
J Supercomput (2015) 71:995–1017
DOI 10.1007/s11227-014-1348-x

Application mapping algorithms for mesh-based
network-on-chip architectures

Suleyman Tosun · Ozcan Ozturk ·
Erencan Ozkan · Meltem Ozen

Published online: 22 November 2014
© Springer Science+Business Media New York 2014

Abstract Due to shrinking technology sizes, more and more processing elements and
memory blocks are being integrated on a single die. However, traditional communi-
cation infrastructures (e.g., bus or point-to-point) cannot handle the synchronization
problems of these large systems. Using network-on-chip (NoC) is a step towards solv-
ing this communication problem. Energy- and communication-efficient application
mapping is a previously studied problem for mesh-based NoC architectures; however,
there is still need for intelligent mapping algorithms since current algorithms either
take too much running time or do not determine accurate results. To fill this need, in
this study, we propose two mapping algorithms (one based on simulated annealing
and one based on genetic algorithm) for energy- and communication-aware mapping
problems of mesh-based NoC architectures. We compare these two algorithms with
an integer linear programming-based method and a heuristic method using several
multimedia and synthetic benchmarks.

Keywords NoC · Mesh topology · Mapping · Genetic algorithm ·
Simulated annealing · Integer linear programming · Heuristics

S. Tosun (B)
Computer Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey
e-mail: stosun@hacettepe.edu.tr; stosun@gmail.com

O. Ozturk
Computer Engineering Department, Bilkent University, Bilkent, Ankara, Turkey
e-mail: ozturk@cs.bilkent.edu.tr

E. Ozkan, M. Ozen
Computer Engineering Department, Ankara University, Golbasi, Ankara, Turkey
e-mail: erencanozkan@gmail.com

M. Ozen
e-mail: meltemmozen@gmail.com

123

996 S. Tosun et al.

1 Introduction

Network-on-chip (NoC) has become the central communication paradigm for system-
on-chip (SoC) designs after it was introduced over a decade ago [1,2]. This method
provides a suitable and economical solution to integrate complex systems on a single
chip for shrinking very-large-scale integration (VLSI) technology sizes and make it
possible to synchronize these large numbers of components [3,4]. There have been
some earlier work that benefit such a scalable network topology and various scalable
applications as well [5–8]. NoC architectures consist of several interconnected hetero-
geneous blocks called intellectual property (IP) blocks ranging from general or special-
purpose processors to embedded memories, digital signal processors (DSPs), applica-
tion specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), etc.
Communication among these IP blocks is carried out by sending packets via network
components (e.g., network adapters, routing nodes, and links). Although NoC designs
ease the communication of IP blocks and increase the system throughput tremendously,
designing the overall system includes several trade-offs in topology selection, routing
strategy selection, application mapping, and scheduling on network tiles. Each of these
steps has an effect on the overall energy consumption, one of the important criteria in
system design. NoC architectures can be constructed using regular topologies or irreg-
ular (custom) topologies. Both topology types exhibit advantages and disadvantages:
Irregular topologies suit the optimization of different requirements such as link size
and number of routers to be used; however, they are not reusable. On the other hand,
regular topologies can be reused and are easy to design. Most multi-core architectures
employ regular topologies, especially mesh topology.

Energy-aware application mapping is a relevant problem for mesh-based NoC
designs. For an application with n tasks, we can produce n! solutions. This huge solu-
tion space makes exhaustive search algorithms infeasible for large problems. Nonethe-
less, several optimization techniques have been developed to improve design parameter
values of the stated problems. For example, in our previous study, we presented an
integer linear programming (ILP)-based method that obtains optimal mappings [9].
However, ILP-based method takes too much CPU runtime when the input size n is
high. To remedy this runtime problem, we previously proposed a heuristic method
called CastNet [10]. The problem with the heuristic method is that it does not guaran-
tee the optimal solutions. In fact, it may obtain unacceptable solutions that are too far
from the optimal one since heuristic methods may get stuck at local minima.

Our ILP- and heuristic-based methods are two far ends to the stated problem when
the concern is accuracy and CPU runtime together. Motivated by this observation,
we developed two metaheuristic methods that take less computation time and do not
stuck at local minima. In this paper, we propose these two optimization techniques for
energy-aware application mapping for NoCs; one technique is based on a genetic algo-
rithm (GA) and the other uses simulated annealing (SA). We extensively compare and
contrast these algorithms through several multimedia benchmarks with our ILP-based
and heuristic methods. We also evaluate these algorithms with synthetic benchmarks
through randomly generated task graphs. We show that our GA- and SA-based meth-
ods generate very promising results in execution time and energy consumption.

123

Application mapping algorithms 997

The paper is organized as follows: We present related work in Sect. 2. We present
the problem definition and the energy model in Sect. 3. In Sect. 4, we explain the
mapping algorithms. We give the experimental results in Sect. 5. Finally, we conclude
the paper in Sect. 6.

2 Related work

While several studies have explored better solutions to the mapping problem from dif-
ferent angles, in this paper, our focus is on algorithms that target energy minimization.

Murali and De Micheli [11] proposed a heuristic algorithm called NMAP, which
maps the given application onto a 2D mesh under bandwidth constraints targeted to
minimize the energy consumption of the final design. In their algorithm, they initially
map the tasks based on their communication weights. They then calculate the commu-
nication cost of this mapping using Dijkstra’s shortest-path algorithm. Finally, they
refine the mapping by iteratively improving it by swapping the pairs of nodes.

Another heuristic method (called ONYX) is presented in [12]. In this algorithm,
the authors propose a method that selects the tasks to be mapped based on the assigned
priority. Then the algorithm maps the selected task by searching the candidate tiles on
a lozenge-shaped path. This is extended in CastNet [10] using the symmetry of the
mesh topologies to select the initial tiles. We used CastNet in our evaluation as the
heuristic method.

In [13], the authors proposed a binomial IP mapping technique, called BMAP. This
algorithm first maps the given algorithm on a 1D mesh. Then, it iteratively applies
a binomial merge, which is a simple tree merging problem, until the target mesh
topology is achieved.

