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Abstract Hubs are special facilities that serve as switching, transshipment and sorting
nodes in many-to-many distribution systems. Flow is consolidated at hubs to exploit
economies of scale and to reduce transportation costs between hubs. In this article, we first
identify general features of optimal hub locations for single allocation hub location
problems based on only the fundamental problem data (demand for travel and spatial
locations). We then exploit this knowledge to develop a straightforward heuristic meth-
odology based on spatial proximity of nodes, dispersion and measures of node importance
to delineate subsets of nodes likely to contain optimal hubs. We then develop constraints
for these subsets for use in mathematical programming formulations to solve hub location
problems. Our methodology can also help narrow an organization’s focus to concentrate
on more detailed and qualitative analyses of promising potential hub locations. Results
document the value of including both demandmagnitude and centrality inmeasuring node
importance and the relevant tradeoffs in solution quality and time.
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1 Introduction

Hubs are special facilities that act as switching, transshipment and sorting nodes in
many large transportation and telecommunication networks. Rather than having direct
links for each origin–destination (o-d) pair, hub networks use fewer links to connect the
origins and destinations, and thereby concentrate flows to allow economies of scale.
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Hub networks are designed to serve demand for movement (e.g., transportation of
freight or passengers) from specified origins to specified destinations. Transportation
hub location problems are concerned with locating the hub facilities, generally with the
aim of minimizing the total costs for movement of all flows from origins to destinations.
Solutions also require allocating demand nodes to hubs in order to route traffic between
the o-d pairs. The first goal of our research is to better understand the characteristics of
good transportation hub locations in order to predict likely optimal hub locations based
only on the fundamental problem data (demand for travel and spatial locations). Thus,
rather than analyzing existing hub networks and traffic flows to identify or classify hubs,
we seek to identify locations (e.g., cities) likely to be optimal hubs prior to designing the
network. Our second goal is then to exploit this knowledge of promising hub locations
in a heuristic solution methodology to better solve hub location problems.

Much research in the past 25 years has focused on solving fundamental hub location
problems, where the hub network is complete, traffic for each o-d pair is routed through at
least one hub, and the cost between two hubs is discounted due to the consolidation of
flows (see O’Kelly and Miller 1994; Campbell et al. 2002; Alumur and Kara 2008, and
Campbell and O’Kelly 2012). We focus on the original hub location problem introduced
by O’Kelly (1986a, 1986b, 1987): the uncapacitated single allocation p-hub median
problem (USApHMP). In the USApHMP, p hub nodes must be located, each non-hub
node must be assigned to one of the p hubs, and the objective is to minimize the total
transportation cost to serve given o-d flows, where the cost rate for inter-hub flows is
discounted by the economies of scale factor α (0≤α≤1). With single allocation, the
incoming and outgoing flow of each node is routed through a single hub. (In contrast,
with multiple allocation problems, demand nodes can be assigned to more than one hub.)

The remainder of the paper is organized as follows: Section 2 describes the
motivation and goals for the research. Section 3 describes the analysis to identify key
characteristics of optimal hub locations and Section 4 explains the conversion of these
into methodologies to identify subsets of nodes likely to contain hubs. Section 5
presents computational results of the methodologies over a wide range of data sets.
Section 6 is a discussion and conclusion.

2 Motivation and Goals

The motivation for our research is the desire to better understand the factors that create
optimal hub locations, with an eye towards using that knowledge to better solve hub
location problems. Theoretical models of strategic hub location are well studied (e.g.,
Alumur and Kara 2008; Campbell and O’Kelly 2012). Many extensions to the basic hub
location problems have been addressed, including fixed or flow dependent costs (e.g.,
O’Kelly 1992; Bryan 1998), reliability and resilience (e.g., Kim and O’Kelly 2009;
Parvaresh et al. 2013; O’Kelly 2014), multiple products (Correia et al. 2014), and price
sensitive demands (O’Kelly et al. 2014). Algorithmic advances have included better
methods for finding optimal solutions (e.g., Contreras et al. 2011 and Sa et al. 2013)
and combinations of optimization and simulation (Vidovic et al. 2011). Recent work that
explored details of operations at hubs, including optimizing flows through hubs, includes
Chen (2010) and O’Kelly (2014). In this paper we focus on USApHMP which lies at the
heart of much hub location research.
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Hub location and network design models necessarily abstract key features from the
practical problems and may ignore important aspects of the underlying system (as noted
in Campbell and O’Kelly 2012 and Campbell 2013). Further, optimal solutions of a
model are only one factor in facility location decisions, so identifying good potential
hub locations based on fundamental problem data is valuable to focus more practical
and qualitative analyses. See Bowen (2012) for an interesting discussion of practical
issues for FedEx and UPS hubs, including weather, trucking and access to highways,
personal connections and favorable leasing arrangements. Because large hub location
models lead to very difficult optimization problems, finding a small set of good
potential hubs may also help speed solution of hub location models.

While the ultimate goal of our research is the design of a hub network, including the
location of hubs, to serve a given demand, spatial analysis of the flows and hub locations in
existing transportation networks provides useful insights. The concepts of connectivity and
centrality (and related measures) have a long and rich history in analysis of social,
communication and transportation networks (e.g., Garrison 1960; Kissling 1969; Freeman
1978).More recently, Rodríguez-Déniz et al. (2013) highlight the roles of traffic generation
and connectivity in distinguishing types of hubs. The traffic generation capability of a node
or region is often measured based on demand (e.g., passengers originating and destined for
a city) or economic measures. Martin and Voltes-Dorta (2008) explore the implications of
spatial concentration of demand and passenger connections on hubbing. Yu et al. (2013)
consider transit hub location in China using an approach to identify candidate hub locations
based on Bpassenger attraction^, which includes the magnitude of demand within a
specified distance of a node. (A similar idea of aggregating demand in the neighborhood
of a node was applied to the p-median problem by Hillsman 1980 and Sorensen and
Church 1995.) Yu et al. (2013) also provides an incentive for the separation of hubs using a
procedure to eliminate overlapping service to avoid double counting demand (transit
riders). More generally, the concept of dispersion in facility location modeling (Kuby
1987) is often included as one of possibly several objectives (e.g., Kim and O’Kelly 2009;
Maliszewski et al. 2012).

