakimi (1983) independently proposed se-

quential location problems with an OR point of view and attracted the

community’s attention. They both studied same competitive model

but with different spaces. While Drezner (1982) considered locations

on a plane, Hakimi (1983) dealt with network models. Their prob-

lem includes a number of customers with inelastic demand, that is,

amount of demand of each customer is known a priori and is not af-

fected by the decisions of leader and follower. A customer prefers the

closest facility to buy a homogenous product. The decision-makers

act sequentially, that is, the leader locates p facilities and then the

follower locates r facilities.

In order to describe contributions of Drezner (1982) and Hakimi

(1983), the following conventions are necessary. Assume that n cus-

tomers (or demand points) are located on points V = {v1, v2, . . . , vn}
with the demand of customer i being w(vi). For any subset of points

Z⊆V, let D(v, Z) = min{d(v, z) : z ∈ Z} where d(v, z) is the distance

between v and z. The distance between two points is the Euclidean

distance in a two-dimensional plane and the shortest path on a net-

work. Assume that the leader’s and follower’s facilities are located

on the set of points Xp = {x1, x2, . . . , xp} and Yr = {y1, y2, . . . , yr}, re-

spectively. A customer vi prefers the follower if and only if D(vi,Yr) <

D(vi, Xp). Then, total demand captured by the follower can be ex-

pressed as W(Yr|Xp) = ∑
i:D(vi,Yr)<D(vi,Xp) w(vi).

Assume that the leader has already been operating with facil-

ities located on Xp. Then, (r|Xp) medianoid is the set Y ∗
r such that

(Y ∗
r |Xp) ≥ W(Yr|Xp) for all sets of follower’s possible facility loca-

tions Yr. (r|Xp) medianoid is the optimal set of facility locations for the

follower to capture the highest market share given the set Xp.

Similarly, (r|p) centroid is the set X∗
p such that W(Y ∗

r (X∗
p)|X∗

p) ≤
(Y ∗

r (Xp)|Xp) for all sets of the leader’s possible set of facility loca-

tions Xp where Y ∗
r (Xp) is the (r|Xp) medianoid given Xp. (r|p) centroid is

the optimal set of facility locations for the leader to capture the high-

est market share under realistic assumption that the follower will re-

spond by (r|Xp) medianoid. Hakimi (1983) proved that both centroid

and medianoid problems are NP-hard.

An interested reader may refer to surveys by Eiselt and Laporte

(1997) and Dasci (2011) for a detailed discussion on competitive lo-

cation problems.

2.2. Hub location literature

O’Kelly (1986a, 1986b) presented the hub location problem as

system-wide transportation cost of a network is minimized by
Please cite this article as: A.I. Mahmutogullari, B.Y. Kara, Hub location un
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ocating p hubs in a single-allocation structure (This problem is later

eferred to as the single-allocation p-hub median problem). Later,

’Kelly (1987) also proposed the first mathematical formulation of

ingle-allocation p-hub median problem.

Later, Skorin-Kapov, Skorin-Kapov, and O’Kelly (1996) provided a

ew linear model for the problem and Ernst and Krishnamoorthy

1996) modeled the single allocation p-hub median problem as a

ulti-commodity flow problem. The single allocation p-hub median

roblem was proven to be NP-hard by Kara (1999).

Multiple-allocation p-hub median problem has also attracted

ttention. Campbell (1992) presented first multiple-allocation hub

odel. Skorin-Kapov et al. (1996) developed a linear model for the

roblem. Ernst and Krishnamoorthy (1998) modeled the multiple-

llocation p-hub median problem based on the idea that they use for

he single-allocation version.

Although hub location problem with median objective constitutes

he main streamline of the literature, other objectives were also in-

estigated by researchers. O’Kelly (1992), Campbell (1992) and Aykin

1994) proposed mathematical models for the hub location problem

ith fixed costs.

In some applications of hub networks, such as the cargo applica-

ions, service levels are considered as well as cost. The p-hub center

roblem is to locate p hub on a network where the distance or trav-

lling cost between the most disadvantageous pair of nodes is mini-

ized. Campbell (1994) proposed linear models for the hub location

roblems with center-type objectives. Kara and Tansel (2000) proved

hat p-hub center problem is NP-hard. They also proposed different

athematical models for the problem. Later, Ernst, Hamacher, Jiang,

rishnamoorthy, and Woeginger (2009) provided a new formulation

or the p-hub center problem based on the value of maximum collec-

ion/distribution distance between a hub and a non-hub node.

Hub covering is another version of the hub location problem.

ampbell (1994) presented mathematical models for different types

f hub covering problem. After his contribution, Kara and Tansel

2003) studied single allocation hub set covering problem and pro-

osed three different linearizations of the problem. Later, Ernst, Jiang,

nd Krishnamoorthy (2005) provided new formulations of the prob-

em based on the idea that they use for the p-hub center problem.

Various extensions of hub location problems were also considered

uch as latest arrival problems (Kara & Tansel, 2001; Yaman, Kara, &

ansel, 2007), hub location with stopovers (Kuby & Gray, 1993; Ya-

an et al., 2007), hierarchical hub network models (Yaman, 2009)

nd hub location problems with ordered averaging objective func-

ions (Puerto, Ramos, & Rodríguez-Chía, 2011; 2013).

An interested reader may refer to surveys by Campbell, Ernst, and

rishnamoorthy (2002), Alumur and Kara (2008), Kara and Taner

2011) and Campbell and O’Kelly (2012) for detailed discussion of hub

ocation problems.

.3. Hub location with competition

Although competition in location decisions has been studied in

etail, competitive hub location studies in the literature are rare.

arianov, Serra, and ReVelle (1999) proposed first hub location prob-

em with competition. They proposed mathematical models for fol-

ower’s problem where the leader had already been operating the

arket with his/her existing hubs.

They also considered proportional capture levels in addition to all-

r-nothing type capture. They assumed that the follower would cap-

ure half of the flow between nodes i and j if his/her service level

s between 0.9Cij and 1.1Cij, three–fourth of the flow if his/her ser-

ice level is between 0.7Cij and 0.9Cij and the whole flow if his/her

ervice level is less than 0.7Cij where Cij is the service level of the

eader. A mathematical model was provided for proportional cap-

ure case by triplicating the capture variables and constraints. Later
der competition, European Journal of Operational Research (2015),
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Table 1

Competitive hub location literature

Paper Decision Market Decisions Capture Computational Solution Contributions

space type type study techniques

Marianov et al. (1999) Network Duopoly Follower’s hubs Partial Random Heuristic Competitive hub

Discrete AP(20,25,40,45) location model

Wagner (2008) Network Duopoly Follower’s hubs Partial AP(50) MIP First exact solution

Discrete for moderate size instances

Sasaki and Fukushima (2001) Plane Oligopoly One hub for leader Partial CAB(25) SQP First Stackelberg competition

and each follower Continuous in hub literature

Sasaki (2005) Network Duopoly Leader’s and Partial CAB(25) Enumeration Application of Sasaki and Fukushima (2001)

follower’s hubs Continuous Heuristic to a network

Eiselt and Marianov (2009) Network Oligopoly Follower’s hubs Partial AP(25) Heuristic Various customer

Continuous preferences considered

Sasaki et al. (2014) Network Duopoly Leader and Partial CAB(25) Enumeration Bilevel model, exact solutions

follower’s hubs Continuous for small size instances

Lüer-Villagra and Marianov (2013) Network Duopoly Follower’s hubs Partial CAB(25) Heuristic Pricing decisions,

and prices Continuous Different network topologies

This study Network Duopoly Leader and Binary CAB(25) MIP Formal definition, complexity results,

follower’s hubs Discrete TR(81) Enumeration exact solutions for large size instances
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agner (2008) proposed a new capture set where the follower gets

othing in case of equal service levels for the same problem.