Hu and Marculescu [14] proposed an energy-aware mapping algorithm based on
branch-and-bound method. This algorithm walks through the searching tree that rep-
resents the solution space. The authors compare their algorithms with a SA-based
method and show up to 51.7 % energy savings.

Genetic algorithm and simulated annealing are commonly used metaheuristics for
NP-hard optimization problems. For example, SA has been used for cluster-based
mapping cores onto 2D mesh NoCs [15]. GA has also been used for the mapping
problem aiming different objective criteria [16–21]. In [16], the authors proposed
a chaos-genetic algorithm to minimize energy consumption of the design; however,
the algorithm does not bring much improvement over earlier ones. Ascia et al. [17]
proposed a GA-based method that maps the application onto the mesh to optimize
multi-objective functions. Hung et al. [18] also proposed a GA-based method to reduce
the communication cost of thermal balanced designs.

While we aim to map the given application on a given environment to minimize
the energy consumption in this study, there have been prior efforts [19–21] that apply
multi-objective evolutionary optimization algorithms aiming to minimize the chip
area, the power consumption, and the execution time of the application. Since the
mapping platform of our work is different than these studies and we do not consider the
area constraints of the design, we did not compare our GA- and SA-based algorithms

123

998 S. Tosun et al.

with them. The reason we did not consider area constraint is that the chips of the
current technology are abundant of transistors.

There have been ILP-based methods for the solution of mapping problems. Srini-
vasan and Chatha [22] presented an ILP formulation for mapping tasks to mesh archi-
tectures, comparing it with [11], and developed a better design. In our earlier work,
we also formulated the mapping problem and used the 0–1 ILP for our formulations
[9,23], in which variables are restricted to being either 0 or 1. In this paper, we restate
the formulations to make this paper self-contained. ILP seems the best option for lin-
ear optimization problems if the number of variables is limited; however, when it is
applied to the problems with huge number of variables, it takes too much computation
time to obtain optimal solutions.

There is a similar comparison work presented in an earlier study [24]. Our work
differs from this study in three aspects. First, we propose our own methods for each
optimization technique. Second, we use a different heuristic algorithm, CastNet [10],
to compare with other optimization methods. Finally, we compare our methods using
real benchmarks rather than only on random graphs.

3 Problem definition and energy model

In this section, we define the application mapping problem, illustrate the input appli-
cation, and describe the target architecture.

3.1 Energy model

In this study, our goal is not to minimize the energy consumed by the functional blocks
because that is independent of the generated topology; rather, we try to minimize the
energy consumed by the network resources. The energy consumption of the network
is directly proportional to the amount of bit transitions on the network. To estimate the
energy consumption of the NoC architecture, we should use an energy model based
on the total bit transitions. This work uses the well-accepted energy model given in
[14] to calculate the total communication energy ETbit as

ETbit = ESbit + EBbit + EWbit + ELbit , (1)

where ESbit , EBbit , EWbit , and ELbit represent the energy consumed by the switch, the
buffer, interconnection wires inside the fabric, and the links, respectively. Since the
energy consumption of the buffering EBbit and the internal wires EWbit are negligible
[14], Eq. (1) can be reduced to:

ETbit = ESbit + ELbit . (2)

Then, the average energy consumption of sending one bit of data from core vi to
core v j can be calculated by the formula:

E
vi ,v j
Tbit

= ηvi ,v j ESbit + (ηvi ,v j − 1)ELbit , (3)

123

Application mapping algorithms 999

where ηvi ,v j is the number of routers the bit passes through. If a bit passes through
η routers, clearly, it also passes through η − 1 links. Let va and vb be the vertices
mapped onto the tiles ti and t j , respectively. Communication between two tiles with
a communication weight wa,b can be calculated by (4) as

E
ti, j
total = wa,b Eva ,vb

Tbit
. (4)

Finally, we can determine the total energy consumption of the NoC architecture as
follows:

ENoC =
∑

∀ei, j ∈E

E
ti, j
total. (5)

3.2 Problem definition

We use the well-accepted abstract graph models, which we call the weighted com-
munication task graph (WCTG) and the topology graph (TG), to represent the input
application and target architecture, respectively. We define WCTG and TG as follows:

Definition 1 A WCTG is a graph G(V, E) where each vertex vi ∈ V represents a
task (i.e., a node) in the application and each edge ei, j ∈ E represents a dependency
between two tasks vi and v j . The amount of data transferred between vi and v j is
represented by the weight wi, j for each ei, j in bits per second.

Definition 2 A TG is a graph (P, L), where each vertex pi ∈ P denotes a processing
core (i.e., a tile) in the topology and each edge denotes a physical link li, j ∈ L between
pi and p j .

Figure 1a shows the WCTG of the MPEG-4 benchmark. In this WCTG, we have
12 vertices and 13 edges, where the weights of the edges represent the amount of
data transferred between two tasks in Kbits/s. An example TG with 16 cores (i.e., a
4×4 mesh) is given in Fig. 1b, where mapping MPEG-4 nodes onto a 4×4 mesh NoC
architecture is shown.

Using the above definitions, the application mapping problem can be formulated
as follows:

Given a WCTG and a TG those satisfy

|V | ≤ |P|, (6)

find a one-to-one mapping function F : V → P from WCTG to TG that minimizes
the energy consumption of the NoC.

We can state the mapping problem mathematically as:

min : {ENoC } (7)

such that:
∀vi ∈ V, ∃pk ∈ P, F(vi) = pk (8)

123

1000 S. Tosun et al.

(a) (b)

Fig. 1 a WCTG of MPEG-4 and b mapping MPEG-4 onto 4×4 mesh NoC

and
∀vi �= v j ∈ V, F(vi) �= F(v j). (9)

3.3 Routing scheme

The routing algorithm is an important factor in NoC designs because it establishes
the path of the messages between cores. The routing algorithms for NoCs must be
deadlock free (i.e., it must be guaranteed that packets will not block the network)
to meet their predefined performance constraints. We can group routing algorithms,
based on their path decision function, as deterministic or adaptive.