Because in our research we seek promising hub locations prior to design of the hub
network, we cannot use networkmeasures such as flight frequencies, passenger flows, travel
paths or node degrees that are calculated based on an established network and its operations.
However, the concept of connectivity has been measured in a variety of ways, such as
centrality, intermediacy and Bbetweenness^ (see Rodríguez-Déniz et al. 2013) and locational
attributes of these measures exist for a set of cities independent of how they are connected
via a particular network (see for example, Fleming and Hayuth 1994; Bowen 2012 and
Maertens et al. 2014). The discussion above highlights the important roles of the demand
magnitude (e.g., city size or passenger enplanements) and geography (i.e., measures of
relative node locations) for identifying good potential hub locations. Note also that proximity
in hub location problems is different than in Bregular^ facility location problems, as the flow
between two nearby nodes may actually travel a long distance (at high expense) if the
assigned hub for both nodes is not close to them. This complicates finding good hub
locations, as the unit of demand is o-d pairs, rather than individual nodes. Our research
takes as input only the origin–destination locations and the demand for travel between o-d
pairs. Aggregating the travel demand provides the basis for demand at a particular city.
While the effect of traffic generation from the network design and hub locations can be
important (see for example, O’Kelly 2010 and Rodríguez-Déniz et al. 2013), that is beyond
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the scope of this research. By using fundamental properties based on the cities’ demand and
location, we propose a model that provides useful insights on the spatial aspects of hub
location. Our specific approach is to identify general characteristics of optimal (or near-
optimal) hub locations in terms of the input data, which can be exploited using parsimonious
and straightforward methods to define small subsets of nodes likely to contain the optimal
hubs. This differs from the heuristic concentration method presented by Rosing and ReVelle
(1997) for facility location problems, where a Bgood^ set of locations is identified as those
that most frequently appear in the heuristic solutions of the problem. In contrast, our
methodology identifies a set of Bgood^ locations prior to solving the problem and by using
only the problem data.

We use our methodology to explore the benefits of confining the search for optimal
hubs to small subsets with extensive computational experiments on benchmark hub
location data sets. When the size of a problem is large, obtaining optimal hub locations
might not be easy; and in such cases, the methodology developed in this paper may be
useful. Furthermore, because mathematical models for locating facilities necessarily can
include only a subset of the key issues and objectives in any real-world problem, our
methodology can help narrow an organization’s focus to concentrate more detailed and
qualitative analyses on promising potential hub locations. This theme in the spirit of recent
multi-criteria location research (e.g., Maliszewski et al. 2012; Batta et al. 2014) that
advocates modeling as a Bprescriptive aid for decision makers to help generate/assess a
number of good quality solutions that they can choose from^ (Batta et al. 2014, p. 828).

3 Observations from Optimal Solutions

To explore the general characteristics of good hub locations, we first analyzed the
spatial distribution of the optimal hub locations for the USApHMP with three custom-
ary data sets: (i) the CAB data set of continental-scale air passenger traffic between 25
cities in the USA (O’Kelly 1986b), (ii) the AP20 data set for postal distribution among
20 nodes in metropolitan Sydney, Australia (Ernst and Krishnamoorthy 1996), and (iii)
the TR81 data set of cargo flows between 81 cities in Turkey (Tan and Kara 2007). The
cities in the CAB data set are shown in Fig. 1.

We varied the number of hubs and the level of cost discount for travel between
hubs. Although optimal locations for many of the instances are available in the
literature, we solved them again for comparison purposes using the formulation
given in Ernst and Krishnamoorthy (1996) and including the missing cuts present-
ed in Correia et al. (2010).

The mathematical formulation of USApHMP uses a given node set N, representing
geographic locations (e.g., cities). The decision variable Xik takes the value 1 if node i is
allocated to hub k and 0 otherwise, and Ykl

i
is the total flow that originates at node i and

is distributed to demand nodes after visiting hubs k and l respectively. Parameter α is
the transportation rate (economies of scale discount factor) for transferring flow
between two hubs, γ is the transportation rate for collection from an origin to a hub,
and δ is the transportation rate for distribution from a hub to a destination, where α≤δ
and α≤γ. The given parameter dik is the distance between nodes i and k and wij is the
flow from origin i to destination j. Let Oi ¼ ∑

j∈N
wi j be the total amount flow that
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originates at node i and let Di= ∑
j∈N

wji be the total amount flow that is destined to node

i. The number of hubs to locate is p. The formulation for the USApHMP is as follows:

min
X
i∈N

X
k∈N

dikX ik γOi þ δDið Þ þ
X
i∈N

X
k∈N

X
l∈N

αdklY
i
kl

s:tX
k∈N

X ik ¼ 1 ∀i ∈N
ð1Þ

X
k∈N

X kk ¼ p ð2Þ

X ik ≤X kk ∀i; k ∈N ð3Þ
∑
l∈N

Y i
kl− ∑

l∈N
Y i
lk ¼ OiX ik− ∑

j∈N
wi jX jk∀i; k∈N ð4Þ

X
l∈N

Y i
kl ≤OiX ik ∀i; k ∈N : i≠k ð5Þ
X ik∈ 0; 1f g ∀i; k ∈N ð6Þ
Y i
kl ≥0 ∀i; k; l ∈N ð7Þ

The objective minimizes the total transportation cost for collection, distribution and
inter-hub transfer. Constraints (1) ensure all nodes are allocated to a single hub.
Constraint (2) ensures exactly p hubs are located. Constraints (3) ensure a hub is
opened if a node is allocated to it. Constraints (4) are the flow balance constraints.
Constraints (5) link the allocation decisions to the flow variables. Constraints (6) and
(7) establish the variable domains.

Fig. 1 Locations of 25 cities of USA in the CAB data set
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To identify general characteristics of the optimal hub locations, we sought general
patterns from the optimum hub locations for the CAB, AP20 and TR81 data sets with p
ranging from 1 to 10 and α=0.2, 0.4, 0.6 and 0.8 (with γ=δ=1 for CAB and TR81, γ=
3, δ=2 for AP20). We discuss results for the CAB data set below but similar findings
hold true with the AP20 and TR81 data sets. (Full results are available from the
authors.) The optimum hub locations were obtained by solving the above model using
CPLEX version 12.4 using a 4xAMD Opteron Interlagos 2.6GHz with 96 GB RAM.
The results are shown in Table 1.

It is apparent in Table 1 that optimal solutions do not vary greatly with α, as the
same hubs are optimal for all four α values for p=1,2 and 10; and except for p=3 and 4,
the same hubs are optimal for α=0.2, 0.4 and 0.6. Even with the differences for p=3
and 4, there are strong geographical patterns to the optimal hub locations, where one of
the nearby northeastern cities New York (17), Philadelphia (18) and Washington D.C.
(25) is always a hub, and for p=4 one southern city, Atlanta (1) or Tampa (24), is a hub.
Furthermore, optimal hub locations are insensitive to small changes in α. Thus, on
average with CAB, 94.4 % of the hubs stay the same with Bneighboring^ α values (e.g.,
compare locations for α=0.2 and 0.4, for α=0.4 and 0.6, for α=0.6 and 0.8). To further
investigate the influence of α, we computed the cost for CAB with a particular value of
α, while using the optimal hub locations for the neighboring α value α′, where α′=α+
0.2 orα′=α−0.2. The average cost increase from using the optimal hub locations for the
Bneighboring^ α value is less than 1%. This insensitivity toαmay be quite important in
practice as the actual value of α is not likely to be known with certainty and may change

