
An Algorithm for Automated Layout of Process
Description Maps Drawn in SBGN
Begum Genc 1,2 and Ugur Dogrusoz 2,3∗

1The Insight Centre for Data Analytics, University College Cork, Western Road, Cork, Ireland
2Computer Eng. Dept., Faculty of Eng., Bilkent Univ., Rectorate Building, Ankara 06800, Turkey
3Sander Lab, Memorial Sloan-Kettering Cancer Center, 417 E68th St., NY 10065, New York, USA

ABSTRACT
Motivation: Evolving technology has increased the focus on
genomics. The combination of today’s advanced techniques with
decades of molecular biology research have yielded huge amounts
of pathway data. A standard, named the Systems Biology Graphical
Notation (SBGN), was recently introduced to allow scientists
to represent biological pathways in an unambiguous, easy-to-
understand, and efficient manner. Although there are a number of
automated layout algorithms for various types of biological networks,
currently none specialize on process description maps as defined by
SBGN.
Results: We propose a new automated layout algorithm for process
description maps drawn in SBGN. Our algorithm is based on a
force-directed automated layout algorithm called Compound Spring
Embedder (CoSE). On top of the existing force scheme, additional
heuristics employing new types of forces and movement rules
are defined to address SBGN-specific rules. Our algorithm is the
only automatic layout algorithm that properly addresses all SBGN
rules for drawing process description maps, including placement
of substrates and products of process nodes on opposite sides,
compact tiling of members of molecular complexes, and extensively
making use of nested structures (compound nodes) to properly draw
cellular locations and molecular complex structures. As demonstrated
experimentally, the algorithm results in significant improvements over
use of a generic layout algorithm such as CoSE in addressing SBGN
rules on top of commonly accepted graph drawing criteria.
Availability: An implementation of our algorithm in Java is available
within ChiLay library (https://github.com/iVis-at-Bilkent/chilay).
Contact: ivis@cs.bilkent.edu.tr
Supplementary information: Supplementary document is available
at Bioinformatics online.

1 INTRODUCTION
Popular belief is that diagrams directly address people’s innate
cognitive abilities (Larkin and Simon, 1987). Due to the fact that
symbols, diagrams, and other graphical representations vary widely
around the world, it is necessary to have a common interpretation.
Standard notations play an important role in communication and
facilitate rapid development in many research areas.

∗to whom correspondence should be addressed

To address this issue in the field of systems biology, a
group of modellers, biochemists and software engineers published
the Systems Biology Graphical Notation (SBGN), which allows
scientists to represent biological pathways and networks in an
easy-to-understand and efficient way (Le Novère et al., 2009). It
consists of three complementary languages: process descriptions
(PD), activity flows (AF) and entity relationships (ER).

In this paper, we propose a new automated layout algorithm that
enforces SBGN-specific rules for PD maps. As depicted in Figure 1,
layouts produced by general purpose graph layout algorithms fall
short in certain significant ways:

i. Product and substrate edges of a process node are not
necessarily placed on opposite sides of associated process
nodes. Moreover, SBGN states that each process has two ports
as attachment points,

ii. Degree zero members inside a molecular complex are not
efficiently packed, often wasting large amounts of area,

iii. Cellular locations of processes are not shown in the map.

Our proposed layout algorithm is the only one that successfully
addresses these issues, producing layouts that comply with SBGN-
PD notation. Other software providing SBGN-PD maps make use of
generic layout algorithms with limited success. For instance, Vanted
(Junker et al., 2006) provides generic force directed layout with no
support for compound structures. CellDesigner (Funahashi et al.,
2003) also provides a rich set of generic layout algorithms, including
one with compound support imported from a commercial library.

2 BACKGROUND

2.1 Graphs and process description maps
The basics of graph theory are provided in the Supplementary document. A
compound graph (Figure 2) C = (V,E, F) consists of nodes V , adjacency
edges E, and inclusion edges F (Dogrusoz et al., 2009).

An SBGN-PD map represents all the molecular processes and interactions
taking place between biochemical entities, and their results. The underlying
representation is essentially a bipartite compound graph. These maps depict
how entities or so called entity pool nodes (EPN) transition from one form to
another as a result of different influences, portraying the temporal qualities
of molecular events occurring in biochemical reactions (Le Novère et al.,

1

Associate Editor: Prof. Alfonso Valencia

© The Author(s) 2015. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and
reproduction in any medium, provided the original work is properly cited.

