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The solution of extended Graetz problem for micro-scale gas flows is performed by coupling of rarefaction, axial
conduction and viscous dissipation at slip flow regime. The analytical coupling achieved by using Gram–Schmidt
orthogonalization technique provides interrelated appearance of corresponding effects through the variation of
non-dimensional numbers. The developing temperaturefield is determined by solving the energy equation local-
ly together with the fully developed flow profile. Analytical solutions of local temperature distribution, and local
and fully developedNusselt number are obtained in terms of dimensionless parameters: Peclet number, Knudsen
number, Brinkman number, and the parameter Kappa accounting temperature-jump. The results indicate that
the Nusselt number decreases with increasing Knudsen number as a result of the increase of temperature
jump at the wall. For low Peclet number values, temperature gradients and the resulting temperature jump at
the pipe wall cause Knudsen number to develop higher effect on flow. Axial conduction should not be neglected
for Peclet number values less than 100 for all cases without viscous dissipation, and for short pipes with viscous
dissipation. The effect of viscous heating should be considered even for small Brinkman number valueswith large
length over diameter ratios. For a fixed Kappa value, the deviation from continuum increases with increasing
rarefaction, and Nusselt number values decrease with an increase in Knudsen number.

© 2015 Published by Elsevier Ltd.
1. Introduction

Interest in micro- and nanoscale heat transfer has been explosively
increasing in accordance with the developments in MEMS and nano-
technology during the last two decades. The aim of cooling micro- and
nanoscale devices is an important subject for most engineering applica-
tions. Cooling of devices having the dimensions of microns is a
completely different problem than what is analyzed in the macro
world which makes investigation of the flow characteristics of micro-
and nanoscale flows a key research field.

One can understand some of the advantages of using micro- and
nanoscale devices in heat transfer, starting from the single phase inter-
nal flow correlation for convective heat transfer,

h ¼ Nu � k
D

ð1Þ

where h is the convective heat transfer coefficient, Nu is the Nusselt
number, k is the thermal conductivity of the fluid and D is the hydraulic
4

diameter of the channel or duct. In internal fully developed laminar
flows,Nubecomes a constant. Theory calculates Nu=3.657 for the con-
stant wall temperature case, and Nu= 4.364 for the constant heat flux
case [1]. As Reynolds number (Re) is proportional to hydraulic diameter,
fluid flow in channels of small hydraulic diameter will predominantly
be laminar. The above correlation therefore indicates that the heat
transfer coefficient increases as channel diameter decreases. As a result
of the hydraulic diameter being order of tens or hundreds of microme-
ters in forced convection microscale applications, heat transfer coeffi-
cient should be extremely high. However, the question is whether the
earlier mentioned theoretical Nu values are still the same for micro
flows. While the system size is decreased to increase the surface to vol-
ume ratio and enhance the heat transfer, probable effects of micro-level
small size onto transport characteristics should be carefully examined.

In a macroscale, continuum approach is the basis for most of the
cases. However, continuum hypothesis may not be applicable for
some of the micro-scale fluid transport and heat transfer problems, es-
pecially formicro gasflows.While the ratio of the average distance trav-
eled by the molecules without colliding with each other, the mean free
path (λ), to the characteristic length of theflow (L) is increases, the con-
tinuum approach fails to be valid, and the fluid modeling shifts from
continuum model to molecular model. This ratio is known as Knudsen
number
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Table 1
The first 20 eigenvalues and corresponding coefficients for Pe = 10, 5, and 1.

