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Gabriela Jacques-Silva3 · Kun-Lung Wu3 ·
Ümit V. Çatalyürek4

Received: 11 December 2014 / Accepted: 19 October 2015 / Published online: 3 November 2015
© The Author(s) 2015

Abstract A community within a graph can be broadly defined as a set of vertices that
exhibit high cohesiveness (relatively high number of edges within the set) and low
conductance (relatively low number of edges leaving the set). Community detection
is a fundamental graph processing analytic that can be applied to several application
domains, including social networks. In this context, communities are often overlap-
ping, as a person can be involved in more than one community (e.g., friends, and
family); and evolving, since the structure of the network changes. We address the
problem of streaming overlapping community detection, where the goal is to main-
tain communities in the presence of streaming updates. This way, the communities
can be updated more efficiently. To this end, we introduce SONIC—a find-and-merge
type of community detection algorithm that can efficiently handle streaming updates.
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820 A. E. Sarıyüce et al.

SONIC first detects when graph updates yield significant community changes. Upon
the detection, it updates the communities via an incremental merge procedure. The
SONIC algorithm incorporates two additional techniques to speed-up the incremental
merge; min-hashing and inverted indexes. Results show that SONIC can provide high
quality overlapping communities, while handling streaming updates several orders of
magnitude faster than the alternatives performing from-scratch computation.

Keywords Streaming graph processing · Community detection · Overlapping
communities

1 Introduction

In many application domains, graphs are used to represent relationships between peo-
ple, systems, and the physical world. Data analytics performed on these graphs can
bring new business insights and improve decision-making. For instance, the graph
structure may represent the relationships in a social network, where finding communi-
ties in the graph (Lancichinetti and Fortunato 2009) can facilitate targeted advertising.
As another example, in the Telecommunications domain, call details records can be
used to capture the call relationships between people (Nanavati et al. 2006), and locat-
ing closely connected groups of people can help generate promotions.

As these examples illustrate, a fundamental graph analytic is community detec-
tion. We can define a community within a graph as a set of vertices that exhibit high
cohesiveness and low conductance. High cohesiveness means that the vertices in the
community have relatively high number of edges connecting them, and low conduc-
tance means that the vertices in the community have relatively small number of edges
going outside of the community.

Communities in social networks have two key characteristics. The first is that com-
munities are overlapping, as different communities can have common users. This is
a typical scenario, as a single user can be involved in different communities, such as
co-workers, friends, and family. The second is that communities are dynamic. They
evolve as a result of the continuous interactions between people. These interactions
can result in the addition/removal of new/existing relationships in the network. For
instance, the follower-followee graph of Twitter (2014) is highly active, with millions
of updates to the graph structure every day. This number is even higher if we consider
the mention graph of Twitter. It is also common to analyze the graph over a recent time
window, such as the mention graph of Twitter over the last week. In such scenarios,
both insertions and removals are equally frequent.

In this paper, we present SONIC—an algorithm to detect overlapping communities
on dynamic graphs in a streaming manner. Upon each edge insertion or removal,
we incrementally maintain the overlapping communities. This way, the communities
are updated more efficiently and without the need for periodic re-computations that
are typically performed in batch. SONIC maintains multiple community ids for each
vertex and updates these ids upon edge insertions and removals. By doing so, it can
answer any query for the communities of a given vertex (or a set of vertices) by a
simple traversal.
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SONIC: streaming overlapping community detection 821

SONIC adopts the find-and-merge style of community detection. In find-and-merge
style algorithms (Coscia et al. 2012; Rees and Gallagher 2010), local communities of
each vertex are found first, as part of the find step. These local communities are then
merged into global communities based on a configurablemerge condition, as part of the
merge step. SONIC uses the label propagation algorithm to detect local communities
during the find step. In the label propagation algorithm (Raghavan et al. 2007), each
vertex is initially assigned a unique id. Then each vertex gets the most commonly used
id of its neighbors. This procedure continues either for a specified number of rounds
or until there are no changes in ids. After that, SONIC merges local communities
based on a given merge factor. Different than earlier works, SONIC incorporates an
incremental merge step to avoid rebuilding of global communities from scratch.

SONIC faces several challenges in tackling the streaming overlapping community
detection problem. First, in a streaming setup, the number of updates are very high,
yet many of these updates are not sufficiently important by themselves to result in
any change in the global community structure. Fully processing each one of these
updates will unnecessarily increase the cost of the solution. SONIC addresses this
problem by detecting updates that are significant via a fast procedure that involves
re-adjusting only the local communities. SONIC initiates the merge process only for
the significant updates, effectively reducing the cost of an edge update. Second, the
merge step is non-trivial to perform incrementally, which led earlier work on find-
and-merge style of algorithms to use a non-incremental merge (Coscia et al. 2012).
SONIC solves this problem by maintaining the global communities as a collection
of sub-communities. Upon an edge insertion/removal, it detects the global commu-
nities whose sub-communities are impacted, dissolves such global communities, and
regenerates the global community structure by a partial merge. Finally, even an incre-
mental merge algorithm can be costly to execute when the local changes cascade to
bring about a major change in the global communities. To address this issue, SONIC
incorporates two alternative merge strategies: (i) amin-hash based and (i i) an inverted
index based merge.

In summary, this paper contributes the following:

• The SONIC algorithm for incremental overlapping community detection over
dynamic graphs.

• A technique to detect significant changes in local community structures, in order
to avoid costly merges when the local community changes are unlikely to cause
global community changes.

• Inverted index andmin-hash based techniques to further accelerate the incremental
merge used in SONIC.

• An extensive experimental evaluation of SONIC on real-world and synthetic data
sets, with respect to quality and running time performance.

The rest of this paper is organized as follows. Section 2 overviews related work.
Section 3 gives the background on basic techniques from the literature. Section 4
lists fundamental theoretical properties that we leverage for developing the SONIC
algorithm. Section 5 describes the base version of the SONIC algorithm with an
illustrative example. Section 6 presents several improvements over base SONIC, such
as the significant change detection, the min-hash based merge, and the inverted index
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822 A. E. Sarıyüce et al.

based merge algorithms. Section 7 presents our experimental evaluation and Sect. 8
concludes the paper.

2 Related work

Vast amount of work has been done on community detection and various aspects of the
problem have been studied in the literature. Fortunato (2010) covers all the popular
techniques to find communities in complex networks. Leskovec et al. (2010) com-
pares different community detection algorithms empirically. Significant number of
spectral methods are based on the modularity metric proposed by Newman (2006).
There are also information theoretic approaches to discover community structure of
networks. Particularly, Infomap (Rosvall and Bergstrom 2008) is currently one of
the best performing non-overlapping community detection algorithms. As an alterna-
tive technique to community detection, past works have proposed community search,
where the communities are detected locally based on given query vertices. This idea
first appeared in Hildrum and Yu (2005) and was further investigated in Sozio and
Gionis (2010) and Padrol-Sureda et al. (2010). Recently, Cui et al. (2013) proposed
online search of overlapping communities based on clique adjacency graphs. Our
approach incrementally maintains the communities, in the tradition of continuous
queries; whereas (Cui et al. 2013) answers community search requests on demand, in
the tradition of snapshot queries.

In our work, we are particularly interested in (i) overlapping community detection
techniques, and (i i) dynamic methods that can handle streaming updates.

