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a b s t r a c t

Following a shift from computing as a purchasable product to computing as a deliverable ser-

vice to consumers over the Internet, cloud computing has emerged as a novel paradigm with

an unprecedented success in turning utility computing into a reality. Like any emerging tech-

nology, with its advent, it also brought new challenges to be addressed. This work studies net-

work and traffic aware virtual machine (VM) placement in a special cloud computing scenario

from a provider’s perspective, where certain infrastructure components have a predisposition

to be the endpoints of a large number of intensive flows whose other endpoints are VMs lo-

cated in physical machines (PMs). In the scenarios of interest, the performance of any VM is

strictly dependent on the infrastructure’s ability to meet their intensive traffic demands. We

first introduce and attempt to maximize the total value of a metric named “satisfaction” that

reflects the performance of a VM when placed on a particular PM. The problem of finding

a perfect assignment for a set of given VMs is NP-hard and there is no polynomial time al-

gorithm that can yield optimal solutions for large problems. Therefore, we introduce several

off-line heuristic-based algorithms that yield nearly optimal solutions given the communica-

tion pattern and flow demand profiles of subject VMs. With extensive simulation experiments

we evaluate and compare the effectiveness of our proposed algorithms against each other and

also against naïve approaches.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The problem of appropriately placing a set of Virtual

Machines (VMs) into a set of Physical Machines (PMs) in

distributed environments has been an important topic of

interest for researchers in the area of cloud computing.

The proposed approaches often focus on various problem

domains with different objectives: initial placement [1–3],

throughput maximization [4], consolidation [9,10], Service
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Level Agreement (SLA) satisfaction versus provider operat-

ing costs minimization [11], etc. [5]. Mathematical models

are often used to formally define the problems of that cate-

gory. Then, they are normally fed into solvers operating based

on different approaches including but not limited to greedy,

heuristic-based or approximation algorithms. There are also

well-known optimization tools such as CPLEX [12], Gurobi

[15] and GLPK [17] that are predominantly utilized in order

to solve placement problems of small size.

There is also another way of classifying the works re-

lated to VM placement based on the number of cloud

environments: Single-cloud environments and Multi-cloud

environments.
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Fig. 1. Interconnected physical machines and sink nodes in an unstructured

network topology.
The first category is mostly concerned with service to PM

assignment problems which are often NP-hard in complexity.

That is, given a set of PMs and a set of services that are encap-

sulated within VMs with fluctuating demands, design an on-

line placement controller that decides how many instances

should run for each service and also where the services are

assigned to and executed in, taking into account the resource

constraints. Several approximation approaches have been in-

troduced for that purpose including the algorithm proposed

by Tang et al. in [16].

The second category, namely the VM placement in mul-

tiple cloud environments, deals with placing VMs in numer-

ous cloud infrastructures provided by different Infrastructure

Providers (IPs). Usually, the only initial data that is available

for the Service Provider (SP) is the provision-related informa-

tion such as types of VM instances, price schemes, etc. With-

out any information about the number of physical machines,

the load distribution, and other such critical factors inside the

IP side mostly working on VM placement across multi-cloud

environments are related to cost minimization problems. As

an example of research in that area, Chaisiri et al. [18] pro-

pose an algorithm to be used in such scenarios to minimize

the cost spent in each placement plan for hosting VMs in a

multiple cloud provider environment.

To begin with, our work falls into the first category that

pertains to single cloud environments. Based on this as-

sumption, we can take the availability of detailed informa-

tion about VMs and their profiles, PMs and their capacities,

the underlying interconnecting network infrastructure and

all related for granted. Moreover, we concentrate on network

rather than data center/server constraints associated with

VM placement problem.

This paper introduces nearly optimal placement algo-

rithms that map a set of virtual machines (VMs) into a set

of physical machines (PMs) with the objective of maximizing

a particular metric (named satisfaction) which is defined for

VMs in a special scenario. The details of the metric and the

scenario are explained in Section 3 while also a brief expla-

nation is provided below. The placement algorithms are off-

line and assume that the communication patterns and flow

demand profiles of the VMs are given. The algorithms con-

sider network topology and network conditions in making

placement decisions.

Imagine a network of physical machines in which

there are certain nodes (physical machines or connec-

tion points) that virtual machines are highly interested in

communicating. We call these special nodes “sinks”, and

call the remaining nodes “Physical Machines (PMs)”. De-

spite the fact that sink usually is a receiver node in net-

works, we assume that flows between VMs and sinks are

bidirectional.

As illustrated in Fig. 1, assuming a general unstructured

network topology, some small number of nodes (shown as

cylinder-shaped components) are functionally different than

the rest. With a high probability, any VM to be placed in the

ordinary PMs will be somehow dependent on at least one of

the sink nodes shown in the figure. By dependence, we mean

the tendency to require massive end-to-end traffic between a

given VM and a sink that the VM is dependent on. With that

definition, the intenser the requirement is, the more depen-

dent the VM is said to be.
The network connecting the nodes can be represented as

a general graph G(V, E) where E is the set of links, V is the

set of nodes and S is the set of sinks (note that S ∈ V). On the

other hand, the number of normal PMs is much larger than

the number of sinks (i.e. |S| � |V − S|).
Each link consisting of end nodes ui and uj is associated

with a capacity cij that is the maximum flow that can be

transmitted through the link.

Assume that the intensity of communication between

physical machines is negligible compared to the intensity

of communication between physical machines and sinks. In

such a scenario, the quality of communication (in terms of

delay, flow, etc.) between VMs and the sinks is the most im-

portant factor that we should focus on. That is, placing the

VMs on PMs that offer a better quality according to the de-

mands of the VMs is a reasonable decision. Before advancing

further, we suppose that the following a priori information is

given about any VM:

• Total Flow: the total flow intensity that the VM will de-

mand in order to achieve perfect performance (for send-

ing to and/or receiving data from sinks).

• Demand Weight: for a particular VM (vmi), the weights of

the demands for the sinks are given as a demand vec-

tor Vi = (vi1, vi2, . . . , vi|S|) with elements between 0 and

1 whose sum is equal to 1. (vik is the weight of demand

for sink k in vmi).

Moreover, suppose that each PM-sink pair is associated

with a numerical cost. It is clearly not a good idea to place a

VM with intensive demand for sink x in a PM that has a high

cost associated with that sink.

Based on these assumptions, we define a metric named

satisfaction that shows how “satisfied” a given virtual ma-

chine v is, when placed on a physical machine p.

By maximizing the overall satisfaction of the VMs, we can

claim that both the service provider and the service con-

sumer sides will be in a win-win situation. From consumer’s

point of view, the VMs will experience a better quality of ser-

vice which is a catch for users. Similarly, on the provider side,

the links will be less likely to be saturated which enables

serving more VMs.

The placement problem in our scenario is the comple-

ment of the famous Quadratic Assignment Problem (QAP)

[19] which is NP-hard. On account of the dynamic nature of
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the VMs that are frequently commenced and terminated, it is

impossible to arrange the sinks optimally in a constant basis,

since it requires physical changes in the topology. So, we in-

stead attempt to find optimal placement (or actually nearly-

optimal placement) for the VMs which is exactly the com-

plement of the aforementioned problem. We propose greedy

and heuristic based approaches that show different behav-

iors according to the topology (Tree, VL2, etc.) of the network.

We introduce two different approaches for the placement

problem including a greedy algorithm and a heuristic-based

algorithm. Each of these algorithms have two different vari-

ants. We test the effectiveness of the proposed algorithms

through simulation experiments. The results reveal that a

closer to optimal placement can be achieved by deploying

the algorithms instead of assigning them regardless of their

needs (random assignment). We also provide a comparison

between the variants of the algorithms and test them under

different topology and problem size conditions.

The rest of this paper includes a literature review

(Section 2) followed by the formal definition of the problem

in hand (Section 3). In Section 4, 4 algorithms for solving the

problem are provided. Experimental results and evaluations

are included in Section 5. Finally, Section 6 concludes the pa-

per and proposes some potential future work.

2. Related work

There are several studies in the literature that are closely

related to our work in the sense that they attempt to improve

the performance of a given data center by choosing which

physical machines accommodate which virtual machines. In

this section, we mention such past works categorized accord-

ing to their relevance to our work as well as their relevance

to each other. To the best of our knowledge, there are no past

works that study the scenario of our interest.