Pe = 1 Pe = 5 Pe = 10

n λn An λn An λn An

1 1.4298 1.6059 2.3853 1.5774 2.5969 1.5354
2 2.2776 −1.0736 4.5109 −1.0458 5.5469 −0.9861
3 2.8850 0.8589 5.9765 0.8447 7.7139 0.7795
4 3.3855 −0.7357 7.1579 −0.7341 9.4592 −0.6875
5 3.8211 0.6534 8.1744 0.6578 10.9532 0.6309
6 4.2119 −0.5935 9.0798 −0.6001 12.2780 −0.5865
7 4.5695 0.5475 9.9040 0.5546 13.4796 0.5487
8 4.9012 −0.5107 10.6653 −0.5177 14.5862 −0.5162
9 5.2117 0.4804 11.3763 0.4870 15.6171 0.4879
10 5.5048 −0.4549 12.0457 −0.4611 16.5856 −0.4633
11 5.7831 0.4331 12.6800 0.4388 17.5017 0.4418
12 6.0486 −0.4142 13.2842 −0.4194 18.3731 −0.4227
13 6.3029 0.3975 13.8621 0.4023 19.2055 0.4058
14 6.5474 −0.3827 14.4171 −0.3871 20.0039 −0.3906
15 6.7830 0.3694 14.9515 0.3735 20.7719 0.3770
16 7.0107 −0.3574 15.4675 −0.3612 21.5128 −0.3646
17 7.2313 0.3465 15.9669 0.3501 22.2292 0.3533
18 7.4454 −0.3366 16.4511 −0.3399 22.9235 −0.3430
19 7.6534 0.3274 16.9216 0.3305 23.5975 0.3336
20 7.8560 −0.3190 17.3793 −0.3219 24.2528 −0.3248

Nomenclature

Br Brinkman number
C1 coefficient in Eq. (11d)
cp constant pressure specific heat, J/kgK
D tube diameter, m
Fm tangential momentum accommodation coefficient
Ft thermal accommodation coefficient
h convective heat transfer coefficient, W/m2K
Kn Knudsen number, λ/L
k thermal conductivity, W/mK
Nu Nusselt number
Pe Peclet number, k/ρCp
Pr Prandtl number, ν/α
R tube radius, m
r radial coordinate
r⁎ dimensionless radial coordinate
T fluid temperature, K
u velocity, m/s
u⁎ dimensionless velocity
x axial coordinate
x⁎ dimensionless axial coordinate, x/(R Pe)

Greek symbols
α thermal diffusivity, m2/s
γ specific heat ratio
λ mean free path, m
λn eigenvalue
μ dynamic viscosity, kg/ms
κ coefficient in Eq. (11d)
ν kinematic viscosity, m2/s
Θ dimensionless temperature, (T− Tw) / (Ti − Tw)
η dimensionless radial coordinate, ρs r/R
ξ dimensionless axial coordinate, ρs2(2− ρs2) x / (R Pe)
ξ⁎ dimensionless axial coordinate, ρs2(2− ρs2) x / (R)

Subscripts
i inlet
s slip
w wall
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Kn ¼ λ=L ð2Þ

which is employed to determine the flow characteristics [2]. The flow is
considered as continuum flow for small values of Kn (b0.01), and the
well known Navier–Stokes equations together with the no-slip and
no-temperature jump boundary condition are applicable for the flow
Velocity entrance length 
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Fig. 1. Geometry o
field. For 0.01 b Kn b 0.1 flow is in slip-flow regime (slightly rarefied).
For 0.1 b Kn b 10 flow is in transition regime (moderately rarefied). Fi-
nally, theflow is considered as free-molecularflow for large values of Kn
(N10) (highly rarefied); the tool for dealingwith this typeflow is kinetic
theory of gases, Direct Simulation of Monte Carlo (DSMC) [3] and Mo-
lecular Dynamics [4–8].

As the characteristic length of the system decreases, the effect of
rarefaction comes into picture. Classical no-slip velocity and no-
temperature jump boundary conditions are not valid for a rarefied
fluid flow at micro/nanoscale. Since the fluid particles adjacent to
the boundary surface are not in thermodynamic equilibrium with
the wall, there would be slip velocity and temperature jump at the
channel wall (For a more detailed discussion on these, the readers
are referred to the textbook by Gad-el-Hak [9]). For the slip flow re-
gime (0.01 b Kn b 0.1), slip-velocity and temperature-jump bound-
ary conditions for a microtube can be defined as follows [2],

us ¼ −
2−σm

σm
λ

du
dr

� �
r¼R

ð3Þ

T−Ts ¼ −
2−σ t

σ t

2γ
γ þ 1

λ
Pr

∂T
∂r

� �
r¼R

: ð4Þ

In these equations, σm is the tangentialmomentum accommodation
coefficient, σt is the thermal accommodation coefficient, and γ is the
specific heat ratio. These slip flow models are successfully employed
Fully developed
velocity profile

Heated section

x

r
2R

lip 
elocity

f the problem.