 Bioinformatics Advance Access published September 10, 2015
 at B

ilkent U
niversity on D

ecem
ber 18, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

Fig. 1. SBGN states that product and substrate edges of a process node (small gray squares) should be placed on opposite sides of the associated process
node, attached via an input and an output port, respectively (A). A general purpose layout algorithm will not properly pack degree zero members (rounded
rectangles with information bulbs) inside a molecular complex (B). The processes that take place inside a cellular compartment are not clearly separated from
those occurring outside that compartment (C).

Fig. 2. An example compound graph of multiple levels of nesting, where
V = {a, b, . . . , j}, E = {{a, b}, {a, g}, {d, e}, {d, g}, {f, g}, {f, h},
{g, h}, {i, j}}, and F = {bc, bd, be, cf, cg, ch, ei, ej}.

2009). The way in which one type of entity is transformed into another
is conveyed by a process node. We call EPN’s consumed and produced
by a process substrate (input) and product (output) nodes, respectively. In
addition, the EPNs that control (e.g., modulate or stimulate) a process are
called effector nodes (Figure 3).

An exchange file format for SBGN maps named SBGN-ML was recently
introduced (van Iersel et al., 2012).

2.2 Automated layout and CoSE
The purpose of performing layout on a graph is to make a pictorial
representation that is as clear and pleasant as possible. A poor layout of
a graph may confuse the user, whereas a well organized and aesthetically
pleasing layout can improve the user’s ability to understand the underlying
data. Criteria of a good layout may differ from person to person. However,
among the generally accepted ones (Battista et al., 1998) are minimal
total drawing area, number of edge-edge crossings, and total edge length,
producing uniform edge lengths, and ability to reflect any symmetries in the
network.

Force-directed layout algorithms (also known as spring embedders) are
arguably the most popular type of automatic graph layout, where the basic
idea is to simulate a physical system obeying the laws of Hooke and
Coulomb.

Fig. 3. A sample process node with three subtsrate nodes and two product
nodes, and two effector (one modulator and one stimulator) nodes

Compound Spring Embedder (CoSE) is a force-directed layout algorithm
that supports compound nodes (Dogrusoz et al., 2009). Certain additions
have been made on the basic spring embedder model to handle compound
nodes. The main idea is to represent an expanded node and its associated
nested graph as a single entity, similar to a “cart”, which can move freely
(details provided in the Supplementary document).

2.3 Rectangle packing and compaction
The rectangle packing problem can be defined as packing a number of non-
uniformly sized, rectangle shaped objects into a container, such that there
will be no overlaps between the objects and the container will be as compact
as possible. This problem, defined in two-dimensions, is an NP-hard problem
(Garey and Johnson, 1979).

Almost all graph drawing algorithms try to minimize drawing area by
assuming that the graph is connected (Dogrusoz et al., 2002). However,
if the graphs have disconnected members (e.g., members of molecular
complexes), most such algorithms yield poor results in respect to minimizing
wasted area. Various packing techniques have been used in graph layout to
pack disconnected parts (disconnected nodes or connected components) of a
graph, including tiling (Dogrusoz, 2002) and polyomino packing (Freivalds
et al., 2001). Success of a packing method is usually measured by the
adjusted fullness of the resulting drawing, which is basically the ratio of
the total area of the nodes being packed to the area of the tightest bounding
rectangle with specified aspect ratio for the drawing.

2

 at B
ilkent U

niversity on D
ecem

ber 18, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Fig. 4. Drawing of processes in CoSE (left) vs. SBGN (right); SBGN makes
use of ports to clearly separate what is consumed and produced by a process.

Results of packing could often be improved through computation of a
visibility graph and applying compaction (de Berg et al., 2008). The visibility
in this context refers to the feasibility of drawing a collision-free straight line
between two nodes.

