
c© The British Computer Society 2015. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxv023

Aggregate Profile Clustering for
Streaming Analytics

Mehmet Ali̇ Abbasoğlu, Buğra Gedi̇k∗ and Hakan Ferhatosmanoğlu

Department of Computer Engineering, Bilkent University, Çankaya, Ankara 06800, Turkey
∗Corresponding author: bgedik@cs.bilkent.edu.tr

Many analytic applications require analyzing user interaction data. In particular, such data can be
aggregated over a window to build user activity profiles. Clustering such aggregate profiles is useful
for grouping together users with similar behaviors, so that common models could be built for them.
In this paper, we present an approach for clustering profiles that are incrementally maintained over
a stream of updates. Owing to the potentially large number of users and high rate of interactions,
maintaining profile clusters can have high processing and memory resource requirements. To tackle
this problem, we apply distributed stream processing. However, in the presence of distributed state,
it is a major challenge to partition the profiles over nodes such that memory and computation
balance is maintained, while keeping the clustering accuracy high. Furthermore, in order to adapt
to potentially changing user interaction patterns, the partitioning of profiles to nodes should be
continuously revised, yet one should minimize the migration of profiles so as not to disturb the
online processing of updates. We develop a re-partitioning technique that achieves all these goals. To
achieve this, we keep micro-cluster summaries at each node and periodically collect these summaries
at a central node to perform re-partitioning. We use a greedy algorithm with novel affinity heuristics
to revise the partitioning and update the routing tables without introducing a lengthy pause.
We showcase the effectiveness of our approach using an application that clusters customers of a

telecommunications company based on their aggregate calling profiles.

Keywords: aggregate profile clustering; data streaming; distributed clustering

Received 10 July 2014; revised 22 March 2015
Handling editor: Munevver Kokuer

1. INTRODUCTION

In data-intensive online services, besides the relatively static
user personal information, there is an important source of
dynamic user data in the form of user interaction streams. For
instance, in telecommunications services, call detail records
(CDRs) contain information to generate calling profiles of
users (weekend caller, international caller, etc.), whereas in
social media services, micro-blog posts contain information
to create rich user profiles. In general, whenever a user of the
service performs an online interaction over the provided ser-
vice, a log entry that contains the details of the action streams
into the data centers of the service provider. This stream of
data can be fed to analytics used to improve operations, such
as forecasting for resource provisioning; marketing, such as
user segmentation for campaign management and sales, such
as regression for churn prediction.

Data streams containing user interaction data can be agg-
regated, often over a recent window, to build robust user
activity profiles. We call these aggregate profiles. Such
profiles can provide insights about how users benefit from
the service, and can be used to model the behavior of users.
Clustering aggregate profiles is essential for many analytic
applications. For example, user segmentation by clustering
is a fundamental operation for churn analysis [1] and user
equity management [2]. Also, modeling and forecasting the
user behavior patterns is more effective when applied on users
with similar behavior rather than on individual users [3]. As
these examples motivate, many analytics operate on clusters
of aggregate user profiles. We name these clustered analytics.
Because of the continuous and live nature of these analytics
and the potentially dynamic behavior of users, there is a need
to maintain the aggregate user profiles in a clustered manner.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 The Computer Journal Advance Access published April 9, 2015
 at B

ilkent U
niversity L

ibrary (B
IL

K
) on D

ecem
ber 18, 2015

http://com
jnl.oxfordjournals.org/

D
ow

nloaded from

http://comjnl.oxfordjournals.org/

2 M.A. Abbasoğlu et al.

However, performing analytics on a large set of user
profiles requires high processing resources. Similarly, keeping
a recent history of interactions (such as a sliding window)
for maintaining aggregate profiles requires high memory re-
sources. Given the potentially large number of profiles,
maintaining these clusters on a single machine may not be
feasible, especially when the cost to process each profile update
is high (e.g. updating forecasting models), the rate of incoming
updates is high or the profiles are large in terms of size.
Furthermore, in most real-world scenarios the updates (user
interactions) are not only used for the sole purpose of cluster
maintenance and clustered analytics, but for miscellaneous
processing, such as enrichment, model scoring, visualization,
etc. Thus, the need for parallel and distributed processing is
paramount.

In this paper, we present our solution for scalable aggregate
profile clustering in a streaming setting. We employ partitioned
stateful parallelism to achieve scale. In particular, we partition
the incoming stream over a set of processing nodes based on
a profile id attribute and have each node process its portion
of the substream, keeping a subset of the clusters and the
associated state needed to maintain the aggregate profiles.
Importantly, we want to make sure that each node gets assigned
similar amount of processing load, since the slowest node
will form a bottleneck for the system. Similarly, and for
memory constrained scenarios, each node needs to store similar
amounts of state for maintaining the profiles.

There are a number of challenges in achieving this. First,
in order to distribute the incoming updates over the set of
processing nodes, we need a way of partitioning them such that
each update is routed to the node that contains profiles similar
to its own. It is important to note that the similarity here applies
to the aggregate profiles, and not to the updates. Initially, there
is no information on the profile clusters, and as a result the
partitioning could be hash based. Thus, after some time all
nodes will form similar clusters. This is undesirable, since
similar profiles are not co-located on the same machine and as
the number of nodes increases, the fidelity of the clusters will
decrease. Most importantly, this also means that performing
clustered analytics in a distributed manner will result in poor
accuracy. Fortunately, as we learn more about the nature of the
profiles and frequencies of the partitioning attribute values, we
can incrementally update our partitioning scheme and migrate
profiles as needed, in order to increase the clustering quality.

Second, the re-partitioning has to make sure that each node
gets a similar-sized flow of updates (good processing balance).
Similarly, and for memory-constrained scenarios, each node
should get around the same amount of state used to compute
the aggregate profiles (good memory balance). Furthermore,
the changes in the partitioning function should be incremental,
so that the migration of profiles does not cause a long pause in
processing (low migration overhead).

Third, the timing of the re-partitioning needs to be arranged
carefully. Unnecessary updates to the partitioning would result

in pauses in the processing and slow down the operation
of system. Therefore, the system needs to monitor the
clustering qualities and decide accordingly whether to update
the partitioning scheme, or not.

Our solution relies on a smart re-partitioning technique to
solve these problems. Concretely, it adaptively adjusts the
assignment of profiles to nodes such that the memory and
processing balance is improved, while still maintaining a high
clustering accuracy and keeping the migration cost low. The
system monitors the processing nodes’ clustering quality and
when it drops under a predefined threshold, it starts the re-
partitioning operation. During the re-partitioning operation,
each node creates micro-clusters and computes vectors that
summarize the memory and processing requirements of the
profiles stored in the micro-clusters, as well as the centroid and
radius information for the micro-clusters. These summaries
take a small amount of space and are collected at a central
node. This node uses the micro-cluster summaries to come up
with a new partitioning. To create the new partitioning, we
use a greedy algorithm that iterates over the micro-clusters and
computes the affinity of each micro-cluster to each node. The
best assignment that maximizes the affinity is taken. We use a
novel definition of affinity, which considers clustering quality,
balance and the migration cost.

We developed an application [4] for telco customer
segmentation using CDR data, based on the streaming
aggregate profile clustering solution we propose in this
paper. The solution relies on distributed stream processing
middleware Storm [5] for processing updates and maintaining
the aggregate profile clusters in memory, and HBase [6] for
partial fault tolerance and for facilitating the migration. We use
this system to study the impact of various workload, system
and algorithmic parameters on the performance and accuracy
of our re-partitioning algorithm.

The rest of this paper is organized as follows. Section 2
overviews relevant work from the literature. Section 3
formalizes our problem. Section 4 details our technical solution
to the re-partitioning problem and Section 5 describes the
system architecture used to implement a scalable distributed
aggregate profile clustering system. Section 6 presents our
evaluation and Section 7 concludes the paper.

2. RELATED WORK

Clustering can be defined as the task of grouping a set of
objects in such a way that objects in the same group are more
similar in some sense to each other than to those in other
groups. Clustering is a fundamental task in exploratory data
mining and is commonly used in statistical data analysis. To
create a good classification of existing work on clustering and
better underline the uniqueness of our work, we classify the
approaches in the literature using the following dimensions:

(D1) Nature of the processing:

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Aggregate Profile Clustering for Streaming Analytics 3

(i) Centralized: There is a single processing node
that performs the clustering.