Overlapping Community detection in social networks is different from the classical
clustering and partitioning problems in which the identified clusters/partitions do not
overlap (i.e., each vertex belongs to a single cluster). In contrast, communities in
social networks often overlap. Palla et al. (2005) showed that most real networks have
overlapping community structure. They also introduced a percolation based method to
detect overlapping communities. A recent survey (Xie et al. 2013) summarizes most
of the existing overlapping community detection algorithms and categorizes them
into five classes: (1) Clique percolation (Palla et al. 2005), (2) Link partitioning (Ahn
et al. 2010) (3) Local expansion and optimization (Lancichinetti et al. 2009; Whang
et al. 2013), (4) Fuzzy detection (Gregory 2010; Wang et al. 2011; Zhang and Yeung
2012), and (5) Agent-based Raghavan et al. (2007). Among them, Hierarchical Link
Clustering (HLC) (Ahn et al. 2010) is a popular approach due to its simplicity. It
partitions the links instead of vertices to explore the overlapping community structure.
In the local expansion and optimization based algorithms category,Whang et al. (2013)
recently proposed an algorithm which finds good seeds and then expands them using
a personalized PageRank clustering procedure. Fuzzy detection algorithms measure
the strength of association between vertices and communities. They use membership
vectors to determine the strength of these associations and determine communities
according to these vectors. Apart from this classification, Yang and Leskovec have
recently proposed a new approach to enable detection of overlapping communities at
large scale (Yang and Leskovec 2013). Their algorithm relies on the observation that
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SONIC: streaming overlapping community detection 823

overlapping regions of communities aremore densely connected than non-overlapping
parts. They create a community model for a given network by the Cluster Affiliation
Model, which uses this observation, and then fit this model for a given network. In the
fitting phase, they make use of matrix factorization.

Communities in large graphs can have different granularities. For example, given
the co-author graph, one possible community would be “people working on data-
bases”. However such a community is very coarse-grained and not so effective in
many scenarios. Instead, finding the communities based on vertices provide finer
granularity and more focused information. For example, a query like “people work-
ing with Prof. X on graph processing” could be more interesting and useful. Recent
studies (Gleich and Seshadhri 2012) also show that vertex based approaches provide
better communities in terms of widely accepted metrics, such as conductance. Thus,
finding fine-grained communities around vertices, which provide grounds for answer-
ing queries like “Which communities contain the vertex u?” and “Which communities
include the vertices u1, . . . , un?”, is highly valuable. Motivated by this observation,
Rees and Gallagher (2010) developed a new class of overlapping community detec-
tion algorithms that follow a bottom-up approach, which we refer to as find-and-merge
algorithms (Rees and Gallagher 2012, 2013a, b). In this method, the algorithm first
finds the local communities of each vertex. It thenmerges these local communities into
global communities based on a configurablemerge condition, as part of themerge step.
Two years after the Rees and Gallagher (2010) and Coscia et al. (2012) introduced a
quite similar method. The SONIC algorithm we describe in this paper adopts a similar
approach. Different than Coscia et al. (2012) and Rees and Gallagher (2010), SONIC
is an incremental find-and-merge algorithm that can handle streaming updates.

Streaming Several researchers have investigated evolutionary and dynamic commu-
nity detection algorithms. Evolutionary clustering techniques capture how the clusters
change as a function of time (Chakrabarti et al. 2006; Kim and Han 2009; Lin et al.
2008). These techniques focus on temporal evolution at a coarser level and do not
address the issues of incremental processing and streaming updates. As an example of
incremental community detection algorithm,Xie et al. (2013) proposed an incremental
version of label propagation which can be used to find non-overlapping communities
in evolving networks. SONIC also uses an incremental label propagation algorithm,
but only as an initial step to find the local non-overlapping communities to be merged
later into global overlapping communities.

Other dynamic community detection works include Cazabet et al.’s incremental
algorithm to detect overlapping communities (Cazabet et al. 2010); Lin et al.’s frame-
work (Lin et al. 2008), which analyses communities and their evolution in dynamic
networks; Goldberg et al.’s framework (Goldberg et al. 2011), which investigates the
evolution of communities and concludes that lifespan of a community can be corre-
lated with structural parameters of its early evolution; Qi et al.’s online algorithm (Qi
et al. 2013) to detect communities in social sensing applications; and Sarr et al.’s
work (Sarr et al. 2013) that studies group disappearance in evolving networks. There
are also several prior works focusing on streaming dense subgraph detection, which
is a problem similar to community detection. Agarwal et al. (2012) and Angel et al.
(2012) present algorithms for real-time discovery of events and stories from micro
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blog streams. They model the events and stories as dense subgraphs and track their
evolution in a streaming fashion.

3 Background

In this section, we provide the necessary background on concepts and algorithms that
are relevant to our work.

Ego-minus-ego network LetG be an undirected and unweighted graph. For a vertex
u, N (u) is the set of neighbors of vertex u in graphG. The ego-network Freeman (1982)
of u is the vertex induced sub-graph of G that consists of the vertices {u} ∪ N (u).
Subtracting u and the edges incident upon it from the ego-network results in the ego-
minus-ego network Rees and Gallagher (2010), formally defined as:

Definition 1 Ego-minus-ego network of vertex u, denoted by EmEn(u), in graph
G=〈V, E〉 is the subgraph G ′=〈V ′, E ′〉, where V ′=N (u) and E ′ ⊆ E is the set of
edges (v,w) such that v,w ∈ V ′. Vertex u is called the center of EmEn(u).

Find-and-merge style overlapping community detection This style of community
detection algorithms can compute overlapping global communities from local com-
munities Rees and Gallagher (2010). The basic idea is to find local communities in
each EmEn via a non-overlapping community detection algorithm, such as label prop-
agation, and then add the center of the EmEn to each one of the local communities
found. After the find step is complete, the algorithm merges the local communities to
construct the global ones. The merge is performed based on amerge factor parameter,
denoted by β, where β ∈ [0, 1]. During the merge step, two communities are merged
if at least β fraction of the smaller community resides in their intersection. If A and
B are two communities, the merge condition is given by |A ∩ B|/min(|A|, |B|) ≥ β.
This is the well-known overlap similarity metric. The merge process continues until
no new merges can be computed.

Incremental local community detection via label propagation Our non-overlapping
local community detection algorithm of choice for the find step is label propaga-
tion Raghavan et al. (2007). This algorithm works in multiple rounds. Initially, each
vertex is assigned a unique id. Then at each round, each vertex is assigned the id of the
most commonly used id of its neighbors. Ties are broken randomly. This procedure
is performed continuously either for a specified number of rounds or until there is
no change in the ids. When an edge (u, v) is inserted/removed into/from the graph,
we perform incremental label propagation starting with vertices u and v. That is, we
assign their ids to the most commonly used id of their neighbors. If this results in a
change in the id values of u or v, then we apply the same procedure to all neighbors
of the vertex whose id has changed, and continue the procedure recursively.

Observation 1 After the merge step, each local community takes part in a single
global community. Thus, the global communities are a partitioning of the local ones.

Definition 2 Local communities of a vertex u ∈ V , denoted by LC(u), is the set
of communities found in EmEn(u) by a non-overlapping community detection algo-
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rithm, except that each such community is augmented by the vertex u itself. Global
communities, denoted by GC , are the set of communities constructed by merging the
local communities of all vertices in the graph. Finally, the set of local communities
that were merged to form a global community g ∈ GC is denoted as MC(g).

4 Observations

In this section we list fundamental observations that we rely on for developing the
SONIC algorithm.

Theorem 1 Given a graph G=〈V, E〉, if we insert or remove an edge (u, v), only the
EmEns of u, v, and mutual neighbors of u and v change.

Proof Consider the insertion case. The EmEns of u and v change, as EmEn(u) will
now contain v, and EmEn(v) will contain u. EmEns of common neighbors, that is
N (u) ∩ N (v), will change too, since for a vertex w ∈ N (u) ∩ N (v), the edge (u, v)

will now be contained in EmEn(w). For any other vertex x /∈ N (u) ∩ N (v) that is not
u or v, it is easy to see that EmEn(x) cannot change. Assume that it does. This change
cannot involve a new vertex, say u′, being added into EmEn(x), as that would require
(x, u′) to be a new edge, and since x 
= u and x 
= v, this is a contradiction. The other
possibility is that a new edge is added into EmEn(x), which must be (u, v). But then
we have u ∈ N (x) and v ∈ N (x), which means x ∈ N (u) ∩ N (v), contradicting the
initial assumption.