2.1. Network-aware placement related work

The most relevant past work is [25] by R. Cohen et al.

In their work, they concentrate merely on the networking

aspects and consider the placement problem of virtual ma-

chines with intense bandwidth requirements. They focus on

maximizing the benefit from the overall traffic sent by virtual

machines to a single point in the data center which they call

root. In a storage area network of applications with intense

storage requirements, the scenario that is described in their

work is very likely. They propose an algorithm and simulate

on different widely used data center network topologies. We

realized that the defined problem in the mentioned work is

very limited though the scenario itself in its general form is

significant. Then, we came up with the problem that is stud-

ied in this paper, by generalizing the mentioned problem into

a scenario in which there can be more than one root or sink.

The following works also consider network related con-

straints of the placement problem, but their defined scenar-

ios are less related to our work.

Kuo et al. [6] introduces VM placement algorithms for a

scenario that is related to MapReduce/Hadoop architecture.

In this paper, the scenario is as follows: suppose that we

have a data center consisting of many data nodes (DNs) and

computation nodes (CN). Each computation node has several
available VMs. Users data chucks are stored in some DNs and

they may request VMs to process their data whose location

is fixed and given in advance. The problem is to assign VMs

to DNs such that the maximum access latency between the

DNs and VMs and also between the VMs is bounded. There

are several notable differences between [6] and our work: to

begin with, the cost function defined in the mentioned work

takes only delay into account while in our work we are con-

cerned with both bandwidth and delay (i.e., the cost in our

work is defined as a function of both delay and bandwidth,

and each can be given weights). The other difference is that

[6] does not assume that VMs compete for bandwidth in or-

der to access a given data node while in our work we make

such an assumption (the VMs compete for sinks instead of

data nodes). In other words, in our scenario, any placement

decision can potentially affect the performance of other VMs

as well. Moreover Kuo et al. [6] assume that each VM is in-

terested in only one DN and each DN is only accessed by a

single VM. In our scenario however, the sinks that are equiv-

alent to DNs can be requested by many competing nodes

simultaneously.

In another work [21], Biran et al. contend that VM place-

ment has to carefully consider the aggregated resource con-

sumption of co-located VMs in order to be able to honor

Service Level Agreements (SLA) by spending comparatively

fewer costs. Biran et al. [21] are focused on both network and

CPU-memory requirements of the VMs, but it only takes gen-

eral constraints of the network such as network cuts into ac-

count while we believe that bandwidth related factors need

to be studied as well.

Teyeb et al. [7] study VM placement problem in geograph-

ically distributed data centers with tenants requiring a set

of networking VMs. In their work, an ILP formulation of the

placement problem is provided that takes location and sys-

tem performance constraints into account. In such a place-

ment problem, there is a trade-off between efficiency and

user experience since there may be delay between users and

data centers. The objective is to minimize the traffic gener-

ated by networking VMs circulating on the backbone net-

work. The mentioned work employs the simplified form of

the formulation for Hub Location problem discussed in [8]

to find an optimal placement. Teyeb et al. [7] make some as-

sumptions about the distributed data centers that seem un-

realistic. For example, by assuming that the distributed data

center parts do not send traffic to each other they simplify

the problem.

Similarly, [14] is another work (very closely related to

[7]) that studies VM placement in geographically distributed

data centers. The mentioned work aims to minimize IP-traffic

within a given backbone network by placing VMs in data cen-

ters that are connected over an IP-over-WDM network. Again,

Teyeb et al. [14] make assumptions that simplify the original

problem of placing VMs in geographically distributed data

centers.

2.2. Other VM placement related work

There are some less related works that also focus on net-

work aspects of cloud computing but from different stand-

points such as routing, scalability, connectivity, load balanc-

ing and alike.
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Fig. 2. Non-resource sinks.

Table 1

Sink demands of three VMs.

VM/Sink S1 S2 S3

VM1 0.1 0.2 0.7

VM2 0.5 0.05 0.45

VM3 0.8 0.18 0.02
In [13] the problem of sharing-aware VM maximization in

a general sharing model is studied. The objective is to find a

subset of potential VMs that can be hosted by a server with

a given memory capacity with the goal of maximizing the

total profit. In the mentioned paper, a greedy approximation

algorithm is proposed for solving the problem.

The scalability of data centers has been carefully studied

by X. Meng et al. in their work [22]. They propose a traffic-

aware Virtual Machine placement to improve the network

scalability. Unlike past works, their proposed methods do not

require any alterations in the network architecture and rout-

ing protocols. They suggest that traffic patterns among VMs

can be better matched with the communication distance be-

tween them. They formulate the VM placement as an opti-

mization problem and then prove its hardness. In the men-

tioned work, a two-tier approximate algorithm is proposed

that solves the VM placement problem efficiently.

3. Formal problem definition

We are interested in the problem of finding an optimal

assignment of a set of Virtual Machines (VMs) into a set of

Physical Machines (PMs) (assuming that the number of PMs

is greater than or at least equal to that of VMs) in a special

scenario with the objective of maximizing a metric that we

define as satisfaction. In the following sections, the scenario

of interest, assumptions, the defined metric, and mathemat-

ical description of the problem is provided, respectively.

3.1. The scenario

Heterogeneity of interconnected physical resources in

terms of computational power and/or functionality is not too

unlikely in cloud computing environments [27]. If we refer to

any server (or any connection point) in Data Center Network

(DCN) as a node, assuming that the nodes can have different

importance levels is also a reasonable assumption in some

situations. Note that here, since we are concerned with net-

work constraints and aspects, by importance level we mean

the intensity of traffic that is expected to be destined for a

subject node. In other words, if VMs have a higher tendency

to initiate traffics to be received and processed by a certain

set of nodes (call it S), we say that the nodes belonging to

that set have a higher importance (e.g., the cylinder-shaped

servers shown in Fig. 1). Throughout the paper, those spe-

cial nodes are called sinks. Besides, a sink can be a physical

resource such as a supercomputer or it can be a virtual non-

processing unit such as a connection point.

One can think of a sink as a physical resource (as is the

case of Fig. 1) that other components are heavily depen-

dent on. A powerful supercomputer capable of executing

quadrillions of calculations per second [28] can be consid-

ered a physical resource of high importance from network’s

point of view. Such resources can also be functionally differ-

ent from each other. While a particular server X is meant to

process visual information, server Y might be used as a data

encrypter.

However, in our scenario, a sink is not necessarily a pro-

cessing unit or physical resource. In other words, it can also

be a connection point to other clouds located in different re-

gions meant for variety of purposes including but not limited
to replication (Fig. 2). Suppose that in the mentioned sce-

nario, every VM is somehow dependent on those sinks in that

sense that there exists reciprocally intensive traffic transmis-

sion requirement between any VM-sink pair.

Regardless of the types of the sinks (resource or non-

resource) the overall traffic request destined for them is as-

sumed to be very intense. However, functional differences

might exist between the sinks that can in turn result in a dis-

parity on the VM demands. We assume that any VM has a

specific demand weight for any given sink.

In the subject scenario, the tendency to transmit unidirec-

tional and/or bidirectional massive traffic to sinks is so high

that it is the decisive factor in measuring a VM’s efficiency.

Also Service Level Agreement (SLA) requirements are satis-

fied more suitably if all the VMs have the best possible com-

munication quality (in terms of bandwidth, delay, etc.) with

the sinks commensurating their per sink demands. For ex-

ample, in Table 1 three virtual machines are given associated

with their demands for each sink in the network. An appro-

priate placement must honor the needs of the VMs by plac-

ing any VM as close as possible to the sinks that they tend

to communicate with more intensively (e.g., require a tenser

flow).

3.2. Assumptions

The scenario explained in Section 3.1 is dependent upon

several assumptions that are explained below.