Table 2
Fully developed Nusselt number with Kn= 0, Br = 0 for different Peclet number values.

Pe Nufd λ1 Pe Nufd λ1 Pe Nufd λ1

109 3.65679 2.70436 300 3.65684 2.70423 20 3.66754 2.67460
106 3.65679 2.70436 200 3.65691 2.70406 10 3.69518 2.59693
1000 3.65680 2.70435 100 3.65724 2.70313 8 3.71247 2.54742
900 3.65680 2.70435 90 3.65735 2.70284 6 3.74302 2.45812
800 3.65680 2.70435 80 3.65749 2.70244 5 3.76729 2.38530
700 3.65680 2.70434 70 3.65771 2.70185 4 3.80153 2.27947
600 3.65681 2.70433 60 3.65803 2.70094 2 3.92236 1.86754
500 3.65681 2.70431 50 3.65858 2.69945 1 4.02735 1.42981
400 3.65682 2.70429 40 3.65957 2.69671 10−6 4.18065 0.00155
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to consider the effect of rarefaction on microscale flow [10] while good
agreements are obtained with experimental measurements [11].

Most of the existing studies on microscale heat transfer successfully
used Eqs. (3) and (4) to consider non-continuum effects developed due
to small scale rarefaction. However, additional complications occur at
themicron-levels that the effect of viscous dissipation, axial conduction
and thermal entrance region should also be considered in the analysis of
microscale flows.

Traditionally known as the Graetz problem, thermal entrance
region of a tube flow was first investigated by Graetz [12], and
later independently by Nusselt [13], analytically. The authors
both worked on hydrodynamically developed and thermally devel-
oping flow for constant wall temperature boundary condition.
There requires, so-called, extension of Graetz problem to include
additional effects in order to solve the microscale problems. First,
most of the micro-flows have small Peclet number (i.e. Pe −
O(1)) due to small Re that the axial conduction cannot be neglected
since the convection term no longer dominates the conduction
term in the axial direction. Analytical consideration of Gratez prob-
lem with axial conduction has been a very interesting problem due
to the resulting non-self-adjoint eigenvalue problem [14]. Second,
the effect of viscous dissipation on heat transfer becomes signifi-
cant for flows at microscale since the wall-to-fluid temperature
difference is small [11]. There exist multiple studies conducted so
far to include effects of rarefaction [15], viscous dissipation, and
axial conduction [16] for microscale flows. Hadjiconstantinou and
Simek [17] studied the effect of axial conduction for thermally
fully developed flows in microchannels. Jeong and Jeong [18]
tried to consider streamwise conduction and viscous dissipation
in microchannels using numerical procedures. Similarly, Cetin
et al. [19–22] performed studies to extend Gratez problem to in-
clude micro-scale effects. Dutta et al. [23] and Horiuchi et al. [24]
studied the thermal characteristics of mixed electroosmotic and
pressure-driven flow with axial conduction analytically where
Gram–Schmidt orthogonalization procedure is used to generate or-
thogonal eigenfunctions. However, there is no report on analytical
coupling of all micro-scale complications for the classical constant
temperature Gratez problem due to its mathematical difficulties.