Table 1 Optimal hub locations for the CAB data with different values of the p and α

p α Optimal hub locations

1 0.2–0.8 5

2 0.2–0.8 12,20

3 0.2 4,12,17

0.4 4,12,18

0.6–0.8 2,4,12

4 0.2 4,12,17,24

0.4–0.6 1,4,12,17

0.8 1,4,12,18

5 0.2–0.6 4,7,12,14,17

0.8 1,4,7,12,18

6 0.2–0.6 4,6,7,12,14,17

0.8 1,4,6,7,12,17

7 0.2–0.6 4,6,7,12,14,17,22

0.8 1,4,6,7,12,17,25

8 0.2–0.6 1,4,6,7,12,14,17,22

0.8 1,4,6,7,8,12,17,25

9 0.2–0.6 1,4,6,7,8,12,14,17,22

0.8 1,4,6,7,8,12,17,22,25

10 0.2–0.8 1,4,6,7,8,12,14,17,22,25
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over time as the vehicle types, modes and fleet mix change. See O’Kelly and Lao (1991)
for some discussion of usingmultiple modes in hub networks. Another observation from
Table 1 (and the related results for the other data sets) is that with larger numbers of hubs,
in most cases the optimal locations with p hubs are also optimal locations for p+1 hubs.
This is also common in small p-median problems, but is not true in general.

Another important aspect of the optimal hub locations stems from the magnitude of
the demand at the nodes. With the CAB data set, the largest nodes in terms of total
demand (Oi+Di) are New York (17), Chicago (4), and Los Angeles (12) with 17.0, 10.0
and 7.3 % of the total demand, respectively. These cities appear as optimal hub
locations in 75, 89 and 100 % of the results for p=2–10 in Table 1. (Note that in
several solutions, Philadelphia (18) is used instead of New York, but they are never
both optimal.) Interestingly, Boston, which is the fourth largest node in the CAB data
set with 6.1 % of the total demand, is never a hub as it is both too peripheral and too
close to the largest node at New York. Results with the AP20 and TR81 data sets are
similar. The frequency of certain large cities being hubs is not perhaps surprising given
the large disparity in city sizes (Nitsch 2005).

Summarizing our findings, coupled with knowledge of the geographic position of
the nodes, we derived five general observations:

(1) larger demand nodes tend to be selected as hubs, especially those with greater
distances to other cities, though smaller demand nodes in close proximity to large
demand nodes may be chosen,

(2) among a set of Bnearby^ nodes, usually at most one of them becomes a hub,
(3) some cities almost never appear as hubs in optimal solutions,
(4) optimal hub locations are rather insensitive to α and
(5) hubs tend to be dispersed across the service region.

Translating these observations into tools for solving hub location problems is
difficult as these may overlap and contradict each other for particular nodes (cities).
Also, note that some of these observations reflect ideas shared with other facility
location problems.

While these five observations show that optimal hub locations are strongly influenced by
both the magnitude of demands at nodes and the spatial distribution of the nodes, the
challenge is to capture these ideas in a algorithmic format. We chose to focus our efforts on
three key areas: the importance of a node, the proximity of a node to other nodes, and the
dispersion of hubs. These three areas capture the ideas in observations 1, 2 and 5, and part of
observation 3 via dispersion. However, the issue of node importance requires further
elaboration and analyses in the following sections, where we explore several alternative
forms of node importance that integrate the magnitude of demand with concepts of
betweenness and centrality.

4 Identifying Subsets Likely to Contain Optimal Hubs

Based on the analysis of optimal hub locations for a wide range of instances, we
developed a methodology to define small subsets of nodes that seem likely to contain
hubs. These subsets can be useful to identify hubs (cities) and geographic regions to be
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targeted for more detailed analyses. They can also be useful to define constraints for
mathematical programming formulations that require at least one hub to be selected
from each set. The challenge is to define subsets that contain relatively few nodes, but
are likely to include one or more hubs.

4.1 Clustering-Based Potential Hub Sets (CBS)

The main idea behind our methodology is to identify clusters of nodes using Bhub
circles^ centered at important nodes and with a radius based on the proximity to other
important nodes. Each hub circle then will host at least one hub. The sizes of the hub
circles, and the subsets derived from the collection of hub circles, are defined using a
methodology based on a large number of experiments with the data sets discussed in
Section 3. The use of hub circles to identify clusters of demand nodes is similar to some
aspects of the approaches in Vidovic et al. (2011) and Yu et al. (2013). A related idea is
also utilized in Ernst and Krishnamoorthy (1998), where clusters of nodes are produced
with a greedy merging process based on minimizing distances between nodes in a
cluster. This is used to create either p or n/4 clusters of nodes that contain hubs as a
starting point for an exact solution procedure. In contrast to our approach, Ernst and
Krishnamoorthy (1998) ignores the nodal demands in forming clusters. Another related
work with clustering is Horner and O’Kelly (2005), which aggregates origins
(destinations) into separate clusters that interact via a single origin (destination) loca-
tion. In this work, the clusters are determined endogenously by solving a mathematical
programming formulation of a hierarchical assignment problem.

We first describe the baseline algorithm for defining subsets, denoted BCBS^ for
Cluster-Based Subsets. Later we consider extensions of the CBS algorithm. The input
data for our approach includes only the basic data: the number of hubs, p, to locate, a
set of origin/destination nodes N={1,2,3…, n}, and the distances dij and flows wij (e.g.,
of passengers or freight) between nodes i and j. The first step in CBS is to sort the nodes
(potential hub locations) in decreasing order of importance, where we compare several
measures of importance later in this section. The 2*p (abbreviated as 2p) nodes with the
largest importance form set Np and these Bimportant nodes^ are used as potential
centers for hub circles. The remaining n-2p nodes with the lowest importance values
are termed Bsmall nodes^. The hub circles provide for a dispersion of the hubs, where
the radius is the proximity measure PM, calculated as the average of the distances for
each node in Np to the nearest of the other nodes in Np. This can be interpreted as
assigning each node in Np to the nearest other node in Np, and taking the average
distance of these assignments.

The CBS algorithm defines the subsets of nodes by iteratively considering
the nodes in Np in decreasing order of importance and assigning each node in
Np to either: (i) set HS if the node’s hub circle contains no other nodes from Np

(other than the center), (ii) set H if the node’s hub circle contains two or more
nodes from Np, or (iii) set Si if the node is within the hub circle for node i of
higher importance. Set Si also includes all nodes from N that are within the hub
circle for node i to allow for less important nodes to be hubs (as long as they
are near an important node in Np). Formally, the CBS algorithm can be written
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as follows, where the nodes are sorted in decreasing order of importance, Np is
the sorted set of the 2p most important nodes and Np[t] be the tth node in this
ordered set.