• Negligible Inter-VM Traffic: the core presupposition that

our scenario is based on is assuming that the sinks play

a significant role as virtual or real resources that VMs in

hand attempt to acquire as much as possible. Access to

the resources is limited by the network constraints and
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Fig. 3. Off-line virtual machine placement. Fig. 4. A simple example of placement decision.
from a virtual machine’s point of view, proximity of its

host PM (in terms of cost) to the sinks of its interest mat-

ters the most. Therefore, we implicitly make an assump-

tion on the negligibility of inter-VM dependency meaning

that VMs do not require to exchange very huge amounts

of data between themselves. If we denote the amount of

flow that VM vmi demands for sink sj by D(i, j), and sim-

ilarly denote the amount of flow that VM vmk demands

for another VM vml by D′(k, l), then Relation 1 must hold

where i, j, k, and l are possible values (i.e., i ≤ number of

VMs, and j ≤ number of sinks):

D′(k, l) � D(i, j), ∀i, j, k, l (1)

• Availability of VM Profiles: whether by means of long term

runs or by analyzing the requirements of VMs at the

coding level, we assume that the sink demands of the

VMs based on which the placement algorithms operate

are given. In other words, associated with any VM to

be placed is a vector called demand vector that has as

many entries as the number of sinks.

Suppose that the sinks are numbered and each entry on

any demand vector corresponds to the sink whose num-

ber is equal to the index of the entry. Entries in the de-

mand vectors are the indicators of relative importance

of corresponding sinks. The value of each entry is a real

value in the range [0,1] and the summation of entries in

any demand vector is equal to 1. In addition to demand

vector, we suppose that a priori knowledge about the to-

tal sink flow demand of any VM is also given. Sink flow

demand for a particular VM vmx is defined as the total

amount of flow that vmx will exchange with the sinks

cumulatively.

• Off-line Placement: the placement algorithms that we pro-

pose are off-line meaning that given the information

about the VMs and their requirements, network topology,

physical machines, sinks, and links, the placement hap-

pens all in once as shown in Fig. 3.

• One VM per a PM: we suppose that our proposed algo-

rithms take a group of consolidated VMs as input so that

each PM accommodates only one big VM. Although this

assumption may sound unrealistic, it is always possible
to consolidate several VMs as a single VM [25]. In other

words, by allowing the VM placement to be performed in

two different stages, we can achieve a better result using

machine level placement algorithms (e.g., [9,10,23,24])

alongside network related algorithms that we propose.

In real world scenarios, CPU and memory capacity lim-

its of each host determine the number of VMs that it can

accommodate. Therefore, a different and straightforward

approach is to bundle all VMs that can be placed in a sin-

gle host into one logical VM with accumulated bandwidth

requirements. In both cases we can thus assume without

the loss of generality throughout the paper that each PM

can accommodate a single VM.

3.3. Satisfaction metric

The placement problem in our scenario can be viewed

from two different stakeholders’ perspectives: from a Service

Provider’s standpoint, an appropriate placement is the one

that honors the virtual machines’ demand vectors. Compara-

bly, Infrastructure Provider tries to maximize the locality of

the traffics and minimize the flow collisions. Fortunately, in

our scenario, the desirability of a particular placement from

both IP and SP viewpoints are in accordance: any placement

mechanism that respects the requirements of the VMs (their

sink demands basically), also provides more locality and less

congestion in the IP side.

We define a metric that shows how satisfied a given VM

vmi becomes when it is placed on PM pmj. In our scenario,

satisfaction of a virtual machine depends on the appropri-

ateness of the PM that it is placed on according to its demand

vector. Any PM-sink pair is associated with a cost. Likewise,

there is a demand between any VM-sink pair that shows how

important a given sink for a given VM is. A proper placement

should take into account the proximity of VMs to the sinks

according to their significance. Here, by proximity we mean

the inverse of cost between a PM and a sink: a lower cost

means a higher proximity.

As an example, suppose that we have one VM and two

options to choose from (Fig. 4): pm1 or pm2. In this example,

there are three sinks in the whole network. The VM is given
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Fig. 5. A graph representing a simple data center network without an stan-

dard topology. The nodes named by alphabetic letters are the sinks.
together with its total flow demand and demand vector. The

costs between pm1 and all the other sinks supports the suit-

ability of that PM to accommodate the given VM because

more important sinks have a smaller cost for pm1. Sinks 3,

2 and 1 with corresponding significance values 0.7, 0.25, 0.05

are the most important sinks, respectively. The cost between

pm1 and sink 3 is the least among the three cost values be-

tween that PM and the sinks. The next smallest costs are

coupled with sink 2 and sink 1, respectively. If we compare

those values with the ones between pm2 and the sinks, we

can easily decide that pm1 is more suitable to accommodate

the requested VM. If we sum up the values resulted by di-

viding the value of each sink in the demand vector of a VM

to the cost value associated with that sink in any potential

PM, then we can come up with a numerical value reflecting

the desirability of that PM to accommodate our VM. For now,

let’s denote this value by x(vm, pm) which means the desir-

ability of physical machine pm for virtual machine vm. The

desirability of pm1 and pm2 for the given VM request in our

example can be calculated as follows (Eqs. 2 and 3):

x(vm, pm1) = 0.05

5
+ 0.25

2
+ 0.7

1
= 0.835 (2)

x(vm, pm2) = 0.05

2
+ 0.25

1
+ 0.7

5
= 0.415 (3)

From these calculations, it is clearly understandable that

placing the requested VM on pm1 will satisfy the demands

of that VM in a better manner.

Based on that intuition, given a VM vm with demand

vector V including entries v1, . . . , v|S|, a set of PMs P =
{pm1, . . . , pm|P|}, the set of sinks S = {s1, . . . , s|S|}, a static

cost table D (we also call it function D interchangeably) with

entries D(i, j) = di j indicating the static cost between pmi

and sj, and a dynamic cost function G(pm, s, vm) that returns

the dynamic cost between PM pm and sink s when vm is

placed on pm, we define the satisfaction metric as a func-

tion of demand vector, static and dynamic costs. For now, let’s

suppose that we have a single sink sx, a VM vm and a PM pmy.

The satisfaction of vm when placed on pmy, is inversely pro-

portional to static and dynamic costs between pmy and sx. If

we represent satisfaction of vm on pmy as sat(vm, pmy), then

we have the following (Relation 4):

Sat(vm, pmy) ∝ 1/ f (G(pmy, sx, vm), dyx) (4)

In Relation 4, function f is any linear or nonlinear and non-

decreasing function of G and D. The choice of f is dependent

upon many factors like the sensitivity of a VM’s performance

to static and dynamic costs. Without the loss of generality,

we suppose that f = G.D (it means dynamic cost of a place-

ment multiplied by the corresponding static cost) through-

out the paper. One may define f in different way (e.g., a

linear combination of G and D) but still it should be a func-

tion of G and D that increases by increasing either static or

dynamic costs. f can also be defined separately for different

VMs depending on their applications. If f is properly defined,

the proportionality in Relation 4 can be turned into equality

(Relation 5):

Sat(vm, pmy) = 1/ f (G(pmy, sx, vm), dyx) (5)
More specifically, in this paper, for the provided example, we

define Relation 6:

Sat(vm, pmy) = 1

dyx × G(pmy, sx, vm)
(6)

In a more realistic scenario, we may have more than one

sink. Therefore, the satisfaction of a given VM can be defined

as the weighted average of values returned by the function

in Relation 5 for different sinks. If we define f as f = G.D,

and use the demand vector of each VM for calculating the

weighted average, then the general satisfaction function can

be defined as Relation 7 for a VM vm with demand vector V

that is placed on pmi:

Sat(vm, pmi) =
|S|∑

j=1

v j

di j × G(pmi, s j, vm)
(7)

The details of D table (or function D) and G function in Re-

lation 7 are provided in the next section (Mathematical De-

scription). Note that for the sake of simplicity but without the

loss of generality, we assume that the static costs are as im-

portant as the dynamic costs in our scenario (e.g., according

to the Relation 7, a PM p with static cost cs and dynamic cost

cd associated with a sink s is as desirable as another PM p′
with static cost c′

s = 1
2 .cs and dynamic cost c′

d
= 2.cd associ-

ated with s, for any VM that has an intensive demand for s).

Static and dynamic costs are of different natures and their

combined effect must be calculated by a precisely defined

function (i.e., function f) that depends on the sensitivity of

the VMs to delay, congestion, and so on.

