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Abstract The difficulty behind the unsteady lubrication
problem is the oscillation of the film thickness in both
position and time. The present study aims to extend the
multiscale analysis of lubricated interfaces to the unsteady
hydrodynamic lubrication case with deformable random
microrough surfaces. For that purpose, the homogenization
framework for the time-dependent problem is first presented
in a setting that unifies all hydrodynamic lubrication cases.
The differences between the periodic commensurate and
incommensurate as well as random microrough surfaces are
highlighted with numerical investigations. A time averag-
ing method is proposed in order to deliver the effective
macroscopic response and its efficacy is discussed for differ-
ent types of microrough surfaces. Finally, the deformation
is implemented through the numerically efficient Taylor
assumption at the microscale and the ability of the proposed
method to reflect the deformation effects is discussed.

Keywords Soft elastohydrodynamic lubrication · Time-
dependent Reynolds equation · Homogenization · Random
roughness · Taylor assumption

1 Introduction

Lubrication, action of a viscous fluid between two interact-
ing surfaces, has applications in various fields in order to
reduce friction and wear of the surfaces [1,2]. Early lubri-
cation studies focused on the industrial applications [3,4].
There are very recent lubrication studies related to the bio-
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logical applications as well. The fundamental mechanisms of
synovial fluid lubrication in artificial joints have been exam-
ined in order to enlighten the tribological problem of failure
of metal-on-metal and metal-on-polymer joints (see [5–7]).
The reader is referred to [8] for an extensive review on the
state of the art of both lubrication and wear models for arti-
ficial hip joints. Another biological phenomenon of contact
lens wear during blinking is investigated by [9] and an eye is
depicted as an example of a lubricated moving system in the
humanbody.Additionally, lubrication and contactmechanics
are used as a basis for understanding the tribological process
in syringes by [10]. Furthermore, surface engineering is an
emerging technology related to lubrication. Various studies
have been conducted on optimal surface textures in order
to increase the load carrying capacity of bearings (see [11–
14]). It is, therefore, important to understand themacroscopic
response of such microrough surfaces.

The mathematical model for the lubrication theory has
been developed in [3]. The governing equation is called
the Reynolds equation which is a second-order elliptic par-
tial differential equation. The equation is derived from the
Navier-Stokes equations of motion, based on the assump-
tion that due to the thinness of the fluid film the viscous
forces dominate the inertial forces and the pressure change
in the out-of-plane direction is negligible. Therefore, a
three-dimensional nonlinear problem is reduced to a two-
dimensional lubrication problem that is represented by the
linear Reynolds equation. Despite the series of underlying
assumptions, the Reynolds equation has a reliable predic-
tive capability in its domain of applicability, as demonstrated
in Fig. 1a for the classical wedge problem (see Fig. 3). An
additional underlying assumption in the Reynolds equation
is microscopically smooth surfaces. However, this assump-
tion is invalid in most cases because surfaces are inherently
rough and roughness is no longer negligible in compari-
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Fig. 1 For thewedge problemdepicted on Fig. 3where the surfaces are
assumed to be smooth, the analytic and FEM solutions to the Reynolds
equation are compared with the CFD solution (Stokes equation) in (a).
b shows that microscopic roughness under different lubrication cases

(see Fig. 2) leads to different homogenized solutions that differ from the
solution obtained under the assumption of smooth surfaces. (a) Micro-
scopically smooth surfaces. bMicroscopically rough lower surface
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Fig. 2 Based on the roughness and the motion of each surface, the lubrication problem is divided into three cases [15]

son with the small fluid film thickness that is encountered
in lubrication. Nevertheless, for a broad range of scenarios
(see below), the Reynolds equation is able to reflect well-
known roughness effects. This is demonstrated in Fig. 1b
where the surface roughness is considered as a sinusoidal
function with an amplitude of 0.5 µm. Here, the stationary
and the quasi-stationary cases discussed further below are
solved in a two-scale setting. Roughness increases the pres-
sure and hence the load bearing capacity. Additionally, this
influence depends on whether the moving surface or the sta-
tionary surface is rough.

In a pioneering study [15], the lubrication problem is
divided into three cases (see Fig. 2) based on the surface
roughness and motion. As long as the smooth surface moves
and the rough one does not, the problem is called time-
independent or stationary. On the other hand, when the
rough surface is moving the problem becomes dependent
on a microscopic time, which is the emphasis of this work:
in the quasi-stationary case the opposing moving surface is
smooth and in the unsteady case it is also rough. The meth-
ods in the literature to incorporate such roughness effects

into the Reynolds equation are divided into three groups in
[16]. The simultaneous resolution of all scales of the prob-
lem constitutes the deterministic analysis and this approach
has been followed in [17,18]. Stochastic analysis, developed
by [19,20] with the influential flow factor method intro-
duced in [21–23] as a particular example, aims to capture the
coarse-scale interface response by incorporating fine-scale
information. Finally, the third method is known as two-scale
analysis, an early example being the approach of [24] which
can be considered as a precursor to modern homogenization
techniques. The widely employed flow factor method is ren-
dered ineffective in the presence of asymmetric roughness
(see [25]). Another drawback of this method is that tedious
effort is required to obtain the flow factors through flow
simulations. On the other hand, the deterministic analysis
accurately captures the directional aspect of the roughness
as long as a very fine numerical discretization is employed,
which may be computationally prohibitive. In this work, the
homogenization approach is chosen in order to circumvent
both of these difficulties. Homogenization divides the prob-
lem into two parts: a microscopic problem (i.e. the roughness
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Fig. 3 The homogenization idea for the two-scale lubrication problem
in which the heterogeneous surfaces are replaced with microscopically
smooth ones. Here, the macroscopic problem is a simple wedge prob-
lem with maximum and minimum film thicknesses (hmax and hmin ,

respectively) and at the microscale the surfaces can be considered as
nominally flat. See Fig. 1 for sample solutions in 1D and Fig. 4 for 2D.
In all cases, Dirichlet boundary conditions have been applied on the
boundary of the domain by setting the pressure to zero

scale) and a macroscopic problem (i.e. the structural inter-
face scale) (see Fig. 3). An explicit incorporation of those
two scales into the lubrication problem was first realized by
[24]. Small parameter expansion approach was then used
to separate those two scales for the lubrication problem in
[26,27].Within this approach, for the heterogeneous problem
themacroscopic response (i.e. themean pressure) is extracted
from the microstructure without any simplification. There-
fore, the microstructure of the problem can be either periodic
or random, which removes the symmetric roughness require-
ment of the flow factor method (see [25]).