(ii) Distributed: Multiple nodes are used to
perform the clustering. In general, one or more
of these nodes are specialized for cross-node
arbitration.

(iii) Decentralized: All nodes perform the same
task to construct the clustering.

(D2) Dynamicity of the dataset:

(i) Static: Clustered objects do not change, or
change infrequently. As a result, the clustering
is offline.

(ii) Dynamic: Clustered objects are updated fre-
quently. As a result, the clusters are maintained
in an online manner, via incremental schemes.

(D3) Home location of the clustered objects:

(i) Centralized: Clustered objects are stored at a
single node.

(ii) Distributed: Clustered objects are partitioned
over nodes.

(D4) Mobility of clustered objects:

(i) Fixed: Clustered objects do not change their
home locations (nodes), i.e. they do not
migrate.

(ii) Flexible: Clustered objects can migrate across
nodes according to their similarity to other
objects.

(D5) Source of updates to the clustered objects:

(i) Local: The updates are generated at the home
location of the clustered objects.

(ii) Remote: The updates are routed to the home
locations of the clustered objects.

(D6) Nature of the updates:

(i) Complete: Each update replaces the clustered
object completely. Typically, clustered objects
have the same format as the updates.

(ii) Partial: Each update contributes to the value of
the clustered object. Typically, clustered objects
are formed by aggregating the updates.

We classify the existing clustering methodologies into
five main categories and characterize them according to the
aforementioned dimensions. A summary of this analysis is
given in Table 1.

2.1. Traditional clustering

In traditional clustering, a single node is responsible for per-
forming the clustering. Objects to be clustered are static and
reside on the same node that is responsible for performing
the clustering. Examples include k-means [7] (centroid-based),
DBSCAN [8] (density-based), EM [9] (probability distribution
based), as well as various other methods, such as link-based
clustering used to create hierarchical clusters [10]. Our focus in
this paper is the distribution and partitioning strategies used for
distributed aggregate profile clustering in a streaming setting.
We use some of the traditional algorithms mentioned here, such
as k-means and EM, as part of our solution.

2.2. Distributed and parallel implementations of
traditional clustering

Distributed and parallel versions of the traditional clustering
algorithms have been developed to provide speed-up and scale-
up. In these implementations, multiple nodes and/or CPUs are
used to perform the clustering. There is often a master node,
which is responsible for establishing cross-node arbitration and
data partitioning. The data can be distributed or centralized, but
the processing is always distributed.

As an example, PDBSCAN [11] is a parallel clustering
algorithm based on DBSCAN, designed for knowledge
discovery in large datasets. PDBSCAN uses a shared-nothing
architecture, therefore it can be scaled up to hundreds of
nodes. In a similar fashion, parallel k-means [12] offers a
parallel version of the k-means algorithm on shared-nothing
architectures. Projects like Mahout [13] and Oryx [14] provide

TABLE 1. Characterization of different clustering methodologies.

Clustering Nature of Dataset Home Data Update Nature of
methodology processing dynamicity location mobility source updates

This work Distributed Dynamic Distributed Flexible Remote Partial
Traditional clustering Centralized Static Centralized Fixed — —
Distributed/parallel traditional clustering Distributed Static Centralized distributed Fixed — —
Distributed clustering for remote monitoring Distributed Dynamic Distributed Fixed Local Complete
Data clustering in sensor/P2P networks Decentralized Dynamic Distributed Fixed Local Complete
Incremental data stream clustering Centralized Dynamic Centralized Fixed Remote local Complete

Partial updates and flexible data mobility differentiate our problem setup from others.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

4 M.A. Abbasoğlu et al.

distributed implementations of several traditional clustering
algorithms based on the Map/Reduce [15] framework. Mahout
[13] also offers a streaming k-means algorithm [16], which
makes one pass through the static data and produces cluster
centroids. These centroids are later used by a second phase
to reduce the number of clusters to k. The term ‘streaming’
applies to the single scan nature of the algorithm’s core. It is
still a batch algorithm that does not deal with updates.

Distributed and parallel approaches to clustering utilize
multiple cpus/machines for clustering data, yet they target
static and immobile datasets, and thus are not applicable in our
scenario.

2.3. Distributed clustering for remote monitoring

In distributed clustering for remote monitoring, the clustering
task as well as the clustered objects are distributed over
multiple nodes. Furthermore, the clustered objects are updated
frequently. Each object has a fixed home location, and the up-
dates originate from these home locations.

For remote monitoring, Januzaj et al. [17] propose clustering
data locally at each node and extract suitable representatives
out of these clusters. The representatives are then sent to a
global master node, where a complete clustering based on local
representatives is performed. As another example, Cormode
et al. [18] also propose to perform clustering in-place at the
home locations of the clustered objects, send the resulting
summary information to a central location and form high-
accuracy clusters there, while minimizing the communication
and computational cost.

These approaches are similar to ours in one aspect: local
clusterings are combined to form a global clustering. However,
unlike our setup, update routing and migration concerns do not
exist in these systems as the data mobility is not present and
the updates are always local.

2.4. Data clustering in sensor/peer-to-peer networks

Clustering in sensor networks and peer-to-peer (P2P) environ-
ments is done without the use of a central node. In such sys-
tems, each node holds some data value, e.g. a local sensor
reading or a series of them, and participates in a distributed
clustering algorithm. We classify these clustering approaches
as having decentralized nature of processing. An overview of
distributed clustering with a particular focus on sensor net-
works can be found in [19].

Eyal et al. [20] propose a solution where numerous inter-
connected sensor nodes partition their data into multiple
clusters, and describe each cluster concisely. They observe
that direct distance computation is not sufficient to provide
good clustering results, and for this reason they develop a
generic algorithm that models the values as a Gaussian mixture
model. Gedik et al. [21] propose ASAP, an adaptive-sampling
approach to data collection in sensor networks. ASAP uses

sensing-driven clustering to group nodes into clusters. This
clustering technique tries to form clusters that contain sensor
nodes that are not only spatially close, but also their sensor
readings are close.

Clustering approaches in sensor and P2P networks offer
decentralized processing of distributed and dynamic datasets.
Unlike these works, our problem setup involves a tightly
coupled cluster environment. Furthermore, in our setup, the
clustered profiles can change their home locations, resulting
in data mobility.

2.5. Incremental data stream clustering

Incremental data stream clustering is used in cases where the
data are evolving dynamically. A single node is responsible
for maintaining clusters in an online manner, using incremental
schemes. The data are scanned only once.

Balanced iterative reducing and clustering using hierar-
chies [22] is an unsupervised data mining algorithm used to
perform hierarchical clustering over incrementally and dynam-
ically incoming data. Guha et al. [23] also study k-Median
problem in the streaming context and provides a new stream
clustering algorithm that is based on a facility location
algorithm.
Discussion
Our problem has two unique aspects that sets it apart from
these earlier approaches. The first is the partial updates.
Each streaming update modifies an aggregate profile we
keep. Profiles are the clustered objects. The update does not
completely replace the profile, but instead modifies its value.
This has an implication in routing: it is the similarity of
the profiles, not updates, that decides how incoming updates
are to be routed. Second, in our setting, the home locations
of the profiles can change. The only requirement is that,
similar profiles (the ones in the same cluster) stay in the same
machine as much as possible. Otherwise, the fidelity of the
clusters decreases, lowering the accuracy of clustered analytics
performed in a distributed manner. Recall that, for performing
clustered analytics, one needs to build models on a per-cluster
basis.

3. PROBLEM DEFINITION

In this section, we define clustering quality, balance quality
and migration quality as three key metrics and formalize
our aggregate profile clustering problem as an optimization
problem built on these metrics.

Using clustering quality, we measure how successful our
clustering is compared with a centralized clustering approach.
Using balance quality, we measure how balanced the load on
the nodes of the system are. Migration quality captures the cost
of the migration in terms of the amount of data moved with
respect to the total state size. Finally, we present an overall

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Aggregate Profile Clustering for Streaming Analytics 5

quality formulation which is a combined measure that relies on
the clustering, balance and migration qualities.