The removal proof follows trivially. Assume that the EmEn of some vertex other
than u or v or a common neighbor of them has changed. Then inserting the removed
edge back will also result in a change for the EmEn of that vertex, which contradicts
the first part. By the same logic, EmEns of u, v, and vertices in N (u) ∩ N (v) will
change as a result of the removal.

Corollary 1 If u and v have no mutual neighbors and if an edge is inserted between
them, EmEns of u and v will gain an unconnected vertex v and u, respectively.

Theorem 2 Given a set of communities, the result of merging them based on an
overlap similarity threshold of β < 1 is sensitive to the merge order.

Proof Assume that the merge-order is not important and same solution is obtained for
any given set andβ coefficient. Say thatwe have three communities A = {1, 2, 3}, B =
{3, 4} and C = {4, 5, 6} and β = 0.5. If we merge A and B first, then resulting
communities will be AB = {1, 2, 3, 4} and C = {4, 5, 6}. However, if B and C are
merged first, then the resulting communities are A = {1, 2, 3} and BC = {3, 4, 5, 6}.
Therefore, the merge result is sensitive to the merge order.

Theorem 2 implies that there is non-determinism in the resulting communities when
the overlap similarity is not equal to 1.0. In order to escape from this non-determinism,
we used β = 1.0 in our quality measurement experiments. We also note that, even
when β < 1.0, quality of the resulting communities from different incremental runs
are very similar, indicating very minor changes in the community structure. Note that,
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Rees andGallagher introduced a different solution to this non-determinismproblemby
replacing themerge phasewith a label propagation scheme (Rees andGallagher 2012).

Definition 3 For a find-and-merge type of algorithm, any set of communities that is
reached via some merge order, such that no further merges are possible between any
two communities, is a valid solution.

Theorem 3 Given the set of global communities GC, and the local communities
MC(g),∀g ∈ GC; if a local community l ∈ MC(g′) that is part of a global community
g′ ∈ GC changes, then merging the set of local communities within MC(g′) plus the
remaining global communities GC \ {g′} will give a valid solution.

Proof Proof follows from Definition 3. Since any merge order is valid as long as
no further merges are possible, we change the merge order of communities to get a
valid solution. When we merge the communities in

⋃
g∈GC\{g′} MC(g), we will get

GC \ {g′}. Then, merging GC \ {g′} with MC(g′) will give us GC . In other words,
a from-scratch merge can have such an order that results in first generating the global
communities in GC \{g′} and then merging in the local communities in MC(g′). This
is exactly what the incremental merge performs.

Corollary 2 Given the set of global communities GC, and the local communities
MC(g),∀g ∈ GC; if a set of local communities L that are contained within a set of
global communities {g j } ⊂ GC change, then merging the local communities within⋃

j MC(g j ) plus the remaining global communities GC \ {g j } will give a valid solu-
tion.

5 The SONIC algorithm

In this section, we introduce the SONIC algorithm for incremental overlapping com-
munity detection.

5.1 An overview

SONIC is a find-and-merge style of community detection algorithm with a particular
focus on incremental processing, as it aims to support streaming updates. SONIC’s
algorithmic steps are as follows:

(1) Find the vertices whose local communities are impacted upon an edge insertion
or removal.

(2) Perform incremental, non-overlapping local community detection to update the
local communities of the impacted vertices.

(3) Detect significant changes and terminate if a change in impacted local communi-
ties is found to be insignificant.

(4) Incrementally merge communities and update the global communities.
(a) Determine a small set of communities to be merged.
(b) Perform recursive merge of these in an efficient manner.
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For local community detection SONIC uses the incremental label propagation algo-
rithm, as described in Sect. 3. The significant change detection capabilities of SONIC
are described in Sect. 6.1. In the rest of this section, we focus on the core capability
of SONIC: determining the set of communities to be merged, which is significantly
smaller in size compared to the entire set of local communities. The efficient proce-
dures for merging these communities are described in Sects. 6.2 and 6.3.

5.2 SONIC core

SONIC handles edge insertions/removals by (i) locating the impacted local commu-
nities, (i i) dissolving the global communities that contain them, (i i i) replacing the
impacted local communities with their updated versions, and finally, (iv) performing
a partial re-merge to create the new set of global communities.

In particular, when a new edge is inserted/removed, some local communities, say
L , are changed. Assume that these changed local communities are part of some set
of global communities, denoted by C(L) = {g : ∃l ∈ L s.t. l ∈ MC(g) ∧ g ∈ GC}.
Further assume that the local communities are replaced with their updated versions,
say L ′. By Corollary 2, SONIC regenerates the new global communities by merging
L ′ and GC \ C(L), that is:

GC ← merge(L ′,GC \ C(L))

To facilitate this merge, SONIC keeps track of which local communities were
merged to construct each global community. For this purpose, it keeps the following
additional data structures:

(1) GC : For each vertex, the global community ids associated with that vertex.
(2) LC : For each vertex, the local community ids associated with that vertex.
(3) For each global community, the local community ids that constitute it.
(4) For each local community, the global community id that it belongs to.

SONICmaintains global communities at each vertex to speedup the merge process.
Each vertex u can be part of atmost |N (u)| local/global communities, requiringO(|E |)
storage for global community ids. In practice, the number of global communities a
vertex u belongs to is considerably smaller than the upper bound of |N (u)|. The
total number of local communities, |LC |, can be at most 2 · |E |. Thus, keeping the
global communities with their constituent local communities also takes O(E) space.
Again, this happens only for the highly unlikely scenario of each edge belonging to a
different local community. Given that O(E) with a low constant is a workable bound
in practice, we implemented our auxiliary data structures in a way that enables us to do
faster lookups by using more memory. Our evaluation shows that the space overhead
of the data structures kept by SONIC corresponds to a small constant times the number
of edges, which makes our algorithms applicable to the graphs with million of edges
(see Sect. 7). Note that we only store auxiliary information along with the connection
related information, i.e., we do not replicate the entire attributed graph.

Given a graphG and global communitiesGC , if an edge (u, v) is inserted/removed,
SONIC updates the global communities using Algorithm 1. First, it performs the
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828 A. E. Sarıyüce et al.

Algorithm 1: SONIC (G, (u, v), op, β, LC,GC)
Input: G: graph, (u, v): updated edge, op: operation (‘i’/‘r’) LC : local communities, GC : global

communities, β: merge factor
1 if op = ‘i ′ then G ← G ∪ {(u, v)} � Insertion operation
2 else G ← G \ {(u, v)} � Removal operation
3 if N (u) ∩ N (v) = ∅ then � No common neighbors
4 return � No update needed

5 S ← {u, v} ∪ (N (u) ∩ N (v)) � Vertices with changed EmEn
6 R ← {u �→ LC(u) : u ∈ S} � Local comm. of vertices in S
7 incrLabelPropagation(S, LC) � Update local comm.

� Find the removed local communities
8 L− ← {l : l /∈ LC(u) ∧ l ∈ R[u] ∧ u ∈ S}

� Find the added local communities
9 L+ ← {l : l ∈ LC(u) ∧ l /∈ R[u] ∧ u ∈ S}

� Find the set of global communities to be dissolved
10 C ← {g : ∃l ∈ L− s.t. l ∈ MC(g) ∧ g ∈ GC}

� Dissolve comm. in C , remove non-existing local comms.
11 F ← {MC(g) \ L− : g ∈ C}
12 GC ← GC \ C � Remove dissolved global comms.
13 merge(G, β,GC,F , L+) � Re-merge into global comms.

insertion/removal. Then it checks the mutual neighbors of u and v. If there are no
mutual neighbors, we know that only u’s and v’s EmEns change, and v and u are
added as unconnected vertices to the EmEns of u and v, respectively (see Corollary 1).
In this case, it assumes that there is no change in the local community structure of u
and v, and therefore it performs no further operation to update GC (line 4).