In this work, our objective is to couple the rarefaction, viscous
dissipation, and axial conduction effects analytically. Mathematical
Table 3
Comparison of fully developed Nusselt number with Kn= 0, Br = 0 for different Pe ≤ 10 with

Pe = 1.0 Pe = 2.0

Nufd Nufd
⁎ Nufd

⁎⁎ Nufd Nufd
⁎ Nufd

⁎⁎

4.027 4.028 4.030 3.922 3.922 3.925

Nufd: results for present study.
Nufd⁎: results from Cetin et al. [20].
Nufd⁎⁎: results from Shah and London [29].
Nufd⁎⁎⁎: results from Lahjomri and Oubarra [27].
challenge will be eliminated by using Gram–Schmidt orthogonaliza-
tion accompanied with the Gauss quadrature. Solution for the
heat transfer in thermally developing flow inside a microtube in
the slip-flow regime will be performed with constant wall tempera-
ture. For such case, the energy equation will be solved by using con-
fluent hypergeometric functions in order to provide a fundamental
understanding of the effects of the non-dimensional parameters on
heat transfer characteristics.

2. Analysis

The geometry of the problem considered in this study is shown in
Fig. 1. The unheated part is included to ensure the fully developed
velocity profile. The coordinate system is placed at the center of the
microtube. Fully developed velocity profile inside a microtube is
calculated as,

u
um

¼
2 1− r=Rð Þ2
� �

þ 8Kn

1þ 8Kn
: ð5Þ

By defining slip radius as suggested by Larrode et al [25],

ρ2
s ¼ 1

1þ 4Kn
ð6Þ

and a new radial coordinate,

η ¼ r
R
ρs ð7Þ

the fully developed velocity profile can be rewritten as,

u
um

¼ 2
2−ρ2

s
1−η2
� � ð8Þ

which has the same functional as Poiseuille flow.
Energy equation and the boundary conditions for a flow inside a

microtube with axial conduction and viscous dissipation can be written
as,

u
∂T
∂x

¼ α
r
∂
∂r

r
∂T
∂r

� �
þ α

∂2T
∂x2

þ ν
Cp

∂u
∂r

� �2

ð9aÞ

r ¼ 0;
∂T
∂r

¼ 0 ð9bÞ

r ¼ R; T−Tw ¼ −
2−Ft
Ft

2γ
γ þ 1

λ
Pr

∂T
∂r

� �
r¼R

ð9cÞ

x ¼ 0; T ¼ Ti: ð9dÞ
literature.

Pe = 5.0 Pe = 10

Nufd Nufd
⁎ Nufd

⁎⁎⁎ Nufd Nufd
⁎ Nufd

⁎⁎

3.767 3.767 3.767 3.695 3.695 3.697



Table 4
Comparison of fully developed Nusselt numberwith Br= 0 for different Knudsen number
values and κ with literature.

Kn Pe = 1 Pe = 2 Pe = 5 Pe = 10 Pe = 1000

Nufd Nufd⁎ Nufd Nufd
⁎ Nufd Nufd

⁎ Nufd Nufd
⁎ Nufd Nufd

⁎

0 4.027 4.028 3.922 3.922 3.767 3.767 3.695 3.695 3.657 3.656
0.04 3.603 3.604 3.517 3.517 3.387 3.387 3.325 3.325 3.292 3.292
0.08 3.093 3.093 3.035 3.036 2.949 2.949 2.908 2.909 2.886 2.887

Nufd: approximate results for the present study.
Nufd⁎: results from Cetin et al. [20].
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Eqs. (9a)–(9d) can be non-dimensionalized with the following
quantities,

Θ ¼ T−Tw

Ti−Tw
; Br ¼ μu2

m

k Ti−Twð Þ ;
fPe ¼ RePr

ρs 2−ρ2
s

� �
ξ ¼ ρ2

s 2−ρ2
s

� � x
PeR

; η ¼ r
R
ρs; u� ¼ u

um
; κ ¼ 2−Ft

Ft

2γ
γ þ 1

1
Pr

:

ð10Þ

Here, κ is a parameter that represents the degree of temperature
jump, defined from the temperature jump boundary condition,
Eq. (9c). κ = 0 corresponds to no temperature jump at the wall,
while κ = 1.667 is a typical value for air, which is the working
fluid in many engineering applications and is taken so in this
study. By introducing these non-dimensional parameters, energy
equation and the boundary conditions become,