Deterministic routing algorithms always supply the same path between source and
destination nodes. A well-known example of a dimension-order deterministic algo-
rithm for 2D mesh networks is XY routing [25]. In mesh topologies, routers are iden-
tified by their coordinates (x, y). If a packet traveling from the current router C(x, y)

to the destination router D(x, y), it is first routed horizontally (i.e., in x dimension)
to east or west neighboring router until x coordinate of the packet’s current router is
aligned with destination router’s x coordinate. The packet is then forwarded vertically
(i.e., in y dimension) to south or north neighboring router after comparing y coordi-
nates of current and destination routers until the packet arrives to its destination. The
advantages of deterministic routing algorithms are twofold: Low implementation cost
and traffic predictability. Routers used for deterministic routing algorithms require
fewer resources than ones for adaptive algorithms. Additionally, deterministic rout-
ing algorithms offer a predictable traffic pattern, which makes it easier for a designer
to analyze the network. On the other hand, adaptive routing algorithms have better
resilience to deadlocks. They can be used in high-traffic networks with high traffic and
in networks with limited bandwidth.

In this study, since we do not consider link bandwidth constraints in the mapping
step, we use an XY routing algorithm to decrease the energy consumption of the final
design. However, one could use an adaptive or partially adaptive routing algorithm
to prevent deadlocks in the network. Since we compare mapping algorithms in this

123

Application mapping algorithms 1001

study, we do not further elaborate on the details of the candidate routing mechanism;
we simply use XY routing algorithms for all five mapping methods.

4 Mapping algorithms

In this section, we explain five mapping methods that use different optimization tech-
niques with different runtime complexities. These methods are based on random, SA,
GA, ILP, and heuristic optimization techniques.

4.1 Random mapping

In this method, we randomly map tasks onto cores of the mesh. We produce 1,000
solutions and select the one with the best energy savings. As one can see, there is no
intelligent optimization technique in this method except to choose the better of two
candidates. Additionally, each run may output different solutions. We implemented
this method for comparison purposes.

4.2 SA-based method

Simulated annealing is a probabilistic method for finding the global optimum of a cost
function [26]. It is modeled on the behavior of condensed matter at low temperatures.
The annealing process starts with an initial configuration and continuously reduces the
temperature of the system in search for a better configuration. If the process obtains a
better energy values in a configuration, it directly accepts this configuration. Otherwise,
it accepts the new solution based on acceptance probability function. In this way, it
makes uphill moves from a local minimum in an attempt to jump to a valley where
the global minimum might reside.

Simulated annealing is a good choice to solve the mapping problem stated in this
work. We give the pseudocode of an SA-based application mapping algorithm in
Algorithm 1, where we randomly map tasks onto the mesh (line 2) to obtain an initial
mapping. We then calculate the total communication cost of the initial mapping using
Eq. (10). One can see that we use the total communication cost of the design instead
of the total energy consumption in the equation, even though our final goal is to
minimize the energy consumption. This is because, as we stated in Sect. 3.1, the energy
consumption of a NoC system is proportional to the amount of bit transitions in the
network. Therefore, when we minimize the total bit transitions (i.e., the communication
cost) of the system, the system’s total energy consumption is proportionally minimized.

Comm =
∑

∀ei, j ∈E

(η f (vi), f (v j) − 1)wi, j (10)

After the initial mapping is determined, we set temperature to its highest value.
Temperature parameter in our mapping problem is analogous to Manhatten distance
between two nodes on the mesh. If the distance between two exchange nodes is high,
the temperature is high and vice versa. A previous study [24] states that the algorithm

123

1002 S. Tosun et al.

Algorithm 1: SA-based mapping
Data: G, M
Result: T, ENoC , Comm

1 begin
2 T = Random_I ni tial_Mapping(G, M)

3 C = Calculate_Comm(T)

4 Tbest = T
5 Cbest = C
6 T emperature = �10 ln |P|	
7 for i → 0 to |P|2 do
8 R = 0
9 while R < 10 do

10 T ′ = neighbor(T)

11 C ′ = Calculate_Comm(T ′)
12 �C = C − C ′
13 Generate a random variable α, 0 ≤ α ≤ 1

14 if �C ≤ 0 or α ≤ e(−�C)/T emperature then
15 T = T ′
16 R = 0
17 else
18 R + +
19 if R = 0 ∧ C < Cbest then
20 Tbest = T
21 Cbest = C

22 Decrement T emperature

23 T = Tbest
24 ENoC = Calculate_Energy(T)

25 Comm = Cbest
26 return T , ENoC , and Comm

obtains good results when the initial temperature is selected to be �10 ln |P|	, where
|P| is the number of tiles in the mesh.

After the temperature of the system is initialized, the algorithm executes two nested
loops. While the external loop searches for global minima, the internal loop tries to
refine the local solution. We limit the number of external loop iterations to |P|2 as
suggested in [24]. The internal loop randomly selects two nodes and swaps them
to determine a new solution. It then evaluates if the new solution is better than the
solution at hand. If it is, the solution is accepted to be the current solution. Otherwise, it
generates a random variable α, where 0 ≤ α ≤ 1, and compares it with the acceptance
probability function e(−�C)/temperature. If the result of the function is higher than α, the
new move is accepted. At high temperatures, the acceptance probability is also high.
When we lower the temperature of the system, the acceptance probability decreases.
We limit the iteration of the internal loop to 10 consecutive rejects. After each iteration,
we decrement temperature of the system and start a new iteration accepting the solution
at hand as our initial solution for the new iteration.

In Fig. 2, we illustrate an example iteration of our SA-based mapping algorithm.
Figure 2a shows an example WCTG. Figure 2b and c shows two mappings (before and

123

Application mapping algorithms 1003

(a) (b) (c)

Fig. 2 An example iteration for SA-based method. a An example WCTG, b mapping before node swapping,
c mapping after swapping two nodes

Fig. 3 An example iteration for accepted moves of SA-based algorithm

after swapping nodes v2 and v7, respectively). The communication cost of mapping
before the swap is calculated as Comm = 1,205 Mbits/s. After swapping nodes v2 and
v7, the communication cost becomes Comm = 1,085 Mbits/s, which is accepted as
the new solution. The algorithm continues executing the swapping iteration until the
predefined iteration value is reached.