When u and v havemutual neighbors, theEmEns of u, v, and theirmutual neighbors
change (see Theorem 1). Thus, SONIC collects these vertices in a set S (line 5). Next, it
creates amap R to keep the set of local communities associatedwith the verticeswhose
EmEns has changed (line 6). This map temporarily keeps the old local communities
so that they can be compared to the new ones formed after the insertion/removal.
The next step computes the new local communities by running the incremental label
propagation algorithm (see Sect. 3).

After updating the local communities, SONICfinds the set of old local communities
that no longer exist, denoted by L− (line 8); as well as the set of newly created local
communities, denoted by L+ (line 9). Using L−, it finds the set of global communities
to be dissolved, denoted by C (line 10). These are the global communities that cur-
rently contain nonexistent local communities. SONIC then dissolves each such global
community g by converting it into a set of local communities MC(g) and removing
the nonexistent local communities, that is MC(g) \ L−. The end result is a set of
local community sets (denoted by F), where each one of the local community sets
represents a dissolved global community (line 11).

Finally, SONIC merges the set of dissolved global communities F and the new set
of local communities L+ together with the global communities that are kept intact,
that is GC \C , using the merge factor β. In the base version of SONIC, we apply the
merge operation given in Algorithm 2, named incNaive.
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Algorithm 2: incNaive Merge(G, β,GC,F , L+)
Data: G: graph, β: merge factor, GC : global communities, F : local community sets of previously

dissolved global communities, L+: newly created local communities
� Perform the Distribute New Phase

1 for each l ∈ L+ do � For each new local comm.
� Find a suitable dissolved comm. for l

2 Find an F s.t. ∃ f ∈ F, f ∩ l 
= ∅
3 F ← F ∪ {l} � Add local comm. to a dissolved comm.

� Perform the Regroup Dissolved Phase
4 L ← ∅ � Initialize the global merge list
5 for each F ∈ F do � For each dissolved global comm.
6 for each fi ∈ F do
7 for each f j ∈ F, where j > i do
8 if overlap( fi , f j )≥ β then � There is a merge
9 fi ← fi ∪ f j � Merge latter into former

10 F ← F \ f j � Get rid of the latter

11 L ← L ∪ F � Add merged comms. to global merge list

� Perform the Global Merge Phase
12 for each ci ∈ L do
13 for each c j ∈ L, where j > i do
14 if overlap(ci , c j )≥ β then � Meets merge criteria
15 ci ← ci ∪ c j � Merge latter into former
16 L ← L \ c j � Get rid of the latter

17 for each gk ∈ GC do
18 if overlap(ci , gk )≥ β then � Meets merge criteria
19 ci ← ci ∪ gk � Merge latter into former
20 GC ← GC \ gk � Get rid of the latter

21 GC ← L ∪ GC � Update the global comms.

The incNaive algorithm consists of three phases. The first one is called theDistrib-
ute New Phase (lines 1–3). In this phase, the algorithm distributes the newly created
local communities, l ∈ L+, over the dissolved communities, F . To do that, it selects
a set F ∈ F for each l such that there is a community f ∈ F that overlaps with l,
i.e., f ∩ l 
= ∅. The goal here is to assign each new local community to one of the
dissolved communities where it is likely to merge with an existing local community.
This heuristic results in a higher number of cheaper merges in the second phase, yet
a lower number of more expensive merges in the third phase. Thus, it is effective in
reducing the overall merge cost.

The second phase is called the Regroup Dissolved Phase (lines 4–11). In this phase,
the algorithm performs a merge within each dissolved community F ∈ F , separately.
The motivation is that it is highly likely for the local communities that made up
a dissolved global community to re-merge. By doing smaller-scale merges that are
localized to the dissolved communities, we aim at reducing the overall cost of the
merge. During the merge, the algorithm checks each pair of communities, fi and f j ,
where j > i , to see if their overlap similarity is above the merge threshold β. If so,
it merges f j into fi and removes f j from its belonging set F . After it completes the
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Fig. 1 Illustration of the community changes upon an edge insertion. After inserting an edge between u
and v, global community B evolves into a bigger global community G

merge for a dissolved community, it adds the resultingmerged communities to a global
merge list, denoted as L (line 11).

In the last phase, called the Global Merge Phase (lines 12–20), the algorithm
performs a merge between communities in the global merge list, that is L , and the
intact global communities, that is GC . Here we check whether any community within
the global merge list can be merged with each other (ci and c j , i < j), as well as
with any of the intact global communities (GC). This is why the outer loop’s body
contains loops that iterate over both L and GC . However, the outer loop only iterates
over L , because once all the communities in L are merged with the rest, the only
possible comparisons that remain are between the intact global communities, and we
are guaranteed that those cannot merge (as they are intact, and thus known to have
overlap similarity of less than β).

Thanks to the incremental merge procedure, our SONIC algorithm is expected to
be much faster than the existing non-incremental find-and-merge type of algorithms.
SONIC aims to merge as few and as small communities as possible. We stated in
Definition 3 that any order of merge operations is a valid solution as long as no further
merges are possible. In this work, we do not elaborate on the impact of different merge
orders on quality, instead we try to make the merge phase as fast as possible while not
sacrificing the quality. Our experimental results (see Sect. 7) show that the quality is
on par with the non-incremental algorithm (Coscia et al. 2012).

5.3 Illustrative example

Figure 1 illustrates the community changes when we insert an edge into a sample
graph. The example assumes that the merge factor (β) is 1.0, i.e., two communities
can merge only if one of them is a subset of the other. The leftmost figure and table
show the global and local communities before the edge insertion is performed. Global
communities are shown with bold dashed lines and capital letter ids. For example,
community A is a global community consisting of vertices a, b, u, and w. Local
communities within the ego-minus-ego networks (EmEns) of ego vertices are given
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in the tables. For example, in the leftmost table, community 2 is a local community
belonging to the EmEn of c, as well as v and w. The local communities that form a
global community can also be read from the table by finding all rows that contain the
target global community. The local communities corresponding to these rows form
the global community. For example, in the leftmost table, the global community A is
composed of the local communities (a, 1), (b, 1), (u, 1), and (w, 1). Note that, finding
the local communities belonging to a global community does not require a full scan
of the table in the implementation. We make use of our data structures to access local
communities of a global community in constant time.

When we insert the edge (u, v), we first check the vertices whose EmEns are
changed. Based on Algorithm 1, those vertices are u, v and their mutual neighbors
w and x (all shown using larger circles in the figure). For each of these vertices, we
check if there is a change in their local community structure by performing incremental
label propagation in their EmEns (line 7 of Algorithm 1). For vertex w, it turns out
that there is no change in the local community structure, because the inserted edge is
not strong enough to bind local communities 1 and 2. Similarly, there is no change
in the local community structure of vertex x , as the inserted edge cannot cause a
connection between the local communities 3 and 4. On the other hand, the local
community structures of u and v change: u gets a new local community 8, and v’s local
community 2 changes into local community 7. After the removed and newly created
local communities are detected (lines 8 and 9 in Algorithm 1), local community 2 of
vertex v is the only removed local community in the new local community structure,
which is shown as L− = {(v, 2)}; whereas local communities 7 and 8 are the newly
formed communities of vertices v and u, respectively, shown as L+ = {(v, 7), (u, 8)}.
Next, we find the global communities to be dissolved and it turns out that global
community B is the only one that must be dissolved, i.e., C = {B} (local community
2 belongs to global community B). Then, we find the set of local communities to
be merged (F) by dissolving B and subtracting local community 2 of v, i.e., F =
{{(c, 2), (w, 2)}}.