Algorithm CBS:

0. t ¼ 1; ⋅H ¼ ∅; HS ¼ ∅; ⋅Si ¼ ∅ ∀ i ∈H and PM ¼
∑i∈Np min

j∈Np:i≠ j
di j

� �

2p

1. while (t≤2p) do {
If (Np[t]∉Si ∀ i ∈H) then {

Si
0={k|dik≤PM and k∈Np}

If (|Si
0|=1) then
HS=HS∪{i}

If (|Si
0|>1) then
H=H∪{i} and Si={k|dik≤PM and k∈N}}

2. t=t+1}.

Set HS consists of isolated important nodes (i.e., there is no other node from
Np within distance PM of these nodes) and set Si consists of a small group of
neighboring nodes within distance PM of important node i. Set H consists of
the hub circle centers for the sets Si. (Note that set H cannot be empty and HS

is empty only in the degenerate case where for every hub in Np the distance to
nearest hub in Np is the same.) The subsets defined above can be used to
define constraints to be added to the MILP formulation given in the previous
section. Since we need to select p hub locations, we use one constraint derived
from the set HS and (at most) p-1 constraints for the subsets Si whose hub
circle centers have the highest importance. Each constraint requires at least one
hub to be selected from the associated subset. The formulation with the added
constraints corresponding to the subsets can be written as follows.

min
X
i∈N

X
k∈N

dikX ik γOi þ δDið Þ þ
X
i∈N

X
k∈N

X
l∈N

αdklY
i
kl

s:t
1ð Þ− 7ð ÞX
k∈Si

X kk ≥1 ∀i∈H

ð8Þ

X
k∈HS

X kk ≥1 ð9Þ

Constraints (8) are for hub circles that contain two or more important nodes,
and these help to disperse the hubs across the region. Constraint (9) also helps
ensure spatial dispersion by ensuring at least one of the isolated important
nodes is a hub. At most a total of p constraints are added. Note that solving
the formulation above with constraints (1)–(9) provides a heuristic solution as
the optimal solution with (1)–(9) may differ from that with constraints (1)–(7)
alone.

Spatial Analysis of Single Allocation Hub Location Problems



4.2 Measuring Node Importance

A key aspect of the CBS algorithm is the definition of node importance, which
as discussed earlier is based on both the magnitude of a node’s demand and its
relative geographic location. Results suggest that all things being equal, (i)
nodes with greater demand are likely to be preferred as hubs, and (ii) nodes
that are dispersed across the region (relative to the distribution of the demand),
but not too peripheral, are likely to be preferred as hubs. Note that the demand
in hub location problems is the flows between specified origin and destination
nodes, so it has both a magnitude and a distance component. This is in contrast
to demand in regular facility location problems (e.g., the p-median problem)
that has only magnitude. For the magnitude of demand at node i in our hub
location problems we use a straightforward sum of all traffic that originates or
terminates at the node: Oi+Di. However, the concept of relative geographic
location is more complex as it includes characteristics of centrality (and its
converse Bperipherality^) and betweenness.

In this research, we evaluated a variety of measures of importance for a node i using
a straightforward approach based on the magnitude of its demand, its centrality and its
Bbetweenness^ as in Rodríguez-Déniz et al. (2013). Both centrality and betweenness
are calculated from the Euclidean distances, and not based on any network. Centrality is
measured by the sum of the Euclidean distances from node i to all other nodes,
Ci ¼ ∑

j∈N
di j, so more central nodes have smaller values of Ci. Our measure for

betweenness is based on whether a node k would be on the shortest one-stop path for
traffic from origin i to destination j if the direct i-j trip was not allowed. Thus,
betweenness for node k is the total demand that would use node k as the intermediate
hub (on path i-k-j):

Bk ¼
X

i; j:k¼argmin
m: m≠i; j

dimþdm jf g
wi j

We evaluated 14 different measures of importance, as shown in Table 2,
which summarizes our experiments with the CAB data set. The second column
of Table 2 is the importance measure for the nodes, Vi. The third column gives
the percentage of the instances in which optimum hub locations are achieved
using the CBS algorithm to identify subsets containing hubs. The fourth column
is the percentage of instances in which there is at least one node chosen as a
hub from the set of Bsmall nodes^ (i.e., not in set Np). This column supports
the observation in Section 2 that a smaller node close to an important node
might be chosen as a hub. The fifth and sixth columns show the maximum and
average gap in the objective function values (transportation cost) between the
optimal solution and the solution using the CBS heuristic algorithm.

The first row of Table 2 measures node importance as the product of the
magnitude of demand and centrality. The next row is similar, although the
summation here is over the product of distance and demand for each node.
This measure gives greater weight to large flows traveling long distances and is
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actually the component of the objective function of hub median problems for
node i. The next three rows of Table 2 provide reciprocal measures with the
magnitude of demand in the numerator and centrality in the denominator, where
squaring is used to increase emphasis on one component or the other. The next
five measures can be viewed as specific cases of the weighted average of the
relative magnitude of demand and the relative centrality. Row 6 of Table 2 puts
all the weight on centrality, and row 10 puts all weight on the magnitude of
demand. Row 11 of Table 2 provides results for comparison purposes using sets
based on solving the p-median problem where the nodal demands are given by
Oi+Di and the subsets are defined by the optimal allocation of nodes to
facilities. (This is similar to the idea used in Horner and O’Kelly (2005), where
all locations are considered as origins and as destinations.) The last three rows
of Table 2 provide different measures using the betweenness of nodes. Every
measure of importance includes the spatial influence of node locations through
either centrality Ci or betweenness Bi, except for rows 10 and 11, which rely
simply on the total demand (Oi+Di).

The best results in Table 2 are achieved with the importance measures in
rows 1, 2, 8 and 9, which find the optima in all instances. Measures with
centrality in the denominator (rows 3–5) are not effective as they provide less
dispersion and tend to favor more central hub locations. Measures that use the

Table 2 Experiments with different measures of node importance for the CAB data set (with 16 instances
where p=3–10 and α=0.6 and 0.8)

Node importance measure, Vi Optimal solutions
achieved (%)

Optimum from
added rare hubs (%)

Maximum
Gap (%)

Minimum
Gap (%)