1−η2
� � ∂Θ

∂ξ
¼ 1

η
∂
∂η

η
∂Θ
∂η

� �
þ 1fPe2

∂2Θ

∂ξ2
þ Br

∂u�

∂η

� �2

ð11aÞ

η ¼ 0;
∂Θ
∂η

¼ 0 ð11bÞ

η ¼ ρs; Θ ¼ C1ρs
dΘ
dη

� �
η¼ρs

ð11cÞ

where C1 is defined as,

C1 ¼ −
2−Ft
Ft

2γ
γ þ 1

2Kn
Pr

¼ −2Kn κ ð11dÞ

ξ ¼ 0; Θ ¼ 1: ð11eÞ
Fig. 2. Temperature profiles for different P
By using superposition, Θ can be decomposed as,

Θ ¼ Θ1 ηð Þ þ Θ2 η; ξð Þ ð12Þ

whereΘ1(η) is the fully developed temperature profile and Θ2(η, ξ) is
the solution of the homogeneous equation. Once Eq. (12) is
substituted into the energy equation, Eq. (11a), the resulting
equation for Θ1(η) becomes

1
η

∂
∂η

η
∂Θ1

∂η

� �
¼ −Br

∂u�

∂η

� �2

: ð13Þ

Θ1(η) can be derived by integrating Eq. (13) together with the sym-
metry at the centerline and the temperature-jump at the wall
boundary conditions as,

Θ1 ¼ −Br

2−ρ2
s

� �2 η4−ρ4
s þ 4ρ4

s C1
� �

: ð14Þ

Then for the homogeneous part of the temperature distribution,
Θ2(η), the following equation together with the following boundary
conditions should be solved.

1−η2
� � ∂Θ2

∂ξ
¼ 1

η
∂Θ2

∂η
þ ∂2Θ2

∂η2
þ 1fPe2

∂2Θ2

∂ξ2
ð15aÞ

η ¼ 0;
∂Θ2

∂η
¼ 0 ð15bÞ

η ¼ ρs; Θ2 ¼ C1ρs
dΘ2

dη

� �
η¼ρs

ð15cÞ

ξ ¼ 0; Θ2 ¼ 1−Θ1: ð15dÞ

It is assumed that the solution to the boundary value problem is of
the form given below [23–26],

Θ2 ¼
X∞
n¼1

AnYn ηð Þ exp −λn
2ξ

� �
ð16Þ

where An are the coefficients, Yn are the eigenfunctions, and λn are the
eigenvalues. Substituting Eq. (16) into Eq. (15a), the following non-
e with Kn = 0, Br = 0 and κ= 1.667.
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linear problem can be obtained,

d2Yn ηð Þ
dη2

þ 1
η
dYn ηð Þ
dη

þ λ2
n 1−η2 þ λ2

ngPe2
 !

Yn ηð Þ ¼ 0 ð17aÞ

η ¼ 0;
dYn ηð Þ
dη

¼ 0 ð17bÞ

η ¼ ρs; Yn ηð Þ ¼ C1ρs
dYn ηð Þ
dη

� �
η¼ρs

: ð17cÞ

Note that, when C1 = 0 (i.e. ρs = 1), and fPe ¼ Pe, the problem is
equivalent to the macrotube problem [27]. Under the symmetric bound-
ary condition, Eq. (17b), the solution of Eq. (17a) can be represented as,

Y ηð Þ ¼ 1F1 a; c; zð Þ exp −λ
η2

2

� �
ð18aÞ

where 1F1(a, c; z) is Kummer's confluent hypergeometric function and,

a ¼ 1
2
−

λ
4
−

λ3

4fPe2 ð18bÞ

c ¼ 1 ð18cÞ

z ¼ γ2 ¼ λη2: ð18dÞ

Detailed information about hypergeometric functions can be found
elsewhere [28].