Finally, we set the global communities GC = {A,C, D, E, F} and merge global
communities (GC), dissolved local communities (F), and newly created local com-
munities (L+). During the first phase of Algorithm 2, we distribute both newly created
communities, L+, to the only set F ∈ F and obtain the resulting community list to
be merged as F = {(c, 2), (w, 2), (v, 7), (u, 8)}. In the second phase, we merge those
four communities, shown with thin dashed lines in the middle figure, and obtain the
global community G in the rightmost figure. In the third phase, we attempt merging
the global community G with the communities in global community set GC , but no
merge happens. The rightmost figure shows the final global communities. Overall, the
global community B in the leftmost figure evolved to form the global community G
in the rightmost figure.

6 SONIC improvements

In this section, we describe several improvements over the SONIC core.
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6.1 Significant change detection

Insertion and removal of edges cause changes in the local community structure. How-
ever, the base version of SONIC does not quantify the significance of these changes.
In particular, any change that connects vertices that already have a common neighbor
leads to dissolving some global communities and performing the merge step. As an
improvement, we introduce the notion of significant change with respect to the local
community structure of vertices. When there is a change in the local community struc-
ture of the EmEn of a vertex, we compare the existing community structure to the new
community structure using the Normalized Mutual Information (NMI) index (Danon
et al. 2005), which enables the comparison of two overlapping sets (McDaid et al.
2011). For two groups of local communities, L1 and L2, their NMI is defined
as:

NMI(L1, L2) = I (L1; L2)

(H(L1) + H(L2))/2
,

where H(L1) and H(L2) are the entropies of L1 and L2, respectively; and I (L1; L2)

is the mutual information of L1 and L2, defined as:

I (L1; L2) = H(L1, L2) − H(L1|L2) − H(L2|L1),

where H(L1, L2) is the joint entropy of L1 and L2, and H(L1|L2) is the entropy of
L1 conditional on L2. The NMI values lie within the range [0, 1], where higher values
indicate higher similarity.

Wecompute theNMI score for eachvertexwhose ego-minus-egonetworks (EmEns)
are impacted (line 5 in Algorithm 1) by comparing the set of local communities in
its EmEn before the insertion/removal (line 6 in Algorithm 1), with the ones after
incremental label propagation. If this similarity is above a specified threshold, then
we assume that there is no significant change and do not update removed (L−) and
newly created (L+) local communities. Otherwise, we update them and also set the
R[u] to LC(u), i.e., update the local community structure. Continued changes in the
graph structure are accumulated if no significant change is observed in the community
structure.Wedenote the threshold byα, and name it as the significant change threshold.
If α = 1, then every local change is accepted as significant, whereas α = 0 means
that any local change is regarded as insignificant. As such, we take α ∈ (0, 1].

Using the α parameter provides the ability to adjust the trade-off between update
cost and the community detection accuracy. This is very useful, especially for scenarios
where the update rate of the graph is high relative to the query rate. Setting a lower α

means that we do not keep the communities perfectly up to date after each update. If
the query rate is low, it is acceptable to have a lower α, as the staleness in the responses
will be relatively low compared to the query period. If the query rate is high and the
application can tolerate responses with less up-to-date data, it may still be acceptable
to have a lower α. This way, less computing resources are spent on edge updates and
more resources are available to respond to queries.

123



SONIC: streaming overlapping community detection 833

6.2 Minhash-based merge

In Sect. 5.2, we introduced the incNaive algorithm for performing the re-merge of
the communities. However, this algorithm is expected to get costly when the size of
the merged communities increase. This is because the cost of computing the overlap
similarity is linear in the size of the smaller set, since we keep the communities as hash
sets. As the communities get larger towards the end of the merge process, this cost
significantly increases. In this section, we propose an adaptation of the min-hashing
technique to alleviate this problem.

Min-hashing is a technique for quickly estimating the Jaccard similarity between
two sets (Broder et al. 1998). Let A and B be two sets, then the Jaccard similarity
between them is given by |A∩B|/|A∪B|. Min-hashing uses n random hash functions
to map the elements of the two sets to values, and for each one of the hash functions,
it finds the smallest hash values for the two sets. If the smallest hash value for A and
B agree for m number of the hash functions, then the Jaccard similarity is estimated
as m/n. The probability of the minimum hash values of A and B being the same
is equal to the probability of the item having the minimum hash value being in the
intersection of the two sets. It is easy to see that the latter is equal to the Jaccard
similarity, as there are |A∩ B| items in the intersection and there are |A∪ B| items in
total.

The speed advantage of min-hashing compared to the explicit computation is that,
min-hashing based similarity can be computed in O(n) time, where n is the number
of hash functions used. This number is expected to be smaller than the size of the sets.
Importantly,we assume that themin-hashes are computedonce for all the sets andmany
comparisons are made over these sets to compute pairwise Jaccard similarities. The
min-hashing based computation of the similarity will lose its accuracy if the number
of hash functions is small. As a result, there is a trade-off between performance and
accuracy that can be adjusted by setting n properly.

One important issue in usingmin-hashing for ourmerge problem is thatmin-hashing
is based on Jaccard similarity, whereaswe use overlap similarity for ourmerge process.
To convert a given overlap similarity coefficient (β) to the corresponding Jaccard
similarity coefficient (θ ), we apply the following formula:

θ = β · ((1 − β) + |B|/|A|)−1,

where |A| ≤ |B|. This is obtained as follows. We have β = |A ∩ B|/|A| from the
definition of overlap similarity. Thus, |A∩ B| = β · |A|. Since |A∪ B| = |A|+ |B| −
|A∩B|, by plugging in β · |A| in place of |A∩B|, we get |A∪B| = (1−β) · |A|+|B|.
From the definition of Jaccard similarity we have θ = |A ∩ B|/|A ∪ B| and plugging
in our derivations of |A ∩ B| = β · |A| and |A ∪ B| = (1 − β) · |A| + |B|, we get
θ = β/((1 − β) + |B|/|A|).

In our min-hash based merge, we initally compute n min-hash values, one for
each local community. Later, when we merge two communities, we only need O(n)

operations to compute the newmin-hash values for the merged community, as we only
need to take the smaller of the min-hash value pairs for each hash function. As a result,
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we perform hashing only once over the base communities and re-use the results many
times during the merge. We evaluate the accuracy vs. performance trade-off involved
in setting the number of hash functions as part of our experimental evaluation in
Sect. 7.

6.3 Inverted index based merge

In Sect. 6.2, we proposed the use of min-hashing as a cheaper alternative to the explicit
overlap similarity computations performed within the incNaive algorithm during
the re-merge of the communities. While min-hashing reduces the cost of similarity
computations, especially for large communities, the number of such computations
made for comparing communities for possible merges is still high. One idea that
comes to mind to alleviate this problem is locality-sensitive hashing (LSH) (Indyk
and Motwani 1998). The motivation behind using locality-sensitive hashing is to hash
similar items to the same buckets, so that the pair-wise similarity comparisons can be
limited to the confines of individual buckets. For our re-merge problem, this would
significantly reduce the number of similarity computations made and thus the overall
merge time. However, it has been shown that locality sensitive hash functions do not
exist for the overlap similarity metric (Charikar 2002). As a result, the LSH technique
cannot be adapted for our problem.

In this section, we propose to leverage our support data structures, particularly the
global community ids for each vertex, to reduce the number of comparisons made
during the re-merge. This alternative merge algorithm, called incInvIndex, is based
on inverted indices of global communities. The algorithm attempts to make small
number of comparisons by traversing the vertices of communities to be merged and
computing their intersections with the surrounding communities via a simple counting
procedure, utilizing fast lookups and updates on a map structure.