In Fig. 3, we show all accepted solutions by our SA-based mapping tool for the
WCTG given in Fig. 2a. In this graphics, the horizontal axis shows the iterations while
the vertical axis shows the total communication cost. As can be seen from this graphics,
while SA-based method keeps the best result during the run (given by * symbol in the
graphics) it also makes uphill moves by selecting worse solutions. By doing this, it
searches for a better minimum than the one at hand.

4.3 GA-based method

Genetic algorithm is another metaheuristic method for solving optimization and search
problems [27]. Inspired by the biological process of evolution, it mimics the evolution-
ary functions of selection, mutation, and crossover processes to determine optimum

123

1004 S. Tosun et al.

(a) (b) (c)

Fig. 4 a The sequence for a 3×3 mesh, b mapping of WCTG in Fig. 3a onto a 3×3-mesh, c chromosome
representation of the mapping

or approximate solutions. In nature, these biological functions are repeated over gen-
erations and result in individuals best fitted to their environment. The GA has been
shown to be very attractive for computationally intense multi-parameter optimization
problems; thus, we also employ it for our mapping problem.

In our GA method, we first create a chromosome structure that represents a valid
mapping. In this representation, a chromosome is constructed by a string of genes, each
of which represents a tile of mesh. In short, gene i represents tile i in a chromosome.
Therefore, the size of a chromosome is limited to the number of tiles in our mesh. We
start our GA implementation with a set of randomly generated chromosomes, which
forms our initial population. Figure 4 demonstrates the relation between a mapping
and the corresponding chromosome. In Fig. 4a, we give the tile sequence for a 3×3
mesh, where the sequence starts from the tile in the upper left corner of the mesh
and ends on the tile in the bottom right corner. Figure 4b shows a random mapping of
WCTG in Fig. 4a onto a 3×3-mesh NoC architecture. The chromosome representation
of this mapping is given in Fig. 4c. After creating n individuals for our population, we
calculate the fitness of each chromosome, which is the total communication cost (i.e.,
Comm), by Eq. (10).

The optimization process starts from the randomly created initial population and
repetitively applies crossover, mutation, and selection operators to generate new indi-
viduals. In Fig. 5, we demonstrate how the crossover and mutation operations are
applied on randomly selected chromosome pairs. In Fig. 5a, we apply the crossover
operation on two individuals in our population. In this operator, we randomly determine
a cut point on the chromosome. We then swap the second portions of the chromosomes
with each other. After swapping, we obtain two child individuals. However, the newly
generated chromosomes are generally invalid because they do not meet the constraints
given in Sect. 3.2. That is, some of the nodes occur twice in a chromosome while some
of them are missing from the same chromosome. As we observe in Fig. 5a, nodes 5
and 6 occur twice in Child 1 while node 3 is missing. On the other hand, in Child 2,
nodes 5 and 6 are missing while node 3 occurs twice. We apply a repair procedure to
make the invalid chromosomes valid. The procedure first removes the doubly listed
nodes from the chromosomes then randomly assigns all the missing nodes to empty
genes until all nodes are present in the chromosome once. After a crossover operation,
n individuals in the population doubles to 2n individuals.

The next evolution process is mutation, as shown in Fig. 5b. In this process, we
randomly swap the content of two genes, creating new individuals in the population.
In the selection process, we select n individuals from the top of the population list

123

Application mapping algorithms 1005

6 2 4 1 5 3 8 7 2 3 4 1 5 6 7 8

Parent 1
(Comm=1905)

Parent 2
(Comm=2805)

6 2 4 1 5 5 6 7 8 2 3 4 1 3 8 7

Child 1 (Faulty) Child 2 (Faulty)

2 4 1 7 8 2 4 1 8 7

3 2 4 1 6 5 7 8 2 3 4 1 6 5 8 7

Child 1
(Comm=2235)

Child 2
(Comm=1955)

(a)

6 2 4 1 5 3 8 7 2 3 4 1 6 5 8 7

Parent 2
(Comm=1955)

Parent 1
(Comm=1905)

6 2 4 1 5 7 3 8 2 5 4 1 6 3 8 7

Child 2
(Comm=2220)

Child 1
(Comm=1405)

(b)

Fig. 5 a An example crossover operation. b An example mutation operation

based on their total communications and carry them to the next iteration. We apply the
crossover and mutation operators until our stopping criterion is met. As our stopping
criteria, we set the number of external loop iterations to |P|2 as in SA-based method.
We then select the solution with the best communication cost value. In Fig. 5, we give
the fitness (i.e., Comm values) of each chromosome next to it.

Figure 6 plots the variation in the total communication in successive generations for
WCTG given in Fig. 2a. As seen from this plot, our GA-based algorithm determines
the optimum solution after a small number of population generations. Therefore, it is
very eager to obtain the optimal solution.

123

1006 S. Tosun et al.

Fig. 6 An example iteration for accepted moves of GA-based algorithm

4.4 ILP-based method

Linear programming (LP) is an optimization method for problems that can be mathe-
matically formulated by linear equalities and inequalities. An LP formulation consists
of an objective function and one or more constraints that limit the solution space. ILP
is a special case of LP, where the variables are restricted to having integer values. An
ILP tool searches for the best result (i.e., the optimum solution) in this limited space
using different methods, such as a simplex algorithm. The ILP optimization method
is commonly used for networking, telecommunications, network flow, etc. If the ILP
formulation fully covers the problem behavior, it determines the optimum solution.
However, when the number of variables in the formulations increases, the solution
times become unacceptable. Thus, ILP methods are good candidates for optimization
problems with limited numbers of variables.

We formulated our mapping problem and solved it using Xpress-MP [28], a com-
mercial tool. We presented our formulation in [23] and briefly explain it here for
completeness. In our formulation, we used the 0–1 ILP. We present the variables and
constant terms used in our formulation in Table 1.