3.1. Notation

Let S denote a stream of updates, where u ∈ S denotes an
update. We use ι(u) ∈ D to denote the value of the profile id
for the update, where D is the domain of the profile ids. Let
P(d) denote the aggregate profile for profile id d ∈ D. We
assume that P(d) is a multi-dimensional vector. We use f (d)

to denote the frequency of updates with profile id d ∈ D.
We define a partitioning function p : D → [0 . . . N) that

maps each profile id to a node, where we have N nodes. When
an update u is received, it is forwarded to the node at index
p(d), where d = ι(u). There, it contributes to the aggregate
profile information P(d), via the transformation

〈P(d), S(d)〉 ← γ (P(d), S(d), u).

Here, γ is an aggregation function and S(d) is the state
maintained to compute it continuously for profile id d.
For instance, S(d) could be a sliding window of updates
maintained for computing holistic aggregates [24] or a vector
of moments for maintaining simple aggregates. As such, for
some applications this state could be constant size (e.g. for
simple aggregates), whereas in others it could be linear in the
size of the window kept (e.g. for holistic aggregates).

At time step s, the partitioning function will be updated from
ps−1 to ps , with the goal of keeping the clustering quality
high, the processing and/or memory loads balanced and the
migration cost low. We now define each of these metrics.

3.2. Clustering quality

Let Ci be the set of clusters on node i after applying a local
clustering algorithm A, that is, Ci = A({P(d) : p(d) = i ∧
d ∈ D}). Let C be the set of all clusters from all nodes,
that is, C = ⋃

i∈[0...N) Ci . Further, assume that C∗ denotes
the clustering that would be formed if the same clustering
algorithm is applied on all profiles, that is, C∗ = A({P(d) :
d ∈ D}).

We define the clustering quality as the normalized mutual
information (NMI) [25] between the ideal clustering denoted
by C∗ and the distributed clustering we computed denoted by C:

Qc = N M I (C∗, C) (1)

NMI is defined as

N M I (X, Y) = H(X)+ H(Y)− H(X, Y)

(H(X)+ H(Y))/2
, (2)

where H(X) is the entropy of the clustering X and H(X, Y) is
the joint entropy of X and Y .

Note that our goal is not to measure the base clustering
quality, which could be done via traditional measures, such as
V-Measure [26]. Instead, we aim to compare our distributed
clustering results with the clustering that is formed when all
profiles are collected at a single node (using the same clustering
method). If our distributed clustering results are exactly same
as the single node ones, the NMI value, thus the clustering
quality, will become 1. As the two start to diverge, the NMI
values become smaller (with a lower bound of 0).

Here, it is important to use a clustering algorithm, A, whose
parameter settings are not impacted by the number of nodes, N .
For instance, for small number of dimensions a density-based
clustering algorithm (such as DB-scan [8]) will be effective.
For k-means-based algorithms, the distribution of k over the N
nodes will be a problem. To alleviate this, k-means algorithms
that use automatic determination of the k value can be used,
such as those that rely on the Bayesian Information Criterion
metric to determine k [27].

For this work, we have used EM clustering [9], a
distribution-based clustering algorithm. The WEKA [28] im-
plementation of the EM clustering can determine the number of
clusters automatically, which makes it easy to use in our setup,
as it avoids having to adjust the number of clusters based on
the node count.

3.3. Balance quality

Let Ri =
∑

p(d)=i f (d) · β(|S(d)|) denote the processing cost
required to handle the updates for the profiles assigned to the
i th node. Here, β is a function that defines the relationship
between the amount of state maintained and the required pro-
cessing to update the aggregate profile. For instance, a simple
incremental aggregation, such as average, would have β(x) ∝
1 (independent of state size). In contrast, a holistic aggregate,
such as computing quantiles, could require β(x) ∝ x .

We define the processing balance quality as Q pb = 1 −
CoV({Ri }), where CoV is the coefficient of variation (ratio
of standard deviation to mean). When the standard deviation
in the balance is 0, then the balance quality is 1. When the
deviation reaches a single node’s share of the load (i.e. the
mean), then the quality reaches 0. Let Si =

∑
p(d)=i |S(d)|

denote the size of state stored on the i th note to maintain the
profiles assigned to it. We define the memory balance quality
as Qmb = 1− CoV({Si }).

Depending on the nature of the state maintained (S(d) for
profile d), the memory may or may not be a concern. For
instance, if the state is constant size and small, then it may fit on
a single machine. In this case, we can take the balance quality
as Qb = Q pb, ignoring the memory balance. On the other
hand, when the state is linear in the frequency (|S(d)| ∝ f (d)),
such as for a non-invertible aggregation γ defined over time-
based sliding window, then the memory balance may factor
into the balance quality and thus we take Qb = (Q pb +
Qmb)/2. Other combinations are possible.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

6 M.A. Abbasoğlu et al.

Single node clustering

Two node clusterings

Hashing results in reduced cluster fidelity

Balanced partitioning that has sub-optimal migration cost

�

Partitioning does not respect balance requirements

 Ideal partitionong

FIGURE 1. An illustration of alternative partitionings.

3.4. Migration quality

As the system learns more about the frequencies of the
partitioning attribute values and the nature of the profile
clusters, the partitioning scheme needs to be incrementally
updated and profiles should be migrated as needed. During
this operation, the migration overhead should be low to avoid
lengthy pauses. Therefore, we define the migration quality to
quantify the amount of data movement during the migration. In
particular, we divide the amount of migrated state to the total
state size in order to derive a normalized metric.

We formalize the migration quality as follows:

Qm = 1−
∑

d∈D |S(d)| · 1(p′(d) �= p(d))∑
d∈D |S(d)| . (3)

Here, p′ is the previous partitioning function and 1 denotes
the indicator function.1 When there is no migration, the mig-
ration quality is 1. When the entire state needs to move, then
the migration quality is 0.

1Produces 1 if the Boolean condition holds, 0 otherwise.

3.5. Overall quality

We now define the overall quality based on the previously
defined metrics: clustering quality, balance quality and
migration quality. There is a clear trade-off between clustering
quality and balance quality. When the importance of balance
quality is set high, the clustering quality may suffer, as keeping
the balance quality high may necessitate splitting clusters
into several subclusters that are placed on different nodes.
Therefore, there is a need to strike a good balance between
clustering quality and balance quality.

We denote the overall quality as Q, and define it as

Q = (σ · Qc + (1− σ) · Qb) · Qm . (4)

Here, σ ∈ [0, 1] adjusts the relative importance of clustering
quality versus load balance, which is set to 0.5 by default.

3.6. Sample illustration

Figure 1 illustrates a toy scenario with four clusters of profiles,
namely C1, C2, C3 and C4. Among these, C1 is the largest in
terms of the number of profiles (|C1| ∝ 5), but the frequency

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Aggregate Profile Clustering for Streaming Analytics 7

of updates for profiles in this cluster is the lowest (f (d) ∝
1,∀d∈C1

2). On the other hand, C4 has the lowest number of
profiles (|C4| ∝ 1), but the highest frequency of updates
(f (d) ∝ 5,∀d∈C4). We see that C2 and C3 have values in
between the two extremes (|C2| ∝ 3, |C3| ∝ 2 and f (d) ∝
2,∀d∈C2∪C3). In this example, we assume that the state kept for
aggregation is constant and equal to a window size w (|S(d)| =
w,∀d ∈ D) and the processing time for updates is linear in the
state size (β(x) = x). Given that the processing load for a
cluster is p(Ci) =

∑
d∈Ci

f (d) · β(|S(d)|) and memory size is
m(Ci) =

∑
d∈Ci
|S(d)|, we have the following characteristics

for the clusters: 〈p(C1), p(C2), p(C3), p(C4)〉 = 〈5, 6, 4, 5〉
and 〈m(C1), m(C2), m(C3), m(C4)〉 = 〈5, 3, 2, 1〉.

Figure 1 shows four different partitionings for N = 2. The
first alternative represents hashing. The problem with this
alternative is that the fidelity of the clusters are reduced. As
N increases, this alternative will further degrade with respect
to the cluster quality. The second alternative puts together
clusters that are similar on the same node (akin to clustering
the clusters). However, this is not a good partitioning, as it
does not balance the load. In this alternative, the processing
load for the first node is ≈11, whereas that of the second node
is ≈9. The third alternative balances the load perfectly (10
and 10), has the same clustering result as the single node case,
but compared with the last alternative, it has higher migra-
tion cost (6 versus 5). As a result, the best alternative is the
rightmost one.