Algorithm 3 gives the pseudocode of incInvIndex. The algorithm consists of two
phases. The first one is called the Pre-formation Phase (lines 1–3). In this phase, we
collect both the local communities within the dissolved global communities (F ∈ F)
and the newly created local communities (L+) into L , called the global merge list
(line 1). We then update the data structure that keeps the list of global communities
each vertex belongs to (line 3). This data structure serves as the inverted index. For
each vertex u in a local community l within the global merge list L , we remove the
dissolved communities (GCC in the pseudocode, denoting anything other than the
intact communities) from its list of global communities GC(u), and add the local
community l as a global community to GC(u). After the first step is complete, we are
ready to merge L with the intact global communities in GC . Note that we perform
the update of the inverted index GC(u) as part of the first phase, so that we can do
efficient merges in the second phase.

The second phase is called the Global Merge Phase (lines 4–20). In this phase, we
merge L and GC . For each community l ∈ L , we check to see whether it can merge
with any other community in L or GC . But rather than doing this by iterating over L
andGC , we do it by using the inverted index. In particular, for each community l ∈ L ,
we iterate over its vertices. For each vertex u ∈ l, we go over the global communities
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Algorithm 3: incInvIndex Merge(G, β,GC,F , L+)
Data: G: graph, β: merge factor, GC : global communities, F : local community sets of previously

dissolved global communities, L+: newly created local communities
� Perform the Pre-Formation Phase

1 L ← ∪F∈F F ∪ L+ � Put local comms. into the merge list
2 for l ∈ L do � For each comm. in the global merge list

� Update the global community mappings

3 GC(v) ← GC(v) \ GCC ∪ {l}, ∀v∈l
� Perform the Global Merge Phase

4 for each l ∈ L do � For each comm. in the merge list
5 M ← {}0 � Initialize the intersection counter map
6 c ← false � Initialize the change flag (no changes)
7 for each u ∈ l do � For each vertex in the comm.
8 for each g ∈ GC(u) do � For global comms. of u
9 M[g] ← M[g] + 1 � Incr. # of intersections

� Already meets merge criteria
10 if (M[g]/min(|l|, |g|)) ≥ β then
11 c ← true � Mark the change
12 l ← l ∪ g � Merge the communities
13 if g ∈ GC then � g is from intact comms.
14 GC ← GC \ g � Remove g from GC

15 else � g is from the global merge list
16 L ← L \ g � Remove g from L

� Update the global community mappings
17 GC(v) ← GC(v) \ {g} ∪ {l}, ∀v∈l
18 break � Break out of the loop

19 if c is true then break � Re-merge the new l

20 GC ← GC ∪ L � Update the global comms.

that contain it. These communities are listed in the inverted index, as GC(u). For each
such community g ∈ GC(u), we increment a counter stored in a map data structure,
denoted byM (line 9).M[g] represents the current count of commonvertices between l
and g. The moment this value is high enough to satisfy the overlap similarity condition
(line 10), we can merge l and g. We do this by merging g into l. We then remove g
from either GC or L , depending on which one it came from. Finally, we update the
inverted index by removing g from the list of global communities GC(v) of each
vertex v ∈ l, and adding l into the same (see line 17). Once a merge happens, we
need to break and go back to the start of processing l for new merges (line 19). For
this purpose, a boolean variable c is kept to break out of the inner two for loops at
once.

As in the incNaive algorithm, the outer loop only goes over the global merge list
L . As before, we know that once no more merges can happen between L and any
other community in L or GC , the intact communities in GC cannot get involved in
any merges, since they cannot merge among themselves. Accordingly, we return the
final set of global communities as L ∪ GC (line 20).
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7 Experimental evaluation

This section presents the evaluation of our algorithms using various datasets under
different scenarios. The first set of experiments focus on comparing the proposed
algorithms to the previous work with respect to the quality of the identified com-
munities. The second set evaluates the running time performance of our algorithms
when processing real-world datasets of different types and sizes. The third set com-
pares the running time performance of the different merge algorithms introduced in
Sects. 5.2, 6.2 and 6.3. The fourth set investigates the impact of the two algorithmic
parameters, namely the significant change threshold (α) and the merge factor (β), on
the algorithm’s running time performance and community detection quality. The last
set of experiments compare the running time performance of our algorithms when
processing synthetic graphs of different sizes.

Setup Algorithms were implemented in C++ and compiled with gcc 4.8.1 at -
O3 optimization level. Experiments were executed sequentially on a Linux operating
system running on a machine with an Intel Xeon E5520 2.27 GHz CPU and 48 GBs
of RAM.

Datasets We obtained real-world datasets from SNAP (2014). They are the co-
purchasing network (amazon0601 (AM)), friendship network (facebook (FB)),
follower–followee network (twitter (TW)) and email communication network (email-
Enron (EE)). We also extracted the co-authorship network of DBLP (2014) papers.
Table 1 shows the properties of these datasets. For each graph, we give its size, the
time taken to run the non-incremental find-and-merge algorithm and thememory space
overhead (in terms of number edges) of the support data structures used by our algo-
rithms. Note that, runtimes of all other competitor algorithms are significantly larger
than the non-incremental time shown in Table 1, thus not stated here. For example,
HLC method takes prohibitively long time for graphs with only 10 K nodes, as also
stated in Yang and Leskovec (2013). We also use synthetic graphs in our experiments,
in order to better evaluate the impact of changing graph size. These graphs, gener-
ated using SNAP’s R-MAT generator (SNAP 2014), follow a power law vertex degree
distribution and exhibit small world properties. To achieve that, we set the partition
probabilities of the generator to [0.40; 0.25; 0.20; 0.15]. We set the average degree of
the R-MAT graphs to 4.

Table 1 Real-world graph datasets and their properties

Graph dataset Number of
vertices

Number of
edges

Average
degree

Non-incremental
time

Memory
overhead

Amazon0601 (AM) 403,394 3,387,388 16.79 16 h 4.25 · |E |
Facebook (FB) 4,039 88,234 43.69 5.530 s 4.17 · |E |
Email-Enron (EE) 36,692 367,662 20.04 3.42 m 3.59 · |E |
Twitter (TW) 81,306 2,684,324 66.03 21.53 m 3.68 · |E |
DBLP_coauthor (DB) 1,236,220 15,897,220 25.72 76 h 4.79 · |E |
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7.1 Quality

In this section we evaluate the quality of the core SONIC algorithm and the improve-
ments introduced in Sect. 6, using real-world datasets. We use four previously
published state-of-the-art community detection algorithms for comparison: Hierarchi-
cal Link Clustering (HLC) (Ahn et al. 2010), Infomap (Rosvall and Bergstrom 2008),
Modularity (Newman 2006), and DEMON (Coscia et al. 2012). HLC has been shown
to outperform other existing overlapping community detection algorithms. Infomap
is a non-overlapping algorithm that aims to minimize the random walk entropy. Mod-
ularity is an eigenvector-based non-overlapping community detection method, which
maximizes the modularity metric. DEMON serves as our baseline, since it is the
non-incremental (static) version of SONIC. It is worth noting that our goal in this
comparison is twofold: showing that (i) SONIC performs similar to DEMON, (i i)
SONIC is a competitive community detection algorithm in terms of quality.

For the SONIC algorithms, we construct the communities by first bootstrapping
the 90% of the graph and then inserting the remaining 10% of the edges one by
one applying SONIC at each step. This way, we capture the impact of SONIC on
the quality of the communities by realistic changes in the graph which preserve to
topology structure. The significant change threshold α and the merge factor β are both
set to 1.0 to provide up-to-date and deterministic results. Remember that, if β value
is less than 1.0, output is non-deterministic (Theorem 2) and we selected that value
to make our experiments more robust. By setting α value to 1.0, we aim to consider
each change in the local community structure as significant. In all figures, SONIC
NV represents core SONIC using incNaive merge algorithm (Sect. 5.2), SONIC II
represents SONIC using the incInvIndex merge algorithm (Sect. 6.3) and SONIC
MHx is SONIC using the minhash-based merge algorithm (Sect. 6.2) with x number
of hash functions.