In our ILP formulations, Eq. (11) ensures that each node is assigned to a tile, while
Expression (12) states that some tiles can be empty (in a case where the number of
nodes is lower than the number of tiles).

Xdim∑

x=0

Y dim∑

y=0

αi,x,y = 1, ∀i. (11)

n∑

i=1

αi,x,y ≤ 1, ∀x, y. (12)

123

Application mapping algorithms 1007

Table 1 Constants and variables used in the formulations

Constants and variables Definitions

n The number of nodes in WCTG

wi, j The communication weight between nodes i and j in WCTG

Xdim The size of the mesh architecture in the x dimension

Y dim The size of the mesh architecture in the y dimension

αi,x,y Binary variable. αi,x,y = 1 if task i is mapped to the tile

in the coordinates (x, y) . Otherwise αi,x,y = 0

Xi, j,a Binary variable. Xi, j,a = 1 if the distance in the x dimension

between tasks i and j is equal to a. Otherwise, Xi, j,a = 0

Yi, j,b Binary variable. Yi, j,b = 1 if the distance in the y dimension

between tasks i and j is equal to b. Otherwise, Yi, j,b = 0

Xcost The total communication cost of the network in the x dimension

Y cost The total communication cost of the network in the y dimension

To determine the total communication cost, we must calculate the number of hops
between two tasks mapped on the mesh, that is, we have to find the Manhattan distance
[14] (i.e., city block distance) between two communicating tasks. We use Expression
(13) and (14) to capture the distances a and b in dimensions x and y, respectively.

Xdisti, j,a ≥ αi,xi ,yi + α j,x j ,y j − 1, ∀i, j .ei, j ∈ E

0 ≤ xi , x j ≤ Xdim, 0 ≤ yi , y j ≤ Y dim such that a = |x j − xi | (13)

Y disti, j,b ≥ αi,xi ,yi + α j,x j ,y j − 1, ∀i, j .ei, j ∈ E

0 ≤ xi , x j ≤ Xdim, 0 ≤ yi , y j ≤ Y dim such that b = |y j − yi | (14)

Using (15) and (16), we then calculate the cost in the x and y dimensions. In
these formulas, a and b represent the number of hops in the x and y dimensions,
respectively. Multiplying these values with the communication weight, wi, j , of two
communicating tasks, i and j , gives us the total communication cost of these two
nodes in the architecture:

Xcost =
∑

ei, j ∈E

Xdim∑

a=1

wi, j × a × Xdisti, j,a . (15)

Y cost =
∑

ei, j ∈E

Y dim∑

b=1

wi, j × b × Y disti, j,a . (16)

Consequently, our objective function can be expressed as:

min : Comm = Xcost + Y cost. (17)

123

1008 S. Tosun et al.

We used the mapping returned from this formulation to calculate the overall energy
consumption of the design.

4.5 CastNet: a Heuristic algorithm

Among the methods presented above, the ILP method guarantees the optimal solution;
however, its runtime complexity is the highest. Thus, it does not produce the solutions
in acceptable time limits for large problems. In our case, as we demonstrate in Sect. 5,
when our WCTG exceeds 36 nodes, ILP cannot find an optimal solution in a tolerable
time, which we set to 8-h time limit in our experiments. When it comes to accuracy,
random mapping is the worst method among the candidates because there is no asso-
ciated intelligence or improvement mechanism with it; each mapping is independent
from the others. The SA and GA methods are metaheuristics and they rely on proba-
bilistic decisions. They are common optimization techniques even though they do not
guarantee optimum results.

For large optimization problems, CPU runtime is one of the major algorithm evalua-
tion criteria. For example, in our mapping problem, determining the solution in a short
time is very important since time-to-market is a crucial parameter in the integrated
circuit field. In such a case, heuristic methods are good candidates for creating opti-
mum solutions (or solutions that are good enough from the application’s performance
perspective). Heuristic methods use two different optimization techniques; construc-
tive and iterative. In constructive heuristic algorithms, the solution is created step by
step, applying decision criteria at each step. In iterative improvement cases, a solution
is created and it is iteratively improved until a specified condition is met.

In this study, we use our constructive heuristic method called, CastNet [10].
Although CastNet is a constructive algorithm, it finds more than one solution, using
the symmetry property of the mesh topology.

We give the pseudocode of the CastNet algorithm in Algorithm 2. In our algo-
rithm, we initially select the first task to be mapped onto the mesh using the
highest_priori t y(G) function (line 2). In this step, we assign priorities to the tasks
based on their communication costs with their neighbors. We select the task with the
highest priority as the first task to be mapped on the mesh. We next decide the initial
cores, each of which is selected from different symmetry groups. Symmetry groups
relate to the fact that some cores of the mesh are symmetrical. Thus, selecting one
core from each symmetry group fulfills our purpose of covering all mapping results
from the different initial cores. We use the Candidates(M) function for this step
(line 3). For each candidate (lines 5–18 in Algorithm 2), we first assign the initial
task to the initial core. We then update the mapped (G ′) and unmapped (G) task
sets. We accordingly update the mapped (T ′) and unmapped (T) tiles. We then select
tasks based on the communication weights between mapped tasks using the function
node_select (G, G ′). We also select the core for the selected task based on the com-
munication cost on the mesh using the function core_select (T, T ′). We assign each
selected task to the selected cores until no tasks remain in the unmapped task list. For
each mapping, we calculate the communication cost and compare it with the previous
mapping result. Finally, we find the best mapping with the minimum communication

123

Application mapping algorithms 1009

Algorithm 2: Heuristic Mapping: CastNet
Data: G, M
Result: T, ENoC , Comm.