The eigenvalues can be determined by using the wall boundary
condition, and the summation constants can be evaluated by using the
inlet boundary condition. Note that eigenfunctions Y(η) are not
L
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mutually orthogonal (referring to the standard Sturm–Liouville prob-
lem), since the eigenvalues occur non-linearly. To determine coeffi-
cients An, Gram–Schmidt orthogonal procedure is used. Details of
Gram–Schmidt orthogonal procedure can be found in ref. [23].

Finally, the temperature distribution Eq. (12) becomes,

Θ ¼ −Br

2−ρ2
s

� �2 η4−ρ4
s þ 4ρ4

s C1
� �

þ
X
n
An1F1 a; c;λnη2

� �
exp −λn

η2

2

� �
exp −λn

2ξ
� �

: ð19Þ

Once the temperature distribution is determined, the local Nusselt
number can be determined as follows,

Nuξ ¼
hξ2R
k

¼ −
2
Θm

ρs
∂Θ
∂η

� �
η¼ρs

ð20Þ

where Θm is the non-dimensional temperature and defined as,

Θm ξð Þ ¼ 1
ρ2
s

Zρs

0

u� ηð ÞΘ η; ξð Þηdη: ð21Þ

In someof the results, classical dimensionless quantities given below
are used for easier comparison with literature:

x� ¼ x
R Pe

; r� ¼ r
R
: ð22Þ

Furthermore, dimensionless axial direction, ξ, is transformed into
the form below by excluding the term Pe to investigate the effect of Pe
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values at (a) Kn= 0.04 and (b) Kn= 0.08, with Br = 0 and κ = 1.667.
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onto axial conduction.

ξ� ¼ ρ2
s 2−ρ2

s

� � x
R
¼ ρ2

s 2−ρ2
s

� �
x�Pe ð23Þ

3. Results and discussion

The solution procedure is prepared with the help of Mathematica
software. Eigenvalues are evaluated using the built in function root
finder combined with a bracketing method. The method works up to a
very high number of eigenvalues with high accuracy and short CPU
times. However, for the orthogonalization part, the procedure may be
complicated because of the oscillating characteristic of high order
eigenfunctions. Integration of eigenfunctions results in excessive CPU
time, which is not practical. This problem is eliminated by using
Gaussian quadrature method for integrations. Gaussian integration
with 100 points and 12weights gives nearly the same result with direct
integration in a relatively short time. The first 20 eigenvalues and corre-
sponding coefficients for Pe = 10, 5, and 1 are listed in Table 1.

The fully developedNu, Nufd values for the continuumcase as a func-
tion of Pe are investigated. Just the first eigenvalues are enough to calcu-
late Nufd, and are listed in Table 2 for awide range of values for Pe. It can
be seen that for Pe = 106, the well-known Nu value of 3.66 for laminar
fully developed flow was determined and experienced no change for
Pe = 109, which corresponds to Pe = ∞ in the current study. Nu
decreases from 4.18 at Pe = 0 to 3.66 for Pe = ∞. Also, the solution
shows the axial conduction effect up to Pe = 106. However, the results
also suggest that the effect of axial conduction can be neglected for Pe
values higher than 100. A comparison of the present study with results
from literature is given in Table 3 for Pe ≤ 10, where axial conduction
seems to be more influential. The Table shows excellent agreement
with the available solutions.

Slip flow regime is defined as the range of Kn between 0.001 and 0.1.
In slip-flow regime,two non-dimensional parameters, Kn and the
parameter κ affect the temperature field. Kn includes the effect of rare-
faction and the parameter κ includes the effect of gas and surface inter-
action, as given in Eq.(10). The fully developed Nu for different Kn
together with the results from the literature are tabulated for different
Pe in Table 4. Nu decreases with the increasing Kn as a result of the
increase of temperature jump at the wall.

For the thermally developing region, accuracy of the solutionmainly
depends on the number of eigenvalues and eigenfunctions used in solu-
tion. Particularly as we get close to the entrance, more eigenfunctions
are needed for an accurate calculation. However, a high number of
eigenfunctions for a summation solution may still not be practical.
Since functional microchannels have high length to diameter ratios,
the resolution at the inlet does not play an important role for the overall
picture. After several attempts, it is seen that solutions with 50, 40, and
30 eigenfunctions give the same results after ξ⁎ = 0.02. As a result, 30
eigenfunctions are accepted as the suitable number for fairly good
results for the thermally developing region.