In the example scenario, the best partitioning keeps the indi-
vidual clusters unaltered. However, it is important to note that
it may not be possible to keep the clusters intact in all cases,
especially when the number of nodes is high and there are
clusters that are large in size. This is because the load balance
requirement may necessitate dividing a cluster across nodes.

4. SOLUTION

Our goal is to cluster a large number of profiles, which
are formed by aggregating streaming updates. Maintaining
these profile clusters on a single machine may not feasible,
especially when the rate of the updates is high (resulting in high
processing cost) or the amount of state kept is high (resulting in
high memory cost). Thus, we propose a distributed streaming
approach to cluster the aggregate profiles. Our approach forms
and maintains the clusters on a set of hosts, so that updates
on the profiles and clustered analytics defined on them can be
executed in parallel.

4.1. Overview

In our solution, profiles are distributed to nodes according
to their similarities to each other, while at the same time

2In this example, the frequency is taken as equal for all updates in the same
cluster.

considering the balance across the nodes with respect to
processing and memory costs.

Initially, the incoming stream is partitioned over processing
nodes by a simple hash function using a key attribute from
the update (such as the caller id in a CDR) and each node
processes its portion of the substream. Aggregate profiles
are incrementally built on the processing nodes. Periodically
and/or adaptively, a re-partitioning procedure is performed to
improve the partitioning.

During the re-partitioning, each node applies k-means
clustering with a relatively high k parameter to create micro-
clusters. Micro-clusters are then sent to the master node. After
the master node gets all micro-clusters from processing nodes,
a new partition mapping is created and the system pauses
shortly until it is put into active use.

For each micro-cluster, the master node ranks the processing
nodes and assigns the micro-cluster to the most appropriate
node. Ranking is performed using three considerations:

(1) keep the clustering quality high, by placing micro-clusters
that are close to each other on the same nodes;

(2) keep the total processing and/or memory load balanced;
(3) minimize the amount of state migration resulting from

updating the partitioning function.

After the master node creates a new partition mapping
(which maps profile ids to processing nodes), the splitter
node is informed about the new partition mapping and the
processing nodes are informed about the changes in the set
of profiles they are maintaining. Then the state migrations are
performed for the profiles whose node mappings have changed.
After the migration operation is complete, the system resumes
processing again. Keeping the amount of state migrated small
is important for minimizing the disturbance to the processing
flow during this adaptation.

4.2. Updating the partitioning function

We update the partitioning function periodically by collecting
summary information at a master node. The update is per-
formed such that the load balance and the clustering quality
are kept high, while incurring low migration cost.

At step s = 0, we set the partitioning function to the
consistent hash function HN , that is, p0(d) = HN (d). For
the purpose of updating the partitioning function, each node
creates micro-clusters [29] over the profiles they maintain. The
summaries of these micro-clusters are then sent to a master
node, which computes a new partitioning function ps .

A micro-cluster, denoted as M ⊂ D, keeps a set of profile
ids. It is summarized as a 5-tuple: M̂=〈o, r, p, m, l〉. Here, o
denotes the centroid of the micro-cluster, that is, M̂ · o =∑

d∈M P(d)/|M |. The radius of the micro-cluster is denoted
by r . We have M̂ · r = maxd∈M ‖P(d) − M̂ · o‖. The total
processing cost for the profiles in the micro-cluster is denoted
as p. We have M̂ · p = ∑

d∈M f (d) · β(|S(d)|). The total

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

8 M.A. Abbasoğlu et al.

memory cost for the state associated with the profiles of the
micro-cluster is denoted by m. We have M̂ ·m =∑

d∈D |S(d)|.
Finally, l denotes the current location (node maintaining it) of
the micro-cluster. We have M̂ · l = ps−1(d), d ∈ M .

The master node, upon receiving all the micro-cluster sum-
maries, creates a new partitioning function. For this purpose,
we use the greedy procedure described in Algorithm 1. The
algorithm iterates over the micro-clusters and for each micro-
cluster it makes a node assignment. We consider micro-clusters
in decreasing order of their state sizes during the assignment.

While assigning micro-clusters to nodes, the algorithm
makes use of a heuristic metric and picks the assignment that
maximizes this metric. Let M = {Mi } be the list of all micro-
clusters, and assume that i−1 assignments are made and we are
to make an assignment for the i th micro-cluster, Mi . In order
to do this, we first compute the affinity of this micro-cluster to
each node. Let A(Mi , j) denote the affinity of Mi to the j th
node. We set ∀d ∈ Mi , ps(d) = argmax j∈[0...N) A(Mi , j).
That is, the node for which the micro-cluster has the highest
affinity becomes the new mapping for all the profiles within
the micro-cluster.

Affinity has three aspects to it: the clustering disaffinity
denoted by Ac, the balance disaffinity denoted by Ab and the
migration affinity denoted by Am . Let Ml denote the set of
micro-clusters assigned to the lth node so far, i.e. Ml = {M |
ps(d) = l ∧ d ∈ M ∈M}.

4.2.1. Clustering disaffinity
Clustering disaffinity computes how far a micro-cluster is to
a processing node in the multi-dimensional space. k micro-
cluster members of the processing node that are closest to the
micro-cluster at hand are found, and the sum of their distances
is calculated. We normalize this value with the sum of all
clustering disaffinities toward all nodes.

The clustering disaffinity is formalized as follows:

Ac(Mi , j) =
∑

x∈min-k(Li, j)
x∑

l∈[0...N)

∑
x∈min-k(Li,l)

x
, (5)

where Li, j = {‖M̂i · o − M̂ · o‖ | M ∈ M j } and min-k
is a function that takes the smallest k elements from a list.
By Li, j , we represent the list of distances from the micro-
cluster centroid M̂i · o to the centroids of micro-clusters that
are assigned to the j th node so far; k ≥ 1 is a parameter of
our algorithm. The clustering disaffinities sum up to 1, that is,∑

j∈[0...N) Ac(Mi , j) = 1.

4.2.2. Balance disaffinity
One of our aims is to assign a similar-sized flow of updates to
each processing node. Therefore, we use balance disaffinity to
compute how much processing capacity is used in a processing
node after the micro-cluster at hand is assigned to it, relative
to the total used capacity. If this number is high compared with
other possible node assignments, then it is not a good idea to
assign the micro-cluster to the node under consideration, as it
will hurt the balance.

The balance disaffinity, for processing, is formalized as

Ab(Mi , j) = Ci, j∑
l∈[0...N) Ci,l

, (6)

where Ci, j = M̂i · p + ∑
M∈M j

M̂ · p. Here, Ci, j repres-
ents the amount of processing capacity used up on the
j th node once the micro-cluster Mi is placed on it, also
considering all the previous micro-clusters that were placed
on that node. The balance disaffinities sum up to 1, that is,∑

j∈[0...N) Ab(Mi , j) = 1. The balance disaffinity for memory
is defined similarly, by replacing p with m.

4.2.3. Migration affinity
To calculate the migration affinity, we compute how much
migration is performed so far and compare it to the maximum
migration cost possible. As expected, migration affinity will
decrease as the total amount of migration so far increases.
However, there is a slight problem. Recall that micro-clusters
are considered in the order of their state sizes. Thus, the initial
ones considered would have large state sizes. Furthermore,

Algorithm 1: updatePartitioning(M, N , O)

Param : M, micro-clusters
Param : N , number of nodes
Param : O , ordering policy
p← {}; � The partitioning function to be constructed
M′ ← Sort(M, O); � Order micro-clusters
for M ∈M′ do � For each micro-cluster, in order

i ←−1; a← 0; � Best assignment and affinity
for j ∈ [0..N) do � For each node
� Compute the affinity of M to node j

v← Am(M, j) · (1− ((1− α) · Ac(M, j)+ α · Ab(M, j)))
if v > a then 〈i, a〉 ← 〈 j, v〉; � Update best

p[d] = i, ∀d ∈ M ; � Create profile mappings

return p; � Return the fully constructed mapping

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Aggregate Profile Clustering for Streaming Analytics 9

0 20 40 60 80 100
x (migration amount)

0.0

0.2

0.4

0.6

0.8

1.0
g<

c,
10

0>
(x

)

c=1.0

c=2.0

c=3.0

c=4.0

c=5.0

FIGURE 2. g functions for different c values.

since migration cost depends on the binary variable of whether
the micro-cluster was on the same machine before or not, the
migration affinity will dominate our decisions for the initial set
of assignments. This is not desirable, as there will be plenty of
opportunities to improve the migration cost. To alleviate this
problem, we want the rate at which migration affinity decreases
to increase with increasing migration cost. This means that
migration affinity has lower impact initially, when the total
migration cost is still small compared with the maximum
allowed. This allows more flexibility for our algorithm to make
micro-cluster assignments initially.