1 (Oi+Di)*Ci 100.00 31.25 0.00 0.00

2 ∑
j
di j* wi j þ wji

� �� �
100.00 50.00 0.00 0.00

3 (Oi+Di)/Ci 50.00 12.50 14.77 0.69

4 (Oi+Di)
2/Ci 75.00 18.75 0.94 0.72

5 (Oi+Di)/Ci
2 12.50 0.00 5.44 0.69

6 Ci 37.50 31.25 15.12 0.06

7 0:25 OiþDið Þ
∑i OiþDið Þ þ 0:75 Ci

∑iCi
37.50 31.25 15.12 0.06

8 0:5 OiþDið Þ
∑i OiþDið Þ þ 0:5 Ci

∑iCi
100.00 43.75 0.00 0.00

9 0:75 OiþDið Þ
∑i OiþDið Þ þ 0:25 Ci

∑iCi
100.00 18.75 0.00 0.00

10 Oi+Di 75.00 18.75 0.94 0.72

11 Sets based on p-median results 81.25 – 0.74 0.40

12 Bi 12.50 68.75 7.66 0.00

13 (Oi+Di)*Bi 43.75 0.00 17.85 0.00

14 (Oi+Di)*Bi*Ci 62.50 18.75 3.80 0.00
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magnitude of demand alone (rows 10 and 11) or betweenness alone (row 12)
are ineffective, as are measures that focus primarily on centrality (rows 6 and
7). Measures with betweenness provide poor performance, most likely because
betweenness in a multi-hub network is more properly a local measure influ-
enced by the nodes allocated to each hub. The results in Table 2 show that the
four measures in rows 1, 2, 8 and 9 perform best. Further testing with the CAB
and AP data sets showed similar performance for the measures in rows 1, 8
and 9, with lesser performance for the measure in row 2. Therefore, we decided
to conduct further experiments reported in Section 5 using the three node
importance measures in rows 1, 8 and 9 of Table 2.

4.3 Variations of Clustering-Based Potential Hub Sets

While the CBS algorithm appeared promising in identifying good hub locations,
the average reduction in CPU times was only 13.6 % (see Appendix 2).
Analysis of the solutions showed that the number of subsets created by CBS
is quite often strictly less than p, so in many cases relatively few of the hubs
were being selected from the small cluster-based subsets. Therefore, to reduce
the solution space (and CPU times) we developed variants of CBS that restrict-
ed the flexibility in selecting hubs. We also experimented with several variants
of CBS in an effort to improve the solution quality by expanding the subsets to
consider additional nodes as potential hubs. The letter BR^ in an algorithm
name reflects an effort to reduce CPU times, while the letters BA^ and BI^
indicate an effort to improve solution quality. Table 3 provides the constraints
added to the mathematical programming formulation for each of the five
variants of the CBS algorithm described below.

Restricted CBS (RCBS) The restricted variant of the CBS algorithm (RCBS)
forces all p hubs to be selected from the union of the subsets Si and HS. This
has the greatest impact when the number of constraints (8) and (9) is far less
than p.

Augmented CBS (ACBS) and Augmented RCBS (ARCBS) In CBS and RCBS,
the less important Bsmall nodes^ from N∖Np are included in the subsets Si,
but the Bsmall nodes^ are not included when near an isolated important node
in HS. Thus, for the augmented CBS (ACBS) and augmented RCBS
(ARCBS) algorithms, we enlarge set HS to include all the nodes from N
that are within distance PM of a node in HS. We denote this new set as HS

′

and at the end of the CBS algorithm we set HS
′ =HS ∪{k|dik≤PM and ∀ k∈

N, i∈HS}.

Improved RCBS (IRCBS) and Improved Augmented RCBS (IARCBS) Because
some optimal solutions use hubs that do not have particularly high importance
values, these variants of CBS incorporate p additional nodes in a set Hp as
potential hubs. For IRCBS, Hp is formed by sequentially adding the most
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important nodes that are not already included in the subsets for RCBS (i.e., not
in ∪ i∈HSi∪HS), nor are too close to another node already added to set Hp (this
encourages dispersion of the hubs). For IARCBS, set Hp is formed similarly by
sequentially adding the most important nodes that are not already included in
the subsets for ARCBS (i.e., not in ∪ i∈HSi∪HS

′ ), nor too close to a node already
added to set Hp. The set Hp is defined using only those subsets Si actually used
to form constraints added to the MIP formulation and a proximity measure PMA

based on all nodes in N, not just the most important nodes that comprise Np.
The algorithm to create set Hp for IRCBS follows. This uses NA as the set of
all nodes sorted in decreasing order of importance and NA[t] to denote the tth

node in this ordered set.

Algorithm Add Hp:

0. t ¼ 1; ⋅q ¼ 0; ⋅Hp ¼ ∅ and PMA ¼
∑i∈NA min

j∈NA:i≠ j
di j

� �

NAj j
1. while (t ≤n or q<p) do {

If NA t½ �∉Hs∪ ∪i∈HSif g and dNA t½ �
�

;NA k½ � > PMA : k < tÞ then
Hp=Hp∪{NA[t]} and q=q+1

2. t=t+1}.

At the end of Algorithm Add Hp, either the set Hp has p elements or there
were not p potential hubs that were not already in sets Si and HS, and are not
far enough apart. The IARCBS algorithm is identical to this, except that Hs is
replaced by HS

′ .

Table 3 The constraints for each methodology

Methodology Constraints from original
formulation

Additional constraints

Original (1)–(7) – – –

CBS (1)–(7) ∑
k∈Si

X kk ≥1 ∀i∈H ∑
k∈HS

X kk ≥1 –

RCBS (1), (3)–(7) ∑
k∈Si

X kk ≥1 ∀i∈H ∑
k∈HS

X kk ≥1 ∑
k∈ ∪i∈HSif g∪HS

X kk ¼ p

IRCBS (1), (3)–(7) ∑
k∈Si

X kk ≥1 ∀i∈H ∑
k∈HS

X kk ≥1 ∑
k∈ ∪i∈HSif g∪HS∪Hp

X kk ¼ p

ACBS (1)–(7) ∑
k∈Si

X kk ≥1 ∀i∈H ∑
k∈H 0

S

X kk ≥1 –

ARCBS (1), (3)–(7) ∑
k∈Si

X kk ≥1 ∀i∈H ∑
k∈H 0

S

X kk ≥1 ∑
k∈ ∪i∈HSið Þ∪H

0
S

X kk ¼ p

IARCBS (1), (3)–(7) ∑
k∈Si

X kk ≥1 ∀i∈H ∑
k∈H 0

S

X kk ≥1 ∑
k∈ ∪i∈HSið Þ∪H

0
S∪Hp

X kk ¼ p
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In Appendix 1, we present an illustration using the CAB data set to demonstrate the
formation of the subsets for the different methodologies.

By design of the methodologies, as reflected in the added constraints, the relation-
ship of the optimal objective function values is:

Z*
opt ≤ Z*

ACBS ≤Z*
CBS ≤Z

*
IRCBS ≤Z*

RCBS

Z*
ACBS ≤Z*

IARCBS ≤Z
*
ARCBS ≤Z

*
RCBS

where Z* denotes the optimal objective function value of the algorithms. Clearly, as
shown in Table 3, when we add restrictions to a particular formulation, the objective
function value of the resulting problem cannot improve. Graphically this is depicted in
Fig. 2, where the arrows indicate a possible improvement in the objective function value.