Temperature profiles, through ξ* for different Pe, can be seen in
Fig. 2. Increase of the thermal entrance length, Lt, with a decrease in
Pe can be visualized clearly. Decrease of Pe increases the axial conduc-
tion, which results in the rise of dimensionless temperature at any
cross section and length required to achieve fully developed conditions.

Fig. 3a and b shows the effect of axial conduction through the ther-
mal entrance region for Kn = 0. A minor difference with data points
taken from Hennecke [30] shows the validation of the solution in
Fig. 3-a. Similar to fully developed results, Nu increases with decreasing
Pe. Furthermore, axial conduction effect ismore influential at the begin-
ning of the development region. As a result, it can be concluded that
axial conduction is more important for the early part of thermal devel-
opment region. Moreover thermal entrance length also increases with
decreasing Pe.
Fig. 4-a and b shows the variation of Nu for different Pe with Kn dif-
ferent from zero. Axial conduction for the slip flow case still has a high
effect on Nu for different Kn. However, its effect decreases as Kn in-
creases. It can also be concluded that the effect of Kn is higher for low
Pe values because of high axial conduction resulting in an increase in di-
mensionless temperature at any cross section, such as at the boundaries.
In the slip flow regime, temperature gradients at the boundaries are the
main influential factor for the temperature jumpboundary condition. As
a result, for low Pe values, temperature gradients and the resulting tem-
perature jump at the pipe wall cause Kn to have a high effect on flow.

Fig. 5 shows the effect of positive and negative Br values for Pe = 1
and Kn = 0 case. First, Nu values are the same with no viscous dissipa-
tion case up to some portion of ξ⁎ depending on the Br value. The main
effect of viscous heating starts after that point and dominates the flow.
Nu converges to the same value, 9.6, for all Br values different than 0.
As mentioned before, for positive Br, whichmeans fluid cooling, viscous
dissipation enhances heat transfer. This can be seen from the sudden in-
crease of Nu. Furthermore, the increase of Br results in the transfer of the
jump-point towards the downstreamdirection similar to the increase of
Lt, which is themain effect of the value of Br. For negative Br, which cor-
responds to fluid heating, Nu has a singularity where the bulk mean
temperature of the fluid is equal to the wall temperature. Again, the
value of Br alters the location of singularity as a result of the change in
the amount of viscous dissipation. After the singularity, heat transfer
changes direction as mentioned before.

Fig. 6 shows the axial conduction effect in the presence of viscous
heating. It can be seen therein that axial conduction still has a high
effect through the thermally developing region up to some value of
ξ⁎ depending on the Pe value. For Pe = 1, axial conduction deter-
mines the local Nu up to ξ⁎ = 0.5, after which viscous dissipation
starts to influence the flow and dominates Nufd as mentioned before.
Before that location, Nu values are similar to no viscous dissipation
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case. Furthermore, the main impact of Pe is on the jump point loca-
tion (sudden increase of Nu) in the thermally developing region. In-
crease in Pe results in the movement of jump point towards
downstream, similar to the influence of Br values, but its effect is
more significant than the effect of Br.

Fig. 7 shows the effect of rarefaction for the positive Br case with Kn
values different from zero. The dominant effect of viscous heating is
reduced as a result of velocity slip boundary condition in micro flow,
and increase in Kn decreases Nufd values. Also, the increase in Kn results
in the transition of jump point towards upstream, similar to Lt. More-
over, axial conduction effect for the slip flow regime is the same as con-
tinuum case in the presence of viscous dissipation.