3.4. Mathematical description

The problem in hand can be represented in mathematical

language. First of all, topology of the network is representable

as a graph G(V, E) where V is the set of all resources (including

PMs and sinks) and E is the set of links (associated with some

values such as capacity) between the resources (Fig. 5). In ad-

dition to the topology, we have the following information in

hand.
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Fig. 6. A bipartite graph version of Fig. 5 representing the costs between

PMs and sinks.
• Set N = pm1, pm2, . . . , pmn consisting of physical ma-

chines.

• Set M = vm1, vm2, . . . , vmm consisting of virtual machine

requests.

• Set S = s1, s2, . . . , sz consisting of sinks that are function-

ally not identical.

where Relations 8 and 9 hold:

|N| ≥ |M| (8)

|N| 
 |S| (9)

In addition, any VM request has a sink demand vector and

a total sink flow:

• fi = total sink flow demand of vmi. In other words, it is a

number that specifies the amount of demanded total flow

for vmi that is destined for the sinks.

• Vi = (vi1, vi2, . . . , vi|S|) which is the demand vector for

vmi. In this vector,

vik = the intensity of flow destined for sk initiated from

vmi.

For any demand vector, we have the following relations

(10 and 11):

|S|∑

j=1

vi j = 1, ∀i (10)

0 ≤ vi j ≤ 1, ∀i, j (11)

All of the resources in the graph G can be separated into

two groups, namely, normal physical machines and sinks

(that can be special physical machines or virtual resources

like connection points as explained in Section 3.1). With that

in mind, as illustrated in Fig. 6, we can think of a bipartite

graph Gp = (N ∪ S, Ep) whose:

• Vertices are the union of physical machines and sinks.

• Edges are weighted and represent the costs between any

PM-sink pair.

The cost associated with any PM-sink pair is in direct re-

lationship with static costs such as physical distance (e.g., it
can be the number of hops or any other measure) and dy-

namic costs such as congestion as a result of link capacity

saturation and flow collisions. Note that the use of the word

congestion in our paper is different than its general mean-

ing in Computer Networks jargon, in the sense that it never

happens if the VMs do not initiate flows as much as they re-

ally need to (i.e. they back off if congestion really happens).

Depending on different assignments, the cost value on the

edges connecting the physical machines to the sinks can also

change. For example, according to Figs. 5 and 6, if a new vir-

tual machine is placed on PM #18 that has a very high de-

mand for the sink C, then the cost between PM #23 and the

sink C will also change most likely. Suppose that PM #23 uses

two paths to transmit its traffic to sink C: P1 = {22 − 21 − 18}
and P2 = {22 − 20 − 19} (excluding the source and destina-

tion). Placing a VM with an extremely high demand for sink

C on 18 can cause a bottleneck in the link connecting 18 to

the mentioned sink. As a result, PM #23 may have a higher

cost for sink C afterwards, since the congested link is on P1

which is used by PM #23 to send some of its traffic through.

Accordingly, we define:

• D Matrix: a matrix representing the static costs between

any PM-sink pair which is an equivalent of the example

bipartite graph shown in Fig. 6 in its general case. An en-

try Dij stores the static cost between pmi and sj.

• G Function: for any VM, the desirability of a PM is de-

cided not only according to static but also dynamic costs.

G(pmi, s j, vmk): N × S × M → R+ = congestion function

that returns a positive real number giving a sense of how

much congestion affects the desirability of pmi when vmk

is going to be placed on it, taking into account the past

placements. Congestion happens only when links are not

capable of handling the flow demands perfectly. The G

function returns a number greater than or equal to 1

which shows how well the links between a PM-sink pair

are capable of handling the flow demands of a particular

VM. If the value returned by this function is 1, it means

that the path(s) connecting the given PM-sink pair won’t

suffer from congestion if the given VM is placed on the

corresponding PM. Because the value returned by G is a

cost, a higher number means a worse condition. Implic-

itly, G is also a function of past placements that dictate

how network resources are occupied according to the de-

mands of the VMs. While there is no universal algorithm

for G function as its output is totally dependent on the

underlying routing algorithm that is used, it can be de-

scribed abstractly as shown in Fig. 7. According to that

figure, the G function has four inputs out of which two of

them are related to the assignment that is going to take

place (VM Request and PM-sink pair) and the rest are re-

lated to past assignments and their effects on the network

(the occupation of link capacity and so on).

Based on the underlying routing algorithm used, the in-

ner mechanism of G function can be one of the followings.

• Oblivious routing with single shortest path: for such a

routing scheme, the G function simply finds the most

occupied link and divides the total requested flow

over the capacity of the link (refer to Algorithm 1). If

the value is less than or equal to 1, then it returns 1.
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Fig. 7. The abstract working mechanism of G function.

Algorithm 1 G(pmi, s j, vmk): The congestion function for

oblivious routing with single path.

1: Path ← the path connecting pmi and s j

2: MinLink ← the link in the Path that is occupied the most

3: totReq ← total flow request destined to pass through Min-

Link

4: c ← Total Capacity of MinLink

5: G = totReq
c

6: return max (G, 1)

Fig. 8. A partial graph representing part of a data center network. The col-

ored node represents a sink. Physical machines X and Y use oblivious routing

to transmit traffic to the sink. The thickest edge (1–2) is the shared link. (For

interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Algorithm 2 G(pmi, s j, vmk): The congestion function for

oblivious routing with multiple paths.

1: n ← number of paths connecting pmi to sink j

2: TotG ← 0

3: for all Path between pmi and sink j do

4: MinLink ← the link in the Path that is occupied the

most

5: totReq ← total flow request passing from MinLink

6: c ← Total Capacity of MinLink

7: G = totReq
c

8: TotG ← TotG + G

9: end for

10: return max ( TotG
n , 1)
Otherwise, it returns the value itself. According to

Fig. 8, physical machines X and Y use static paths

(1-2-3 and 1-2-4, respectively) to send their traffic to

the sink. Suppose that among the links connecting X

to the sink, only the link 1–2 is shared with a different

physical machine (Y in that case). Link 1–2 is therefore

the most occupied link and if we call the G function

for a given VM, knowing that another VM is placed on

Y beforehand, according to the demands of the previ-

ously placed VM and the VM that is going to be as-

signed to Y, G will return a value greater than or equal

to 1 showing the capability of the bottleneck link of

handling the total requested flow.

• Oblivious routing with multiple shortest (or acceptable)

paths: if there are more than one static path between

the PM-sink pairs and the load is equally divided be-

tween them, then the G function can be defined in

a similar way with some differences: every path will

have its own bottleneck link and the G function must

return the sum of requested over total capacity of the

bottleneck links in every path divided by the number

of paths (Algorithm 2). Hence, if congestion happens

in a single path, the overall congestion will be wors-

ened less than the single path case. In Fig. 9, two dif-

ferent static paths (1-2-3, 6-7-8-9 for X, and 5-4, 1-7-

8-9 for Y) have been assigned to each of the physical

machines X and Y. The total flow is divided between

those two paths and the congestion that happens in

the links that are colored green, affects only one path

of each PM.
• Dynamic routing: defining a G function for dynamic

routing is more complex and many factors such as

load balancing should be taken into account. However,

the heuristic that we provide for placement is inde-

pendent from the routing protocol. G functions pro-

vided for oblivious routing can be applied to two fa-

mous topologies, namely Tree and VL2 [20].

We are now ready to give a formal definition of the as-

signment problem. The problem can be formalized as a 0–1

programming problem, but before we can advance further,

another matrix must be defined for storing the assignments.

• X matrix: X: M × N → {0, 1} is a two dimensional table

to denote assignments. If xi j = 1 it means that vmi is as-

signed to pmj.

The maximization problem given below (12) is a formal

representation of the problem in hand as an integer (0–1)

programming. Given an assignment matrix X, VM requests,
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Fig. 9. The same partial graph as shown in Fig. 8, this time with a multi-path

oblivious routing. Physical machines X and Y use two different static routes

to transmit traffic to the sink. The thicker edges (7-8, 8-9, and 9-sink) are

the shared links. The paths for X and Y are shown by light (brown) and dark

(black) closed curves, respectively. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this

article.)
topology, PMs, sinks and link related information the chal-

lenge is to fill the entries of the matrix X with 0s and 1s so

that it maximizes the objective function and does not violate

any constraint.