There are four lubrication regimes where homogenization
approaches are of interest. Mixed and boundary lubrication
regimes are used to refer to the cases when the surfaces
are partially in contact, which will not be addressed in this
work (see [2] for a detailed review). As long as the pressure
within the fluid is not sufficiently high to deform the sur-
faces, the regime is called hydrodynamic lubrication; and
it is known as elastohydrodynamic lubrication when the
surfaces are deformed significantly. The homogenization of
the hydrodynamic lubrication problem in the stationary case
is presented in [28–30]. Analytic bounds for the problem
and their comparison with homogenization are studied in
[31,32]. The homogenization of the time-dependent lubri-
cation problem is studied in [15,29] in addition to [33].
Bounds for the time-dependent problem is discussed in [34].
The homogenization of the compressible Reynolds equation
in the stationary case is studied for modeling a hard disk
magnetic storage problem in [35]. It is further generalized
and applied for the time-dependent Reynolds equation in
[33]. Homogenization is compared with alternative methods
in [16,36]. Additionally, the stationary multiscale prob-
lem of elastohydrodynamic lubrication is investigated in
[37–40].

Since the Reynolds equation is derived based on a series
of simplifying assumptions, the validity of the use of the
equation at the microscale, specifically in the context of

homogenization, has been of interest. For that purpose, two
types of roughness regimes are described in the literature. As
long as the roughness wavelength to the mean film thickness
ratio is large, the regime is classified as Reynolds roughness
and the Reynolds equation is applicable. On the contrary, if
the ratio is small, the regime is classified as Stokes rough-
ness and reverting to the Stokes equation might be necessary.
The limits of the wavelength to the film thickness ratio where
the Reynolds equation is valid is investigated in [41–45] for
various roughness profiles. On the other hand, the validity of
the Reynolds equation is studied from a mathematical per-
spective in [46] where it is shown that the Stokes equation
reduces to the classical Reynolds equation with an effective
height in the limit of first the wavelength approaching to
zero and then the film thickness as well. On the other hand,
the Stokes equation condenses to the homogenized Reynolds
equation in the limit of first the film thickness and then
the wavelength approaching to zero, essentially describing
Reynolds roughness. The microstructures employed in this
study have Reynolds roughness, hence the use of Reynolds
equation in a two-scale setting can be considered a valid
approach.

The literature cited above concerning the homogeniza-
tion of the Reynolds equation concentrates predominantly
on the time-independent case and in the time-dependent
cases emphasis has been solely on periodic surfaces with
little or no deformation. The aim of the present study is to
extend the multiscale analysis of lubricated interfaces to the
time-dependent cases with deformable random microrough
surfaces. For that purpose, the homogenization framework
for the time-dependent lubrication problem is presented in
Sect. 2 in a setting that unifies all hydrodynamic lubrication
cases. Next, a time averaging method to deliver the effec-
tive macroscopic response in the unsteady case is proposed
and applied to periodic as well as random microrough sur-
faces in Sect. 3. Finally, the deformation effects are reflected
in the microscale through the numerically efficient Taylor

123



424 Comput Mech (2015) 56:421–441

assumption where the boundary layer deformation is pro-
jected uniformly onto the micromechanical sample. In order
to investigate the efficiency of the proposed method, the
results are compared with the solutions of the problemwhere
the deformation of the microstructure is resolved explicitly
using the finite element method (FEM).

2 Homogenization of time-dependent Reynolds
equation

2.1 Two-scale expansion in space and time

The homogenization framework for the unsteady lubrication
problem was established in [15], which is reviewed in this
section. The quasi-stationary and the unsteady cases of the
lubrication problem in amacroscopic domain� are governed
by the incompressible time-dependent Reynolds equation

∇ ·
(
hε(xε, tε)3

12μ
∇ pε(xε, tε)

)

= 1

2
U · ∇hε(xε, tε) + ∂hε(xε, tε)

∂tε
(2.1)

where pε(xε, tε) is the pressure, hε(xε, tε) is the fluid film
thickness, μ is the kinematic viscosity, and U = U+ + U−
(see Fig. 2). Here, the microscale is the surface roughness
scale and it is separated from the macroscale by the fac-
tor ε which is proportional to the roughness wavelength.
The deterministic position vector xε and time tε can then
be expressed in a two-scale setting as

xε = x + εy, tε = t + ετ (2.2)

where x/y is the macroscopic/microscopic position vector
and t/τ is the macroscopic/microscopic time. It follows that
the relevant gradients are

∂
∂xε

= ∂
∂x + 1

ε
∂
∂y ,

∂
∂tε

= ∂
∂t + 1

ε
∂
∂τ

. (2.3)

The film thickness is assigned a relatively general two-scale
representation in the form

hε(xε, tε) = h(x, t, y, τ )

= h0(x, t) + h+(y − U+τ) − h−(y − U−τ)

(2.4)

where h0(x, t) is the mean (macroscopic) film thickness
while h+ and h− are two functions with zero mean that
describe the microscopic roughness topographies of the sur-
faces (see Fig. 2).

Assuming ε is small, one proposes an asymptotic expan-
sion of the pressure in terms of ε:

pε(xε, tε) = p(x, t, y, τ )

= p0(x, t, y, τ ) + εp1(x, t, y, τ )

+ ε2 p2(x, t, y, τ ) + O(ε3). (2.5)

Here p1 and p2 are periodic functions of y on a microscopic
domainY and of τ in timewith a period T . Substituting (2.3)
and (2.5) into (2.1), and defining the differential operators

A0 = ∇x ·
(

h3

12μ
∇x

)
, (2.6a)

A1 = ∇y ·
(

h3

12μ
∇x

)
+ ∇x ·

(
h3

12μ
∇y

)
, (2.6b)

A2 = ∇y ·
(

h3

12μ
∇y

)
, (2.6c)

the heterogeneous Reynolds equation is expressed as follows

(
A0 + ε−1A1 + ε−2A2

) (
p0 + εp1 + ε2 p2 + . . .