Examination of the rarefaction affect in the case of viscous dissipa-
tion continues for negative Br value (fluid heating) in Fig. 8. Similar to
the previous analysis, Nufd values decrease with an increase in Kn and
converge to the same values as the fluid cooling case (positive Br) due
to the change in the direction of heat transfer for Br =−0.01. Further-
more, singular points move upstream as a result of increase in
rarefaction.
4. Summary and conclusions

Steady state heat transfer for hydrodynamically developed, thermal-
ly developingmicrotube flow is studied by including the effects of axial
conduction, viscous dissipation, and rarefaction. An analytical solution is
obtained to increase the fundamental understanding of the physics of
the problem. Orthogonal eigenfunctions are generated by the Gram–
Schmidt orthogonalization procedure. Kummer's hypergeometric func-
tions are used in the solution of the problem, and it is seen that the use
of these functions are very effective by the help of the Mathematica
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Fig. 8. Variation of local Nusselt number along ξ⁎ for different Knudsen number values
with Pe = 1, Br = −0.01 and κ = 1.667.
software. Very good agreement is obtained with the available results
in the literature.

The effects of four parameters; Pe, Kn, κ, and Br, on the flow are
discussed. Pe, varying between 1 and ∞, represents the dependency
of the flow upon downstream conditions. Kn ranges from Kn = 0,
which is the continuum case (i.e. flow in macro tubes), to Kn = 0.1,
which is the upper limit of the slip flow regime. κ parameter,
representing temperature jump, is taken as κ = 1.667, since it is
the typical value for air, the working fluid for most of the engineering
applications. Br is ranging from−0.01, representing fluid heating, to
0, which stands for the case without viscous dissipation, to 0.01,
which is for fluid cooling.

Results show that axial conduction has an important effect at low
Pe and this effect increases with a decrease in Pe value. However, it is
negligible for Pe N 100. The increase in axial conduction increases
both Nufd and local Nu values for all continuum (macro) and slip
flow (micro), fully developed or thermally developing cases without
viscous dissipation. Moreover, Lt also increases as a result of increase
in axial conduction. However, different frommacro flow, the high ef-
fect of axial conduction for Pe b 100 decreases as a result of enhance-
ment of rarefaction effect in micro flow because of high streamwise
conduction.

In the presence of viscous dissipation, axial conduction has no effect
on Nufd but still affects the local Nu values up to some ξ⁎ value depend-
ing on the Pe value. Before that point, viscous dissipation starts to influ-
ence the flow, local Nu values are similar with no viscous dissipation
case. Again, similar to its effect on Lt, the increase of axial conduction re-
sults in the movement of jump point (sudden increase of Nu) towards
upstream for Br ≠ 0 in both macro and micro cases.

For viscous dissipation, results show that Nufd converges to 9.6
regardless of Pe or Br values for all conditions in the continuum
case. Only through the thermally developing region, the effect of Br
values can be visualized. For positive Br, viscous heating enhances
the heat transfer. However, negative values result in singular points,
after which heat transfer changes direction. Moreover, the value of
Br has an effect on the jump point; the increase of Br value results
in the transition of the jump point towards downstream, similar to
its effect on Lt, independent of its sign. All of the outcomes are also
valid for the slip flow regime. However, different from macro flow,
the dominant effect of viscous heating is reduced as a result of veloc-
ity slip boundary condition in micro flow; Nufd values decrease with
an increase in Kn. Moreover, Lt also increases as a result of an in-
crease in Kn, which also means transition of jump point towards
upstream.

For all cases, the rarefaction effect, represented by the parameter κ
and Kn, decreases the Nu values in slip flow regime when Kn ≠ 0.
From this study, the following general conclusions can be obtained.

(1) Axial conduction should not be neglected for Pe b 100 for all
cases without viscous dissipation.

(2) In the presence of viscous dissipation, axial conduction should
not be neglected for short pipes with Pe b 100.

(3) For viscous heating case, even for small Br, fully developed Nu
value experiences a jump in magnitude. The value of Br only
affects the axial location of the jump. Therefore, the effect of
viscous heating should be considered even for small Br with
large length over diameter (L/D) ratios, which is the case for
flows in micropipes.

(4) For a fixed κ parameter, the deviation from continuum increases
with increasing rarefaction and Nu values decrease with an in-
crease in Kn.
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