Maximize

|M|∑

i=1

|N|∑

j=1

Sat(vmi, pmj).xi j (12)

Sat(vmi, pmj) =
|S|∑

k=1

vik

d jk × G(pmj, sk, vmi)

Such that

|M|∑

i=1

xi j = 1, for all j = 1, . . . , |N| (1)

|N|∑

j=1

xi j = 1, for all i = 1, . . . , |M| (2)

xi j ∈ {0, 1}, for all possible values of i and j (3)

The constraints (1) and (2) ensure that each VM is as-

signed to exactly one PM and vice versa. Constraint (3) pro-

hibits partial assignments. As explained before, function G

gives a sense of how congestion will affect the cost between

pmj and sk if vmi is about to be assigned to pmj.

We can represent the assignment problem as a bipartite

graph that maps VMs into PMs. The edges connecting VMs

to PMs are associated with weights which are the satisfac-

tion of each VM when assigned to the corresponding PM. The

weights may change as new VMs are placed in the PMs. It
depends on the capacity of the links and amount of flow that

each VM demands. Therefore, the weights on the mentioned

bipartite graph may be dynamic if dynamic costs affect the

decisions. If so, after finalizing an assignment, the weights of

other edges may require alteration. Because congestion is in

direct relationship with number of VMs placed, after any as-

signment we expect a non-decreasing congestion in the net-

work. However, the amount of increase can vary by placing

a given VM in different PMs. According to the capacity of the

links, we expect to encounter two situations.

3.5. First case: no congestion

If the capacity of the links are high enough that no con-

gestion happens in the network, the assignment problem can

be considered as a linear assignment problem which looks

like the following integer linear programming problem [29].

Given two sets, A and T (assignees and tasks), of equal size,

together with a weight function C: A × T → R. Find a bijec-

tion f: A → T such that the cost function �a∈AC(a, f(a)) is

minimized:

Minimize
∑

i∈A

∑

j∈T

C(i, j).xi j (13)

Such that
∑

i∈A

xi j = 1, for i ∈ A

∑

j∈T

xi j = 1, for j ∈ T

xi j ∈ {0, 1}, for all possible values of i and j

In that case, the only factor that affects the satisfaction of

a VM is static cost which is distance. The assignment problem

can be easily solved by the Hungarian Algorithm [29] by con-

verting the maximization problem into a minimization prob-

lem and also defining dummy VMs with total sink flow de-

mand of zero if the number of VMs is less than the number

of PMs.

3.6. Second case: presence of congestion

In that case, the maximization problem is actually non-

linear, because placing a VM is dependent on previous place-

ments. From complexity point of view, this problem is simi-

lar to the Quadratic Assignment Problem [19], which is NP-

hard. In Section 4, greedy and heuristic-based algorithms

have been introduced to find an approximate solution for the

defined problem when dynamic costs such as congestion are

taken into account.

4. Proposed algorithms

In this chapter, we introduce two different approaches,

namely Greedy-based and Heuristic-based, for solving the

problem that is defined in Section 3.

4.1. Polynomial approximation for NP-hard problem

As explained in Section 3, the complexity of the problem

in hand in its most general form is NP-hard. Therefore, there
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Fig. 10. An example of sequential decisions.
is no possible algorithm constrained to both polynomial time

and space boundaries that yields the best result. So, there is

a trade-off between the optimality of the placement result

and time/space complexity of any proposed algorithm for our

problem.

With that in mind, we can think of an algorithm for place-

ment task that makes sequential assignment decisions that

finally lead to an optimal solution (if we model the solver as

a non-deterministic finite state machine). In the scenario of

interest, m virtual machines are required to be assigned to

n physical machines. Since resulted by any assignment deci-

sion there is a dynamic cost that will be applied to a subset of

PM-sink pairs, any decision is capable of affecting the future

assignments. Making the problem even harder is the fact that

even future assignments if not intelligently chosen, can also

disprove the past assignments optimality.

On that account, given a placement problem X =
(M, N, S, T) in which M = the set of VM requests, N = the

set of available PMs, S = the set of sinks, T = topology and

link information of the underlying DCN, we can define a solu-

tion � for the placement problem X as a sequence of assign-

ment decisions: � = (δ1, . . . , δ|M|). Each δ can be considered

as a temporally local decision that maps one VM to one PM.

Let’s assume that the total satisfaction of all the VMs is de-

noted by TotSat(�) for a solution � . A solution �o is said to

be an optimal solution if and only if ��x, suchthatTotSat(�x)

> TotSat(�o). Note that it may not be possible to find �o in

polynomial time and/or space.

Although we don’t expect the outcome (a sequence of

assignment decisions) of any algorithm that works in poly-

nomial time and space to be an optimal placement, it is

still possible to approximate the optimal solution by making

the impact of future assignments less severe by intelligently

choosing which VM to place and where to place it in each

step. In other words, given VM–PM pairs as a bipartite graph

Gvp = (M ∪ N, Evp) in which an edge connecting VM x to PM y

represents the satisfaction of VM x when placed on PM y, any

decision δ depending on the past decisions and the VM to be

assigned, will possibly impact the weights between VM–PM

pairs. The impact of δ can be represented by a matrix such as

I(δ) = (i11, . . . , i1|N|, . . . , i|M||N|). Each entry ixy represents the

effect of decision δ on the satisfaction of VM x when placed

on PM y. At the time that decision δ is made, if some of the

VMs are not assigned yet, the impact of δ may change their

preferences (impact of δ on future decisions). Likewise, given

that before δ, possibly some other decisions such as δ′ have
been already made, the satisfaction of assigned VMs can also

change (impact of δ on past decisions).

Let’s denote a sequence of decisions (δ1, . . . , δr) by a par-

tial solution �r in which r < |M|. At any point, given a partial

solution �r, it is possible to calculate Sat(�r). If we append a

new decision δr+1 to the end of the decision sequence in �r,

we can advance one step further (�r+1) and calculate the sat-

isfaction of the new partial solution. If some of the elements

in I(δr+1) pertain to the already assigned VMs, then the sat-

isfaction of these VMs will be affected. On the other hand, a

new decision assigns a new VM to a new PM and the satisfac-

tion of newly assigned VM must also be considered when cal-

culating the Sat(�r+1). Briefly, if Sat�(δr+1|�r) denotes the

additional satisfaction that decision δr+1 brings, and similarly

SatI(I(δr+1|XGvp
)) denotes the amount of loss of total satisfac-

tion because of decision δr+1 given past assignments of graph

Gvp as matrix XGvp
, then the Relation 14 exists:

Sat(�r+1) = Sat(�r) + Sat�(δr+1|�r) − SatI(I(δr+1)|XGvp
)

(14)

Fig. 10 delineates the decision process for a simple place-

ment problem in which three VMs are supposed to be as-

signed to three PMs. The tables below each bipartite graph

show the total weight of the edges connecting the VMs to the

PMs (satisfaction of the VMs in other words). At the begin-

ning where assignments are yet to be decided (�0 = ∅), the

potential satisfaction of the VMs is at their maximum amount

(i.e., there is no congestion). Since no decision has been made

in �0, we have: Sat(�0) = 0. To make a transition from �0

to �1, decision δ chooses VM #1 and assigns it to PM #1. The

new table below �1 shows that the weight between VM #2

and PM #3 is affected (2.5 → 2.3) meaning that the conges-

tion caused by VM #1 will degrade the potential satisfaction

of VM #2 if it is placed on PM #3. In that level, �1 = (δ1)
and Sat(�1) = 3 since we have only one assigned VM whose

satisfaction is equal to 3. Decision δ2 assigns VM #3 into

PM #2. This time, the potential satisfaction of VM #2 when

placed on PM #3 is again declined (2.3 → 2.1). At that point

Sat(�2) = 3 + 1.9 = 4.9. Finally decision δ3 assigns the only

remaining VM–PM pair (#2 to #3). After the final assignment,

the congestion caused by VM #2 affects the satisfaction of

VMs #1 and #3 meaning that the decision δ3 affects the past

decisions. In other words, SatI(δ3|#1 → #1, #3 → #2) �= 0.