)

= 1

2
U ·

[
(∇x + ε−1∇x)h

]
+

(
∂

∂t
+ ε−1 ∂

∂τ

)
h. (2.7)

Gathering the terms of equal powers of ε → 0 delivers three
equations for ε−2, ε−1 and ε0:

A2 p0 = 0, (2.8a)

A1 p0 + A2 p1 = 1

2
U · ∇yh + ∂h

∂τ
, (2.8b)

A0 p0 + A1 p1 + A2 p2 = 1

2
U · ∇xh + ∂h

∂t
. (2.8c)

From the first Eq. (2.8a), it is obtained that the macroscale
pressure p0 is independent of y: p0(x, t, y, τ ) = p0(x, t, τ ).
In the second Eq. (2.8b), by linearity of the differential equa-
tion, the microscale pressure (p1) is replaced with

p1(x, t, y, τ ) = ∂p0
∂x1

w1(x, t, y, τ ) + ∂p0
∂x2

w2(x, t, y, τ )

+w3(x, t, y, τ ) (2.9)

where w1, w2 and w3 are Y- and T -periodic functions. One
then obtains the cell problems

∇y ·
(

h3

12μ
∇yw1

)
= − ∂

∂y1

(
h3

12μ

)
, (2.10a)

∇y ·
(

h3

12μ
∇yw2

)
= − ∂

∂y2

(
h3

12μ

)
, (2.10b)

∇y ·
(

h3

12μ
∇yw3

)
= 1

2
U · ∇yh + ∂h

∂τ
. (2.10c)

Finally, solving the cell problems and taking the cell aver-
age 〈·〉 = 1

|Y |
∫
Y · dy of the third Eq. (2.8c) delivers the
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homogenized equation in the macroscopic domain � for the
T -periodic macroscopic pressure p0:

∇x ·(A(x, t, τ )∇x p0(x, t, τ )) = ∇x ·b(x, t, τ )+ ∂h0
∂t

(2.11)

Here, 〈h〉 = h0(x, t) has been employed and the homoge-
nized response is reflected through

[A] =
⎡
⎣

〈
h3
12μ + h3

12μ
∂w1
∂y1

〉 〈
h3
12μ

∂w2
∂y1

〉
〈
h3
12μ

∂w1
∂y2

〉 〈
h3
12μ + h3

12μ
∂w2
∂y2

〉
⎤
⎦, (2.12a)

{b} =
⎧⎨
⎩

〈
h
2U1 − h3

12μ
∂w3
∂y1

〉
〈
h
2U2 − h3

12μ
∂w3
∂y2

〉
⎫⎬
⎭ = h0

2

{
U1

U2

}
−

⎧⎨
⎩

〈
h3
12μ

∂w3
∂y1

〉
〈
h3
12μ

∂w3
∂y2

〉
⎫⎬
⎭ .

(2.12b)

Remark The microscopic fluid flux q can be written as fol-
lows (see [1])

q1 = − h3

12μ

(
∂p1
∂y1

+ ∂p0
∂x1

)
+ h

2
U1, (2.13a)

q2 = − h3

12μ

(
∂p1
∂y2

+ ∂p0
∂x2

)
+ h

2
U2. (2.13b)

After substituting (2.9) into (2.13a) and (2.13b), taking the
cell average of the microscopic fluid flux delivers the follow-
ing expression for the macroscopic fluid flux

Q = 〈q〉 = −A(x, t, τ )∇x p0(x, t, τ ) + b(x, t, τ ) (2.14)

which therefore satisfies the macroscopic Reynolds equation
(2.11):

−∇x · Q = ∂h0
∂t

. (2.15)

Themicroscale problems are, by construction, nominally flat
even though the macroscale interfaces may be curved. The
divergence and the gradient operators in these expressions
would then be evaluated accordingly (see [47]).

Remark In this work, time-dependence refers to the pres-
ence of the microscopic time τ . Although the variation of the
vertical separation h0 of the surfaces with the macroscopic
time t is not considered in the numerical experiments, the
presented theory is capable of addressing this case without
modification via the macroscopic term ∂h0

∂t .

2.2 Homogenized coefficient tensors

The term ∂h
∂τ

in (2.10c) vanishes in the stationary case so that
w3 may be expressed as a linear function of U without loss
of generality: w3 = −�(x, t, y) · U. Note, however, that U

is either equal to U+ or U−, whichever surface is smooth.
This splits equation (2.10c) into two equations for the two
components �1 and �2 of �. Substitution of w3 = −� · U
in (2.12b) then delivers the expression (I: identity)

b(x, t) = h0
2
U + B(x, t)U = [h0/2 I + B(x, t)]U (2.16)

where

[B] =
⎡
⎣

〈
h3
12μ

∂�1
∂y1

〉 〈
h3
12μ

∂�2
∂y1

〉
〈
h3
12μ

∂�1
∂y2

〉 〈
h3
12μ

∂�2
∂y2

〉
⎤
⎦ . (2.17)

The advantage of the representation (2.16) is that it clearly
reflects the sensitivity of the macroscopic flux Q to U,
∂Q/∂U = h0/2 I + B, which is important in a two-scale
setting where U might be varying. Based on the treatment
of the ∂h

∂τ
term in [15], it will now be shown that a similar

conclusion can be reached for all lubrication regimes. Since
the present form of the Reynolds equation is implicitly for-
mulated with respect to an intermediate flat stationary plane,
the following holds:

∂h±

∂τ
= −∇yh

± · U± (2.18a)

Substitution of this expression into the right-hand side of
(2.10c) by making use of (2.4) and rearranging delivers an
alternative cell problem for w3

∇y.

(
h3

12μ
∇yw3

)
= −1

2
V · ∇y(h

+ + h−) (2.19a)

where V = U+ − U−. Hence, w3 = −�(x, t, y, τ ) · V may
be written in all lubrication regimes. Upon solving for �1

and �2, substitution of w3 = −� · V in (2.12b) delivers the
expression

b(x, t, τ ) = h0
2
U + B(x, t, τ )V (2.20)

whereB still has the form (2.17). This result reflects the indi-
vidual sensitivities of the macroscopic fluxQ toU+ andU−:
∂Q/∂U± = h0/2 I ± B. Since the first term in (2.20) does
not depend on microscopic roughness, all microstructural
influence that is associated with the motion of the surfaces
is embedded in B. Hence, for all regimes, the homogenized
coefficient tensors A(x, t, τ ) and B(x, t, τ ) together reflect
the microstructural influence onto the macroscale. For a
homogeneous interface,A(x, t) = h30/12μ I andB vanishes.