5 Evaluation of Methodologies and Node Importance Measures

In this section, we evaluate the variants of the CBS algorithm by solving a variety of
problem instances using four real-world data sets of varying scale, including some large
problems with up to 200 nodes (40,000 o-d flows). To evaluate the effectiveness of the
methodologies, we compare the hub locations, total costs and the CPU times. For comparing
solution quality, the baseline is the optimal solution from the original formulation with
constraints (1)–(7), and we report both the percentage of optimal solutions achieved by each
methodology and the BGap^, as measured by the relative difference from the objective
function value of the baseline. The average CPU time improvement is measured relative to
the time for the baseline solution using the same hardware and software.

5.1 Comparison of Variations of CBS

We first provide results for 64 small instances with the CAB and AP data sets described
earlier (using p=3–10 and α=0.2, 0.4, 0.6 and 0.8), for 64 medium sized instances with the
40 node CAB25+15 data set (Campbell 2009) (using p=3–10 andα=0.2, 0.4, 0.6 and 0.8),

Fig. 2 Graphical representation of the relationship between the objective function values
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and for the 81 node TR81 data set (Tan and Kara 2007). The math programming formu-
lations were solved using CPLEX 12.4 for CAB, AP20 and TR81, and using Gurobi 4.5.2
for CAB25+15. All the results were obtained in a Linux environment with a 4xAMD
Opteron Interlagos 2.6GHz processor and 96GBRAM.To compare the variants of the CBS
methodology, we present results using the measure of node importance from the first row of
Table 2, (Oi+Di)*Ci. The variants are related as shown in Fig. 3, where: (i) moving to the
right in the figure to the BA^ versions is an attempt to improve solution quality by allowing
some of the smaller nodes to be considered as potential hubs, (ii) moving up in the figure to
the BI^ versions is an attempt to improve solution quality by incorporating p additional
important nodes as potential hubs, and (iii) moving back in the figure to the BR^ versions^ is
an attempt to reduce CPU times by restricting the set of potential hubs. The BA^ versions
consider some less important nodes located close to important nodes as potential hubs, so the
changes in optimal locations are likely to be on a small geographic scale. In contrast, the BI^
versions consider more of the most important nodes as potential hubs, which allows a wider
dispersion of hubs across the region. Finally, the BR^ versions restrict the flexibility in
locations to reduce solution times.

Table 4 provides a summary of results with the CAB data set, with complete results in
Appendix 2. (For other data sets, we only provide a summary of the results; complete results
are available from the authors.) For the small AP20 instances where optimum results are
obtained very quickly (maximum is 2.79 s), comparing solution times on such small scales

Table 4 Comparison of the methodologies for AP20 and CAB data sets

CBS RCBS IRCBS ACBS ARCBS IARCBS

AP20 Average Gap (%) 0.49 0.96 0.89 0.45 0.53 0.45

Maximum Gap (%) 4.02 4.02 4.02 3.90 3.90 3.90

Optimal Solutions (%) 84.40 37.50 50.00 84.40 68.80 81.30

CAB Average Gap (%) 0.00 0.55 0.03 0.00 0.50 0.00

Maximum Gap (%) 0.00 5.09 0.98 0.00 5.09 0.00

Optimal Solutions (%) 100.00 68.80 96.90 100.0 71.90 100.00

Average CPU time improvement (%) 13.61 59.62 46.79 7.39 42.03 31.81

Maximum CPU time improvement (%) 81.60 94.13 87.64 39.54 92.99 79.66

Fig. 3 Relationship of the variants of the CBS methodology
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will not be reliable so CPU times are not reported for AP20 in Table 4. This table shows that
in terms of solution quality, the RCBS and ARCBS methodologies perform poorly and the
CBS, ACBS and IARCBS methodologies perform the best. As expected, the BA^ versions
of the methodologies improve performance with their greater geographic flexibility, espe-
cially so for ARCBS and IARCBS. Results also show improvements with the BI^ versions
from considering a wider range of high importance nodes, though at the expense of
additional CPU time. Table 4 shows how the BR^ versions of the methodology reduce the
aggregated CPU times, and Fig. 4 provides amore nuanced perspective by showing how the
CPU time improvements (averaged for each value of α; see Appendix 2) increase with α.
This figure also clearly shows the greater benefits from the BR^ versions for larger values of
α (0.6 and 0.8), where the improvements range from 47 to 85 %. (But note that the CPU
times do not always improve with the various methodologies as shown in Appendix 2.) The
results in Table 4 display the expected tradeoff between solution quality and CPU time
improvement, and while CBS and ACBS yield good quality solutions, the CPU improve-
ment is rather small and not nearly as good as the other four methodologies (see also Fig. 4).
Therefore, to further explore faster ways to find optimal or near-optimal solutions, for the
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Fig. 4 CPU time improvements for the CAB data set

Table 5 Comparison of the methodologies for CAB25+15 and TR81 data sets

RCBS IRCBS ARCBS IARCBS

CAB25+15 Average Gap (%) 1.21 0.30 1.09 0.29

Maximum Gap (%) 5.15 2.30 5.15 2.30

Optimal Solutions (%) 37.50 71.90 46.90 78.10

Average CPU time improvement (%) 82.70 71.11 76.70 58.73

Maximum CPU time improvement (%) 98.52 97.08 92.50 89.02

TR81 Average Gap (%) 3.05 2.61 1.99 1.74

Maximum Gap (%) 7.81 7.21 5.26 5.26

Optimal Solutions (%) 0.00 0.00 23.50 35.30

Average CPU time improvement (%) 98.85 96.91 92.32 86.77

Maximum CPU time improvement (%) 99.86 99.70 99.01 98.00
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remaining analyses we continue with only the four fastest versions of the methodology:
RCBS, IRCBS, ARCBS, and IARCBS.

Table 5 is a summary of results using the CAB25+15 and TR81 data sets. For TR81
data set optimal solutions are obtained within a 2 h limit for only 17 of the 32 instances.
Therefore, in the CPU time comparisons we include only the instances where the original
formulation found the optimal solution in 2 h; however, for the solution quality comparison
we include all 32 instances by using the lower bound from solving the original formulation
(from CPLEX) when the optimal solution is not found. The high quality of solutions with
IARCBS is evident; and though it provide the least improvement in CPU times, it still
averages a 58.7 % reduction for CAB25+15 and an 86.8 % reduction for TR81. The
RCBS methodology is least effective in terms of solution quality, though it provides the
greatest CPU time reduction. Note that the CPU time percentage improvements are greater
for the more challenging data set CAB25+15, then for the CAB data set in Table 4.

Figure 5 documents the tradeoff between solution quality and CPU time improve-
ment with the four best methodologies (RCBS, IRCBS, A
RCBS and IARCBS) for the CAB, CAB25+15, and TR81 data sets. The best solutions
(high quality and fast) would be at the lower left corner of the graph. These figure
shows that all of these methodologies identify good subsets for potential hubs (very
near-optimal solutions are found) with considerably less CPU time than required for the
original formulation. Comparison across the three data sets suggests that as the size of
the problem increases (moving right to left in the figure), the improvements in CPU
times increase as well, while solution quality deteriorates only a little. The figure also
clearly shows that the added flexibility from an expanded set of potential hubs with the
BA^ or BI^ versions improves the solution quality at the expense of increased CPU time.