3 METHODS
We introduce a new, specialized algorithm for layout of SBGN-PD maps.
Since SBGN-PD notation makes exclusive use of compound structures, our
algorithm was based on CoSE, addressing SBGN specific rules in process
description maps as summarized here and detailed subsequently:

i. Additional force types and associated procedures on top of the force
scheme employed by CoSE were introduced to congregate substrate
and product edges at input and output process ports, respectively, and to
place substrate and product entities on opposite sides of the associated
process.

ii. Tiling or other packing methods are employed to produce more
compact and aesthetically pleasing layouts of disconnected nodes.

iii. Display of cellular locations is no longer an issue since CoSE can
handle any level of nesting.

Handling process nodes
SBGN rules state that substrates and products of a process can only attach to
the process from its input and output ports, respectively, placed vertically
or horizontally on opposite sides. In order to avoid unnecessary edge
crossings and clearly display the flow in a process, its substrate and product
nodes should be positioned near the associated ports. Besides, not clearly
separating substrates and products of a process via ports will make reversible
processes ambiguous. However, generic layout algorithms, including CoSE,
will not respect this convention (Figure 4).

Handling process ports In order to equip process nodes with ports in
SBGN-PD layout, without interfering with the existing physical system too
much, we introduce new node and edge types (Figure 5). A new node type
called port node is introduced to represent ports of a process. These nodes are
set to have negligible dimensions. In addition, a new edge type called port
edge is introduced to keep a process node and its two associated port nodes
together. These edges are assumed to be “rigid”, not exerting any spring
forces on the associated port and process nodes. Finally, a new compound
node type called process container is introduced to enclose and tightly keep
together the associated process along with the newly introduced dummy port
nodes and edges.

We treat these new node and edge types specially, and do not calculate
spring forces for rigid edges, repulsion forces between a process and its port
nodes, and gravitation forces for process and port nodes.

Orienting processes SBGN allows ports of a process node to be placed
either horizontally or vertically. Without proper orientation of substrates and
products of a process, layout might easily produce edge crossings even with

a single process (Figure 6). To avoid such problems and properly orient
processes and place their substrates (products) near the input (output) port,
we introduce a new force type named rotational force into the force scheme.

Rotational forces are exerted on dummy container nodes by the associated
substrate and product nodes, which indirectly results in rotation of process
nodes. The main idea behind applying rotation is that, if a group of
neighboring nodes persistently pull their process node in a direction against
the current orientation of the process, a decision is made to change the
orientation of the container compound node by either applying a 90 or 180-
degree rotation. In SBGN, a process node may assume one of four discrete
orientations: left-to-right, right-to-left, bottom-to-top, and top-to-bottom.

The magnitude of the rotational force Ft(P) acting on a process node
P should be proportional to how much the neighboring nodes deviate from
their ideal positions:

‖Ft(P)‖ =
ns∑
i=1

αi +

np∑
i=1

βi +

ne∑
i=1

γi, (1)

where ns (np or ne) denotes the number of substrate (product or effector)
nodes of process P , and αi (βi or γi) denotes the angle ith substrate
(product or effector) node makes with the line ray emanating from the center
of the process node and going towards the input port (output port or ideal
effector position) (Figure 7.B).

Absolute value of these angles could be calculated by taking cross product
between the vectors from the connection point (associated port or center of
process) to the neighboring node location and from the connection point to
the ideal position of the neighboring node. For instance, for substrate i:

|αi| = arccos
~Ii,x · ~ds,x + ~Ii,y · ~ds,y
‖~Ii‖ · ‖ ~ds‖

, (2)

where ~Ii is the vector from the input port to the current location of substrate
i, with respective horizontal and vertical components ~Ii,x and ~Ii,y , and ~ds
is the vector from the input port to the ideal location of substrate i. The
calculation is similar for products and effectors.

Notice, however, that the signs of these angles should be taken into
account. This could be easily calculated by performing a left test. If the
expression

(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1) (3)

is greater than zero, it means a left turn was taken, where (x2, y2),
(x1, y1), and (x3, y3) respectively specify the location of the neighboring
node, the connection point (associated port or the process center), and the
ideal position. A left turn and a right one must signify opposite signs as
exemplified in Figure 7.C.

If the net rotational force Ft(P) acting on a process node P exceeds a
predefined threshold determined empirically, the process is rotated by 90
degrees in clockwise or counter-clockwise direction, depending on its sign.