Scale transition theories based on a separation of scales
assumption transfer the primal gradient and dual flux fields
from the microscale to the macroscale through domain aver-
aging. This is the link that is employed in a broad range of
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works that address micromechanics and homogenization in
the engineering literature. In such works, different boundary
conditions are available for the microscopic (cell) problem
and periodic boundary conditions are one of these. From this
point of view, the application of the summarized approach
to non-periodic microstructures essentially corresponds to
averaging with periodic boundary conditions. The relation
to the mathematical literature can be established by locally
constructing a pseudo-periodic microstructure, the unit cell
of which corresponds to a statistically representative sam-
ple. Once this construction is complete, the homogenization
theory applies in its present form. The advantage of such a
construction resides in the necessity of computing the (lin-
earized) tangent operators, which are associated with A and
B in the present work. The forms of these operators are
directly implied by the homogenization framework but may
be obscured when averaging is taken as the starting point.
On the other hand, it is known that rapid local variations in
a random microstructure may strongly affect the macroscale
response and cause a failure of the scale separation assump-
tion. Hence, periodicity is a more robust setting with respect
to predictive capability.

2.3 Homogeneous-to-heterogeneous transitions

Clearly, A and B, and hence p0, rapidly oscillate with τ in
the general unsteady case, which poses a computational dif-
ficulty since these oscillations must be resolved with a fine
time discretization. To demonstrate the source of these oscil-
lations, the unsteady 2D simple wedge problem (see Fig. 3)
with microrough surfaces is solved in a coupled two-scale
framework. Here both surfaces are periodically rough and
the lower one is moving. The problem parameters are tab-
ulated on Table 1. In all numerical investigations, the time
and mesh resolutions are chosen to ensure a sufficiently con-
verged numerical result.

The macroscopic pressure is monitored together with the
corresponding microscopic interface in Fig. 4. The macro-
scopic pressure oscillates with the microscopic time τ . The
maximum pressure is obtained if the peaks of the upper
surface correspond to the peaks of the lower surface and sim-

Table 1 The parameters of the 2D unsteady simple wedge problem
(Fig. 4). Periodic microrough surfaces are employed in this example

Interface dimensions mm × mm L1 × L2 1 × 1

Maximum mean film thickness µm hmax 1.5

Minimum mean film thickness µm hmin 0.5

Roughness root-mean-square µm RMS 0.2

Lower surface velocity m/s U− 1

Lubricant (motor oil) viscosity Pa · s µ 0.1

ilarly the valleys of the upper one match with the valleys of
the lower one, i.e. when the macroscopic interface becomes
heterogeneous (Fig. 4b) with the greatest root-mean-square
(RMS) value of the film thickness. On the other hand, the
minimum pressure is delivered if the peaks of the upper sur-
face correspond to the valleys of the lower surface, i.e. when
the microscopic interface becomes homogeneous (Fig. 4c)
over the domain. This homogeneous-to-heterogeneous tran-
sition of the interface results in the oscillating macroscopic
response with the microscopic time τ . In the quasi-stationary
case, such a transition is not observed. The interface remains
heterogeneous so that A = A(x, t) and B = B(x, t) such
that the macroscopic response will not be a function of τ .

3 Time averaging

3.1 Eliminating fine-scale time dependence

Although the heterogeneous problem (2.1) is homogenized
in space, the pressure in (2.11) is still oscillating with the
microscale time (τ ). The time average (·)� = 1

�τ

∫ · dτ
of (2.11) is now taken in order to obtain a mean macro-
scopic response. A similar approach is applied to deliver
the effective pressure in [48] where the time average of
the heterogeneous Reynolds equation is taken. Presently, the
proposed time-averaged macroscopic Reynolds equation is
expressed as:

∇x · (
A�(x, t)∇x p

′
0(x, t)

) = ∇x · b�(x, t) + ∂h0
∂t

. (3.1)

Here, the right-hand side corresponds to the time average of
the right-hand-side of (2.11)

[
∇x · b(x, t, τ ) + ∂h0

∂t

]�
= ∇x · b�(x, t) + ∂h0

∂t
(3.2)

while the left-hand side approximates the time average of the
left-hand-side of (2.11)

[∇x · (A(x, t, τ )G(x, t, τ ))]� ≈ ∇x · (
A�(x, t)∇x p

′
0(x, t)

)
(3.3)

where the macroscopic pressure gradient has been rep-
resented as G = 〈g〉 = ∇x p0. This approximation is
investigated by splitting the terms into mean (·)� and oscil-
latory ˜(·) parts:

A(x, t, τ ) = A�(x, t) + Ã(x, t, τ ), (3.4a)

G(x, t, τ ) = G�(x, t) + G̃(x, t, τ ). (3.4b)
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Fig. 4 The unsteady 2D wedge problem is solved. The oscillation of
the homogenized pressure distribution (shown at the instant of a hetero-
geneousfilm) ismonitored at the pointwhere the pressure is amaximum.
The results demonstrate that the heterogeneous-to-homogeneous transi-
tion of the interface is the source of themacroscopic pressure oscillation

with the microscopic time τ . The amplitude of these oscillations will
depend on the variation of the local film thickness, which is influ-
enced by the mean film thickness and the surface roughness. a τ = τi :
homogenized pressure. b τ = τi : heterogeneous film. c τ = τi + �τ :
homogeneous film

Based on the expressions above, (3.3) is equivalent to

[∇x · (AG)]� = ∇x · [(A� + Ã)(G� + G̃)]�
= ∇x · (A�G�+A�G̃� + Ã�G�+(ÃG̃)�)

= ∇x · (A�G� + (ÃG̃)�)

≈ ∇x · (
A�∇x p

′
0

)
. (3.5)

Since G� = ∇x p�
0 , the proposed time averaging method

approximates the mean homogenized pressure satisfactorily,
i.e. p′

0 ≈ p�
0 , as long as the term ÃG̃ is small or its time

average is of negligible magnitude, which is to be demon-
strated next. In general, one might postulate that there is a
(non-dimensional) factor associated with the ratio of a mea-
sure of roughness to the mean film thickness ratio which
controls the magnitude of this neglected contribution. One
might even attempt to model this dependence, perhaps not
too unlike how onemodels the Reynolds stress in turbulence.
Such an approach goes beyond the scope of this work and
will not be pursued.