5.2 Comparison of Node Importance Measures

Table 6 displays results with the IARCBS methodology (which provides the best
quality solutions) for the CAB, CAB25+15 and TR81 data sets using the three best
performing node importance measures identified in Section 4. These results show that
all three measures perform well in terms of both solution quality and CPU time
improvements, with a very slight advantage to the simpler measure (Oi+Di)*Ci from
the greater CPU time improvement with CAB. The results show how having more
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nodes available for locating hubs (moving from 25 nodes in CAB, to 40 nodes in
CAB25+15, to 81 nodes in TR81) leads to finding fewer of the optimal hub location
sets. However, the quality of the solutions is still quite good, even when the majority of
solutions are non-optimal sets of hubs (29–35 % for TR81), and the CPU time savings
increase with the size of the problem. This illustrates a tradeoff of solution quality and
CPU time with the size of the problem.

5.3 AP200 Instances

To explore the use of our methodology on larger problems, we solved several
instances of the full 200 node AP200 data set (Ernst and Krishnamoorthy 1996)
using p=3–5, 10 and 15 and the given cost parameter values γ=3, δ=2 and α=
0.75. Results use CPLEX 12.4 and the hardware setup described earlier with a
3 h CPU time limit. Table 7 displays the gaps from the best known heuristic
solutions for these problems (for p=3,4, 10 from Kratica et al. 2007 and p=5
and 15 from Ilic et al. 2010). Unfortunately, the optimal objective function
values and optimal hub locations for the AP200 dataset have not been reported.
(The earlier formulation with constraints (1)–(7) was unable to obtain even an
integer feasible solution within the time limit.) As can be seen from Table 7,
the gaps are greatest with the smallest instances (p=3) and the average gaps are

Table 6 Comparison of node importance measures for IARCBS

(Oi+Di)*Ci ∑
j
di j* wi j þ wji

� �� �
0:75 OiþDið Þ

∑i OiþDið Þ þ 0:25 Ci

∑iCi

CAB Average Gap (%) 0.00 0.00 0.00

Maximum Gap (%) 0.00 0.00 0.00

Optimal Solutions (%) 100.00 100.00 100.00

Average CPU time
improvement (%)

31.81 19.79 22.83

Maximum CPU time
improvement (%)

79.66 79.14 79.90

CAB25+15 Average Gap (%) 0.29 0.28 0.25

Maximum Gap (%) 2.30 2.13 2.13

Optimal Solutions (%) 78.1 78.1 75.0

Average CPU time
improvement (%)

58.73 58.30 54.72

Maximum CPU time
improvement (%)

89.02 92.24 86.84

TR81 Average Gap (%) 1.74 1.85 1.72

Maximum Gap (%) 5.26 4.96 4.63

Optimal Solutions (%) 35.30 29.40 29.40

Average CPU time
improvement (%)

86.77 88.57 86.92

Maximum CPU time
improvement (%)

98.00 94.16 94.16
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less than 5 % for all methodologies. The CPU time limit was reached for all
methodologies for the problems with p=10 and 15 in Table 7, and for some of
the smaller problems with the IRCBS, ARCBS, and IARCBS methodologies.
The AP200 data set includes a large number of nodes (i.e., potential hub
locations) and demand is relatively centrally concentrated (corresponding to
downtown Sydney), so finding all the optimal hubs is quite challenging.
However, identifying regions of likely hub locations is useful as the practical
considerations would restrict the locations actually used according to a myriad
of site specific factors, such as land availability, facility capacities, transporta-
tion infrastructure, labor requirements, etc. Note that the subsets provided by
our methodologies can also be used to reduce the solution space in other
optimal or heuristic solution procedures.

6 Discussion and Conclusion

In this research, we have sought to develop a better understanding of optimal and
near-optimal hub locations in single allocation networks derived only from the
basic data for the problem, and to use this understanding to better solve hub
location problems. Using ideas from spatial analysis of real-world hub networks
and optimal hub locations for benchmark hub location data sets of differing scale
and scope, we first identified key characteristics of optimal hub locations. We then
used these characteristics in a straightforward heuristic solution approach to delin-
eate subsets of nodes likely to contain hubs based on spatial proximity of nodes,
dispersion and measures of node importance. We developed and evaluated several
variants of a basic methodology and documented the tradeoffs in terms of solution
quality and CPU times. Two important aspects of the methodologies were the
ability to select as hubs: (i) smaller nodes near nodes with high importance, and
(ii) important isolated nodes. This highlights the key role of local spatial interac-
tions in case (i) and wider interactions over the entire region in case (ii). Several
methodologies were shown to perform very well in terms of providing near-
optimal solutions and large reductions in CPU times when used with MILP
formulations, though the relative benefits from different methodologies depended
on the data sets.

Table 7 Gaps with best known solutions for the methodologies with the AP200 data set

p RCBS IRCBS ARCBS IARCBS

3 7.2 % 7.2 % 6.9 % 6.9 %

4 3.5 % 3.5 % 3.5 % 3.8 %

5 2.7 % 2.7 % 2.5 % 2.9 %

10 5.5 % 2.2 % 5.4 % 7.9 %

15 5.6 % 1.2 % 3.3 % 0.8 %

Average 4.9 % 3.4 % 4.3 % 4.5 %
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One key contribution of this research is that simple measures of demand, centrality,
and dispersion are effective in finding optimal or near-optimal hub locations. Results
showed that using only the aggregate demand originating and terminating at a node
(Oi+Di) is not a particularly effective measure of node importance, while combining
the aggregated demand with a spatial measure of node centrality does provide an
effective way to identify good locations for hubs. This underscores the importance of
the relative spatial locations for finding near-optimal hub locations. Another contribu-
tion was to highlight the value of centrality as an important component of node
importance vs. betweenness. Although betweenness is an important concept for single
hub systems (see e.g., Maertens et al. 2014), with multiple hubs in a network dispersed
across the service region, a global sense of betweenness based on the entire data set
may not be as important as a more restrictive Blocal betweenness^ for those nodes
allocated to a particular hub.

The computational results documented the important tradeoff between solution
quality and solution speed in two dimensions. As expected, for a particular instance
the variants of the CBS heuristic designed to improve solution quality required more
CPU time. Interestingly, the results showed that as the problem size (number of nodes)
increase, the solution quality deteriorates only a little, but the CPU time improvement
increases. This suggests the heuristic approach as outlined in this paper may provide
even greater CPU time savings for even larger problems.