Sasaki and Fukushima (2001) proposed a new kind of competi-

ive hub location model where the decision space is a plane. Route

etween any O–D pair on the plane visits only one hub. First, a big

rm locates one hub, and then several medium size firms locate their

ubs. There is no competition between medium size firms. They used

ogit functions for customer preferences to express proportional cap-

ure. They initially modeled the problem as a bilevel program and

hen use a sequential quadratic programming approach.

Sasaki (2005) applied the same idea in the study by Sasaki and

ukushima (2001) to a discrete environment with some modifica-

ions. Her model includes two decision-makers: one leader and one

ollower. The leader and follower locate p and q hubs on the network,

espectively. Capture rule is as in Sasaki and Fukushima (2001) and

ach route contains one only hub.

Eiselt and Marianov (2009) proposed another hub location model

ith competition where an airline transportation company enters a

arket. It is assumed that some other companies has already been

perating in the market. The entrant firm aims to capture as many

ustomers as possible. Customer preferences are based on basic at-

ractiveness of the firms (such as safety record, personal space, qual-

ty of the foods etc.), number of stopover on the trip, cost of the route

nd time required by the flight.

Another hub location problem with Stackelberg competition was

tudied by Sasaki, Campbell, Ernst, and Krishnamoorthy (2014). In

heir problem environment, the decision-makers do not locate hubs

ut hub arcs. One leader and one competitor airline companies locate
a and qb hub arcs on the network to maximize the total revenue. The

eader can capture 0, 25, 50, 75 or 100% of flow between any O–D pair

ased on cost and travel time of the trip and the remaining customers

refer the follower. They proposed a bilevel program for the problem.

A study by Lüer-Villagra and Marianov (2013) considered both hub

ocation and pricing decisions of an entrant firm where an other firm

as already been operating on the market. They propose a nonlinear

odel where the objective is to maximize the entrant’s profit. The

ustomer preferences are represented as a logit function.

Although existing studies contribute to hub location and compe-

ition literature, both theoretical aspect of the problem and applica-

ions in industry require more effort. In order to motivate the stud-

es in this area, in this paper, we formally define hub-medianoid and

ub-centroid problems by following the terminology used by Hakimi

1983) for analogous competitive location problems. Moreover, we

rove that both problems are NP-complete. Table 1 summarizes stud-

es in the competitive hub location literature where the last row cor-

esponds to this paper.
 P

Please cite this article as: A.I. Mahmutogullari, B.Y. Kara, Hub location un
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. Problem definition

Given a network G = (N, E) where N is set of nodes and E is set

f edges, let wi j be total flow and cij be transportation cost of a

nit flow from node i to node j for all i, j ∈ N. Interhub transporta-

ion cost is discounted by the factor α , 0 ≤ α ≤ 1. (Later we use

G = (N, E), wi j, ci j, α > to refer this network.) The leader and fol-

ower would like to enter a market with a prespecified number of

ubs. Let p and r be number of hubs to be opened by the leader and

ollower, respectively. We assume that both p and r are greater than

r equal to 2 since otherwise economies of scale is not generated. Let

⊆N be the subset of nodes that are available to locate hubs. Cus-

omers prefer the leader or follower with respect to provided service

evels. Service level is defined as the cost of routing the flow from a

ode to its destination via hubs. A customer prefers the follower if

he service level provided by the follower is strictly better than the

ne provided by the leader, otherwise the demand is captured by

he leader. Ties are broken in the advantage of the leader in case of

qual service levels since the customer was already operating with

he leader when the follower entered the market and the customer

as no incentive to deviate from current position.

First, assume that the leader has already been operating the mar-

et with hubs located at a subset of nodes Xp = {x1, x2, . . . , xp}, Xp⊆H.

he flow from node i ∈ N to node j ∈ N visits one or two hubs. There-

ore, we can easily compute service level, say β ij, provided by the

eader for the flow from node i ∈ N to node j ∈ N.

i j = min
k,m∈Xp

{cik + αckm + cm j} ∀i, j ∈ N. (1)

Now, consider the follower enters the market by opening hubs on

ubset of nodes Yr = {y1, y2, . . . , yr}, Yr⊆H. Similarly, followers ser-

ice levels, say γ ij, for all node pairs i and j can be calculated as:

i j = min
k,m∈Yr

{cik + αckm + cm j} ∀i, j ∈ N. (2)

Flow wi j is captured by the follower if γ ij < β ij for all i, j ∈ N.

iven that the leader’s and follower’s hubs are located on the subset

f nodes Xp and Yr, respectively, total flow captured by the follower

an be expressed by a mapping f : Pp(H) × Pr(H) → [0,W ] such that

f (Xp,Yr) =
∑

i, j∈N:γi j<βi j

wi j (3)

here Pp(H) is the collection of subsets of H with cardinality p and

is the total flow over the network, that is, W = ∑
i, j∈N wi j .

Given Xp, the follower aims to maximize f(Xp, Yr) over all Yr ∈
p(H). We define set Y ∗

r as (r|Xp)hub − medianoid if f (Xp,Y ∗
r ) ≥
der competition, European Journal of Operational Research (2015),

http://dx.doi.org/10.1016/j.ejor.2015.09.008


4 A.I. Mahmutogullari, B.Y. Kara / European Journal of Operational Research 000 (2015) 1–12

ARTICLE IN PRESS
JID: EOR [m5G;September 30, 2015;10:14]

v

(

m

s

∑

m

u

v

∑

h

l

a

t

c

C

C

L

f

b

l

f

f

v
l

t

v

(

u

s

4

m

a

T

o

d

A

f (Xp,Yr),∀Yr ∈ Pr(H). Therefore, (r|Xp)hub − medianoid is the set of

follower’s hubs with cardinality r that maximizes captured demand

given Xp.

Now, we look at the problem from the leader’s perspective. The

leader wants to minimize the demand captured by the follower (or

equivalently maximize demand captured by himself/herself) while

deciding his/her hub set. The leader also has the information that the

follower will respond rationally.

We define set X∗
p as (r|p)hub − centroid if f (X∗

p,Y ∗
r (X∗

p)) ≤
f (Xp,Y ∗

r (Xp)),∀Xp ∈ Pp(H) where Y ∗
r (Xp) is the (r|Xp)hub −

medianoid given Xp. (r|p)hub − centroid is the set of leader’s hubs

with cardinality p so that in the remaining scenario the follower can

capture the least possible flow.