The migration affinity is defined as follows:

Am(Mi , j) = g〈c, G〉(R + M̂i · m · 1(M̂i · l �= j)), (7)

where R = ∑
i∈[0...N)

∑
M∈Mi

(M̂ · m · 1(M̂ · l �= i))
represents the total migration cost so far. We see that G =
(2/N) · ∑M∈M M̂ · m represents the maximum allowable
migration cost (taken as the twice the amount of state per
node3); g〈c, G〉(x) is a function of the form y = a − b · ec·x/G

that satisfies g〈c, G〉(0) = 1 and g〈c, G〉(G) = 0; c is a
parameter that adjusts the skew of the function. For instance,
for G = 100, we get the graph shown in Fig. 2. The motivation
for having the g function is to penalize migrations less when
initially there is a high budget for migration. We use a c value
of 2 in our experiments.

4.2.4. Overall affinity
Given these definitions, we define the overall affinity as
follows:

A(Mi , j) = Am(Mi , j) · (1− ((1− α) · Ac(Mi , j)

+ α · Ab(Mi , j))). (8)

Here, ((1 − α) · Ac(Mi , j) + α · Ab(Mi , j)) defines the
combined clustering and balance disaffinity, where α ∈

3Which is the amount of migration resulting from two nodes completely
exchanging their state.

[0 . . . 1] adjusts the importance of one compared with the
other. As the value of α increases, the clustering becomes less
decisive compared with the balance. Subtracting the combined
clustering and balance disaffinity from 1 gives the combined
affinity, which we multiply with the migration affinity to get
the overall affinity value.

4.3. Handling edge cases

There are a few edge cases to handle with the partitioning
algorithm we have described so far. The first one is about the
proper computation of the clustering disaffinity when a node
has no micro-clusters assigned so far. The second is about the
over-sensitivity of the balance disaffinity when there are only
a few assignments made so far. We now describe how these
issues are resolved in our system.

4.3.1. Initial condition handling for clustering disaffinity
At the beginning of the re-partitioning procedure, the pro-
cessing nodes are empty (nothing is assigned to them yet). For
the first assignments, it is impossible to calculate the clustering
dissaffinty, as the formula relies on the existing assignments
to compute a distance. To be able to compute a clustering
disaffinity for a node that has no assignments so far, we come
up with initial cluster centers for each node. In particular, we
take all micro-clusters and use k-means clustering to create N
clusters out of them. We take the centroids of the resulting
clusters and assign each one to one of the nodes as that node’s
initial cluster center. When the clustering disaffinity is to be
computed for a micro-cluster that has no assignments, this
initial cluster center is used to compute the distance.

4.3.2. Start-up phase handling for balance disaffinity
During the start-up phase of the algorithm, the balance
disaffinity may prevent micro-clusters that are close to each
other to be assigned to the same node, as that might hurt load
balance. However, initial imbalances are not that important,
as there would be plenty of opportunities for correcting them
later in the assignment process. To capture this, we scale the
importance of the load disaffinity (originally α) by a scaler
function. We denote the scaler function as l and define it as
follows:

l〈d, L〉(x) =
{

a′ − b′ · ed·x/L , x < L/10,

1, otherwise.
(9)

The function takes as a parameter the total amount of load
assigned to the nodes so far; L is the maximum amount of
load to be assigned and d is a parameter that adjusts the
skew of the function. After 10% of the load is assigned, the
scaler function defaults to 1. Furthermore, the scaler function l
satisfies l〈d, L〉(0) = 0 and l〈d, L〉(L/10) = 1. For instance,
for L = 100, we get the graph shown in Fig. 3. The motivation
for having the l function is to gradually increase the penalty due
to the load imbalance. We use a d value of 2 in our experiments.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

10 M.A. Abbasoğlu et al.

0 20 40 60 80 100
x (load amount)

0.0

0.2

0.4

0.6

0.8

1.0
l<

d,
10

0>
(x

)

d=1.0

d=2.0

d=3.0

d=4.0

d=5.0

FIGURE 3. l functions for different d values.

4.4. Adaptive re-partitioning

As we explained earlier, there is a small pause in the processing
when the system updates the partitioning. If there are many
unnecessary re-partitionings, the system would slow down.
Therefore, the timing of the re-partitioning must be arranged
carefully. At a given moment in the processing, the system
needs to detect if re-partitioning is required or not. To handle
this, we store the micro-clustering results of the previous
re-partitioning process, and compare it with the current micro-
clustering results. Comparison is done using the NMI metric
(see Section 2). Each processing node in the system does its
own comparison, and if the comparison result is lower than a
predefined threshold (in range [0, 1]), then the processing node
sends a re-partition signal to the master node, which starts the
re-partitioning.

4.5. Parameter discussion

There are three parameters that are important for the
performance of the system. The first one is the number
of closest neighbors we use when computing the clustering
disaffinity (k). Using too few neighbors reduces the robustness
of the disaffinity computation, as a single outlier may pull a
micro-cluster to a non-optimal partition. Too many neighbors
will result in high disaffinity values for all nodes. We
experiment with the value of k in Section 6.

The second parameter that is important is α, which is
used to adjust the relative impacts of balance disaffinity and
cluster disaffinity. We set this value to 0.5 by default, giving
them equal importance. However, depending on the application
needs, this parameter can be adjusted to trade off throughput
for better clustering accuracy. We study this effect in Section 6.

Third, there is the threshold used for adaptive re-
partitioning. Setting this threshold too low may cause frequent
re-partitionings, whereas high values may result in reduced
clustering quality due to drifts in the profile values. We
experimentally evaluate this in Section 6 as well.

updates splitter

partitioner

profilerwriter

HBASE

profilerwriter

......

historical
access

analytics

analytics

...... ...

aggregate
backup

re-partitioning

summa-
rizer...

dashboard

Storm

FIGURE 4. The architecture of the aggregate profile clustering
system.

5. IMPLEMENTATION DETAILS

We implemented a profile clustering system and an analytic
application on top of it. The application is about customer
segmentation over CDR data for tariff optimization.

5.1. The profile clustering system

We implemented our profile clustering system with the help of
a Storm distributed stream processing platform and the HBase
key-value store. Figure 4 depicts the system architecture.

The profile updates stream into the system and are processed
by a topology4 that runs on the Storm distributed stream
processing system. The updates are tuplized and partitioned
using the Splitter operator. The splitted flows first go through
the Writer operator, which persists the updates to the HBase
distributed key-value store for historical access. This parallel
write feature is not strictly needed for our aggregate profiling
technique, but is part of our analytics platform.

The updates are then sent to the Profiler operators,
which are responsible for updating the in-memory profiles
and performing clustering. The profiler interacts with the
Partitioner operator, which in turn interacts with the Splitter,
for implementing the re-partitioning. In particular, when re-
partitioning is initiated, the Partitioner asks the Splitter to pause
the flow. After all in-flight tuples are processed, the micro-
clusters are shipped from the Profilers to the Partitioner. The
Partitioner executes the re-partitioning algorithm and computes
the new partitioning. Using this partitioning, it computes
migration schedules and sends these to the Profilers. To
minimize the coupling between Profilers, the actual migration
of state is performed through HBase. Each Profiler writes
to HBase the state that it no longer has to keep. After a
synchronization step, it also borrows the state that it needs to
maintain from now on. Once the state migration is completed,
the Partitioner sends the new partitioning to the Splitter
operator, which installs it and resumes the flow.

4A flow graph of operators.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Aggregate Profile Clustering for Streaming Analytics 11

The Profilers also use the HBase store to back up their
state periodically, to support fault tolerance. While the profile
maintenance is not sensitive to short-term tuple loss, this
backup is needed to avoid losing long-term aggregations that
are computed over large time scales.