In summary, this research provides tools to identify optimal or near-optimal
subsets of nodes for locating hubs that rely on a limited amount of the input
data. These subsets may be useful to help focus attention and further analyses
on certain cities or geographic regions as likely locations for hubs, as well as to
speed solution approaches to design good hub networks (e.g., mixed-integer
linear programming models). Because hub location problems are complex
combinations of facility location and network design, all in a practical setting
(e.g., airlines or trucking companies), many problem features, including the
input data are not likely to be known with certainty and will certainly vary
over time. Thus, overreliance on specific parameter values (e.g., the transpor-
tation cost discount α), static data sets, or on Boptimal^ model outputs may be
too strong a simplification of the real-world problem. While hub location
optimization models are certainly valuable, there is complementary value in
gaining a better understanding of the general properties that make a good hub
location, with the goal of using the aggregate knowledge to better solve hub
location problems (Geoffrion 1976).

Some promising areas for future research include refining the methodologies and
attempting to solve even larger problems, analyzing other hub location problems (e.g.,
multiple allocation problems, incomplete network designs, etc.), considering reliability
and robustness issues (e.g., Lordan et al. 2014; O’Kelly 2014)) and analyzing the effect
of the hub circle radius on the hub locations. Another area could be the direct inclusion
of hub dispersion as a constraint in the MILP models, rather than as a step in the
formation of clusters.
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Appendix 1. Example for the CBS Methodologies

In the following example, we demonstrate the formation of subsets for CAB dataset
with the node importance measure Vi=(Oi+Di)*Ci as in row 1 of Table 2. The nodes in
decreasing order of importance are as follows:

Rank Node # Vi Rank Node # Vi Rank Node # Vi

1 17 8537.42 10 9 1707.36 18 21 1073.22

2 12 6020.33 11 7 1399.90 19 19 1036.16

3 22 4513.58 12 8 1312.30 20 24 984.87

4 4 3851.80 13 6 1191.68 21 16 848.00

5 3 3494.22 14 10 1182.99 22 11 796.87

6 14 3340.95 15 1 1163.30 23 2 754.70

7 25 2524.76 16 20 1154.96 24 5 574.81

8 23 1737.25 17 15 1126.96 25 13 441.10

9 18 1710.37

For p=5, Np ={17, 12, 22, 4, 3, 14, 25, 23, 18, 9} is the set of the 10 most important
nodes and PM is 330,71 miles and calculated as shown below:

Table 8 shows the sets of potential hubs produced by the CBS algorithm and its
variants. For example, with the CBS algorithm, the subsets are S17={17, 3, 18, 25, 2,
20}, S4={4, 9, 5, 6, 21}, and HS ={12, 22, 14, 23} and the following three constraints
are added to the MILP formulation:

X
k∈ 2;3;17;18;20;25f g

X kk ≥1 ð10Þ

X
k∈ 4;5;6;9;21f g

X kk ≥1 ð11Þ

X
k∈ 12;14;22;23f g

X kk ≥1: ð12Þ
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For the RCBS algorithm we also add the following constraint:

X
k∈ 2;3;4;5;6;9;12;14;17;18;20;21;22;23;25f g

X kk ¼ 5: ð13Þ

As shown in Table 8, for the ACBS and ARCBS variations, the set of isolated
important nodes is augmented with node 24 (Tampa) as it in within the hub circle for
important node 14 (Miami), as shown in the following figure (Fig. 6):

Thus, for the ACBS algorithm, we add to the original formulation constraints (10),
(11) and X

k∈ 12;14;22;23;24f g
X kk ≥1: ð14Þ

For the ARCBS algorithm, we add to the original formulation constraints (10), (11),
(14) and X

k∈ 2;3;4;5;6;9;12;14;17;18;20;21;22;23;24;25f g
X kk ¼ 5: ð15Þ

Fig. 6 Hub circles for p=5 with the CAB data set

Table 8 Potential hub location sets with different methodologies for p=5 with the CAB data set

CBS, RCBS IRCBS ACBS, ARCBS IARCBS

S17={17, 3, 18, 25, 2, 20}
S4={4, 9, 5, 6, 21}

HS ={12, 22, 14, 23} HS ={12, 22, 14, 23}
Hp ={7, 8, 1, 15, 19}

HS
′ ={12, 22, 14, 23, 24} HS

′ ={12, 22, 14, 23, 24}
Hp. ={7, 8, 1, 15, 19}
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Note that hub circles can overlap, and there may be Bsmall nodes^ in the overlapping
region that would appear as potential hubs in more than one constraint. An example of
this would be in the figure above if there was a Bsmall node^ city between Los Angeles
and San Francisco.

For IRCBS algorithm, the nodes eligible for set Hp (i.e., those not in S17, S4, or HS),
in decreasing order of importance, are {7, 8, 10, 1, 15, 19, 24, 16, 11, 13}. From these,
we form set Hp by adding p=5 nodes in order and ignoring any nodes within distance
PMA=241.96 of any more important node, and the result is Hp ={7, 8, 1, 15, 19}. We
use set Hp for the IRCBS algorithm and add to the original formulation, constraints
(10)–(12) and the following:

X
k∈ N∖ 10;11;13;16;24f gf g

X kk ¼ 5 ð16Þ

For IARCBS, the set Hp ={7, 8, 1, 15, 19} is same as for this example, so we add to
the original formulation, constraints (10), (11), (14) and the following:

X
k∈ N∖ 10;11;13;16f gf g

X kk ¼ 5 ð17Þ

For this illustration, Table 9 lists the optimal hub locations and the resulting
hub locations with the six methodologies using four different values of α. In all of
these instances, CBS, IRCBS, ACBS, and IARCBS found optimal hub locations.
On the other hand, RCBS and ARCBS did not find all the optimal hub locations in
any of the instances, because neither node 7 (Dallas, which ranks 15th in impor-
tance) nor node 1 (Atlanta, which ranks 11th in importance) is among the subsets
S17, S4 or HS (HS

′ ). Thus, RCBS and ARCBS select the node 21 (St. Louis) instead
of node 7 (Dallas), and node 14 (Miami) or node 24 (Tampa) instead of node 1
(Atlanta)

Table 9 Hub locations with different methodologies for p=5 with CAB data set

p α Optimal hub
locations

CBS RCBS IRCBS ACBS ARCBS IARCBS

5 0.2 4,7,12,14,17 * 4,12,14,17,21 * * 4,12,14,17,21 *

0.4 4,7,12,14,17 * 4,12,14,17,21 * * 4,12,14,17,21 *

0.6 4,7,12,14,17 * 4,12,14,17,21 * * 4,12,14,17,21 *

0.8 1,4,7,12,18 * 4,12,14,18,21 * * 4,12,18,21,24 *

Avg. CPU time
(sec)**

29.08 32.99 2.81 5.90 31.40 3.39 11.50

*: same as the optimum solution, **: average of the four instances
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