4. (r|Xp) hub-medianoid

Let < G = (N, E), wi j, ci j, α > be a many-to-many flow network. At

the time the follower makes decision, the leader has already located

his/her hubs on the set Xp⊆H and locations of these hubs are observed

by the follower. Then, the follower has the information of the service

levels provided by the leader for each pair of nodes i, j ∈ N. These

service levels can be calculated as in Eq. (1).

4.1. Complexity of (r|Xp) hub-medianoid

We prove that the problem of finding a (r|Xp)hub − medianoid is

NP-complete by using polynomial time reduction from clique prob-

lem, a known NP-complete problem due to Karp (1972).

Decision version of clique problem: Given an undirected graph

G = (N, E) and an integer r, determine if G has a r-clique, that is, there

is a set of vertices K with |K| ≥ r such that for each pair of vertices in

K there is an edge in E between them.

Theorem 1. (r|Xp)hub − medianoid is NP-complete even if α = 0.

Proof. Given an instance of clique problem, we construct a network

G′ = (N′, E′) where N′ = N ∪ Xp, where Xp = {x1, x2, . . . , xp} and E′ =
E ∪ {(i, j) : i ∈ N and j ∈ Xp} where Xp is assumed to be the hub set of

the leader. Let ci j = 1 if (i, j) ∈ E and ci j = 0.5 if i ∈ N and j ∈ Xp and let

α = 0. The flow values for all pairs i, j ∈ N are set to 1. Clearly, β = 1

for all i, j ∈ N.

We prove the theorem by showing that there exists a set of r points

Yr(Xp) on G′ such that f (Xp,Yr(Xp)) ≥ (r
2) = (r2 − r)/2 if and only if

there exists an r − clique on G.

Assume that clique problem has solution K⊆N and |K| ≥ r. By let-

ting Yr⊇K, we can observe that γi j = 0 for all i, j ∈ K since all flows

on the clique benefit discounting where α = 0 and the total flow

among the clique is captured by the follower, that is, f (Xp,Yr(Xp)) ≥
(r2 − r)/2.

On the other hand, suppose Yr in G′ is such that f (Xp,Yr(Xp)) ≥
(r2 − r)/2. If for all i, j ∈ Yr there exists an edge (i, j) ∈ E, then Yr itself

form an r − clique on G. Then set K = Yr . Otherwise, assume that Yr

does not form an r − clique, then there must be (r2 − r)/2 units of

flow captured by the follower and at least one unit of flow should be

routed via a spoke link. Equivalently, we can say that for (r2 − r)/2

pairs of node γ ij < 1. Then, none of the captured flow is routed via

the spoke link of the follower which contradicts the assumption.

Hence, we conclude that (r|Xp)hub − medianoid is reducible from

clique problem in polynomial time. So, it is NP-complete. �

4.2. Mathematical model for (r|Xp) hub-medianoid problem

To provide a mathematical model for the (r|Xp)hub − medianoid

problem, we define following decision variables:

hk =
{

1, if the follower locates a hub on node k ∈ H
0, otherwise
Please cite this article as: A.I. Mahmutogullari, B.Y. Kara, Hub location un
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ui jk =
{

1, if flow from node i ∈ N to node j ∈ N visits hub
k ∈ H as the first hub

0, otherwise

i jm =

⎧⎪⎪⎨
⎪⎪⎩

1, if flow from node i ∈ N to node j ∈ N
visits hub m ∈ H
as the second hub and this flow is captured by
the follower

0, otherwise

The following mixed integer problem, namely H-MED, solves the

r|Xp)hub − medianoid problem:

aximize
∑
i∈N

∑
j∈N

∑
m∈H

wi jvi jm (4)

ubject to
∑
k∈H

hk = r, (5)

k∈H

ui jk = 1 ∀i, j ∈ N, (6)

∑
∈H

vi jm ≤ 1 ∀i, j ∈ N, (7)

i jk ≤ hk ∀i, j ∈ N ∀k ∈ H, (8)

i jm ≤ hm ∀i, j ∈ N ∀m ∈ H, (9)

k∈H

ui jk(cik + αckm) + cm j − βi j

+ ε ≤ (1 − vi jm)M ∀i, j ∈ N ∀m ∈ H, (10)

k, ui jk, vi jk ∈ {0, 1} ∀i, j ∈ N ∀k, m ∈ H (11)

The objective (4) maximizes amount of flow captured by the fol-

ower. Constraint (5) ensures that follower locates r hubs on the set of

vailable nodes. Constraints (6) guarantee that each flow is allocated

o a first hub. Constraints (7) state flow from node i ∈ N to node j ∈ N

an be captured by the follower using a hub located at node m ∈ H.

onstraints (8) and (9) prevent allocation of flows to non-hub nodes.

onstraints (10) determine captured flows in the following manner:

HS of the constraint is the difference of service level provided by the

ollower and service level provided by the leader plus ε. Let ε = 10−6

e a very small positive number used to break ties in favor of the

eader. If this value is non-negative, the corresponding variable vi jm is

orced to be 0 that is the follower cannot provide a better service level

or flow from i ∈ N to node j ∈ N; otherwise there is no restriction on

i jm. M is a large positive value but M = (2 + α) maxi, j∈N ci j value is

arge enough since the LHS can be at most (2 + α)maxi, j∈Nci j . Since

he objective is to maximize the captured flow, corresponding vi jm

alue is assigned to 1 when there is no restriction on vi jm. Constraints

11) are domain Constraints.

If flow from i ∈ N to node j ∈ N visits only one hub k ∈ H, then

i jk = 1. Additionally, if this flow is captured by the follower, corre-

ponding variable vi jk is set to 1 and 0 otherwise.

.3. Computational analysis of (r|Xp) hub-medianoid problem

Performance of H-MED is investigated by computational experi-

ents conducted on two different data sets: CAB and TR. α values

re chosen as either 0.6 or 0.8. Also, for TR data α is set to 0.9 due to

an and Kara (2007). Nodes in the CAB data set are numbered based

n the alphabetical order of the city names whereas nodes in the TR

ata sets are plate codes of cities in Turkey which ranges from 1 to 81.

ll instances are solved with CPLEX 12.4 (ILOG, 2012) and a 4 x AMD
der competition, European Journal of Operational Research (2015),
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Table 2

Summary of experiment instances (r|Xp)hub − medianoid problem

Data set CAB TR

Hub set of the leader UMApHM and UMApHC UMApHM

p 2,3,4 and 5 6,8,10,12 and 14

r 2,3,4 and 5 6,8,10,12 and 14

α 0.6 and 0.8 0.6,0.8 and 0.9

O

u

u

m

e

h

o

i

t

t

s

f
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v
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i

s

f

w
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a

e
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f

f

p

H

b

l

o

t

c

h

l

c

f

a

i

t

a

r

c

s

f

pteron Interlagos 16C 6282SE 2.6G 16M 6400MT computer running

nder a Linux operating system. Table 2 summarizes all 139 instances

sed in the computational study of (r|Xp)hub − medianoid problem.

Since we need to take β ij values as parameters of (r|Xp)hub −
edianoid problem, we have to make some assumptions for the lead-

rs hub set in advance. Therefore, we assume that the leader locates

is/her hubs on a set of nodes according to his/her optimal choices

f well-studied multiple-allocation hub location problems: uncapac-

tated multiple-allocation p-hub median (UMApHM) and p-hub cen-

er (UMApHC). However, current models in the literature are not able

o solve the UMApHC for the size of TR data set, so only UMApHM

olutions are used as leaders hub set for this data set.