Also note that the Partitioner is not keeping state across re-
partitionings. If it fails between re-partitionings, it can simply
be restarted. It will construct its state from the information it
gets from the Profilers, during the next re-partitioning. If it fails
during a re-partitioning, the adaptation step would be skipped
for the current period.

5.2. The customer segmentation application

We built an application that uses the aggregate profiling system
outlined so far to perform customer segmentation for tariff
optimization [4]. The system uses CDRs as profile updates and
builds aggregate customer calling profiles.

Telco companies provide their customers with tariffs that
regulate base fees and call charges according to call types.
Correctly defining tariffs not only benefits the customers by
lowering their bills, but also it benefits the telco companies, as
they can analyze customer orientation better and develop the
necessary infrastructure and better optimize resources.

To define well-targeted tariffs, telco companies need to
understand call patterns of their customer base. Whenever a
customer makes a call, a CDR is sent to the data center of
the telco company. The CDR has a caller associated with it
and contains information about the call, such as call target,
call time, call duration, etc. When CDRs of a customer are
aggregated, customer call patterns can be understood.

The CDRs are processed to compute customer calling
profiles. We define a number of features, based on the kind

of the destination number of the call (local, trunk, GSM,
international, PRS), based on the time of the call (night time,
daytime, weekday, weekend), as well as the length of the call
(short, long). For each call category, we maintain separate
aggregates of the percentage of calls falling into that category.
These form a call profile vector, which is updated each time
a new call is received. The clusters are maintained over these
aggregate call profiles.

Each profile has tariff information associated with it and thus
the resulting clusters from our distributed aggregate profile
clustering solution have labeled points with tariff information.
Our goal is to perform tariff optimization by detecting poorly
defined tariffs and potential new tariffs.

The main idea is that customers who have similar call
patterns should have the same tariff, assuming that the tariffs
are well defined. The system analyzes the clustering results and
detects if a tariff is scattered over many clusters where it is a
minority, or concentrated on a few clusters where it is well
represented. In the former case, we conclude that the tariff is
not reaching its target audience, therefore it is a poorly defined
tariff.

Using a similar line of thought, the majority of customers in
a cluster should have the same tariff if there is a tariff that meets
the expectations of the clustered customer group. Therefore,
clusters with high entropy are identified as candidates for
creating new tariffs.

Figure 5 shows the demo dashboard of the Customer
Segmentation Application, where different tariffs are shown
with different colors and different clusters are shown with
different shapes. Various visual aids are used to show how
much a tariff is scattered over clusters as well as how much
a cluster is scattered over tariffs.

FIGURE 5. A sample screenshot from the demo dashboard of the Customer Segmentation Application.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

12 M.A. Abbasoğlu et al.

6. EXPERIMENTAL EVALUATION

We have performed an experimental study with the aim of
evaluating the efficacy of the proposed solution. In this section,
we first describe the experimental setup and then discuss our
experimental results in detail.

6.1. Experimental setup

We describe the specifications of the machines and system
software used in our experimentation, the properties of
the CDR dataset used as our workload and the default
configurations used for the system parameters.

6.1.1. Machines
Evaluating the scalability of our solution requires the use of
multiple machines. We use kernel-based virtual machines on
2 IBM System x3650 M4 servers to create a multi-machine
environment. Each host machine has two 8-core Intel Xeon
2.00 GHz processors, 96 GB RAM and 5TB 10K rpm hard
disks. In total, the host machines have 32 cores. They are
connected to each other via a 10Gbit Ethernet switch. Our guest
machines have a single 2.00 GHz virtual core, 5 GB RAM
and 100 GB hard disk. The guest machines run a CentOS 6.4
operating system, have version 1.7.0 of Java, 1.0.3 version of
Hadoop [30], 0.94.9 version of HBase [6] and 0.8.2 version of
Storm [5] installed.

6.1.2. CDR dataset
To evaluate the system with varying workload characteristics,
there is a need for a data provider. We built a synthetic
CDR generator for this purpose. CDRs are generated
according to predefined customer profiles. Predefined customer
profiles have target, time and duration features, and each
of those features have different values with their associated
probabilities of appearance. Predefined profiles also have
shift parameters to model the changes in call behaviors of
customers. The shift parameters consist of a direction that
defines the target toward which the profiles will move, and
a probability value that indicates the probability of that shift
happening at each time step.

Before the CDR generator starts, the system builds its
customer base by selecting one of the predefined profiles for
each customer using a Zipf distribution [31]. When CDRs
are being generated, target, time and duration values are
determined by using probabilities that are defined in the
customer profiles. The generator periodically checks for profile
shifts based on the customers’ shift probabilities. If a shift
happens, the customer is shifted toward the direction that is
contained within its predefined profile.

6.1.3. Experimental parameters
Given that our focus is on scalability, Number of Nodes is one
of the main parameters we study.

There are also parameters of our solution as well (see
Section 4.5). In particular, there is the k value representing
the number of nearest neighbors used in defining the clustering
disaffinity as part of our heuristic algorithm. There is the α

value used in Equation (8) to adjust the relative importance
of balance disaffinity and cluster disaffinity, while computing
the overall quality. Finally, there is the adaptive re-partitioning
threshold.

There are also workload parameters. To experiment and
evaluate the proposed solution, we feed the system with
different types of customer bases. Number of Profile Types
defines the number of predefined profiles used by the CDR
generator, which can be considered as the number of ideal
clusters in the dataset. As we mentioned earlier, the customer
base is built by assigning each customer to one of the
predefined profiles. Profile selection is performed using a Zipf
distribution, and the Z parameter is used to adjust the skew
of the distribution. In other words, it is the skew in the sizes
of the ideal clusters. To generate profiles, we use a Gaussian
distribution, where the standard deviation used for the profile
attributes is taken as 0.1 times the mean. In effect, our
workload generation model can be seen as a Gaussian mixture.

The aforementioned parameters will be analyzed separately,
assuming other variables are assigned to their default values in
the process. Default values are given in Table 2.

Let us denote the Number of Nodes as N . The system is
fed with 105 · N CDRs from 1000 · N customers. In the k-
means clustering part of the algorithm, where we compute
micro-clusters, k is taken as �1000/30�. In other words, each
micro-cluster contains on average, 30 profile summaries.

6.1.4. Evaluation metrics
We evaluate the proposed solution with two fundamental
metrics: quality and execution time. There are four quality
metrics: Cluster Quality, Balance Quality, Migration Quality
and Overall Quality. Quality definitions and formulations are
given in Section 3. There are four execution time metrics
to analyze: Micro-cluster Time, Partition Time, Migration
Time and Total Time. Micro-cluster Time is the average
time it takes for the system to perform the micro-clustering,
which is performed in parallel by the nodes. Partition Time
is the average time the system spends on building a new

TABLE 2. Default values of the experimental variables.

Parameter Default value

Number of nodes 16
Number of nearest neighbors 10
Alpha 0.5
Number of profile types 6
Standard deviation of profiles 0.1 × mean
Zipf Z 1

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Aggregate Profile Clustering for Streaming Analytics 13

partitioning from the micro-cluster summaries, which is done
at a centralized node. Migration Time is the average pause
time while the system migrates micro-clusters to their new
locations. Total Time is the average time it takes the system to
complete the entire process. It is important to note that micro-
clustering time can be excluded from the total time if micro-
clusters are maintained incrementally [29], rather than being
computed in batch before the partitioning.

6.2. Experiment results

We now present our experimental results, studying the impact
of experimental parameters on the evaluation metrics.

6.2.1. Scalability
To test scalability, we investigate the change in the quality
metrics by running the proposed solution with varying number
of nodes.

Figure 6 plots different quality measures as a function of
the number of nodes used. We observe from the figure that as
the number of nodes increases, cluster and balance qualities
decrease, whereas the migration quality initially decreases but
then switches to an increasing trend. Cluster quality decreases
because the system is forced to split some of the clusters across
multiple nodes, but in order to prevent a drastic decrease in
cluster quality, it also sacrifices balance quality. As a result of
the decrease in both cluster quality and balance quality, overall
quality also decreases but this is tolerable, since the system
offers scalability when clustering large number of profiles.
The behavior of the migration quality is worthy of further
elaboration. When the number of nodes is small, migration
quality is sacrificed to keep together the clusters as much as
possible and achieve high cluster quality. However, as the
number of nodes become large, it becomes impossible not
to split clusters, and thus the amount of migrations required
decreases. The switching point at which the migration cost
starts to increase has a relation with the number of true clusters
in the data, which we investigate next.