1 begin
2 vh = Highest_Priori t y(G)

3 C = Candidates(M)

4 Cbest = ∞
5 for i → 1 to |C | do
6 Gi = G; Ti = T ; G

′
i = ∅; T

′
i = ∅

7 f (vh) = tC[i]
8 Gi = Gi − {vh}; G

′
i = G

′
i + {vh}

9 Ti = Ti − {tC[i]}; T
′
i = T

′
i + {tC[i]}

10 while G �= ∅ do
11 vn = node_select (Gi , G

′
i)

12 tk = core_select (Ti , T
′
i)

13 f (vn) = tk
14 Gi = Gi − {vn}; G

′
i = G

′
i + {vn}

15 Ti = Ti − {tk }; T
′
i = T

′
i + {tk }

16 Ci = Calculate_Comm(Ti)

17 if Ci < Cbest then
18 Cbest = Ci ; Tbest = Ti

19 T = Tbest
20 ENoC = Calculate_Energy(Tbest)

21 Comm = Cbest
22 return T , ENoC , and Comm

cost and return it as our solution. We explain the implementation details of CastNet
in [10].

5 Experimental results

5.1 Data set

We tested the aforementioned mapping methods on real multimedia benchmarks and
on randomly generated task graphs. We selected six video applications from the lit-
erature, namely the video object plane decoder (VOPD) and the MPEG-4 decoder
from [12], the multi-window display (MWD) from [29], and the 263 decoder (263
Dec.), 263 encoder (263 Enc.), and Mp3 encoder (Mp3 Enc.) from [30]. In the last
experiment, we also used randomly generated graphs with varying number of nodes
to test the scalability of the proposed methods.

5.2 Communication and energy minimization results

In Table 2, we present the results obtained by random, CastNet, SA, GA, and
ILP mappings and give the total communication costs of the algorithms for all six

123

1010 S. Tosun et al.

Table 2 Communication cost comparison of five mapping methods

Application Number of vertices Number of edges Total communication (Mbit/s)

Random GA CastNet SA ILP

VOPD 16 20 6,668 4,290 4,135 4,290 4,119

MPEG-4 12 13 5,244 3,567 3,852 3,567 3,567

MWD 12 12 1,984 1184 1,248 1,184 1,184

263 Dec. 14 15 30.032 19.823 19.823 19.823 19.823

263 Enc. 12 12 317.051 230.407 230.407 230.407 230.407

Mp3 Enc. 13 13 28.4056 17.021 17.021 17.021 17.021

Fig. 7 Normalized energy consumption values with respect to results generated by ILP

multimedia benchmarks. While ILP obtains the best accuracy, it has the worst exe-
cution time values. We give the execution time analysis in the last experiment. The
GA and SA methods obtain very similar results. As shown in Table 2, they determine
optimum results for all benchmarks except VOPD; however, GA takes longer than SA
to find the final result. CastNet obtains very promising results for these benchmarks
when compared to SA and GA. In fact, for some of the benchmarks, it generates
optimum results. It also obtained better result than GA and SA for VOPD benchmark.

We present our main objective criteria, energy consumption values, for the GA,
SA, CastNet, and ILP methods in Fig. 7. In this bar chart, we normalize the energy
consumption values of SA, GA, and CastNet against the results generated by ILP.
For our energy model, we use the 100 nm technology power consumption parameters
given in [30]. As can be observed from this comparison, GA and SA generate the same
optimal results except VOPD. For VOPD benchmark, GA- and SA-based methods
determines energy values close to 5 % to the optimal value while the energy values
obtained by CastNet is within 1 % of the optimal result determined by ILP-based
method. For MPEG-4 and MWD benchmarks, GA and SA determine the same energy
values, which are better than CastNet’s results. For these two benchmarks, the energy

123

Application mapping algorithms 1011

Fig. 8 Solution improvements of GA against iteration number for VOPD and MPEG-4 benchmarks

values determined by Castnet are 6 % far from the optimal result. For the last three
benchmarks, all methods obtain the same optimal results.

5.3 GA and SA iterations

In Fig. 8, we give the best results of first 50 populations for genetic algorithm on
VOPD and MPEG-4 benchmarks. The figures plot the total communication cost of
each generation’s best solution against the iteration of GA. As we can see, GA-based

123

1012 S. Tosun et al.

Fig. 9 Solution improvements of SA algorithm against iteration number for VOPD and MPEG-4 bench-
marks. Figures plot all accepted moves of SA procedure

mapping moves very fast towards the optimal solution by improving the current result
in a few iterations.

In Fig. 9, we give the plots of all accepted moves for SA-based mapping algorithm
on six benchmarks. In the figures, we show the first 1,000 iterations of SA and plot the
total communication values of all accepted moves. As can be seen from these six plots,
SA accepts some worse solutions than the current one at hand in an attempt to make
up-hill moves to escape from local minima. When we compare the effectiveness of
GA and SA to determine the optimal results, SA procedure consumes more iterations
than GA to obtain the same results.

123

Application mapping algorithms 1013

Fig. 10 WCTG of VOPD
1 16 5

72 3 4 6

15 11

12 9

70

14

8

1013

362 362

49 362

27

357

353

300

313

500

407

16

16
16

16
16

16
157

16

Table 3 Vertex descriptions of VOPD and MPEG-4 benchmarks

Vertex VOPD MPEG-4 Vertex VOPD MPEG-4

1 Var. length decoder VU 9 Padding ADSP

2 Run length decoder AU 10 VOP memory Up sample

3 Inverse scan Med. CPU 11 Up sample BAB

4 AC/DC prediction RAST 12 Ref. memory RISC

5 iQuant sdRAM 13 Down sample

6 IDCT sRAM1 14 Arith. decoder

7 Up sample sRAM2 15 Memory

8 VOP reconstruction IDCT 16 Strip memory

5.4 Example mappings

For illustrative purposes, we give the mappings of the VOPD and MPEG-4 benchmarks
according to the WCTGs of VOPD and MPEG-4 given in Figs. 1 and 10, respectively.
The vertex descriptions of these benchmarks are given in Table 3. We present the
mappings generated by the GA-, SA-, CastNet-, and ILP-based methods for VOPD
and MPEG-4 in Fig. 11. As can be observed from Fig. 11b, the communication costs
of the mappings generated by GA, SA, and ILP are the same although the mappings
look different. When we consider the symmetry of the mesh structure, however, the
mappings are the same.