The distance matrices of both data sets are symmetric. There-

ore, if from node i ∈ N to node j ∈ N is routed via the leader’s

follower’s) hubs then flow from node j to node i is also routed

ia the leader’s (follower’s) hubs. By using this fact, the constraints

6)–(11) of H-MED are imposed for only i < j and the objective (4)

s replaced with
∑

i< j:i, j∈N

∑
m∈H (wi j + w ji)vi jm for computational

tudies.

Tables 3 and 4 summarize CPU time and market share of the

ollower in an optimal solution of (r|Xp)hub − medianoid problem
Table 3

(r|Xp)hub − medianoid experiment results for CAB data set g

α Leader’s p r Follower’s CPU α

hubs capture sec

0.6 UMApHM 2 2 65.62% 6.15 0

3 78.25% 5.59

4 87.08% 7.95

5 92.26% 12.49

3 2 30.49% 11.16

3 45.13% 9.05

4 53.69% 14.15

5 62.02% 10.97

4 2 17.91% 23.44

3 28.39% 17.93

4 37.73% 20.79

5 46.18% 24.61

5 2 18.64% 11.28

3 28.14% 9.32

4 35.04% 12.63

5 42.32% 10.55

0.8 UMApHM 2 2 65.84% 2.84 0

3 74.19% 11.89

4 80.69% 15.82

5 87.14% 13.63

3 2 29.04% 11.5

3 42.92% 6.7

4 52.83% 10.3

5 60.14% 10.39

4 2 21.06% 9.82

3 32.69% 10.47

4 42.10% 8.91

5 48.60% 19.02

5 2 18.19% 12.19

3 29.12% 7.5

4 36.93% 9.31

5 44.24% 8.78

Please cite this article as: A.I. Mahmutogullari, B.Y. Kara, Hub location un
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here the leader has already located his/her hubs on the opti-

al solution of UMApHM and UMApHC on CAB and TR data sets,

espectively.

Since the leader chooses his/her hub locations without being

ware of competition, the follower can capture high amounts of flow

ven p = r. For example, if p = r = 2 the follower can capture more

han 65% of total demand.

The proposed mathematical model H-MED can be regarded as the

ormulation of maximal hub cover problem so that covering radius

or each pair of nodes i, j ∈ N are defined as βi j − ε where ε is a small

ositive real number. Having this property, CPLEX efficiently solves

-MED within reasonable times. All instances of CAB data set could

e optimally solvable within 25 s.

For TR data set in case of equal number of hubs, that is p = r, the

eader captures more than half of the market. The follower should

pen at least two more hubs to defeat the leader. Moreover, since

he same discount factor applies for both firms, there is no important

orrelation between market shares and α value.

As p value gets closer to |H|, the leader can capture at least one

alf of the market even for the case r > p . As seen in TR instances, the

eader locates his/her hubs on strategic locations and prevents good

hoices for the follower when p ≥ 10. Then, for these instances, the

ollower is not able to capture one half of the market. Hence, if p is not

small value compared to |H|, the leader uses the advantageous of be-

ng the first mover. Therefore, the firms have incentive of competing

o be the leader. For example, even if the leader chooses his/her hubs

ccording to an optimal solution of UMApHM for α = 0.6, p = 10 and

= 14, he/she can capture more flow than follower even without

onsidering competition. However, in CAB instances, p is relatively

mall compared to |H|, so after the leader makes his/her decision, the

ollower still has big action space and being the latter decision-maker
iven the leader’s hubs are UMApHM or UMApHC

Leader’s p r Follower’s CPU

hubs capture sec

.6 UMApHC 2 2 75.86% 2.86

3 85.10% 4.32

4 90.98% 4.74

5 94.74% 3.69

3 2 51.81% 6.45

3 70.25% 4.63

4 79.08% 15.68

5 85.23% 18.30

4 2 36.56% 21.72

3 47.39% 22.67

4 57.38% 20.94

5 66.93% 19.91

5 2 45.62% 6.75

3 57.27% 13.39

4 69.34% 16.08

5 76.75% 10.96

.8 UMApHC 2 2 73.04% 2.75

3 82.43% 4.65

4 89.68% 9.47

5 92.32% 11.31

3 2 42.37% 11.6

3 55.89% 12.3

4 65.90% 13.01

5 75.00% 7.32

4 2 44.19% 4.17

3 58.80% 3.76

4 65.64% 10.52

5 73.18% 12.55

5 2 42.19% 9.29

3 52.65% 10

4 62.66% 7.92

5 71.62% 9.67
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Table 4

(r|Xp)hub − medianoid experiment results for TR data set given the leader’s hubs are UMApHM

α p r Follower’s CPU α p r Follower’s CPU α p r Follower’s CPU

capture sec capture sec capture sec

0.6 6 6 39.31% 467.27 0.8 6 6 37.97% 449.76 0.9 6 6 40.86% 354.78

8 49.19% 358.34 8 48.24% 330.15 8 49.44% 339.55

10 56.94% 266.14 10 55.70% 158.63 10 56.06% 213.72

12 64.02% 80.93 12 61.84% 85.34 12 61.54% 177.01

14 68.91% 20.77 14 66.97% 35.69 14 66.45% 74.73

8 6 28.58% 326.31 8 6 29.37% 393.24 8 6 31.11% 182.35

8 37.09% 286.47 8 37.08% 263.35 8 38.69% 197.03

10 44.37% 213.4 10 44.35% 174.8 10 44,83% 158.88

12 51.77% 76.28 12 50.71% 84.56 12 50.49% 129.43

14 57.97% 21.11 14 56.33% 39.49 14 55.77% 76.34

10 6 19.91% 302 10 6 20.12% 385.03 10 6 20.74% 287.35

8 27.13% 190.99 8 27.03% 222.86 8 27.77% 121.56

10 34.10% 144.75 10 33.84% 200.72 10 33.86% 128.64

12 40.48% 68.05 12 40.74% 72.85 12 39.89% 90.58

14 45.73% 18.38 14 46.84% 26.06 14 44.90% 32.29

12 6 15.83% 168.81 12 6 16.93% 232.28 12 6 18.45% 127.1

8 21.79% 125.01 8 23.41% 104.74 8 24.59% 42.89

10 27.06% 61.06 10 28.62% 107.7 10 29.08% 36.44

12 31.37% 28.81 12 32.81% 13.03 12 32.98% 42.05

14 35.48% 13.45 14 35.85% 15.83 14 36.18% 31.13

14 6 13.04% 141.97 14 6 13.02% 109.78 14 6 13.66% 66.42

8 17.87% 108.2 8 18.57% 13.44 8 18.81% 29.76

10 22.25% 22.23 10 22.52% 13.66 10 22.50% 30.4

12 26.00% 10.43 12 25.20% 34.18 12 25.60% 31.8

14 28.42% 9.76 14 27.40% 25.14 14 28.18% 30.64

a

A

C

T

o

c

t

t

v

5

c

V

a

a

l

is more advantageous if the former one does not have information

about the competition.