Both for periodic and random surfaces, the duration �τ

of averaging corresponds to the time it takes for one sam-
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Table 2 The parameters of the 1D unsteady simple wedge problem are
listed

Interface length mm L 1

Maximum mean film thickness μm hmax 1.5

Minimum mean film thickness μm hmin 0.5

Roughness wavelength for
deterministic solution

mm ε 0.02

Lower surface velocity m/s U− 1

Lubricant viscosity Pa·s μ 0.05

ple to fully traverse the span of the other. For commensurate
periodicity (Sect. 3.2), �τ truly corresponds to a period T
of the oscillations. For incommensurate periodicity and ran-
domness, the unit cell is associated with a pseudo-periodic
microstructure construction and once this construction is
made �τ again delivers a period of the oscillations.

3.2 Periodic roughness

In order to observe the macroscopic response in the unsteady
case with periodic microrough surfaces and judge the effi-
cacy of the proposed time averaging, the 1D two-scale wedge
problem is considered. Both surfaces are rough and only the
lower one is moving. The mean film thickness is expressed
as h0 = hmax − hmax−hmin

L x1 (see Fig. 3). The problem para-
meters are listed on Table 2. Additionally, the roughness
RMS is initially set to 0.1 µm. In Fig. 5, the time-averaged
deterministic pressure (p�

ε ) is compared with the time-
averaged homogenized pressure (p�

0 ) and the solution to the
time-averagedhomogenized equation (p′

0). Themacroscopic
pressure distribution oscillates between a maximum (pmax

ε )

and a minimum (pmin
ε ). The time-averaged homogenized

pressure (p�
0 ) already captures the time-averaged determin-

istic pressure (p�
ε ) even though the roughness wavelength is

far from satisfying the homogenization assumption ε → 0.
Additionally, the proposed time averaging method delivers a
solution p′

0 which can accurately capture p�
0 for low rough-

ness RMS (see Fig. 5a). When the roughness RMS increases
(see Fig. 5b), pmax

ε increases while pmin
ε does not change,

due to the fact that the mean film thickness variation is the
same for both problems and the minimum pressure distribu-
tion is associatedwith this variation. In this case, the proposed
time averaging method is not able to predict p�

0 accurately.
Nevertheless, it can be considered as a reasonable first-order
estimation for the mean response which is easy to compute
due to the absence of the fine-scale time τ .

So far, commensurate periodic surfaces as in Fig. 6a-1
have been studied. However, periodic surfaces might also
be incommensurate (see [49]), i.e. the ratio of the frequen-
cies of the roughness on two surfaces can be an irrational
number, see Fig. 6b-1. Using the parameters on Table 2, the
unsteady 1D wedge problem is solved deterministically with
incommensurate surfaces having a roughness RMS of 0.1
μm and the results are summarized in Fig. 7. The roughness
frequency ( f ) of the upper surface is set to three different
values (i.e. [ f +

1 , f +
2 , f +

3 ] = [15√2, 60
√
2, 300

√
2]) while

the lower surface has the corresponding roughness frequen-
cies of [ f −

1 , f −
2 , f −

3 ] = [15, 60, 300]. In these cases, pε still
oscillates with time between pmax

ε and pmin
ε . However, the

oscillations are smaller than the commensurate case (see Fig.
5a) despite having the same roughness RMS. Additionally,
Fig. 7c demonstrates that the oscillationwith time vanishes as
the frequency of the roughness increases (i.e. with increasing
sample size). In other words, when the surfaces are incom-
mensurate the macroscopic response is independent of the
microscopic time even in the unsteady case, which is a con-
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Fig. 5 The unsteady 1D wedge problem with periodic microrough surfaces is solved and the efficacy of the proposed time averaging method is
demonstrated in both cases of low roughness RMS (a) and high roughness RMS (b). a Low RMS. b High RMS
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Fig. 6 Commensurate (a-1) and incommensurate (b-1) surfaces are
depictedwith corresponding film thicknesses (a-2) and (b-2). The upper
and lower surfacesmatch in the commensurate case,which leads to peri-
odic film thickness during the motion unlike the incommensurate ones
which delivers a non-periodic film thickness. Note that the translation of

one periodic surface with respect to the other one will simply introduce
a phase-shift in the microscopic pressure-time profile and hence does
not require an independent investigation. a-1 Commensurate surfaces.
a-2 Commensurate h distribution. b-1 Incommensurate surfaces. b-2
Incommensurate h distribution
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Fig. 7 Despite the use of the periodically rough surfaces, oscillations with time vanish in the case of incommensurate surfaces. a f +
1 = 15

√
2,

f −
1 = 15. b f +

2 = 60
√
2, f −

1 = 60. c f +
3 = 300

√
2, f −

1 = 300
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Fig. 8 The random surfaces are generated using the RFM with a cor-
relation length of 5 pixels. 50 × 50 pixel space is mapped onto a FEM
mesh with 50 × 50 elements and similarly 100 × 100 pixel space is

mapped onto a mesh with 100 × 100 elements. a Small sample size
generated from 50 × 50 pixel space. b Large sample size generated
from 100 × 100 pixel space
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Fig. 9 The unsteady wedge problem is solved in 1D with 1D random
microrough surfaces that are generated through the algorithm demon-
strated in Fig. 8. Note that the sample size effect on the macroscopic

response is similar to the case of periodic incommensurate rough sur-
faces (Fig. 7). a Small sample size. b Large sample size

venient simplification of the original theoretical implication.
An important consequence of this observation is that since
random microrough surfaces are generally incommensurate
as well, the macroscopic response is expected not to oscil-
late with the microscopic time in the unsteady case with such
surfaces. This will be verified in the following section.

3.3 Random roughness

Real surfaces are inherently randomly rough. In order to
understand the time-dependent lubrication phenomenon for
such surfaces, isotropic random roughness is generated
through the random-field model (RFM) which is an algo-
rithm to generate Gaussian surfaces from a set of random
variables (see [50–52]). For this purpose, a pixel space digi-
tized into N × N pixels is taken and a random film thickness
value generated by a Gaussian random number generator is
assigned to each pixel. Then the random field is smoothed
with a filter having aGaussian kernel and a correlation length
measured with the number of pixels for fixed pixel length,

which controls the roughness wavelength and is chosen to be
5 pixels in this study. The generated surface is then mapped
onto a FEMmesh through a least squares procedure wherein
periodicity conditions are imposed to obtainmatching rough-
ness profiles on opposing edges, which is necessary for the
applicability of the homogenization theory (see Sect. 2.2).
The imposition of periodicity modifies the nature of random-
ness, however this modification is restricted to regions near
the boundaries of the sample and hence its influence dimin-
ishes with increasing sample size. The RFM delivers sample
random surfaces which are depicted on Fig. 8 for small and
large sample sizes.