5.5 Test on random graphs

The number of vertices and edges are important parameters for the mapping problem
because they heavily affect the mapping result and execution time. In our experi-
ments presented above, we used multimedia benchmarks, whose numbers of vertices
ranges between 12 and 16. However, to measure the effects of graph size, we should

123

1014 S. Tosun et al.

(a)

(b)

Fig. 11 Mappings of VOPD (a) and MPEG-4 (b)

Fig. 12 Energy consumption improvements of ILP, CastNet, GA, and SA against random mappings

conduct experiments on graphs with different vertex degrees. Since the literature lacks
benchmark graphs for NoC evaluation, we followed a commonly accepted method and
randomly generated several edge-weighted graphs using the well-known random graph
generator tool task graphs for free (TGFF) [31].

We mapped each generated graph on the smallest mesh topology that could contain
all the nodes of the graph. In Fig. 12, we give the energy consumption comparisons of
the ILP, CastNet, SA, and GA mapping algorithms against random mapping. In this
comparison, the size of the graphs ranges from 4 to 81. For each graph, we generated
1,000 solutions for random mapping and selected the best one as our reference to

123

Application mapping algorithms 1015

Table 4 Execution time comparison of five mapping methods

Application Execution time (s)

Random GA CastNet SA ILP

VOPD <0.1 55.41 <0.1 2.78 14,153

MPEG-4 <0.1 6.46 <0.1 0.25 7,750

MWD <0.1 4.82 <0.1 0.16 380

263 Dec. <0.1 21.74 <0.1 1.17 12,362

263 Enc. <0.1 7.55 <0.1 2.13 5,825

Mp3 Enc. <0.1 14.88 <0.1 0.18 8,476

Graph 20 <0.1 86 0.12 3.76 20,962

Graph 25 <0.1 154 0.25 5.45 26,068

Graph 36 <0.1 446 1.21 16.85 T.O.

Graph 49 <0.1 1,532 5.65 53.72 T.O.

Graph 64 <0.1 8,532 22 143 T.O.

Graph 81 <0.1 26,786 112 586 T.O.

compare with other mapping algorithms. Our ILP tool was not able to find solutions
within 8 h when the number of nodes increases beyond 36. Below 36 nodes, ILP-
based mapping obtained the optimal results, which can be used as reference points
for the CastNet, GA, and SA algorithms. We can measure the differences between the
optimum results from ILP and the results generated by these algorithms. As can be
observed from the chart in Fig. 12, CastNet obtains better or similar results until the
number of nodes is 20. After this point, GA and SA generate better solutions; however,
this is only achieved through excessive execution latencies.

5.6 Performance evaluation

In the above experiments, we tested four optimization methods based on solution accu-
racy. Another important criterion to test these methods is the methods’ execution times
to determine the solution. We tested five mapping methods on six benchmark graphs
and six randomly generated graphs with vertex sizes ranging from 20 to 81 nodes. In
Table 4, we give the execution times of five mapping methods on the tested graphs.
Among five mapping methods, ILP-based method obtains the optimum solutions when
the number of nodes 25 or less. However, it cannot determine any solution to graphs
with 36 nodes or more within the given time limit, which is set to 8 h. In Table 4, we
place timeout (T.O.) if the method does not converge to a solution within 8 h.

Considering the random mapping is not an acceptable solution, our heuristic method
CastNet determines the solutions in seconds for all graphs except the graph with 81
nodes. For graphs with large number of nodes, SA-based method is a better candidate
than CastNet when our concern is accuracy. When the concern is execution time, SA-
based method takes higher execution times than CastNet. When we compare three
heuristics (GA, SA, and CastNet) based on execution times, the execution time of

123

1016 S. Tosun et al.

GA-based method is the highest. For example, when the number of nodes is 81, GA
barely finds the solution within eight hours. On the other hand, CastNet and SA take
only minutes to determine the solutions.

6 Conclusion and discussion

In this paper, we presented several application mapping algorithms for mesh-based
network-on-chip architectures to reduce energy consumption. These algorithms are
based on ILP, GA, SA, and heuristic methods. We compared these algorithms against
real multimedia benchmarks and against randomly generated task graphs.

Our experiments show that ILP obtains the optimum results; however, its runtime
complexity is a drawback as it cannot generate a solution for graphs with more than
36 nodes. Similarly, graphs with more than 20 nodes took hours to solve.

The GA and SA optimization methods are based on probabilistic techniques. They
start with randomly generated initial mappings and iteratively improve by swapping
select nodes in the solution. GA works on a set of solutions to improve the best result,
whereas SA tries to improve one solution iteratively. The complexity of GA is thus
greater than that of SA; however, GA obtains better results most of the time (at the
expense of higher execution latencies).

Heuristic methods are usually the fastest among the four methods presented in this
paper. The presented mapping heuristic, called CastNet, obtains very promising results
for the real applications. However, the number of nodes in these applications is fewer
than 20. When the number of nodes in the application graphs increases, the results
obtained by CastNet diverge from the optimum leaving the heuristic leadership to GA.

From these results, one can conclude that ILP is the best used for small- to medium-
size applications, while GA or SA are best used for applications of any size, albeit
with an increase in energy consumption. Heuristic methods can be used for mapping
problems where execution time is crucial. Moreover, heuristic methods are especially
important for NP-hard problems, such as the one presented in this paper.

Acknowledgments This work is supported by the Scientific and Technological Research Council of
Turkey (TUBITAK) under Grant Number 108E233 and 112E360.