5. (r|p) hub-centroid

Let < G = (N, E), wi j, ci j, α > be a many-to-many flow network. At

the time the leader makes his/her decision, he/she knows that the

follower is going to respond rationally, that is, the follower is go-

ing to choose the optimal solution of (r|Xp)hub − medianoid prob-

lem after observing Xp. Therefore, (r|Xp)hub − medianoid problem

is embedded in (r|p)hub − centroid problem. Due to this relation,

(r|p)hub − centroid problem has a bilevel structure.

5.1. Complexity of (r|p) hub-centroid

We prove that the problem of finding a (r|p)hub − centroid is NP-

complete by using polynomial time reduction from vertex cover prob-

lem, a known NP-complete problem due to Karp (1972).

Decision version of vertex cover problem: Given an undirected

graph G = (N, E) and an integer p, determine if G has a vertex cover,

that is, if there is a set of vertices C with |C| ≤ p such that for each

edge (i, j) ∈ E, either i or j is in C.

Theorem 2. The problem of finding (r|p)hub − centroid is NP-complete

even if α = 1.

Proof. Given an instance of vertex cover problem, we construct a net-

work G′ = (N′, E′) where G′ = G. Let ci j = 1 if (i, j) ∈ E. The flow values

for all pairs i, j ∈ N is set to 1 if (i, j) ∈ E and 0 otherwise. Also, assume

that α = 1.

We prove the theorem by showing that there exists a set of p

points Xp on G′ such that f (Xp,Yr(Xp)) = 0 if and only if there exists

a vertex cover C with |C| ≤ p .

Assume that vertex cover problem has solution C⊆N and |C| ≤ p.

By letting Xp⊇C, we can observe that unit flow wi j either i or j is in

Xp. Therefore, for each flow wi j, the service level provided by the

leader βi j = 1 noting that each flow is routed via only a single link.

Since the follower cannot provide a strictly better service level for
Please cite this article as: A.I. Mahmutogullari, B.Y. Kara, Hub location un
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ny of the node pairs i and j, no flow is captured by the follower. Then,

f (Xp,Y ∗
r (Xp)) = 0.

On the other hand, suppose Xp in G′ is such that f (Xp,Y ∗
r (Xp)) = 0.

lso, assume that Xp does not contain a subset which is a vertex cover

of G. So, there exists an edge (i, j) ∈ E′ where neither i nor j is in Xp.

hen, the follower can capture the flow wi j by location his/her hubs

n both i and j which yields γi j = 1. On the other hand, the follower

an provide a service level β ij ≥ 2 since the flow should visit a hub

hat is different from both i and j. Then, f (Xp,Y ∗
r (Xp)) ≥ 1 which con-

radicts with the assumption.

Hence, we conclude that (r|p)hub − centroid is reducible from

ertex cover problem in polynomial time. So, it is NP-complete. �

.2. Mathematical model for (r|p) hub-centroid problem

To provide a bilevel mathematical model for the (r|p)hub −
entroid problem, we define following decision variables:

Hk =
{

1, if the leader locates a hub on node k ∈ H
0, otherwise

Ui jk =
{

1, if flow from node i ∈ N to node j ∈ N visits hub
k ∈ H as the first hub

0, otherwise

i jm =
{

1, if flow from nodei ∈ N to node j ∈ N visits hub
m ∈ H as the second hub

0, otherwise

ai j =
{

1, if flow from node i ∈ N to node j ∈ N is captured
by the follower

0, otherwise

βi j = the service level for the node pair i, j ∈ N

provided by the leader.

Note that capital letter decision variables Hk, Uijk, Vijm of the leader

re analogous to their lowercase versions defined for the follower

nd location variable Hk should not be confused set of possible hub

ocations H.
der competition, European Journal of Operational Research (2015),
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Table 5

Summary of the experiments conducted for H-CEN.

n Follower’s Solution Gap % n Follower’s Solution Gap %

capture (%) time (s) capture (%) Time (s)

5 41.39 1.04 – 16 43.15 – 76.74

6 40.16 3.83 – 17 58.49 – 83.53

7 40.59 13.3 – 18 61.16 – 86.10

8 36.36 18.34 – 19 100 – 91.41

9 34.31 109.31 – 20 100 – 92.33

10 39.72 475.02 – 21 58.18 – 88.02

11 41.03 325.55 – 22 98.36 – 92.19

12 40.55 – 4.5 23 57.65 – 87.82

13 39.55 – 20.62 24 100 – 93.02

14 46.18 – 17.16 25 100 – 93.33

15 43.75 – 55.92
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The following bilevel mixed integer problem H-CEN-B solves the

r|p)hub − centroid problem:

inimize
∑
i∈N

∑
j∈N

wi jai j (12)

ubject to
∑
k∈H

Hk = p, (13)

k∈H

Ui jk = 1 ∀i, j ∈ N, (14)

∑
∈H

Vi jm = 1 ∀i, j ∈ N, (15)

i jk ≤ Hk ∀i, j ∈ N ∀k ∈ H (16)

i jm ≤ Hm ∀i, j ∈ N ∀m ∈ H (17)

i j ≥
∑
k∈H

Ui jk(cik + αckm) + Vi jmcm j ∀i, j ∈ N ∀m ∈ H (18)

i j − γi j ≤ ai jM ∀i, j ∈ N, (19)

here γi j is induced from optimal solution of

− MED for Hk, k ∈ H (20)

k,Ui jk,Vi jk, ai j ∈ {0, 1} and βi j ≥ 0 ∀i, j ∈ N ∀k, m ∈ H (21)

The objective (12) minimizes amount of flow captured by the fol-

ower which is equivalent to maximizing amount of flow captured by

he leader. Constraint (13) ensures the leader locates p hubs on the

et of available nodes. Constraints (14), (15), (16) and (17) guarantee

hat flow from node i ∈ N to j ∈ N visits two (not necessarily differ-

nt) hub nodes k ∈ H and m ∈ H. Constraints (18) correctly calculate

he service levels of the follower in the following manner: if Vi jm = 0,

he constraint becomes redundant. However, if Vi jm = 1 the RHS of

he constraint becomes the service level provided by the leader for

ow from node i ∈ N to j ∈ N. Constraints (19) correctly calculate

hether a flow is captured by the follower or not in the following

anner: If the LHS of the constraint is positive, that is the follower

rovides a service level for the flow from node i ∈ N to j ∈ N which

s better than the service level provided by the leader, the RHS of the

onstraint must be positive and ai j = 1. Otherwise, the constraint be-

omes redundant. Constraint (20) states that service levels of the fol-

ower are induced from another optimization problem, H-MED ac-

ording to decisions of the leader and hence H-CEN-B is a bilevel

roblem due to Constraint (20). Constraints (21) are the domain

onstraints.