The macroscopic response and the proposed time averag-
ing method is first tested with random microrough surfaces
by solving the unsteady 1D wedge problem (see Fig. 3) with
the parameters tabulated on Table 2 with an RMS of 0.1 μm
and μ = 0.1 Pa · s. The results (Fig. 9) resemble the ones
delivered by the periodic incommensurate surfaces (Fig. 7)
and clearly suggest that the macroscopic response is not a
function of themicroscopic time for sufficiently large sample
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Table 3 The parameters of the stationary 2D microscopic problem for
the initial random sample are listed

Interface dimensions mm L × L 1 × 1

Mean film thickness μm h0 1

Roughness root-mean-square μm RMS 0.2

Lubricant viscosity Pa · s μ 0.14

Macroscopic pressure gradient Pa/mm ∇x p0
[
1 0

]
Initial Pixel space N × N 10 × 10

Initial FEM mesh size E × E 10 × 10

sizes. Additionally, it is again observed that the deterministic
solution rapidly approaches the homogenization prediction
with increasing roughness frequency from Fig. 9a, b. In other
words, A(x, t, τ ) ≈ A(x, t), B(x, t, τ ) ≈ B(x, t) and hence
p0(x, t, τ ) ≈ p0(x, t). As a result, with increasing sample
size, p�

ε also approaches to p′
0 which is computed by using

a 50 × 50 sample at the microscale. The effect of this cho-
sen microscale sample size on the homogenization results is
investigated next.

For the periodic microstructure, the representative inter-
face element is the unit cell of the structure. However,
if the medium is random, the representative element is
the set of microstructural elements displaying the statisti-
cal and the spectral properties of the macrostructure. See
[51,53,54] for further details on random microstructures.
In practice, a representative element is determined through
sample enlargement in combination with ensemble averag-
ing, indicated by 〈〈·〉〉. To illustrate this, the 2D microscopic
problem is studied with nominally flat isotropic random
microrough surfaces. The problem parameters are listed on
Table 3. The sample size is controlled by the pixel dimension
N with a proportional increase in the interface dimensions L
and the FEM mesh size E . The eigenvalues of the homoge-

nized coefficient tensors A and B are monitored in Fig. 10 in
order to check the convergence in the predicted macroscopic
response with increasing sample size. Here, the error bars
show the standard deviation of the eigenvalues for a given
sample size while a solid line tracks the ensemble average
〈〈λ〉〉 of an eigenvalue. There are 400 samples for the sam-
ple sizes of N = {10, 20, 40, 70, 80}, 200 samples for the
sample size of N = 100, and 100 samples for the sam-
ple size of N = 200. Clearly, ensemble averaging together
with sample enlargement alleviates randomness effects on
the macroscopic response and delivers the effective macro-
scopic response.

The setting discussed above for the determination of
the sample size applies to both the stationary and the
quasi-stationary cases where only one surface has random
roughness. In the unsteady case where both surfaces are
rough, the additional factor of microscopic time τ must
be considered. Although the macroscopic response has
been observed not to be a function of τ in the unsteady
case with an appropriately large sample, one might now
ask whether the proposed time averaging method still has
an advantage. Specifically, can time averaging accelerate
the convergence in ensemble averaging for the determi-
nation of the appropriate sample size? This question is
addressed by studying the unsteady 2D microscopic prob-
lem with nominally flat surfaces for which the parameters
are listed on Table 4. By increasing the sample size, the
convergence of the ensemble-time-averaged macroscopic
response (in this case the fluid flux 〈〈Q�〉〉) is summarized in
Fig. 11a. The number of samples (s) for different sample
sizes N = {10, 20, 30, 40, 50, 60, 70, 80, 90, 120} is chosen
as s = {50, 45, 40, 35, 30, 25, 20, 15, 10, 10}. The ensemble
average of the time-averaged macroscopic response is taken
for each sample size and 〈〈Q�〉〉 is plotted in Fig. 11b. On
the other hand, one can also monitor the ensemble average
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Fig. 10 The sample enlargement and the ensemble averaging, together,
deliver the effective macroscopic response with identical eigenvalues
due to isotropy. Although the observations apply to both the station-

ary and the quasi-stationary cases, the calculations of the eigenvalues
assumes the stationary case. a Eigenvalues of coefficient tensor A. b
Eigenvalues of coefficient tensor B
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Table 4 The parameters of the unsteady 2D microscopic problem with
a random sample of the smallest sample are listed

Interface dimensions mm L × L 1 × 1

Mean film thickness μm h0 1

Roughness root-mean-square μm RMS 0.1

Lubricant viscosity Pa · s μ 0.1

Velocity of the lower surface m/s U− 10

Macroscopic pressure gradient Pa/mm ∇x p0
[
1 0

]
Initial Pixel space N × N 10 × 10

Initial FEM mesh size E × E 10 × 10

〈〈Q〉〉 of responses measured at fixed observation times τ .
Fig. 11b shows that this is a very good approximation of
〈〈Q�〉〉. Therefore, one can conclude that ensemble aver-
aging renders time averaging statistically unnecessary (but
not vice versa). The practical implication of this is that the
unsteady 2D problem with random microrough surfaces can
be considered as quasi-stationary on the microscale, which
significantly eases the computational burden. In other words,
it is sufficient to calculate A and B only for a chosen start-
ing configuration for each sample and subsequently carry
out ensemble averaging together with sample enlargement in
order to determine an appropriate microscopic sample size.