In certain cases, however, this heuristic will not suggest any rotations even
though a rotation is strongly needed (Figure 8). In fact, in such cases, a
180-degree rotation or a swap operation is likely to drastically improve the
situation. One can determine such cases by simply checking whether or not
a majority of neighboring nodes have obtuse angles as defined earlier. This
check is performed before the 90-degree rotation case since it’s more drastic,
yielding more improvement. Again, what proportion of the neighboring
nodes constitute a “majority” is determined empirically.

Rotational forces are summed up for a number of iterations. Once every
pre-defined fixed number of iterations, the sum is normalized and each
process node is checked for whether or not a swap or a rotation is needed.
For the sake of stability, only one swap or rotation is allowed even when
multiple processes qualify.

Gathering substrates and products Proper orientation of processes will
only be possible if any multiple substrates (products) are placed near each
other. We make use of an additional location enhancement heuristic for this
purpose.

3

 at B
ilkent U

niversity on D
ecem

ber 18, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Fig. 5. How a process with two substrates, two products, and one effector node should be displayed in an SBGN-PD map (A). How our algorithm internally
represents such a process using newly introduced dummy port nodes (smalled filled squares) and edges, and process container compound node (unfilled
rectangle) (B). Associated physical model of our algorithm (gravitational fields not shown for brevity) (C).

Fig. 6. Illustration of how the orientation of a process might affect layout: original orientation is left-to-right by default (A), left rotation by 90 degrees
(bottom-to-top) eliminates self crossings (B), and another left rotation by 90 degrees (right-to-left) further improves layout (C).

Fig. 7. Rotational force acting on process P is calculated using the angles neighboring nodes make with their connection points. A sample process with three
neighbors, where dp (ds or de) represents the desired location of an input node (output node or effector node) (A). The angles that these neighbors make with
the process node with respect to the current orientation (B). Illustration of how the signs of these angels are calculated using the left-turn rule. In this example,
a left turn is assumed to signify a negative sign (C).

The idea is not to interfere with the placement of “hop” nodes that are of
degree two or higher but bring any degree one nodes, which are “free” to
move without affecting the overall structure of the spring system, closer to
such high degree nodes. This should not only help with satisfying the SBGN-
PD convention with respect to properly gathering substrates (products)
together but also speed up convergence. Consequently, we periodically
identify a substrate (product) node with highest degree and place any degree
one substrate (product) node near it. In order to avoid any extreme amounts
of repulsion forces and exploit the power of randomization, we place degree
one nodes randomly within a circle centered at this highest degree node
(Figure 9).

Ideally, an effector should be placed in between products and substrates.
The location enhancement heuristic is similarly performed on effector nodes
to avoid an effector node getting “stuck” among product (substrate) nodes.
Consequently, once in a while, we pull all effector nodes near their ideal
position. Notice, however, that for each orientation of a process, there will be
exactly two ideal locations for effectors. For instance, for a process oriented
from left-to-right, these are vertically aligned with the center of the process,
one being on top of the process, and the other on the bottom, both separated
from the process by ideal edge length. Again, we opt to apply a minimal
amount of randomness rather than placing them on the exact ideal position
for the same reasons explained earlier (Figure 9).

Fig. 8. An example, where a rotation is needed but not detected by the
heuristic used for 90-degree rotations defined earlier (A). The same process,
after its ports are swapped via a 180-degree rotation (B).

Modifications on CoSE In order to properly handle process nodes and
satisfy SBGN specific constraints on them, we first add a new, second phase
to the CoSE algorithm, and decrease the number of iterations CoSE performs
in the first phase since a “draft” layout should suffice. Starting with this
draft layout, the new phase is responsible for addressing SBGN rules without
ruining the resultant layout, which is assumed to satisfy generally accepted
layout criteria. The difference between the SBGN phase and earlier one can
be summarized as follows. Since the SBGN phase is expected to make local

4

 at B
ilkent U

niversity on D
ecem

ber 18, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Fig. 9. An example, where locations of substrate, product, and effector
nodes (A) are enhanced using our heuristic (B). Higher degree nodes I1
and O2 are chosen as seeds for substrate and product nodes, respectively.
The effector E1 is closer to the bottom of the two ideal positions for the
left-to-right process P it is associated with.

changes in the layout, the system starts out from a lower cooling factor.
Rotational forces are calculated for each process node on top of the spring,
repulsion, and gravitational forces calculated by CoSE. To represent process
nodes and their ports with newly introduced dummy nodes, associated CoSE
method needs to be expanded as in Algorithm 1. Hence, the convergence
is no longer solely dependent on node movements going below a certain
threshold. We also try to ensure that all substrates and products of every
process are properly oriented (Algorithm 2).