As stated by Bard (1999) and Dempe (2002), bilevel models are

ard to solve even for a small number of decision variables. We

se a mini–max approach to linearize H-CEN-B where the lead-

rs choose a hub set so as to minimize the total captured flow

y the follower in the remaining scenario. Let us define a new

arameter:

S
i j = service level for pair i, j ∈ N provided by the follower

if he/she chooses S ⊆ H as hub set

hat is, γ S
i j

= mink,m∈S{cik + αckm + cm j}. Also define a new decision

ariable:

S
i j =

⎧⎪⎨
⎪⎩

1, if flow from node i ∈ N to node j ∈ N is captured by
the follower when he/she chooses
S ⊆ H as hub set

0, otherwise
Please cite this article as: A.I. Mahmutogullari, B.Y. Kara, Hub location un
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Then, the following mixed integer problem H-CEN solves the

r|p)hub − centroid problem with exponential number of decision

ariables and constraints:

inimize Z (22)

ubject to (13) − (18)

≥
∑
i∈N

∑
j∈N

aS
i jwi j ∀i, j ∈ N ∀ S ⊆ H with |S| = r, (23)

i j − γ S
i j ≤ aS

i jM ∀i, j ∈ N ∀ S ⊆ H with |S| = r, (24)

k,Ui jk,Vi jk, aS
i j ∈ {0, 1} and βi j ≥0 ∀i, j ∈ N ∀ S ⊆ H with |S|=r,

(25)

Objective function (22) and constraints (23) together minimize

he highest possible captured flow value by the follower in the re-

aining scenario. Constraints (24) correctly calculate whether a flow

s captured with a hub set S ⊆ H by the follower or not, similar to (18).

onstraints (25) are domain constraints.

The mixed integer program H-CEN has 3n2m + 2n2 + 2n2(m
r ) +

constraints and 2n2m + n2(m
r ) + n2 + m + 1 variables of which

n2m + n2(m
r ) + m are binary where |N| = n, |H| = m.

.3. Computational performance of H-CEN

We used CAB data set to observe the performance of H-CEN model

ia CPLEX. Since H-CEN model contains exponential number of vari-

bles and constraints, the experiment is conducted for first n nodes of

he data set where n ranges from 5 to 25 for the α = 0.6 value. More-

ver, values of problem parameters p and r are set to two which yield

(n4) variables and constraints. Table 5 summarizes the results of the

omputational study for these instances within a time limit of 7200 s

= 2 h).

The conducted computational study revealed that the H-CEN

odel can only be solvable within 2 h for n ≤ 11. Moreover, for values

≥ 15, the optimality gap is greater than 50%. Therefore, for even very

mall instances, an optimal solution of H-CEN cannot be obtained

ia CPLEX. Thus, we develop enumeration-based solution algorithms

resented in the next section.

.4. Enumeration-based solution algorithms

Since H-CEN-B is a bilevel model and H-CEN contains exponen-

ial number of constraints, they are inefficient to solve (r|p)hub −
entroid problem for even small and medium size networks. There-

ore, we propose enumeration-based algorithms to obtain optimal

olutions of (r|p)hub − centroid problem for problem instances with

easonable sizes.
der competition, European Journal of Operational Research (2015),
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W

Table 6

Summary of experiment instances for

(r|p)hub − centroid problem.

Data set CAB TR

p 2,3,4 and 5 2,3,4 and 5

r 2,3,4 and 5 2,3,4 and 5

α 0.6 and 0.8 0.6,0.8 and 0.9
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The first idea is observing all possible choices of leader’s hub

sets and the response that the follower gives to these possible solu-

tions. This leads us to complete enumeration algorithm for (r|p)hub −
centroid problem where for all possible hub set choices of the leader

and follower, service level provided to each flow is calculated.

The complete enumeration algorithm enumerates all the possible

choices of hub sets of the leader and follower, then for all node

pairs i, j ∈ N determines if the flow wi j is captured by the follower

or not. Therefore, running time of the algorithm is proportional to

n2|Pp(H)||Pr(H)|.
However, the following theorem states that enumerating all of

the remaining feasible solutions is redundant if a feasible solution

to (r|p)hub − centroid problem is observed.

Theorem 3. Let Xp be a feasible solution to (r|p)hub − centroid prob-

lem. If there exist X ′
p and Y ′

r with f (Xp,Y ∗
r (Xp)) < f (X ′

p,Y ′
r ) then X ′

p can-

not be an optimal solution to (r|p)hub − centroid problem.

Proof. f (X ′
p,Y ′

r ) ≤ f (X ′
p,Y ∗

r (X ′
p)) where Y ∗

r (X ′
p) is the optimal so-

lution to (r|Xp)hub − medianoid problem given that the hub set

of the leader is Xp. Then, f (Xp,Y ∗
r (Xp)) < f (X ′

p,Y ′
r ) and f (X ′

p,Y ′
r ) ≤

f (X ′
p,Y ∗

r (X ′
p)) together imply that f (Xp,Y ∗

r (Xp)) < f (X ′
p,Y ∗

r (X ′
p)).

Therefore, X ′
p cannot be an optimal solution to (r|p)hub − centroid

problem. �

By using Theorem 3, we can improve the solution time of com-

plete enumeration algorithm by skipping the search of the follower’s

reaction to the choices of the leader which cannot be an optimal so-

lution to (r|p)hub − centroid problem. We call this modified version

of the algorithm as smart enumeration algorithm.

We can still decrease running time of smart enumeration algo-

rithm if another bound on the amount of the flow captured by the

leader is obtained. For the special case p ≥ r, we can improve the

efficiency of the algorithm by skipping some feasible solutions that

cannot be optimal.

Theorem 4. If p ≥ r, p < |H| − 2, r ≥ 2, all flow values wi j > 0 for all i

�= j and the cost matrix satisfies triangular inequality, then the optimal

solution of (r|p)hub − centroid problem X∗
p satisfies f (X∗

p,Y ∗
r (X∗

p)) <

/2 where W is the total flow over the network.

Proof. Assume that X∗
p is an optimal solution of (r|p)hub − centroid

problem which satisfies f (X∗
p,Y ∗

r (X∗
p)) ≥ W/2. Then, at least one half

of the total flow on the network is captured by the follower. Equiv-

alently, we can say γ ij < β ij hold for at least half of the total flow

where γ ij and β ij values are implied by X∗
p and Y ∗

r (X∗
p), respectively.

Then, the follower can provide a better service level (viz. can provide

a better β ij value) for at least one half of the total flow by setting

his/her hub set X ′
p = Y ∗

r (X∗
p). Then, f (X ′

p,Y ∗
r (X∗

p)) = 0 since both the

leader and follower provide same service levels for all flows and in

case of equity the follower captures the flow. Since p < |H| − 2 then

there are two nodes i, j ∈ H⊆N but not in X ′
p. The follower can move

two of his/her hubs to i and j ,and captures the flow wi j due to tri-

angular inequality. Let Y ′
r this new hub set. Then, f (X ′

p,Y ′
r ) > 0. So,

we can say that the service levels induced by Y ′
r dominate the service

levels implied by Y ∗
r (X∗

p) contradicting with the optimality condition

f (X∗
p,Y ∗

r (X∗
p)) ≥ f (X∗

p,Y ′
r ).