4 Surface deformation

4.1 Taylor assumption

In the case of soft elastohydrodynamic lubrication, onemight
consider solving a coupled deformation - lubrication problem
on the microscale (see [10,40,55,56]). In [40], within a scale

separation assumption, the coupled microscopic problem
was condensed to a decoupled two-phase micromechani-
cal test where (i) the macroscopic surface deformation is
imposed on the micromechanical sample together with the
macroscopic pressure on the rough surface, and subsequently
(ii) the microscopic lubrication problem is solved on a frozen
texture that is extracted from the deformed sample in order to
determine the macroscopic homogenized interface response.
Since the application of the pressure does not alter the rough-
ness characteristics, the macroscopic surface deformation
remains as the only macroscopic variable in the first phase.
In the present study, as an alternative to reflecting its effect
through FEM analysis, a uniform projection into the cell
will be pursued. This corresponds to the numerically effi-
cient Taylor assumption

x = FsX (4.1)

where x and X are the position vectors on the deformed and
undeformed surfaces respectively, and Fs is the macroscopic
surface deformation gradient which is denoted in component
form as

[Fs] =
[
f11 f12
f21 f22

]
. (4.2)

It has already been shown that the unsteady casewith random
or incommensurate periodic microrough surfaces condenses
to the quasi-stationary case, which also represents a gen-
eralization of the stationary case. Therefore, without loss
of generality, the quasi-stationary case will be considered,
based on the parameters listed on Table 5. Initially, a peri-
odic microrough surface is assumed in order to concentrate
on the main features of deformation effects and subsequently
randomness is incorporated.
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Fig. 11 The limit delivered by combined ensemble averaging and
sample enlargement in the unsteady case is depicted on (a) for the
time-averaged macroscopic response. On the other hand, b indicates

that monitoring the ensemble averaged response at fixed observation
times τ is sufficient. a Time-averaged macroscopic response. b 〈〈Q〉〉
at various time steps
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Table 5 The parameters of the quasi-stationary 2D microscopic prob-
lem with a periodic microrough deformable surface

Interface dimensions mm L × L 0.5 × 0.5

Mean film thickness μm h0 0.5

Roughness root-mean-square μm RMS 0.2

Roughness wavelength on
undeformed surface

mm ε 0.25

Lubricant viscosity Pa · s μ 0.14

Velocity of the lower surface m/s U− 1

4.2 Area-preserving deformations

The surfaces are either (i) shearedusing f12 = {0.2, 0.4, 0.6},
or (ii) stretched using f11 = {1.2, 1.4, 1.6} with corre-
sponding f22 = { 1

1.2 ,
1
1.4 ,

1
1.6 }. Thus, both deformations are

macroscopically area-preserving: detFs = 1. The deformed
surfaces are shown on Fig. 12. Here, the first row shows
the deformed configurations delivered by solving the defor-
mation within a FEM framework using periodic boundary
conditions on a boundary layer sample with a rough surface
and subsequently extracting the deformed surface topogra-
phy. The figures in the second row are the results of the Taylor
assumption. In order to compare the macroscopic response
of these two sets of surfaces, the magnitude of AG is plotted
on Fig. 13 where {G} = {cos(θ) sin(θ)}T for θ = 0...2π .
The initial response of the periodic cell is isotropic and
deformation induces an anisotropic response. Clearly, the
Taylor assumption is able to capture both the magnitude
and the direction of this deformation-induced anisotropy

satisfactorily. Although there is a small mismatch at large
deformations, the negligible cost of the Taylor assumption in
comparison to the high cost of a microscale FEM analysis of
surface deformation significantly outweighs this disadvan-
tage. From this point of view, the Taylor assumption may
be viewed as an enabling approach towards the two-scale
computational homogenization analysis of lubricated soft
microrough interfaces where the response of a macroscop-
ically deforming interface is obtained through the coupled
solution of microscopic soft elastohydrodynamic problems.

The comparison was also carried out with different com-
binations of material parameters (bulk and shear moduli) as
well as for different isotropic hyperelastic material models
(Ogden and Neo-Hooke). Results (not shown) indicate that
the quality of approximation is retained, which is advanta-
geous since the Taylor assumption is insensitive to the choice
of the material. The quality is also retained when the area-
preserving shear and stretch deformations are combined as

[F1
s ] =

[
1 + φ φ

0 1
1+φ

]
(4.3)

the results of which are summarized in Fig. 14. Here, one also
observes that when the material approaches an incompress-
ible response (ν = 0.5) that is typically observed for soft
polymeric materials, the prediction capability increases fur-
ther. In the remaining examples, near incompressibility (ν =
0.495)will be assumed. In all cases, the error remains small in
comparison with the large deviations from the undeformed
(isotropic) response. This is also verified with a different
combined shear-stretch area-preserving deformation:

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.2

0.4

0.6

0.8

(a-1) (a-2) (a-3)

(b-1) (b-2) (b-3)

Fig. 12 Effect of macroscopic surface deformation on the sample con-
figuration is depicted, together with the film thickness distribution. The
first row shows the deformed configurations delivered by FEM with a
Poisson’s ratio of ν = 0.385 and the second row is obtained through

the Taylor assumption. a-1 Shear = 0.4. a-2 Tension = 1.4. a-3 Shear =
0.4, Tension = 1.4. b-1 Shear = 0.4. b-2 Tension = 1.4. b-3 Shear = 0.4,
Tension = 1.4
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Fig. 13 The polar plots of the magnitudes of AG for the area-
preserving deformation types (shear and tension) incorporated into the
problem with two different ways (the Taylor assumption and the FEM

framework) are depicted. Here, Poisson’s ratio ν is set to 0.385. a Shear
= 0.2, b Shear = 0.4, c Shear = 0.6, d Tension = 1.2, e Tension = 1.4,
f Tension = 1.6

[F2
s ] =

[
1 + φ φ

−φ 1 − φ

]
(4.4)

The results in Fig. 15 reinforce the conclusion that the Taylor
assumption can replace the FEM approach in reflecting area-
preserving deformations onto the microscopic problem both
qualitatively and quantitatively. Similar observations hold for
B as summarized in Fig. 16 where {V} = {cos(θ) sin(θ)}T .

4.3 Non-area-preserving deformations

Although the Taylor assumption is highly predictive for area-
preserving deformations, it has shortcomings that reflect

on non-area-preserving deformations (detFs 	= 1). For
instance, it preserves all out-of-plane statistical characteris-
tics, i.e. the central moments of the roughness. Consequently,
deviations from the FEM predictions can be anticipated.
This is tested by perturbing the combined shear-stretch area-
preserving deformation gradients (4.3) and (4.4) evaluated at
φ = 0.4:

[F1,γ
s ] =

[
1.4 + γ 0.4
0 1

1.4

]
, [F2,γ

s ] =
[
1.4 0.4 + γ

−0.4 0.6

]
.