FIGURE 6. Impact of the number of nodes on the quality metrics.

As we observe from Fig. 6, up to N = 6, the migration
quality drastically decreases. Recall from the Table 2 that the
number of predefined profiles is 6, and there is skew in the
sizes of the number of profiles belonging to a certain type,
because of the Zipf distribution used. Our solution tries to fit
every predefined profile into one processing node, but some of
the profiles have to be split and migrated to other nodes due
to the skew in sizes. As a result, the migration quality drops
drastically. We experiment and validate our reasoning about
this quality drop in Fig. 7.

Figure 7 plots the migration quality as a function of the
number of nodes, for different number of profile types. When
the number of profile types is small, we see a purely increasing
trend in the migration quality. When the number of profile
types is large, we see a purely decreasing trend in the
migration. Between these two extremes, we see an elbow in
the migration quality. The higher the number of profile types,
the further toward the right (higher number of nodes) is the
elbow’s location. This behavior further supports our earlier
claim that the migration quality switches back to an increasing
trend after we are forced to split the profile types across nodes.

6.2.2. Clustering versus balance
As mentioned earlier, when we define the overall quality in
Equation (8), α is used for adjusting the relative importance
of balance disaffinity and cluster disaffinity. For lower values
of α, cluster affinity has more importance than balance affinity
in our heuristic algorithm. Conversely, for higher values of α,
balance affinity has more importance.

Figure 8 plots the quality measures as a function of α. It
shows that for lower values of α, the proposed solution cannot
achieve balanced distribution and tries to collect all similar
clusters to one node, and cluster quality becomes high, but
balance quality becomes too low. Conversely, for higher values
of α, the proposed solution just tries to achieve good balance,
resulting in a decrease in the cluster quality. When we analyze

FIGURE 7. Impact of the number of profile types on migration
quality.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

14 M.A. Abbasoğlu et al.

FIGURE 8. Impact of α on the quality measures.

FIGURE 9. Impact of number of profile types on the quality metrics.

overall quality, it reaches its maximum point around α = 0.4
and stays stable.

The figure also shows that even for α = 1, the balance
quality is not 1, as migration quality is still a factor in the
overall partitioning process.

6.2.3. Predefined clusters experiment
To analyze the behavior of the proposed solution with different
types of customer bases, we run experiments on different
datasets, where the Number of Profiles is altered to experiment
with different number of clusters that exist in the customer
base.

Figure 9 plots the quality metrics as a function of the number
of profile types. It shows that overall quality increases as the
number of profile types increases, but up to some point. After
reaching optimal quality, it stays relatively stable.

When there are more nodes than customer profile types,
cluster quality decreases. The reason behind this is that, again,
one profile type is forced to be split into multiple nodes in order
to preserve balance quality. On the other hand, having more
profile types than nodes does not harm the quality.

6.2.4. Cluster size
We experiment our proposed solution with varying sizes of
profile clusters. As mentioned before, customer distribution to

FIGURE 10. Impact of varying values of Zipf Z on the quality
metrics.

profile types is done using a Zipf distribution. For low values
of Z , customers have a more balanced distribution over the
clusters. Increasing values of Z creates skew.

Figure 10 plots the quality measures as a function of the Zipf
skew parameter Z . We observe that the balance and cluster
qualities decrease as the skew is increased. The clustering
quality is affected the most. As the skew increases, we get a
few large clusters. Such clusters will not fit into a single node,
and as a result they must be split. This results in decreased
clustering quality. While the situation is hopeless for very large
clusters, the clustering concern tries to improve the situation as
much as possible for the other clusters that can still be located
on the same node. However, this happens at the cost of reduced
load balance, and thus the balance suffers as well, as the skew
increases.

6.2.5. Number of nearest neighbors
Recall that the cluster disaffinity is calculated using the average
of distances to the k nearest micro-clusters in the target node.
To investigate the effect of the number of nearest neighbors on
the quality measures, we experiment with varying k values.

Figure 11 plots the quality measures as a function of the
number of neighbors (k) used for computing the clustering
disaffinity. As we can see from the figure, increasing the
number of nearest neighbors results in decreasing the cluster
quality, but balance and migration qualities increase slightly.

For high values of k, the average distance of micro-clusters
to nodes becomes very similar to each other and similar
clusters are formed in all nodes, albeit with decreased fidelity.
This provides additional flexibility for migration and balance,
as clustering is often a conflicting goal.

6.2.6. Variance in profile attributes
Figure 12 plots the quality measures as a function of the
standard deviation in the profile attributes. As we can see
from the figure, with low variance in the profiles (deviation
≤0.1×mean), the quality is high (0.75 to≈1). As the variance

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

Aggregate Profile Clustering for Streaming Analytics 15

FIGURE 11. Impact of the number of neighbors on the quality
metrics.

FIGURE 12. Impact of the standard deviation in profile attributes on
the quality metrics.

increases, the quality suffers. This is because as the clusters
become larger, the distributed approach suffers against the
centralized one, as it must divide some of the clusters to
maintain balance properties. Note that with further increase in
variance, the decrease in clustering quality stops, as the clusters
become indistinguishable from each other. However, the drop
in migration quality continues, since high variance in profile
updates result in profiles shifting locations, causing migration.
The trend in the migration quality also impacts the overall
quality. Since for high variance in profile attribute values we do
not have meaningful clusters, the increased reduction in quality
due to decreasing migration quality is not a concern for realistic
scenarios.

6.2.7. Execution time
To analyze the execution time of our distributed clustering
algorithm, we run our system with varying number of nodes.

Figure 13 plots the execution time of the distributed
clustering steps (in seconds) as a function of the number of
nodes. We observe that as the number of nodes increases, the
total time and the micro-cluster time decrease (less profiles per

FIGURE 13. Impact of the number of nodes on the clustering time.

node), but the partition time (the centralized part) increases.
Since the processing load for micro-clustering is shared across
the nodes in the system, it is expected that the micro-clustering
time decreases with increasing number of nodes. On the other
hand, the increase in the potential target nodes for each micro-
cluster considered processed by the centralized partitioning
algorithm results in increased execution time as N increases.

We note that the micro-clustering time and thus the total
time is quite high in terms of their absolute values in seconds.
However, it is important to note that in practice the micro-
clustering can be done incrementally [29] and thus the effective
total time for re-partitioning can be taken as the sum of the
partition time and migration time, which is under half a minute.

6.2.8. Adaptive re-clustering experiment
To experiment with our adaptive approach to re-clustering,
we built two different dynamic update schedules. As we
explained in Section 6.1.2, the CDR generator periodically
checks for possible profile shifts. For this experiment, we use
two different setups for the profile shifts. The first one, which
we call the fast setup, has a shift probability that is twice of the
second one, which we call the slow setup.

Figure 14 plots the behavior of adaptive re-partitioning for
fast changing profiles, and similarly Fig. 15 plots the behavior
for the slow changing profiles. Adaptive Re-clustering(n)
shows the local clustering quality results for the nth node. In
Fig. 14, cluster quality decreases rapidly, and both adaptive
re-clustering and periodic re-clustering require the same
number of re-clusterings. In contrast, in Fig. 15, cluster quality
decreases slowly. In this setup, periodic re-clustering performs
six re-clustering steps, whereas adaptive re-clustering performs
only two re-clustering steps within the same time frame, yet
still keeps the cluster quality above 0.9 (same threshold used
in Fig. 14). As the results show, adaptive re-clustering prevents
unnecessary re-clustering steps, avoiding costly pauses. The
figures also show that not performing any re-clustering results
in the cluster quality to drop significantly as time progresses.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

16 M.A. Abbasoğlu et al.

FIGURE 14. Adaptive re-clustering behavior for fast changing
profiles.

FIGURE 15. Adaptive re-clustering behavior for slow changing
profiles.