References

1. Dally WJ, Towles B (2001) Route packets, not wires: on-chip interconnection networks. In: Proc.
Design Automation Conference, Las Vegas, pp 684–689

2. Benini L, De Micheli G (2002) Networks on chips: a new SoC paradigm. IEEE Comput 35(1):70–78
3. Davis JA, Venkatesan R, Kaloyeros A, Beylansky M, Souri SJ, Banerjee K, Saraswat KC, Rahman A,

Reif R, Meindl JD (2001) Interconnect limits on gigascale integration (GSI) in the 21st century. In:
Proceeding of the IEEE, vol 89, no 3, pp 305–324

4. Sylvester D, Keutzer K (2000) A global wiring paradigm for deep submicron design. In: IEEE
Transaction on computer-aided design of integrated circuits and systems (CAD/ICAS), vol 19, no 2,
pp 242–252

5. Arabnia HR, Oliver MA (1989) A transputer network for fast operations on digitised images. In:
International Journal of Eurographics Association (Computer Graphics Forum), vol 8, no 1, pp 3–12

6. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-
and-data-decomposition approach. J Parallel Distrib Comput 10(2):188–193

123

Application mapping algorithms 1017

7. Bhandarkar SM, Arabnia HR (1995) The REFINE multiprocessor: theoretical properties and algo-
rithms. Parallel Comput J 21(11):1783–1806

8. Arabnia HR, Smith JW (1993) A reconfigurable interconnection network for imaging operations and
its implementation using a multi-stage switching box. In: Proceedings of the 7th Annual International
High Performance Computing Conference. The 1993 High Performance Computing: New Horizons
Supercomputing Symposium, Calgary, pp 349–357

9. Suleyman T, Ozcan O, Meltem O (2009) An ILP formulation for application mapping onto network-
on-chips. In: 3rd International Conference on Application of Information and Communication Tech-
nologies, AICT2009, Baku

10. Suleyman T (2010) New heuristic algorithms for energy aware application mapping and routing on
mesh-based NoCs. J Syst Architect. doi:10.1016/j.sysarc.2010.10.001

11. Murali S, De Micheli (2004) Bandwidth-constrained mapping of cores onto NoC Architectures. In:
Proceedings of the Conference on Design, Automation and Test in Europe, vol 2, Washington DC

12. Janidarmian M, Khademzadeh A, Tavanpour M (2009) Onyx: a new heuristic bandwidth-constrained
mapping of cores onto tile-based Network on Chip. In: IEICE Electron. Express, vol 6, no 1, pp 1–7

13. Shen W, Chao C, Lien Y, Wu A (2007) A new binomial mapping and optimization algorithm for
reduced-complexity mesh-based on-chip network. In: Proceedings of the First international Symposium
on Networks-on-Chip, Washington DC

14. Hu J, Marculescu R (2005) Communication and task scheduling of application-specific networks-on-
chip. In: Computers and Digital Techniques, IEE Proceedings, vol 152, no 5, pp 643–651

15. Zhonghai L, Lei X, Axel J (2008) Cluster-based simulated annealing for mapping cores onto 2D mesh
networks on chip. In: Proceedings of the 2008 11th IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems (DDECS ’08), IEEE Computer Society, Washington DC

16. Moein-darbari Fahime, Khademzade Ahmad, Gharooni-fard Golnar (2009) CGMAP:a new approach
to network-on-chip mapping problem. IEICE Electron Express 6(1):27–34

17. Ascia G, Catania V, Palesi (2004) Multi-objective mapping for mesh-based NoC architectures. In:
Proceedings of the 2nd IEEE/ACM/IFIP international Conference on Hardware/Software Codesign
and System Synthesis, Stockholm

18. Hung W, Addo-Quaye C, Theocharides T, Xie Y, Vijaykrishnan N, Irwin MJ (2004) Thermal-Aware
IP Virtualization and Placement for Networks-on-Chip Architecture. Proceedings of the IEEE inter-
national Conference on Computer Design (October 11–13, 2004). ICCD. IEEE Computer Society,
Washington, DC, pp 430–437

19. da Silva MVC, Nedjah N, Mourelle LM (2010) Power-aware multiobjective evolutionary optimisation
for application mapping on network-on-chip platforms. Int J Electron 97(10):1163–1179

20. Nedjah N, da Silva MVC, Mourelle LM (2011) Customized computer-aided application mapping on
NoC infrastructure using multi-objective optimization. J Syst Archit 57(1):79–94

21. Nedjah N, da Silva MVC, Mourelle LM (2012) Preference-based multi-objective evolutionary algo-
rithms for power-aware application mapping on NoC platforms. Expert Syst Appl 39(3):2771–2782

22. Srinivasan K, Chatha, KS (2005) A technique for low energy mapping and routing in network-on-chip
architectures. In: Proceedings of the 2005 international Symposium on low power electronics and
design (San Diego, CA, USA, August 08–10, 2005). ISLPED ’05. ACM, New York, pp 387–392

23. Tosun S (2011) Cluster-based application mapping method for network-on-chip. Adv Eng Softw
42(10):868–874

24. Marcon CAM, Moreno EI, Calazans NLV, Moraes FG (2008) Comparison of network-on-chip mapping
algorithms targeting low energy consumption. Comput Digit Tech IET 2(6):471–482

25. Duato J, Yalamanchili S, Ni LM (2002) Interconnection networks: an engineering approach. Morgan
Kaufmann

26. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science
220(4598):671–680

27. David EG (1989) Genetic algorithms in search, optimization, and machine learning, Addison-Wesley
28. http://www.dashoptimization.com
29. Chang K-C, Chen T-F (2008) Low-power algorithm for automatic topology generation for application-

specific networks on chips. IET Comput Digit Tech 2(3):239–249
30. Srinivasan K, Chatha KS, Konjevod G (2006) Linear-programming-based techniques for synthesis of

network-on-chip architectures. IEEE Trans Very Large Scale Integr Syst 14(4):407–420
31. http://ziyang.eecs.umich.edu/dickrp/tgff/

123

http://dx.doi.org/10.1016/j.sysarc.2010.10.001
http://www.dashoptimization.com
http://ziyang.eecs.umich.edu/dickrp/tgff/

	Application mapping algorithms for mesh-based network-on-chip architectures
	Abstract
	1 Introduction
	2 Related work
	3 Problem definition and energy model
	3.1 Energy model
	3.2 Problem definition
	3.3 Routing scheme

	4 Mapping algorithms
	4.1 Random mapping
	4.2 SA-based method
	4.3 GA-based method
	4.4 ILP-based method
	4.5 CastNet: a Heuristic algorithm

	5 Experimental results
	5.1 Data set
	5.2 Communication and energy minimization results
	5.3 GA and SA iterations
	5.4 Example mappings
	5.5 Test on random graphs
	5.6 Performance evaluation

	6 Conclusion and discussion
	Acknowledgments
	References