In the first experiment, we quantify the quality of the communities found using
two metrics: conductance and cohesiveness. The conductance metric measures how
connected a community is to the rest of the graph. It measures the fraction of total
edge volume pointing outside of the community. If we denote the number of edges
crossing the boundaries of the community as |Eo| and the total number of edges of the
community as |E |, then conductance is given by cd = |Eo|/|E |. Lower conductance
values imply better communities. In networks that contain overlapping communities,
communities are not disjoint and thus conductance is expected to be relatively high
compared to those that contain non-overlapping communities. The cohesivenessmetric
quantifies how connected the members of a community are to each other. That is, it
measures the density of a community. If we denote the number of edges within the
boundaries of the community as |Ei | and the total number of vertices in the community
as |V |, then cohesiveness is given by ch = |Ei |/(|V | · (|V | − 1|)/2). Higher values
imply better communities. We also define a quality index by combining conductance
and cohesiveness by taking their geometric mean, that is q = √

(1 − cd) · ch . The
quality index metric provides a bigger picture to show the impact of both conductance
and cohesiveness. Algorithms balancing the two metrics are expected to give higher
scores for quality index. Since the number of communities reported by each competitor
algorithm is significantly different, we focus on top 1000 resulting communities with
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Fig. 2 Conductance on
real-world graphs. Modularity is
the best, as it is an optimization
algorithm for conductance

Fig. 3 Cohesiveness on
real-world graphs. Results
depend on the graphs

the best quality index score and report the geometric means. Similar methodology is
used by Yang and Leskovec in their work (Yang and Leskovec 2012).

Figure 2 shows the results for the conductance metric. Modularity is the best per-
forming algorithm for most graphs since it optimizes the modularity metric to find
non-overlapping communities. The modularity metric measures the fraction of edges
that fall within the given communities minus the expected fraction of such edges if
all edges were distributed at random. Thus, it is closely related with the conductance
metric. As a SONIC variant with minhash-based merge, we selected SONICMH 64 as
representative. We observe that DEMON, SONIC NV, SONIC II, and SONIC MH 64
perform very similar to each other. For DBLP_coauthor graph, all algorithms report
the same 1000 communities with the best quality indexes. Figure 3 shows the cohe-
siveness results. HLC and Infomap perform best for this metric in all graphs and again
DEMON, SONIC NV, SONIC II and SONIC MH 64 perform similar to each other.

Figure 4 shows the quality indexes for all graphs. SONIC variants and DEMON
show similar results and are close to the best results on amazon0601 and facebook
graphs. Overall, SONIC and DEMON provide a good balance between cohesiveness
and conductance, which cannot be said for any of the other algorithms.

We also investigate how the number of hash functions affect the quality of the
communities found by SONICwhen using theminhash-basedmerge. For this purpose,
we obtained the communities with different number of hash functions (from 1 to 64)
and measured the similarity of the results to those obtained by running the DEMON
algorithm.We applied a version of NormalizedMutual Index (NMI) that is adopted for
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Fig. 4 Quality index scores on
real-world graphs. DEMON and
SONIC variants show
competitive behavior

Fig. 5 NMI scores of SONIC
MH wrt. DEMON with varying
# of hash functions on
real-world graphs

overlapping communities (Lancichinetti et al. 2009) as a scoring function to determine
the similarity between two sets of communities computed by SONIC and DEMON. If
the two sets of community are identical, then their NMI score is a perfect 1. Figure 5
shows the NMI scores of SONIC with respect to DEMON algorithm. As expected,
increasing the number of hash functions provides results that are more similar to
DEMON, since the NMI increases. The same trend is observed for all graphs. For
most of the graphs, the NMI stabilizes after 16 hash functions.

Last, we checked the difference between SONIC II and SONIC NV by compar-
ing their NMI scores. For amazon0601 and facebook graphs, the similarity between
SONIC II and SONIC NV is higher than the similarity between SONIC MH 64 and
SONICNV. For amazon0601 network, comparing SONIC II results in 0.89 NMI score
similarity with SONIC NV, which is greater than all SONIC MH variants. In general,
SONIC II is significantly similar to SONIC NV, resulting in 0.70 NMI score similarity
on average.

7.2 Running time performance

In this section, we evaluate the running time performance of SONIC II, which is
expected to be the fastest algorithm. We use real-world graphs for the evaluation,
which are originally static. We emulate a streaming scenario by treating the whole set
of vertices and edges as a sliding window snapshot. To evaluate streaming execution,
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Fig. 6 Most edge
removal/insertions result in a
merge. Yet, for some graphs, a
sizable fraction of updates skip
the merge

we first evict a random edge from the current graph. This emulates the behavior of a
full sliding window and opens up space for inserting a new edge. We then insert a new
edge to form a full window again. As we remove and insert edges, we preserve the
graph’s structure. This is achieved by initially putting aside a small sample of graph
edges and not including them in the first snapshot. Later they are used for insertions,
and as a holding place for the removed edges. Other scenarios, like dynamic interaction
graphs or specific event based edge removal (fixed time to live, a decay factor, etc.),
are similar to our setup for the purpose of measuring runtime, and will give the same
results. Thus, they are not investigated further in this work.

Wemeasure the average execution time for removing and inserting one edge to each
dataset. We set the significant change threshold α and the merge factor β to 1.0. For
relative throughput results, we compute the relative throughput of each single edge
update with respect to non-incremental (static) community construction and report the
geometricmeanof throughputs overmultiple updates.Relative throughput reflects how
well our algorithm performs. Since there are no alternative incremental algorithms for
find-and-merge style of community detection, we compare our incremental methods
with the existing non-incremental algorithms and report the relative throughput.

Figure 6 shows the relative frequency of the two code paths executed by SONIC
(Algorithm 1) when inserting/removing the 1000 randomly picked edges, for each
dataset. Recall that when the vertices connected by the edge have nomutual neighbors,
then the algorithm terminates early. If they share neighbors, then the algorithmexecutes
the merge step. We observe that, in general, most updates result in a merge. However,
depending on the structure of the graph, a non-significant number of edges may take
the early termination path. For the facebook and twitter graphs, more than 93% of
the edges result in a merge operation, whereas this number is 85, 60 and 77% on
amazon0601, email-Enron and DBLP_coauthor graphs, respectively. The reason is
that facebook and twitter graphs have higher average degree and thus are denser than
other graphs. When the graph is denser, the probability of having a mutual neighbor
for the incident vertices of a randomly selected edge is higher.

Figure 7 shows the average running times of a single edge insertion and a single edge
removal. For all graphs, we manage to stay below 1 s per edge insertion or removal.
Furthermore, SONIC II is able to keep the insertion/removal time below 0.01 s for our
biggest two graphs, amazon0601 and DBLP_coauthor.
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Fig. 7 Average runtimes of one
edge removal and insertion on
real-world graphs when 1000
edges are removed and inserted

Fig. 8 Average relative
throughput of one edge
insertion/removal w.r.t. static
algorithm when 1000 edges are
removed/inserted

Figure 8 shows the relative throughput of a single edge insertion and a single edge
removal relative to the non-incremental find-and-merge algorithms. We compute the
relative throughput by dividing the from-scratch computation time to the one edge
insertion/removal time. We compute the geometric mean of all relative throughputs.
The resulting number increases as the graph size gets larger, since it takes more time
to re-compute communities from scratch. For the amazon0601 and DBLP_coauthor
graphs, 8 and 9 orders of magnitude relative throughputs are reached, respectively.