Algorithm 1 Moving nodes and applying rotation
1: function CALCNODEPOSITIONSANDSIZES(C)
2: rotationList← ∅ //candidates for rotation
3: for all process node P ∈ V (C) with ports pi and po do
4: TRANSFERFORCES(P)
5: RESETFORCES(P , pi, po)
6: end for
7: if (phase = SBGN)∧(totalIter%rotPeriod = 0) then
8: for all process node P ∈ V (C) do
9: if NEEDSROTATION(P) then

10: rotationList.add(P)
11: end if
12: end for
13: ROTATERANDOMONE(rotationList)
14: end if
15: COSE.CALCNODEPOSITIONSANDSIZES(C)
16: end function

Packing disconnected nodes
Disconnected nodes come up quite frequently in SBGN-PD diagrams,
especially with molecular complexes, where members of a molecular
complex are all degree zero. In fact, a molecular complex might be
recursively defined from another one, resulting in potentially arbitrary levels
of nested disconnected nodes. Thus, any algorithm to tightly pack molecular
complex members could work bottom-up, and could be easily implemented
recursively. Disconnected nodes outside molecular complexes, on the other
hand, are highly unlikely but not impossible to come across.

This problem is a special case of the popular rectangle packing problem
discussed earlier. Various techniques such as tiling and polyomino packing
have been used in the past to solve this problem in the context of graph
drawing. Since polyomino packing results are superior only with larger
number of nodes, as will be shown later on, we went with tiling due to its
simplicity for implementation and faster running time. Notice that, most of
the time, the number of rectangles to be packed is only a few and all with

Algorithm 2 New second (SBGN-PD) phase
1: function DOPHASE2(C)
2: totalIterations← 0
3: initialCoolingFac← ccool //start cooler
4: while totalIter < maxIter do
5: totalIter ← totalIter + 1
6: if totalIter % apprPeriod = 0 then
7: APPROXIMATELOCATIONS()
8: end if
9: if CONVERGED() ∧ EDGESPROPERORIENTED() then

10: break
11: end if
12: UPDATEBOUNDS(C) //resize compounds
13: CALCSPRINGFORCES()
14: CALCREPULSIONFORCES()
15: CALCGRAVITATIONALFORCES()
16: MOVENODES() //move nodes based on total forces
17: end while
18: end function

similar dimensions. Hence, use of a complicated algorithm is unlikely to
produce significantly more compact drawings.

Packing can be integrated into SBGN-PD layout without interference as a
pre-processing step as explained in the Supplementary document. We would
also like to remark that packing should only be applied to a compound node
with no edges (intra-graph or inter-graph edges) in it. Any non-degree zero
node contained in a compound structure should not be forced to a location
determined by a packing algorithm but rather should be free to move near its
neighbor(s).

Further compaction After application of a packing algorithm, it is
common to have more room for improvement, which can be achieved by
calculating the visibility graph of the disconnected set of nodes to be packed.
A visibility graph in a certain orientation, for example bottom-to-top, is a
directed acyclic graph (dag) and represents the visibility of each node when
“looked” from that node vertically towards the up direction. We say that
node v is visible by node u in bottom-to-top direction if v is above u, and
u can completely “see” node v with no obstruction in between two nodes,
looking from bottom to top. In other words, the nodes directly below, to the
right or to the left of a node u are not visible by u. Using the directed acyclic
structure of visibility graphs, a topological sort is applied to get the objects
in order, and one by one in the computed topological order, each object is
moved closer to its ascendant.

Even though application of this algorithm in either one of four directions
might produce more compact drawings, the improvements are usually
minimal if any. Also notice that a separate calculation of the visibilities is
required for each direction.

Running time
CoSE algorithm runs in O(k · (|V |2 + |E|)) time, where the underlying
compound graph is represented with C = (V,E, F), and k is the number
of iterations needed to converge. This is due to the simple fact that, in each
iteration, repulsion forces are calculated between each node pair and spring
forces are calculated for each edge. Additional heuristics employed by our
algorithm do not increase the asymptotic running time since rotational forces
are calculated for each process node. Similarly, packing is linear in the
number of nodes to be packed, which is at most as many as all the nodes
in the compound graph. Our experiments as described in the next section
confirm this theoretical running time analysis.