Sat(� ) which is the total satisfaction of final solution �
3 3
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Fig. 11. Impact of assignment on the overall congestion.
can be calculated as follows:

Sat(�3) = Sat(�2) + Sat�(δ3|�2) − SatI(I(δr+1)|#1

→ #1, #3 → #2)

= 4.9 + 2.1 − ((3 − 2.8) + (1.9 − 1.8))

= 6.7

4.2. Greedy approach

As the name suggests, in the Greedy approach we try to

approximate the optimal solution �o for a placement prob-

lem X by making the best temporally local decisions expect-

ing that the aggregated satisfaction of the VMs will be near

to the maximum when all of them are assigned.

Each decision δ, assigns one VM to exactly one PM in a

greedy manner. However, there is more to it than this: when

making a decision, the selection of which VM to be assigned

is also important. In our greedy approach, we sort the VMs

according to their sink demands and then decisions are made

by processing the sorted sequence of the VMs. Therefore, for

any decision δ, selecting the next VM is straightforward. The

sorting can be done according to:

• Total Sink Flow Demand: the VMs are sorted in descending

order according to their total sink flow demands. Then,

the VMs with higher sink flow demands are assigned first

starting from the VM with the highest demand.

• Sink-Specific Flow Demand: the VMs are sorted accord-

ing to their demands for different sinks: a descending or-

dered list of VMs according to their flow demands are cre-

ated for every sink. In that case, the assignment starts by

processing one VM at a time from the lists until no unas-

signed VM remains.

4.2.1. Intuitions behind the approach

The Greedy approach assumes that assigning the VMs

with higher demands prior to the ones with lower demands

alleviates the severity of negative effects that those highly

demanding VMs will induce in the potential satisfaction of

future VMs that wait to be assigned. In other words, if we

try to assign the VMs with more intensive bandwidth/flow

demand first, they will stay as local as possible and have

a more moderate impact of the dynamic costs between the

PMs and the sinks. Fig. 11 demonstrates how assignment of

a particular VM can affect the overall congestion and en-

hance/diminish the performance of other VMs.

In the figure, VM #1 has a higher total sink demand and

also a tendency to transmit most of its traffic to sink #1. If we

let the decider module assign this VM first, then the men-

tioned VM will take the most appropriate PM for itself ac-

cording to its demand. Another possibility is to let the VM #2

be assigned first. In that case, VM #1 will be assigned to a

PM which has a higher static cost associated with the sinks

of its interest. As a result, the overall congestion of the links

will be higher because of less traffic locality. The thicker links

represent a higher congestion. The link embraced by ellipses,

might be required by some other PMs to transmit their traf-

fics to other sinks. Accordingly, a lower overall congestion in

the links can mean a lower dynamic cost for other PM-sink

pairs.
4.2.2. The algorithm

Algorithm 3 shows the steps that are taken in greedy

placement with total sink demand request sorting approach

until all of the VMs are assigned.

Algorithm 3 Greedy Assignment Algorithm 1. Input: a list of

VM requests VMR, DCN network information including link

details, sinks and PMs.

1: X ← the assignment matrix

2: if VMR.length < # of PMs then

3: fill the VMR with dummy VMs

4: end if

5: sort the VMs in VMR according to their total sink de-

mands in descending order

6: while there is VM left in VMS do

7: v ← VMS.removeHead()

8: p ← the PM that offers the highest satisfaction for v
9: Xvp = 1 (update the entry corresponding to v and p in

the assignment table)

10: end while

11: return X

Another version of the greedy approach that sorts the

VMs in different lists is given in Algorithm 4. This algorithm

makes as many sorted list of VMs as the number of sinks.

For a sink s, the sorted list corresponding to s contains the

VMs sorted according to their total demand for sink s. Then,

the algorithm finds the list with a head entry that has the

highest demand, assigns the VM and removes it from any

list. The idea is supported by the same intuition that is ex-

plained in Section 4.2.1 in a more strong way because this

time we compare the VMs competing for common sinks. In

both of the algorithms matrix X represents the assignment

table with entries that can take values 0 or 1. Algorithm 3

takes a list of VM requests as input, adds some dummy re-

quest if required (i.e, if the number of VMs is less than num-

ber of PMs), and sorts the list according to the requests’ to-

tal bandwidth demand. Then, it processes one request at a

time and assigns it to a physical machine (line 8). The algo-

rithm terminates when all of the VMs are assigned. Similarly,

Algorithm 4 takes a list of VM placement requests as its in-

put with the difference that it keeps a list of lists defined in

the line 3 (r[0..z]) of the algorithm to store per-sink sorted
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Algorithm 4 Greedy Assignment Algorithm 2. Input: a list of

VM requests VMR, DCN network information including link

details, sinks and PMs.

1: X ← the assignment matrix

2: z ← # of sinks in the DCN

3: r[0..z] ← an array of z lists of VMs

4: i ← 0

5: if VMR.length < # of PMs then

6: fill the VMR with dummy VMs

7: end if

8: while i ≤ z do

9: r[i]=sorted list [in descending order] of VMs in VMR ac-

cording to their demands for sink i

10: end while

11: while there are all-zero rows in X do

12: max ← 0

13: maxIndex← 0

14: for any VM list L j in r \∗(j=1,…,size(r))∗\ do

15: t ← L j.getHead()
16: if demand of t for sink j > max then

17: max = demand of t for sink j

18: maxIndex = j

19: end if

20: end for

21: v ← r[maxIndex].removeHead()

22: p ← the PM that offers the highest satisfaction for v
23: Xvp = 1 (update the entry corresponding to v and p in

the assignment table)

24: remove v from any list in r

25: end while

26: return X
list of VM placement requests. Similar to Algorithm 3, it adds

some dummy VM placement requests if necessary,and then,

it fills the entries of the list r in lines 8–10 with sorted lists of

per-sink total bandwidth demand. Note that entry i of r rep-

resents the list of VM placement requests sorted according to

their bandwidth demands for sink i. The while loop statement

in line 11 of the Algorithm 4 in each loop selects the VM-sink

pair (v, s) in which v has the maximum demand (call it d)

for s meaning that for any other pair (v′, s′) with demand d′,
we have: d ≥ d′. The algorithm will terminate when all of the

virtual machines are assigned (i.e., no all zeros rows remain

in X) since in each loop a single VM request is processed and

deleted from every list in r (line 24).

4.3. Heuristic-based approach

The greedy approach can be improved by ensuring that

the temporally local decisions do not degrade the potential

satisfaction of the VMs that will be assigned in future by con-

sidering their demand as a whole. In other words, the greedy

approach does not take the demands of the unassigned VMs

into account. Whenever an assignment decision is made, one

VM goes to the group of assigned VMs and the remaining

ones can be considered as another group with holistically de-

fined demands. The core idea in heuristic-based approach is

to make decisions that are best for the VM to be placed and at

the same time the best possible for the remaining VMs. That

is, when finding the most appropriate PM for a given VM, a
punishment cost must be associated with any decision that

tries to assign the VM to a PM that will cause congestion in

the links connected to a highly requested sink. We use two

different methods to measure the effect of a decision on the

holistic satisfaction of the unassigned VMs.

• Mean value VMs: we can calculate the mean value of the

total sink demands and also sink-based demands and

come up with a virtual VM vm that represents a typical

unassigned VM. When making a decision, we can assume

that any remaining PM accommodates a vm and calculate

the effect of assignment on the satisfaction of the virtual

VMs. The more the degradation, the more severe the de-

cision is penalized.

• Greedily assigned unassigned VMs: another way of letting

the unassigned VMs play their role in assignment deci-

sions is to virtually assign them with the greedy approach

and then try to find the PM that maximizes the satis-

faction of the VM to be placed, by taking into account

the punishment cost that the VM receives for degrading

the satisfaction of greedily assigned unassigned VMs. In-

tuitively, this approach has a better potential to reach a

more proper placement at the end. However, the com-

plexity of this method is higher.

4.3.1. Intuitions behind the approach

In many situations especially in data center networks that

are based on a general non-standard topology, the greedy ap-

proach can be improved by selecting among best choices that

will affect the future assignments with the least negative im-

pact. According to Fig. 12, while two possible assignments

maximize the satisfaction of the VM (shown as a triangle),

the unassigned VMs may suffer more if the assignment de-

cision opts to place the VM as shown in the left part of the

figure.

The assignment decision at the left hand side has selected

the PM that maximizes the satisfaction of the given VM using

the greedy algorithm that is provided in the previous section.