Experiments on real temporal data Apart from the sliding window scenario, we also
investigated the performance of the SONIC II algorithm using real temporal data from
the DBLP_coauthor graph, which has an explicit ordering on the stream of edges
based on timestamps. In particular, we inserted the co-authorship edges for the papers
published after Jan 1, 2013 and measured the resulting execution time and relative
throughputs. Average execution time is 0.018 s per edge insertion and average relative
throughput observed is 405M,which is 8 orders of magnitude better than from-scratch
computation.

7.3 Comparison of merge variants

In this section, we compare the runtime performance of different merge algorithms,
namely SONIC NV, SONIC II, and the SONIC MH variants. We use the same exper-
iment setup as in Sect. 7.2.
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Fig. 9 Normalized
insertion/removal relative
throughputs of SONIC variants
w.r.t. SONIC NV. SONIC II
performs best for large networks

Figure 9 shows the average of normalized insertion and removal relative throughputs
of SONIC II and SONICMHvariants with respect to SONICNV. The best performing
merge algorithm depends on the dataset. For the amazon0601 and DBLP_coauthor
graphs, SONIC II performs the best with a significant difference, as it is 312 and 435
times faster than SONIC NV, respectively. In general, SONIC MH variants perform
better as the number of hash functions decrease. SONICMH1 is 2.95 times faster than
SONIC NV whereas SONIC MH64 is 1.38 times faster. Considering the large sizes
of the amazon0601 and DBLP_coauthor graphs, the low runtime of SONIC II can
be explained by the efficient merge operations. SONIC II, as explained in Sect. 6.3,
tries to merge only the spatially close communities (that have common vertices),
therefore provides an efficient merge operation. For the SONICMH variants, the trend
is expected because as the number of hash functions decrease, the size of the merged
community signatures decrease as well, which results in lower execution times.

The email-Enron graph shows trend similar to the amazon0601 andDBLP_coauthor
graphs for the SONIC MH variants. However, SONIC II is only slightly better than
the best MH variant. The facebook graph shows a different trend, where SONIC II
performs worse than SONIC NV, and SONIC MH variants.

Summary Overall, the size and the structure of the graph have a significant impact on
the merge variant to be selected. For large size networks, like amazon0601, SONIC
II is the best option, whereas, denser graphs with smaller sizes, like facebook and
twitter, SONIC MH variants can give better performance with best fitting number of
hash functions. However, we need to keep in mind that with very few hash functions,
the quality results of the SONIC MH variants are not good (Fig. 5). As such, we
conclude that the SONIC II merge algorithm is the most robust option for general use.

7.4 The α and β effect

In this section, we report the impacts of the significant change threshold (α) and the
merge factor (β) on the running time performance and community detection quality
of SONIC.

For the significant change threshold experiment, we experimented on all datasets
and selected the email-Enron dataset to show as representative since all the results
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Fig. 10 Impact of α on the
email-Enron dataset. Lower
values of α provide significant
throughputs with little impact on
quality

are similar. We removed and inserted 1000 edges to our dataset using the SONIC NV
algorithm and experimented with different α values from 0.1 to 1.0. The β value is
fixed at 1.0. Remember that as the α value decreases, changes in the local community
structure are regarded as less significant and, therefore, less merge operations occur.
After the removals and insertions, we compute the NMI score of the communities
resulting from an α value variant with respect to the communities resulting from a
setting of α = 1.0. This way, we can see how much divergence occurs due to the
lower α values.

Figure 10 shows the NMI scores (using the right y-axis) for each α variant. The
figure also shows the average time taken (on the left y-axis) for removing and inserting
an edge asα varies.Whenwe setα to 0.1, the quality degradation is not that significant,
as the average NMI decreases by only 14%. On the other hand, the removal/insertion
of an edge executes 45 times faster. Another observation is that even if we set α to 0.9,
we have speedups of 4.2 times, while sacrificing little in quality (10%). These results
show the advantage of using lower values for α parameter.

For themerge factor experiment, we chose the facebook dataset. As before, we used
SONIC NV, but with a fixed value of α (1.0) and varying β (0.1 to 1). Figure 11 shows
the running time (using the left y-axis) and the quality index (on the right y-axis)
introduced in Sect. 7.1. We observe slower running times as β decreases. The reason
is that there is an increased number of merges happening with lower values of β. On
the other hand, the quality index is better for higher values of beta. The communities
resulting from the default settings we have used in the experiments, i.e., β = 1.0, have
the best quality index.

7.5 Scalability

In this section, we report the scalability of SONIC and its variants when processing
the synthetic R-MAT graphs of different sizes, which vary from 210 to 218 vertices.
We set both α and β to 1.0.

Figure 12 shows the average relative throughput of a single edge removal and inser-
tion as a function of increasing R-MAT graph size. We compute relative throughputs
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Fig. 11 Impact of β on the
average execution time of
insertions and removals.
Runtimes get slower with lower
values of β. Quality index
increases with higher β values

Fig. 12 Average of removal &
insertion relative throughputs on
R-MAT graphs as a function of
the graph size. All merge
variants show increasing relative
throughputs with increasing
scale. SONIC II has the best
scalability, reaching 3.1B×
relative throughput

with respect to the from-scratch computation of communities with the DEMON algo-
rithm. All of the proposed algorithms present a scalable behavior with the increasing
graph size. As the scale gets larger, SONIC II shows outstanding performance, reach-
ing to 3.1B times relative throughput, which is 9 orders of magnitude better than the
from-scratch computation. SONIC NV and SONIC MH variants show decent scal-
ability results as well, reaching 6 and 7 orders of magnitude relative throughputs,
respectively, but they are not better than SONIC II. Considering the quality being
traded off by SONIC MH variants with small number of hashes, SONIC II turns out
to be the best performing algorithm for our scalability experiments.

The scalability experiments illustrate the overall effectiveness of SONIC compared
to batch re-computation. For instance, for an R-MAT graph of size 218, batch re-
computation can reach the performance of SONIC only if it is performed with a
period of 3.1B or more insertions/deletions. Furthermore, the larger the graph, the
bigger the difference. For small re-computation periods, the batch based approach
cannot maintain high throughput. As an extreme case, if we are to re-compute every
edge insertion/deletion, from-scratch computation is limited to 9 orders of magnitude
lower throughput for the largest R-MAT graph. If we are to re-compute every million
edge insertions/deletions, then it is limited to thousand times lower throughput.Clearly,
SONIC has significant performance advantage and high practical value for a broad
range of scenarios.
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8 Conclusion

In this paper, we introduced incremental algorithms for the streaming overlapping
community detectionproblem.Themainbenefit of these algorithms is that theyprovide
maintenance of global community ids of the vertices in the graph, as updates are taking
place. This avoids the from-scratch computation of communities and brings the ability
to serve fresh community results to on-demand queries coming in at high rates.

Our core SONIC algorithm produces high quality communities and is efficient in
terms of running time, when applied on the real-world and synthetic graphs of different
sizes. The core SONIC algorithm is further enhanced by techniques such as the sig-
nificant change detection, minhash based merge, and inverted-index based merge. For
instance, we reach 9 orders of magnitude relative throughput with our SONIC variant
that uses inverted-index basedmerge, compared to the from-scratch (non-incremental)
alternatives, on real DBLP_coauthor network and synthetic R-MAT graphs of size 218.
Given the dynamic nature of social networks and the importance of community detec-
tion in graph analytics, we believe that our incremental algorithms will be beneficial
in many real-world applications with streaming update requirements. Thanks to the
outstanding execution times, our algorithms will make it possible to analyze complete
dynamic scenarios so that community evolution trends can be observed in real social
networks.
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