(4.5)

Here, γ controls the degree to which the deformation is
non-area-preserving. The results in Figures 17 and 18 show
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Fig. 14 The macroscopic responses are depicted for shear-stretched
combined area-preserving deformation (4.3) are depicted. The response
of the undeformed sample is isotropic, which is indicated in this and
all following figures. Additionally, the effect of Poisson’s ratio (ν) is

illustrated by choosing a compressible material with ν = 0.385 and a
nearly-incompressible material with ν = 0.495. a F1

s with φ = 0.2,
b F1

s with φ = 0.4, c F1
s with φ = 0.6
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Fig. 15 The macroscopic responses are depicted for shear-stretch combined deformations with the deformation gradient (4.4). a F2
s with φ = 0.2,

b F2
s with φ = 0.4, c F2

s with φ = 0.6

that the deformation-induced anisotropy is qualitatively still
captured well. For a decreasing area, i.e. when detFs < 1
(γ < 0), the Taylor assumption delivers quantitative devia-
tions with both types of deformation gradients forA (see Fig.
17a-1, b-1) and B (see Fig. 18a-1, b-1). On the other hand,
increasing area, i.e. detFs > 1 (γ > 0), may (Fig. 17a-2,
a-3 for A, Fig. 18b-2, b-3 for B) or may not (Fig. 17b-2, b-3
for A, 18a-2, a-3 for B) lead to quantitative deviations. In

all cases, a good agreement is observed for moderate values
of detFs > 1 and the nature of anisotropy is captured well
even at large values. It should also be noted that detFs cannot
be much smaller than 1. For instance, the lubrication theory
ceases to be valid when γ is further decreased from−0.29 to
−0.3 in Fig. 17b-1 because contact is initiated among the two
surfaces.Consequently, the deviations observed are bounded.
Studies towards the improvement of the Taylor assump-
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Fig. 16 The macroscopic responses (i.e. the homogenized coefficient
tensor B in this case) are depicted for shear-stretch combined area-
preserving deformations with the gradients (4.3) (upper row) and (4.4)

(lower row). a-1 F1
s with φ = 0.2, a-2 F1

s with φ = 0.4, a-3 F1
s with

φ = 0.6, b-1 F2
s with φ = 0.2, b-2 F2

s with φ = 0.4, b-3 F2
s with

φ = 0.6

tion at significantly large deformations is planned as future
work.

4.4 Randomness

To demonstrate the advantage of the Taylor assumption,
a series of random roughness cases is studied where the
large sample sizes would lead to significant FEM costs.
Here, the particular case of combined shear-stretch area-
preserving deformation gradient F2,γ

s in (4.5) is considered
with γ = 0.3. Using the Taylor assumption, this deformation

is applied to random microrough surfaces which are gener-
ated as in Section 3.3. The problem parameters correspond to
those on Table 5 but the mean film thickness is increased to
0.6 μm to avoid contact initiation among the surfaces during
deformation.

The results are summarized in Fig. 19. For each sample
size, themacroscopic responses of three different samples are
plotted together for the deformed and undeformed configura-
tions. Small samples display anisotropy even when they are
undeformed, the magnitude and direction of which addition-
ally depends on the particular sample, despite the isotropic
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Fig. 17 Themacroscopic responses are depicted for shear-stretch com-
bined non-area-preserving deformations with the gradients F1,γ

s (upper
row) and F2,γ

s (lower row) in (4.5). a-1 γ = −0.2 (detF1,γ
s = 0.857)

a-2 γ = 0.2 (detF1,γ
s = 1.143), a-3 γ = 0.4 (detF1,γ

s = 1.286), b-1
γ = −0.29 (detF2,γ

s = 0.880), b-2 γ = 0.3 (detF2,γ
s = 1.120), b-3

γ = 0.6 (detF2,γ
s = 1.240)

surface generation algorithm. This sample size effect quickly
diminishes with increasing sample size. For larger sam-
ple sizes, each sample displays a nearly isotropic response
before deformation and different samples display similar
anisotropic responses after deformation. These observations
correlate with the results in Fig. 10.

5 Conclusion

Lubrication phenomenon is encountered in various applica-
tions ranging from industrial to biological. The influence of

the microstructure on the macroscopic lubrication response
has been of interest in the literature, where homogeniza-
tion has appeared as one of the most reliable approaches.
In this work, the homogenization treatment of hydrody-
namic lubrication has been presented in a setting that unifies
the stationary, quasi-stationary and unsteady cases. The
macroscopic response of the unsteady problem in the case
of periodic commensurate microrough surfaces oscillates
with a fine-scale time. A time averaging method com-
bined with homogenization has been proposed to deliver
an approximate macroscopic response, which is satisfactory
for small roughness RMS values and delivers a reason-
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Fig. 18 The macroscopic responses (i.e. the homogenized coefficient
tensor B in this case) are depicted for shear-stretch combined non-
area-preserving deformations with the gradients F1,γ

s (upper row) and
F2,γ
s (lower row) in (4.5). a-1 γ = −0.2 (detF1,γ

s = 0.857), a-2

γ = 0.2 (detF1,γ
s = 1.143), a-3 γ = 0.4 (detF1,γ

s = 1.286), b-1
γ = −0.29 (detF2,γ

s = 0.880), b-2 γ = 0.3 (detF2,γ
s = 1.120), b-3

γ = 0.6 (detF2,γ
s = 1.240)

able first order estimation for large roughness RMS. For
incommensurate periodic surfaces, it has been observed
that the macroscopic response is not a function of the
microscopic time. Since most real surfaces are inherently
randomly rough and incommensurate, they are expected
to also display a time-independent response, which has
been verified through numerical investigations. Addition-
ally, it has been shown that ensemble averaging covers time
averaging in a statistical sense and hence the unsteady lubri-

cation problem with random microrough surfaces can be
considered as quasi-stationary at the microscale, leading
to a computationally efficient two-scale analysis frame-
work. Finally, the Taylor assumption has been proposed
to further enhance computational efficiency for the time-
dependent soft lubrication problem. In particular, the effec-
tiveness of the Taylor assumption has been demonstrated
in the case of area-preserving deformations, while further
improvement is needed for non-area-preserving deforma-
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Fig. 19 For different sample sizes of random microrough surfaces
and three realizations per sample size, the macroscopic responses are
depicted for shear-stretch combined non-area-preserving deformations
with the gradient F2,γ

s in (4.5) using γ = 0.3. The deformation

effects are reflected through the Taylor assumption in all cases (a-
1) Size = 20 × 20. a-2 Size = 40 × 40, a-3 Size = 100 × 100,
b-1 Size = 20 × 20, b-2 Size = 40 × 40, b-3 Size = 100 ×
100

tions. Future work will concentrate on the application of
the developed framework to two-scale soft elastohydro-
dynamic lubrication problems, involving aspects of the
macroscopic problem solution, as well as on surface engi-
neering applications, specifically to surface texture design
and optimization.
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