7. CONCLUSION

In this paper, we introduced the problem of distributed
aggregate profile clustering in a streaming setup, with the
aim of enabling scalable clustered analytics on frequently
updated user profile information in data-intensive services.
We proposed a solution that employs partitioned stateful
parallelism and heuristic re-partitioning techniques. It makes
scalable clustered analytics possible by partitioning the profiles
over a set of nodes, where the partitioning maintains both good
load balance and good clustering accuracy (close to the case of
a centralized clustering). Furthermore, our solution maintains
such a partitioning when there are changes in the profiles,
via lightweight adaptive re-partitioning that minimizes the
migration cost. We have evaluated the performance of our
proposed solution on a customer segmentation application
using a CDR generator, and studied the impact of various
system parameters on the performance metrics. Our evaluation
shows that our solution can scale as the number of nodes
increases, can provide both good clustering quality (keeps
individual clusters on a single node as much as possible) and
good balance (places similar amount of CPU/memory load
on each node), and does this while incurring low migration
cost. Furthermore, our adaptive re-clustering technique is more

effective compared with periodic re-clustering as it can adapt
to the rate of change in the profiles to minimize unnecessary
re-clusterings.

FUNDING

This study was funded in part by The Scientific and Tech-
nological Research Council of Turkey (TÜBİTAK) under
grants EEEAG #111E217 and #112E271.

REFERENCES

[1] Hung, S.-Y., Yen, D.C. and Wang, H.-Y. (2006) Applying data
mining to telecom churn management. Expert Syst. Appl., 31,
515–524.

[2] Brusco, M.J., Cradit, J.D. and Tashchian, A. (2003) Multi-
criterion clusterwise regression for joint segmentation settings:
an application to customer value. J. Market. Res., 40, 225–234.

[3] Gür, I. and Güvercin, M. (2014) Scaling forecasting algo-
rithms using clustered modeling. Very Large Databases J.,
doi:10.1007/s00778-014-0363-0.

[4] Abbasoğlu, M.A., Gedik, B. and Ferhatosmanoğlu, H. (2013)
Aggregate profile clustering for telco analytics. Proc. VLDB
Endow., 6, 1234–1237 [demo paper].

[5] Storm. http://storm-project.net/ (accessed March 2013).
[6] HBase. http://hbase.apache.org/ (accessed March 2013).
[7] MacQueen, J.B. (1967) Some methods for classification and

analysis of multivariate observations. Berkeley Symp. Math. Stat.
Probab., 1, 281–297.

[8] Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996) A
Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. ACM Int. Conf. Knowledge
Discovery and Data Mining (SIGKDD), August 2–4, 1996,
Portland, Oregon, USA, pp. 226–231.

[9] McLachlan, G.J. and Krishnan, T. (2008) The EM Algorithm and
Extensions (2nd ed.). Wiley, Hoboken, NJ, USA.

[10] Han, J. and Kamber, M. (2005) Data Mining: Concepts and
techniques. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

[11] Xu, X. and Kriegel, H.-P. (1999) A fast parallel clustering
algorithm for large spatial databases. Data Min. Knowl. Discov.,
3, 263–290.

[12] Dhillon, I.S. and Modha, D.S. (2000) A Data-Clustering
Algorithm on Distributed Memory Multiprocessors. Workshop
on Large-Scale Parallel KDD Systems (as part of ACM
SIGKDD), August 15, 1999, San Diego, CA, USA, pp. 245–260.

[13] Mahout. http://mahout.apache.org/ (accessed August 2013).
[14] Oryx. https://github.com/cloudera/oryx (accessed March 2014).
[15] Dean, J. and Ghemawat, S. (2010) MapReduce: a flexible data

processing tool. Commun. ACM, 53, 72–77.
[16] Shindler, M., Wong, A. and Meyerson, A.W. (2011) Fast and

Accurate k-means for Large Datasets. Annual Conf. Neural
Information Processing Systems (NIPS), December 12–14, 2011,
Granada, Spain, pp. 2375–2383.

[17] Januzaj, E., Kriegel, H.-P. and Pfeifl, M. (2013) Towards
Effective and Efficient Distributed Clustering. IEEE Int. Conf.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://storm-project.net/
http://hbase.apache.org/
http://mahout.apache.org/
https://github.com/cloudera/oryx
http://comjnl.oxfordjournals.org/

Aggregate Profile Clustering for Streaming Analytics 17

Data Mining (as part of IEEE ICDM), November 19–22, 2003,
Melbourne, Florida, USA, pp. 49–58.

[18] Cormode, G., Muthukrishnan, S. and Zhuang, W. (2007)
Conquering the Divide: Continuous Clustering of Distributed
Data Streams. IEEE Int. Conf. Data Engineering (ICDE), April
15–20, 2007, The Marmara Hotel, Istanbul, Turkey, pp. 1036–
1045.

[19] C. da Silva, J., Giannella, C., Bhargava, R., Kargupta, H. and
Klusch, M. (2005) Distributed data mining and agents. Eng.
Appl. Artif. Intell., 18, 791–807.

[20] Eyal, I., Keidar, I. and Rom, R. (2011) Distributed data
clustering in sensor networks. Distrib. Comput., 24, 207–222.

[21] Gedik, B., Liu, L. and Yu, P.S. (2007) ASAP: an adaptive
sampling approach to data collection in sensor networks. IEEE
Trans. Parallel Distrib. Syst., 18, 1766–1783.

[22] Zhang, T., Ramakrishnan, R. and Livny, M. (1996) BIRCH:
An Efficient Data Clustering Method for Very Large Databases.
ACM Int. Conf. Management of Data (SIGMOD), June 4–6,
1996, Montreal, Quebec, Canada, pp. 103–114.

[23] Guha, S., Meyerson, A., Mishra, N., Motwani, R. and
O’Callaghan, L. (2003) Clustering data streams: theory and
practice. IEEE Trans. Knowl. Data Eng., 15, 515–528.

[24] Cormode, G., Garofalakis, M., Muthukrishnan, S. and Rastogi,
R. (2005) Holistic Aggregates in a Networked World: Dis-
tributed Tracking of Approximate Quantiles. ACM Int. Conf.

Management of Data (SIGMOD), June 14–16, 2005, Baltimore,
Maryland, USA.

[25] Danon, L., Diaz-Guilera, A. and Duch, J. (2005) Comparing
community structure identification. J. Statist. Mech. Theory
Exp., 2005, P09008.

[26] Rosenberg, A. and Hirschberg, J. (2007) V-Measure: A
Conditional Entropy-Based External Cluster Evaluation. Joint
Conf. Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL),
June 28–30, 2007, Prague, Czech Republic, pp. 410–420.

[27] Pelleg, D. and Moore, A.W. (2000) X-Means: Extending k-
Means with Efficient Estimation of the Number of Clusters. Int.
Conf. Machine Learning (ICML), June 29 – 2, 2000, Stanford
University, Stanford, CA, USA, pp. 727–734.

[28] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P.
and Witten, H.I. (2009) The weka data mining software. ACM
SIGKDD Explor. Newslett., 11, 225–234.

[29] Aggarwal, C.C., Han, J., Wang, J. and Yu, P.S. (2003) A
Framework for Clustering Evolving Data Streams. Int. Conf. on
Very Large Databases Conf. (VLDB), September 9–12, 2003,
Berlin, Germany, pp. 81–92.

[30] Hadoop. http://hadoop.apache.org/ (retrieved August 2013).
[31] Manning, C.D. and Schütze, H. (1999) Foundations of Statistical

Natural Language Processing. MIT Press, Cambridge, MA,
USA.

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, 2015

 at B
ilkent U

niversity L
ibrary (B

IL
K

) on D
ecem

ber 18, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://hadoop.apache.org/
http://comjnl.oxfordjournals.org/

	1 Introduction
	2 Related Work
	2.1 Traditional clustering
	2.2 Distributed and parallel implementations of traditional clustering
	2.3 Distributed clustering for remote monitoring
	2.4 Data clustering in sensor/peer-to-peer networks
	2.5 Incremental data stream clustering

	3 Problem Definition
	3.1 Notation
	3.2 Clustering quality
	3.3 Balance quality
	3.4 Migration quality
	3.5 Overall quality
	3.6 Sample illustration

	4 Solution
	4.1 Overview
	4.2 Updating the partitioning function
	4.3 Handling edge cases
	4.4 Adaptive re-partitioning
	4.5 Parameter discussion

	5 Implementation Details
	5.1 The profile clustering system
	5.2 The customer segmentation application

	6 Experimental Evaluation
	6.1 Experimental setup
	6.2 Experiment results

	7 Conclusion

