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Optimal Channel Switching Over Gaussian Channels
Under Average Power and Cost Constraints
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Abstract—Optimal channel switching that provides the high-
est performance over a set of Gaussian channels with variable
utilization costs is investigated in the presence of average power
and average cost constraints. First, generic cost functions are
considered, and it is shown that the optimal channel switching
strategy performs channel switching (time sharing) among at most
three different channels and always operates at the average power
and average cost limits. Also, for channel switching between two
channels, relations between the optimal power levels are obtained
depending on the average power limit, and it is proved that the
ratio of the optimal power levels is upper bounded by the ratio
of the larger noise variance to the smaller one. In addition, for
logarithmic cost functions, the convexity properties of the error
probability are investigated as a function of power and cost, and
the optimal channel switching strategy is shown to employ at
most two channels, which can easily be determined based on
specific formulas, when the average power limit is larger than a
certain threshold. Numerical examples are presented to provide
illustrations of the theoretical results.

Index Terms—Channel switching, Gaussian channel, time shar-
ing, probability of error.

I. INTRODUCTION

T IME sharing among different power levels, detectors,
or channels can provide performance improvements for

communication systems that operate under average power con-
straints and in the presence of additive time-invariant noise
[1]–[12]. For example, the average probability of error for
some communication systems that are subject to multimodal
noise can be reduced by performing time sharing between
two different signal levels for each information symbol [2]. In
other words, instead of transmitting a constant signal value for
each information symbol, performing "randomization" (time
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sharing) among multiple signal values can result in perfor-
mance improvements in certain cases [2], [13], [14]. Similarly,
jammer systems can achieve improved jamming performance
by time sharing among multiple power levels [1], [4], [5]. In
[1], it is shown that a weak jammer should employ on-off
time sharing to maximize the average probability of error of a
receiver that operates in the presence of zero-mean symmetric
noise, such as Gaussian noise. The study in [5] investigates
the optimum power allocation policy for an average power
constrained jammer operating over an arbitrary additive noise
channel, where the aim is to minimize the detection probability
of an instantaneously and fully adaptive receiver that employs
the Neyman-Pearson criterion. It is shown that the optimum
jamming performance can be achieved via time sharing be-
tween at most two different power levels, and a necessary and
sufficient condition is provided for the improvability of the
jamming performance via time sharing of the power compared
to fixed power jamming schemes.

Time sharing among multiple detectors, which is also called
detector randomization, presents another approach for improv-
ing error performance of average power constrained commu-
nication systems that operate over an additive time-invariant
noise channel [6]–[9], [15], [16]. In this approach, a receiver
has multiple detectors and employs one of them at any given
time according to a certain time sharing strategy. In [6], an
average power constrained binary communication system is
considered, and the optimal time sharing between two antipo-
dal signal pairs and the corresponding maximum a posteriori
probability (MAP) detectors is investigated. Significant per-
formance improvements can be achieved as a result of the
proposed approach in the presence of symmetric Gaussian
mixture noise for a certain range of average power limits. In
[7], the results in [2] and [6] are generalized by considering an
average power constrained M -ary communication system that
can employ time sharing among both signal levels and detectors
over an additive noise channel with some known distribution.
It is proved that the joint optimization of the transmitted sig-
nals and the detectors at the receiver results in time sharing
between at most two MAP detectors corresponding to two
deterministic signal constellations. [9] investigates the benefits
of time sharing among multiple detectors for the downlink of a
multiuser communication system and characterizes the optimal
time sharing strategy. In a related study, the form of the optimal
additive noise is obtained for variable detectors in the context
of noise enhanced detection under both Neyman-Pearson and
Bayesian frameworks [8].