5

 at B
ilkent U

niversity on D
ecem

ber 18, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Fig. 10. Comparison of the success of our algorithm with CoSE (graph size
vs. ratio of properly oriented substrate, product, and effector edges)

4 IMPLEMENTATION AND RESULTS
We implemented SBGN-PD layout within an open source layout library
called Chisio Layout (ChiLay). The experiments outlined below were
performed on an ordinary PC (with Intel® Core™ i7-4600U 2.10GHz
processor, 8GB RAM, and 256GB SSD). For each measurement for a layout
algorithm, 10 executions were performed and the average was taken since
spring embedders start out from random initial positions, and this might
highly affect the convergence speed.

Packing For comparing tiling and polyomino packing methods, random
compound graphs with no edges were generated. Details of these can
be found in the Supplementary document. Further compaction through
visibility is usually of no use with tiling. More importantly, as can be seen
from the results, polyomino packing has a clear advantage over tiling with
large number of nodes (> 60) but for smaller graphs, like SBGN-PD maps,
tiling performs just as well.

As our tests confirm, tiling is significantly faster than polyomino packing.
However, since SBGN maps have relatively small number of nodes, running
time spent on packing is negligible.

Parameter tuning Our layout algorithm has a number of parameters to
customize its behavior. We tested the behavior of our algorithm with respect
to each such parameter and applied a comprehensive test to fine-tune it.

In order to perform these experiments, we used 34 “real-life” SBGN-
PD maps as taken from Pathway Commons (Cerami et al., 2011) database,
using querying and conversion (to SBGN-ML) facilities of Paxtools (Demir
et al., 2013). These maps were chosen to be of varying types including
regulation and signaling networks, not larger than a few hundred nodes. For
larger graphs, at least one complexity management technique can be used
(Dogrusoz and Genc, 2006).

The main criterion used for the success of the algorithm is the ratio
of “properly oriented” edges to total number of edges in the graph. To
decide when an edge is properly oriented, we use a parameter named
angle tolerance (at). Other parameters of our algorithm are approximation
distance (ad), approximation period (ap), rotation period (rp), 90-degree
rotation force threshold (c90), 180-degree rotation ratio threshold (c180),
and phase 1 maximum iteration count (ip1).

Before experimenting with individual parameters, we wanted to find the
most coherent set of values of these parameters given a discrete set of values
for each parameter as specified earlier. The best results are obtained when
ad = 50, ap = 211, rp = 2, c90 = 70, c180 = 0.5, and ip1 = 200. To
confirm that changes in these parameters do not interfere with each other, we
performed tests where only one parameter at a time was changed. The results
can be found in the Supplementary document along with other details.

Comparison with CoSE We have compared the success rate of our
algorithm in properly orienting edges with the generic algorithm CoSE. As
Figure 10 shows, there is a clear advantage of using the extra heuristics.

Fig. 11. Comparison of the running time of our algorithm with CoSE (graph
size vs. execution time in milliseconds)

Fig. 12. Paths between ATRIP and CHEK1 as laid out by our algorithm

In terms of execution time, our algorithm performs as well as
CoSE (Figure 11). Actually, as the iteration count required to complete
phase 2 increases, the number of rotation operations needed by our
algorithm increases as well. However, since our algorithm applies tiling
to disconnected nodes and ignores such nodes during layout, the decreased
graph size seems to compensate for the extra time used by newly introduced
heuristics.

We also investigated whether or not the behavior of our algorithm depends
on graphs being simple or not. Our experiments show that when there are no
compound structures in the graph, ratio of properly oriented edges goes up
even further to around 95 percent.

Figures 12 and 14 show sample SBGN-PD maps laid out using our
algorithm using SBGNViz, which is a specialized visualization tool
developed for SBGN process description maps (Sari et al., 2015). More
examples are available in the Supplementary document.

The success of a spring embedder layout algorithm relies on the density
of the graph more than it does on the number of nodes in the graph.
For instance, even when there are a small number of nodes in a map,
high connectivity in a small part of the map might make it impossible to
successfully orient the edges in that part.