Although it seems like the most suitable PM to choose, it will

affect the potential satisfaction of the VMs that will be placed

in the remaining PMs in following decisions. Therefore, it is a

better option to choose a different PM such that while maxi-

mizing the satisfaction of the subject VM, it also imposes the

minimum performance degradation over the remaining VMs.

4.3.2. The algorithm

The Algorithm 5 shows the steps taken by the heuristic-

based approach (with mean value VMs method) in a more

detailed manner. It first starts by sorting the VMs according

to one of the methods described in the greedy approach sec-

tion. Afterwards, the VMs are processed one by one until no

unassigned VM remains. Each time the remaining VMs are

virtually assigned to the free PMs when evaluating the de-

sirability of a particular PM for the given subject VM. Virtual

assignment of the VMs can be done using one of the methods

that have been discussed in this section (Mean value VMs or

Greedily assigned unassigned VMs). Lines 1–21 are the same

in Algorithms 5 and 4. In line 22 of the Algorithm 5, a virtual

average VM request is calculated according to the demands of

the remaining virtual machines and is stored in the variable

vm. A copy of the virtual VM request vm is then placed in
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Fig. 12. Impact of an assignment decision on unassigned VMs.

Algorithm 5 Heuristic-based Assignment Algorithm. Input: a

list of VM requests VMR, DCN network information including

link details, sinks and PMs.

1: X ← the assignment matrix

2: z ← # of sinks in the DCN

3: r[0..z] ← an array of z lists of VMs

4: i ← 0

5: if VMR.length < # of PMs then

6: fill the VMR with dummy VMs

7: end if

8: while i ≤ z do

9: r[i] = sorted list of VMs in VMR according to their de-

mands for sink i

10: end while

11: while there are all-zero rows in X do

12: max ← 0

13: maxIndex← 0

14: for any VM list L j in r \∗(j=1,…,size(r))∗\ do

15: t ← L j.getHead()
16: if demand of t for sink j > max then

17: max = demand of t for sink j

18: maxIndex = j

19: end if

20: end for

21: v ← r[maxIndex].removeHead()

22: vm ← a virtual VM that is resulted by taking the mean

value of total sink demands and sink-specific demands

of all the remaining VMs

23: virtually place vm copies in all the remaining PMs

24: p ← the PM that offers the highest satisfaction for v
without vm

25: release the virtually assigned vm(s)

26: Xvp = 1 (update the entry corresponding to v and p in

the assignment table)

27: remove v from any list in r

28: end while

29: return X
every remaining PM. The PM that offers the best satisfaction

without considering the vm assigned to it is selected. Then, in

line 25 of the algorithm, the vm instances are released from

the PMs to prepare the variables for the next loop. Finally, the

assignment decision is recorded in the assignment matrix X

and the current VM request is removed from any list in r. The

loop continues until no unassigned VM remains and eventu-

ally it terminates.

4.4. Worst case complexity

The worst case time complexity analysis of the introduced

algorithms are discussed in this section. Our algorithms in-

clude some operations that are either preprocessing or have

a constant time complexity. To begin with, the shortest paths

between any PM-sink pair can be found using famous meth-

ods like Floyd-Warshall algorithm which is of �(n3) if n is

the number of all nodes in the network graph. Besides, each

time that the algorithm attempts to find the most appropri-

ate PM, it calls the G function as many times as the number of

sinks (which is strictly smaller than n). The G function needs

to calculate the maximum possible flow capacity between

two nodes. Even this operation can be considered of constant

time because it examines only a subset of the edges that are

less than a constant (e.g. if the oblivious routing is used, the

number of checked links is less than or equal to the diame-

ter of the network). Accordingly, the time complexity of the

two approaches and their two variants can be formulated as

follows:

• Greedy Algorithm (first variant): if m denotes the number

of VMs to be placed, then processing time for sorting the

VMs according to their total sink demands is O(mlog m).

The algorithm takes one VM at a time from the sorted list

and finds the most appropriate PM. If the number of the

PMs is n, since the number of VMs is less than or equal to

the number of PMs, we can conclude that the asymptotic

time complexity of the algorithm is of O(n2).
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Fig. 13. A comparison of assignment methods in a data center with tree topology having 25 normal PMs and 5 sinks.

Fig. 14. A comparison of assignment methods in a data center with VL2 topology (DA = 4, DI = 10) having 185 normal PMs and 15 sinks.
• Greedy Algorithm (second variant): if m denotes the num-

ber of VMs to be placed, then processing time for sorting

the VMs z times according to their total sink demands is

O(zmlog m) where z is the number of sinks. The rest of the

algorithm is the same as the first variant meaning that the

asymptotic time complexity is of O(n2).

• Heuristic-Based Algorithm (first variant): if m denotes the

number of VMs to be placed, then processing time for

sorting the VMs according to their total sink demands

is O(mlog m). The algorithm processes every VM only

once and each time calculates a mean VM that is the

average VM of remaining VM requests. It means that it

does O(n) operations each time it tries to assign a VM.

Then, it places each copy of the average VM on the re-

maining machines which is of time complexity O(n). Put

together, the asymptotic complexity of this algorithm

is O(n2).
• Heuristic-Based Algorithm (second variant): if m denotes

the number of VMs to be placed, then processing time for

sorting the VMs according to their total sink demands is

O(mlog m). The algorithm processes every VM only once

and each time assigns the remaining VMs virtually. The

placement of the remaining VMs is of O(n2) time com-

plexity. Therefore, the asymptotic time complexity of the

algorithm is of O(n4) as it processes every VM only once,

tries to find the most suitable PM for the VM being pro-

cessed, while placing the remaining VMs virtually using

the greedy algorithm in each trial.

5. Simulation experiment

We tested the effectiveness of our proposed approaches

discussed in Section 4 using extensive simulation ex-

periments. In this chapter, we report and discuss the
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Fig. 15. A comparison of assignment methods in a data center with VL2 topology (DA = 4, DI = 50) having 990 normal PMs and 10 sinks.

Fig. 16. A comparison of assignment methods in a data center with VL2 topology (DA = 8, DI = 50) having 1985 normal PMs and 15 sinks.
results of these experiments. To do simulations, we de-

veloped a customized simulator using Java by utilizing

the JUNG open source library [30] to model and analyze

graphs. We model the physical DCN infrastructure using

graphs.

In the following sections, our Greedy and Heuristic-based

assignment algorithms (their first variant) are compared

against random and brute-force assignments (for small prob-

lem sizes). Brute-force assignment enumerates all possible

assignments and selects the best one and as a result, it finds

the optimal solution. It is, however, computationally expen-

sive and is applied only for small-size networks. To the best

of our knowledge, there are no past works that propose ef-

ficient algorithms for solving the placement problem in the

scenario of interest. Therefore, we compare our algorithms

against random and brute-force (for small instances of the

problem) placements.
In Sections 5.1, 5.2 and 5.3, we provide a comparison

of various assignment approaches for various problem sizes

and topologies, demand distributions, and algorithm variants

used, respectively. In Section 5.4, we show the correlation

between total satisfaction and the overall congestion in the

network.

5.1. Comparison based on problem sizes and topologies

In this section, we compare the behavior of the proposed

algorithms in different problem sizes and topologies. To be-

gin with, we test the algorithms on a very basic and simple

data center with tree topology consisting of 25 physical ma-

chines and 5 sinks. The height of the tree is 2 and the links

have a capacity of 1 Gbps as in [26]. While real and mod-

ern data centers do not usually use the simple tree structure,

we use this test case as an example only. Fig. 13 shows the
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Fig. 17. A comparison of assignment methods in a data center with general topology having 990 normal PMs and 10 sinks.

Fig. 18. A comparison of assignment methods in a data center with general topology having 1985 normal PMs and 15 sinks.
relative satisfaction of 25 VMs when placed on 25 physical

machines using four different methods. While other place-

ment methods yield a higher satisfaction for some machines,

the overall satisfaction is obviously the highest using brute-

force placement method. Similarly, the average satisfaction

of the VMs are shown in Fig. 19a which clearly indicates

that among three assignment methods (random, greedy, and

heuristic-based) heuristic-based algorithm yields the closest

result to the most optimal assignment attained by using the

brute-force method. The Greedy algorithm also yields an ap-

proximated optimal assignment though it is slightly (about

4% in terms of average satisfaction achieved) less optimal than

that of the heuristic-based algorithm.