Hence, under the conditions p ≥ r, p < |H| − 2, r ≥ 2, all flow val-

ues wi j > 0 for all i �= j and the cost matrix satisfies triangular in-

equality, an optimal solution of (r|p)hub − centroid problem X ′
p satis-

fies f (X∗
p,Y ∗

r (X∗
p)) < W/2 �

Utilizing Theorem 4, we can further improve running time of the

algorithm. The bound states that in an optimal solution the leader

should get at least 50% of the total flow, so if there exist Xp and Yr

with f(Xp, Yr) > W/2 where W is the total flow on the network with

p ≥ r then we can say that Xp is not an optimal solution to (r|p)hub −
Please cite this article as: A.I. Mahmutogullari, B.Y. Kara, Hub location un
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entroid problem. We call this improved version of the algorithm as

mart enumeration with 50%-bound.

.5. Computational analysis of enumeration-based solution algorithms

All algorithms are coded in Java 1.6.0_23 using the same computer.

able 6 summarizes all 80 instances used in the computational study

f smart enumeration and smart enumeration with 50%-bound algo-

ithms:

For (r|p)hub − centroid problem, TR instances are generated for

elatively smaller values of number of hubs to be located, that is p, r

{2, 3, 4, 5}, unlike the instances for (r|Xp)hub − medianoid prob-

em due to memory requirements and long CPU times. Although

orst case running times of all three algorithms are proportional to
2|Pp(H)||Pr(H)|, in practice smart enumeration and smart enumera-

ion with 50%-bound algorithms outperforms complete enumeration

ramatically in large instances.

Tables 7 and 8 summarize conducted experiments for (r|p)hub −
entroid problem for CAB and TR data sets respectively.

Computational analysis also revealed that the leader can increase

is/her market share by acting rationally in case of competition. If

he leader makes his/her decision ignoring competition, his/her de-

ision will be based on the solutions of some classic models, such

s p-hub median and p-hub center. However, the leader may lose

ome of his/her market in case of another firm entering the mar-

et and capturing some of the customers that previously belonged

o the leader. In Table 9, we compare percentage of captured flow

y the follower if the leader locates his/her hubs on the optimal

ocations of (r|p)hub − centroid or the leader locates his/her hubs

n p-hub median and p-hub center (without considering compe-

ition) and the follower responds based on (r|Xp)hub − medianoid

roblem.

For example, if p = r = 2, α = 0.6 and the leader locates his/her

ubs by being aware of competition, then the follower can only cap-

ure 46.14% of the market. However, if the leader locates his/her

ubs according to the optimal solution of p-hub median problem,

he follower can capture 65.62% of the market and leader loses

9.48% of the market to the follower. Likewise, optimal solution of

-hub center problem is a worse choice and the follower can cap-

ure 75.86% of the market which means that the leader losts 29.72%.

ig. 1 depicts the optimal hub locations of (r|p)hub − centroid,

-hub median and p-hub center problems where p = r = 2 and

= 0.6.

As seen above, optimal solution of p-hub median is preferable to

ptimal solution of the p-hub center problem in all instances. This re-

ult is a direct consequence of difference in definition of these two

roblems. While p-hub median problem minimizes weighted sum of

ervice levels of each node pair, p-hub center problem minimizes ser-

ice level of the most disadvantageous node pair. p-hub center prob-

em ignores the flows between node pairs and focuses only on the

istance between them. On the other hand, p-hub median problem

ocates hubs on a set of node so that the node pairs with higher flow

re given more consideration.

Also observe that the p-hub median optimal solution can be re-

arded as a promising solution to (r|p)hub − centroid problem. Es-

ecially for larger values of p, the difference in the market share be-

ween the optimal solution of (r|p)hub − centroid and p-hub median
der competition, European Journal of Operational Research (2015),
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Table 7

Summary of experiment results for (r|p)hub − centroid problem for CAB data set.

α p r Follower’s CPU sec CPU sec α p r Follower’s CPU sec CPU sec

Capture smart smart-%50 Capture smart smart-%50

0.6 2 2 46.14% 1.52 0.93 0.8 2 2 43.68% 1.35 0.72

3 64.37% 12.71 – 3 59.59% 11.78 –

4 74.75% 70.32 – 4 70.75% 100.37 –

5 83.52% 320.78 – 5 78.74% 535.15 –

3 2 30.39% 5.81 5.61 3 2 29.18% 4.31 4.13

3 45.13% 19.94 11.46 3 42.87% 23.13 14.65

4 53.69% 88.02 – 4 52.84% 142.68 –

5 62.02% 557.16 – 5 60.14% 791.55 –

4 2 17.91% 19.27 17.24 4 2 21.06% 17.96 18.56

3 28.39% 36.62 33.27 3 30.70% 30.7 25.58

4 37.73% 141.6 77.38 4 38.39% 212.61 155.75

5 46.18% 631.1 – 5 45.24% 1015.49 –

5 2 14.30% 70.35 70.09 5 2 15.30% 74.25 72.77

3 23.73% 117.4 117.15 3 23.24% 139.05 135.53

4 31.91% 371.14 341.28 4 31.78% 382.09 360.54

5 39.58% 1498.94 1272.24 5 38.57% 1335.03 1043.81

Table 8

Summary of experiment results for (r|p)hub − centroid problem for TR data set.

α p r Follower’s CPU sec α p r Follower’s CPU sec α p r Follower’s CPU sec

capture smart-%50 capture smart-%50 capture smart-%50

0.6 2 2 49.44% 7.2 0.8 2 2 46.84% 8.81 0.9 2 2 44.12% 8.39

3 64.65% 45.69 3 60.05% 39.23 3 58.74% 38.84

4 74.97% 257.8 4 70.03% 280.44 4 67.98% 265.09

5 84.72% 1409.52 5 77.97% 1326.98 5 75.45% 1775.52

3 2 30.49% 24.6 3 2 30.68% 21.65 3 2 30.35% 26.9

3 40.82% 77.19 3 40.81% 73.32 3 39.90% 68.93

4 56.18% 400.15 4 51.43% 351.76 4 50.03% 365.13

5 65.58% 1630.12 5 60.66% 1354.41 5 58.18% 2002.92

4 2 20.07% 75.35 4 2 20.33% 80.3 4 2 20.38% 77.32

3 30.57% 161.12 3 30.19% 154.12 3 29.55% 176.41

4 42.15% 724.81 4 39.41% 549.42 4 38.11% 901.68

5 51.89% 2166.95 5 48.57% 2087.01 5 46.83% 3022.19

5 2 14.32% 415.39 5 2 14.82% 440.62 5 2 14.27% 455.12

3 23.61% 551.04 3 22.12% 534.12 3 22.87% 583.39

4 32.34% 1098.69 4 29.28% 997.63 4 31.76% 1706.91

5 40.05% 4911.17 5 37.44% 4450.71 5 38.91% 6634.97

Table 9

Comparison market share of the follower in the optimal solution of (r|Xp)hub − medianoid with the classical

model for CAB data set with α = 0.6.