Figure 14 illustrates the fact that, some substrate and production nodes of
a process node may be placed in another compound node (cellular location).
During layout, the location of this compound node is determined with respect
to the forces acting on it. Those additional forces may disrupt the proper
orientation. This is a typical example, where multiple conflicting constraints
are impossible to satisfy.

6

 at B
ilkent U

niversity on D
ecem

ber 18, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Fig. 13. Vitamins B6 activation to pyridoxal phosphate as laid out by our
algorithm; all edges were properly oriented

Fig. 14. Aspirin blocks signalling pathway involved in platelet activation as
laid out by our algorithm

5 CONCLUSION
The main motivation behind this study was to build a specialized
automated layout algorithm for process description maps that
comply with the conventions in SBGN-PD maps. Our proposed
algorithm adds the necessary heuristics to achieve this on top of a
compound spring embedder algorithm named CoSE.

The first enhancement provides proper packing of complex
members and disconnected molecules by using two different
rectangle packing algorithms: tiling and polyomino packing. The

second one supports port nodes and provides rotation ability for
process nodes by introducing a new force type. An important
point to note here is that, those enhancements are added without
disturbing the force-directed structure of the algorithm. There is
still room for improvement, however, especially in handling special
cases such as irreversible processes.

Our proposed layout algorithm has been integrated into Chisio
Layout (ChiLay) library, which is also available through Paxtools.
ACKNOWLEDGEMENT
The authors thank Dr. Debbie Bemis for critical reading of the
manuscript.

Funding: This work was supported by the Scientific and
Technological Research Council of Turkey (grant [#111E036] to U.
D. and a scholarship to B. G.), and by NIH grants [#U41HG006623]
and [#P41GM103504].

Conflict of Interest: none declared.

REFERENCES
Battista, G. D. et al. (1998). Graph Drawing: Algorithms for the Visualization of

Graphs. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition.
Cerami, E. et al. (2011). Pathway commons, a web resource for biological pathway

data. Nucleic Acids Research, 39(suppl 1), D685–D690.
de Berg, M. et al. (2008). Visibility graphs. In Computational Geometry: Algorithms

and Applications. Springer-Verlag, 3rd edition.
Demir, E. et al. (2013). Paxtools: A library for accessing, analyzing and creating

biological pathway data. PloS Computational Biology, 9(9), e1003194.
Dogrusoz, U. (2002). Two-dimensional packing algorithms for layout of disconnected

graphs. Information Sciences, 143(1-4), 147–158.
Dogrusoz, U. et al. (2002). Graph visualization toolkits. IEEE Computer Graphics and

Applications, 22(1), 30–37.
Dogrusoz, U. et al. (2009). A layout algorithm for undirected compound graphs.

Information Sciences, 179, 980–994.
Dogrusoz, U. and Genc, B. (2006). A multi-graph approach to complexity management

in interactive graph visualization. Computers & Graphics, 30(1), 86–97.
Freivalds, K., Dogrusoz, U., and Kikusts, P. (2001). Disconnected graph layout and

the polyomino packing approach. In P. Mutzel, M. Jünger, and S. Leipert, editors,
Graph Drawing, pages 378–391. Springer.

Funahashi, A. et al. (2003). CellDesigner: a process diagram editor for gene-regulatory
and biochemical networks. BIOSILICO, 1(5), 159–162.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness (Series of Books in the Mathematical Sciences). W. H.
Freeman, San Francisco.

Junker, B. H., Klukas, C., and Schreiber, F. (2006). VANTED: a system for
advanced data analysis and visualization in the context of biological networks. BMC
Bioinformatics, 7(1).

Larkin, J. and Simon, H. (1987). Why a diagram is (sometimes) worth ten thousands
words. Cognitive Science, 11, 65 – 100.

Le Novère, N. et al. (2009). The systems biology graphical notation. Nature
Biotechnology, 27(8), 735–741.

Sari, M. et al. (2015). SBGNViz: a tool for visualization and complexity management
of SBGN process description maps. PLoS ONE, 10(6), e0128985.

van Iersel, M. P. et al. (2012). Software support for SBGN maps: SBGN-ML and
libsbgn. Bioinformatics, 28(15), 2016–2021.

7

 at B
ilkent U

niversity on D
ecem

ber 18, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