The other topologies that we test our algorithms on, in-

clude VL2 [20] and non-structured topology. Different prob-

lem sizes (200-1000-2000) with various numbers of sinks
(15-10-15, respectively) are used when comparing our meth-

ods in those two topologies. We chose the same links capac-

ities as in [20] (10 Gbps) for both of the cases. The capacity

of the leave links (connecting ToRs to PMs) are set to 1 Gbps

in VL2 test cases. Figs. 14–16 illustrate the amount of satisfac-

tion that any given VM experiences using different methods

when placed on physical machines interconnected in a VL2-

based infrastructure. The comparison between the average

satisfaction of the VMs is provided in Fig. 19b–d.

We also performed similar experiments by applying our

algorithms into two placement problems in which physi-

cal machines are interconnected without a standard topol-

ogy. Figs. 17 and 18 demonstrate the experiment results in a

DCN with general topology consisting of 990 and 1985 non-

sink with 10 and 15 sink physical machines, respectively. Ac-

cording to the corresponding average satisfaction bar graph
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Fig. 19. A comparison between different assignment methods based on average satisfaction achieved.
depicted in Fig. 19e and f it can be understood that there

is a more significant improvement when heuristic-based al-

gorithm is applied to a problem whose underlying network

topology is of general type (i.e., not Tree or Fat-tree based

topology).
A comparison between the overall average satisfaction of

the VMs in two different topologies with the same number of

physical machines and sinks can also reveal an interesting re-

lationship between the underlying topology and the amount

of average satisfaction achieved. According to Fig. 19c–f, when
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Fig. 20. Sink demand distribution effect on the effectiveness of the

algorithms.

Fig. 21. A comparison between the two variants of greedy and heuristic-

based algorithms when applied to the same placement problem.

Fig. 22. The relationship between congestion and satisfaction.
the machines are interconnected with a structureless topol-

ogy, the VMs will be serviced with a higher satisfaction level.

The less amount of overall satisfaction in DCNs with tree-

based topologies can be justified by the symmetry that ex-

ists in such topologies. If a sink is located in one branch of

the tree, the congestion will be inevitable after the PMs in

the vicinity of the sink (in the same branch) are occupied,

especially if the remaining VMs still have a high level of de-

mand for that particular sink. Now, compare to the flexibil-

ity of VM placement in DCNs with structureless topologies

where there are usually multiple links to the sinks that gives

more space for optimization.

5.2. Comparison based on demand distribution

The statistical distribution of the sink demands might af-

fect the behavior of the assignment approaches used. In this

section, we compare the outcomes of the algorithms in two

different situations: (1) VMs with uniformly distributed to-

tal demands between 0.2 and 1 Gbps, (2) VMs with total de-

mands having normal distribution with μ = 0.6 and σ = 0.1.

To that end, we compare the random, greedy and heuristic-

based algorithms when applied to two identical DCNs (the

general topology DCN with 990 PMs and 10 sinks) with the

difference in the distribution of total sink demands in VM re-

quests. Fig. 20 shows the differences between the effective-

ness of greedy and heuristic-based algorithms in two differ-

ent situations. According to that figure, it can be concluded

that when the VM demands have a more diverse distribu-

tion, it makes more sense to use the proposed algorithms. In

Uniform Distribution case, the chances of having VMs from a

wide spectrum are high, while in Normal Distribution case,

the majority of the VMs have much closer demands. The

closeness of the demands makes the sorting less effective es-

pecially in the first variant of the greedy algorithm. As a re-

sult, the mean satisfaction of our placement algorithms can

be closer to that of random placement.

5.3. Comparison between variants of Greedy and

Heuristic-based approaches

As discussed in Sections 4.2 and 4.3, there are two vari-

ants of each algorithm that might have considerable excel-

lence over each other given different topologies and distri-

butions. In this section, we compare the optimality of the

assignments resulted by two different variants of each algo-

rithm. We applied both variants of the two approaches to the

general topology DCN with 1985 non-sink PMs and 15 sink

PMs. Fig. 21 illustrates the effectiveness of the two methods

used for the same DCN with identical VM requests. It can be

concluded from the figure that the second variants of both of

the algorithms outperform the first variant to some extent.

However, there is a trade-off between precision and the com-

plexity of the algorithm.

5.4. Satisfaction vs. congestion

In our simulation experiments, we also compare the

overall congestion against total satisfaction. As discussed in

Section 5.1, we did an experiment with a DCN whose PMs
are interconnected like vertices in a general graph (e.g. con-

sider the graph shown in Fig. 5). For the experiment with

1985 non-sink PMs we compare the results shown in Fig. 19f

with the number of links that are able to simultaneously tol-

erate less than 50% of the traffic demands that are supposed

to be transmitted through them according to the routing al-

gorithm used which is multi-path oblivious routing in our

experiment.

As shown in Fig. 22, with random assignment deployed,

almost 36% of the links connecting the DCN components to

each other will experience a congestion level such that less

than 50% of the flows that are supposed to pass through

each of those links will be transmittable. Now, compare

this percentage (36%) to 23% and 17% that are similar re-

sults when greedy and heuristic-based approaches are de-

ployed, respectively. Based on those results, it can be con-

cluded that when our algorithms are deployed, the links will

be shared with less intense flows compared to the random

assignment.
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6. Conclusion and future work

In this work, we present greedy and heuristic-based al-

gorithms for assigning a set of Virtual Machines (VMs) to

a set of Physical Machines (PMs) in a specific scenario of

Cloud Computing with the objective of maximizing a metric

which is also defined in this work. In the scenario of inter-

est, VMs are intensively inclined to exchanging traffic with

special fixed nodes (called sinks) in the data center network

while the inter-VM traffic is negligible. Therefore, the abil-

ity of the Infrastructure Provider (IP) to meet the scenario-

specific demands of the VMs in the best possible way, is a

decisive factor in the performance of the VMs. We introduce

a metric named satisfaction that reflects the relational suit-

ability of a PM for any VM assigned to it. Intuitively, this met-

ric is also correlated to the overall congestion in the entire

network. The problem of maximizing the mentioned metric

by trying to find the most appropriate assignment is simi-

lar to the Quadratic Assignment problem when congestion is

taken into account. Therefore, it is NP-hard and there is no

polynomial time algorithm that yields an optimal solution.

With that in mind, we introduce several heuristic-based off-

line algorithms that yield nearly optimal solutions in general

case and for large problem sizes. The placement algorithms

assume that the communication pattern and flow demand

profiles of the VMs are given.

We compare the performance of the introduced algo-

rithms by simulation experiments and according to the re-

sults, our algorithms are significantly more effective (the dif-

ference depends on the network topology, distribution of

demands, etc.) when compared to random assignment. We

also, compare the algorithms by applying them into a vari-

ety of problem sizes and observe a consistency in the good

performance of their outcome. Each approach (greedy and

heuristic-based) consists of two variants that are also com-

pared to each other in our simulations. Moreover, the exper-

iments also reveal that the overall data center network con-

gestion and total satisfaction are correlated.

Future directions for our work may include studying simi-

lar scenarios with different limitations and assumptions, and

applying relevant concepts for modeling the problem.

• One important limitation is often imposed not only by the

network but also by the sinks (e.g., because of having lim-

ited resources) especially when they are processing units

and physical machines. In future works, this sort of as-

sumptions can be also taken into account when designing

algorithms.

• The algorithms designed for the scenario that we study,

assume the availability of a priori information about the

demands of the all VMs which is an unrealistic assump-

tion in some situations. Therefore, proposing a similar

variant of the algorithms that are designed for on-line

purposes can be another candidate for future work.

• A comparatively novel concept in Game Theory named

Graphical Congestion Games [31,32] has drawn consid-

erable attention in recent years because of its ability to

model problems that consist of rivaling components that

try to select the best strategy that maximizes their own

interests while having a negative impact on the other

components depending on their local distance. In other
words, two components may be using the same resource

while having no effect on each other because of the long

distance between them. Although the concept has been

applied to problems such as Wireless Spectrum Sharing

as in [33], it also suits our problem because in our sce-

nario a decision’s impact is capable of affecting only a

subset of the components (VMs) depending on their lo-

cation (the PM that they are placed on).
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