(r|p)hub− (r|Xp)hub− Difference (r|Xp)hub− Difference

centroid medianoid with centroid medianoid with centroid

p r Xp = p − hub median Xp = p − hub center

2 2 46.14% 65.62% 19.48% 75.86% 29.72%

3 64.37% 78.25% 13.88% 85.2% 20.83%

4 74.75% 87.08% 12.33% 90.98% 16.23%

5 83.52% 92.26% 8.74% 94.74% 11.22%

3 2 30.39% 30.49% 0.1% 51.81% 21.42%

3 45.13% 45.13% 0% 70.25% 25.12%

4 53.69% 53.69% 0% 79.08% 25.39%

5 62.02% 62.02% 0% 85.23% 23.21%

4 2 17.91% 17.91% 0% 36.56% 18.65%

3 28.39% 28.39% 0% 47.39% 19.00%

4 37.73% 37.73% 0% 57.38% 19.65%

5 46.18% 46.18% 0% 66.93% 20.75%

5 2 14.3% 18.64% 4.34% 45.62% 31.32%

3 23.73% 28.14% 4.41% 57.27% 33.54%

4 31.91% 35.04% 3.13% 69.34% 37.43%

5 39.58% 42.32% 2.74% 76.75% 37.17%
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Fig. 1. Optimal hub locations of (r|p)hub − centroid, p-hub median and p-hub center problems where p = r = 2 and α = 0.6.

Table 10

CPU times of the smart enumeration where p-hub

median problem solution is initial incumbent.

p / r 2 3 4 5

2 1.52 10.94 52.84 269.13

3 3.21 8.9 20.76 105.55

4 14.64 20.04 45.73 145.72

5 68.51 105.97 300.05 1078.97

Table 11

Demand loss of the leader by choosing UMApHM as

his/her hub set.

α p\r 2 3 4 5

0.6 2 1.17% 4.08% 5.16% 5.26%

3 0.00% 0.00% 0.22% 0.85%

4 2.07% 3.13% 2.65% 3.81%

5 0.70% 0.27% 1.64% 2.15%

0.8 2 3.12% 2.43% 2.45% 6.91%

3 0.00% 0.00% 0.00% 0.00%

4 0.00% 0.00% 0.00% 0.00%

5 0.90% 2.12% 3.42% 2.77%

0.9 2 6.55% 8.35% 9.54% 9.83%

3 4.24% 3.82% 5.22% 4.21%

4 0.00% 1.01% 0.36% 0.58%

5 2.20% 1.07% 1.28% 2.10%
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is reasonably small and for seven of the 16 instances the optimal hub

sets and optimal values of these problems coincide.

Required CPU time for smart enumeration algorithms directly de-

pends on the order of enumeration of leader’s hub set choices.

Currently, the algorithm enumerates sets lexicographically. For ex-

ample, if p = 3, first algorithm starts with Xp = {1, 2, 3}, then

goes on with {1, 2, 4}, {1, 2, 5} and so on. However, as stated

in Theorem 3, if a feasible solution which provided genuine

bound is already obtained, running time of the algorithm can be

improved.

For the instances reported above, the optimal solution of p-hub

median problem diverges 4.32% on average from the optimal solution

of (r|p)hub − centroid problem. Then, another computational experi-

ment is conducted for smart enumeration algorithm on CAB data set

with p, r ∈ {2, 3, 4, 5} and α = 0.6 by including the bound obtained by

the optimal solution of p-hub median problem. Table 10 depicts CPU

times of this experiment.

The experiment revealed that the running time of smart enumer-

ation algorithm has improved up to 81% (37% on average) for these

instances when the optimal solution of p-hub median problem is

used a bound on the optimal value of (r|p)hub − centroid problem.

Also, as the difference between optimal solutions of p-hub median

and (r|p)hub − centroid problems get smaller, higher improvement is

obtained.

5.6. Discussion on larger p and r values

Since running times of proposed enumeration based algorithms

increase exponentially as p or r increase, for large p and r values
Please cite this article as: A.I. Mahmutogullari, B.Y. Kara, Hub location un
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hese algorithms may not be very efficient. However, as discussed

n Table 9, follower’s captures are compared for the cases the

eader either chooses UMApHM or (r|p)hub − centroid as his/her

ub set. Similar comparison is summarized in Table 11 for TR data

et.

As in Table 11, the average demand lost by the leader is 2.45%

n average and for the instances where p = r the average lost is

.06%. Therefore, additional computational experiments are con-

ucted for the case where the leader chooses UMApHM for TR data

et where both the leader and follower locate equal number of

ubs.

Since, we do not have chance to compare UMApHM and

r|p)hub − centroid results for large p and r values, a fair measure of

erformance UMApHM in a competitive environment could be the

ase where both firms have equal capabilities. As seen on Table 12,

f both player locate equal number of hubs, the leader can capture

igh amount of flows even ignoring competition and locating hubs

ccording to UMApHM. As number of hubs increases, solution times

et reasonably short as well. Hence, it can be concluded that for

arge values of p and r, UMApHM is a preferable solution for the

eader.
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Table 12

Percentage of lost market share of the follower by choosing UMApHM as his/her hub set rather than optimal (r|p)hub −
centroid.

α p = r follower’s CPU α p = r follower’s CPU α p = r follower’s CPU

capture time capture time capture time

0.6 6 39.31% 688.48 0.8 6 37.97% 532.49 0.9 6 40.86% 388.77

7 37.26% 408.19 7 36.91% 474.21 7 38.35% 404.49

8 37.09% 515.36 8 37.08% 301.86 8 38.69% 260.56

9 35.18% 243.62 9 36.21% 186.07 9 36.99% 168.50

10 34.10% 199.44 10 33.84% 172.06 10 33.86% 202.53

11 33.42% 97.47 11 34.13% 133.85 11 34.38% 102.63

12 31.37% 104.39 12 32.81% 38.10 12 32.98% 51.08

13 30.61% 41.46 13 31.00% 36.35 13 31.65% 38.85

14 28.42% 34.01 14 27.40% 37.11 14 28.18% 31.82

15 24.19% 31.96 15 25.18% 32.90 15 24.80% 31.55
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. Conclusions

In this paper, we propose a duopoly model where two competitors

equentially choose hub locations and aim to maximize their own

arket share under Stackelberg competition. Although competitive

ocation has attracted attention of economists and OR practitioners,

ub location studies considering competition are rare in the litera-

ure. Therefore, formal definitions of terminology and problem were

eficiencies in both competitive location and hub location literature.

t is assumed that both players have perfect information of the en-

ironment. It is also assumed that both players are rational which

eans that they aim to maximize their market share. The market

hare of firms is determined by captured flow. Although choice of cus-

omers depend on many attributes, we assume that customers prefer

he firm which offers a better service level.

From the view of the follower the problem is a maximum cover

roblem rather than a competitive model. On the other hand, the

ompetition issue becomes important from perspective of the leader.

fter the leader makes his/her decisions, the follower takes action

nd then the markets shares are determined. Therefore, the leader’s

roblem has a bilevel nature. We then propose a bilevel model and an

quivalent mathematical model as well as computational complexity

esults for the problems. Mathematical model of the leader can only

e solvable for very small instances and solving the bilevel model

s much harder. However, proposed enumeration-based algorithms

an solve the problem for relatively bigger instances even though the

orst-case complexity tends to complete enumeration. On the other

and, UMApHM can be a promising solution for the leader when

olving (r|p)hub − centroid requires higher amount of CPU time and

emory.

Solving the (r|p)hub − centroid problem exactly or near-optimally

s an open research direction. Exact methods such as column gener-

tion or branch-and-price can be thought of as possible ideas. Also,

ome meta-heuristic approaches can be employed to solve the prob-

em within an acceptable optimality gap.
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