In the presence of multiple channels between a transmit-
ter and a receiver, performing time sharing among different
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channels, which is called channel switching, can provide certain
performance improvements [1], [10]–[12], [17]. In the channel
switching approach, communication occurs over one channel
for a certain fraction of time, and then it switches to another
channel during the next transmission. In [1], the channel switch-
ing problem is studied under an average power constraint for
the optimal detection of binary antipodal signals over a number
of channels that are subject to additive unimodal noise. It is
shown that the optimal solution is either to communicate over
one channel exclusively, or to switch between two channels
with a certain time sharing factor. In [12], the channel switching
problem is investigated for M -ary communication systems in
the presence of additive noise channels with arbitrary prob-
ability distributions and by facilitating time sharing among
multiple signal constellations over each channel. Under an
average power constraint, the optimal solution that minimizes
the average probability of error is obtained as one of the fol-
lowing strategies: deterministic signaling (i.e., use of one signal
constellation) over a single channel; time sharing between two
different signal constellations over a single channel; or switch-
ing (time sharing) between two channels with deterministic
signaling over each channel [12]. In a different context, the
concept of channel switching is employed for cognitive radio
systems with opportunistic spectrum access, where a number
of secondary users try to access the available frequency bands
in the spectrum [18]–[20].

Although the channel switching problem has been investi-
gated thoroughly under an average power constraint (e.g., [1],
[12]), no studies have considered the cost of communications
over different channels in obtaining the optimal channel switch-
ing strategy. In practical systems, each channel can be asso-
ciated with a certain cost depending on its quality [21]–[26].
For example, a channel that presents high signal-to-noise ratio
(SNR) conditions has a high cost (price) compared to channels
with low SNRs [22], [25]. Therefore, it is important to consider
costs of different channels while designing a channel switching
strategy. In this study, the optimal channel switching problem
is formulated for Gaussian channels in the presence of average
power and average cost constraints. First, generic cost values
are considered for the channels and the optimal channel switch-
ing strategy is characterized. Then, logarithmic cost functions
are employed to relate the cost of a channel to its average noise
power [26], and specific results are obtained about the optimal-
ity of channel switching between two channels or among three
channels. Finally, numerical examples are presented to explain
the theoretical results. The main contributions of this study can
be summarized as follows:

• The optimal channel switching problem over Gaussian
channels is investigated under an average cost and average
power constraint for the first time.

• For generic cost functions, it is shown that the optimal
channel switching strategy is to switch among at most
three different channels (Proposition 2), and that the opti-
mal strategy must operate at the average cost and average
power limits (Proposition 1).

• For channel switching between two channels, relations
between the optimal power levels are obtained depending

Fig. 1. A communication system that employs channel switching among K
additive Gaussian noise channels, where Ci denotes the cost of using channel
i, and N i is the noise component at the ith channel.

on the average power constraint, and it is proved that the
ratio of the optimal power levels is upper bounded by the
ratio of the larger noise variance to the smaller one under
certain conditions (Proposition 3).

• When cost values are related to average noise powers
according to a specific logarithmic relation [26], it is
shown for sufficiently high power limits that the optimal
channel switching strategy involves at most two channels
(Proposition 5) and that the optimal channel switching
between two channels can easily be specified based on
the average cost limit (Proposition 4).

A motivating application scenario for the proposed problem
is a cognitive radio system in which primary users are the main
owners of the spectrum, and secondary users can utilize the
frequency bands of primary users under certain conditions. As
discussed in [21], the frequency owners (primary users) can sell
certain part of their spectrum to secondary users for the aim of
maximizing their revenue. From the perspective of a secondary
user, there can exist multiple available frequency bands (chan-
nels) with different costs in this framework (see Fig. 1). Then,
the aim of a secondary user is to optimize its performance under
a certain cost constraint (budget). More specifically, among
the available channels in the spectrum (which have certain
cost values), a secondary user can perform optimal channel
switching to minimize its average probability of error under an
average cost constraint (together with power constraints that are
related to hardware constraints and/or battery life). Hence, the
proposed problem formulation is important for cognitive radio
systems in terms of performance optimization of secondary
users under realistic constraints. In addition, the formulation
also carries theoretical significance since the costs of different
channels have not been considered in the previous studies on
channel switching [1], [10]–[12], [17].

The remainder of the manuscript is organized as follows:
The system model and problem formulation are introduced in
Section II, and the optimal channel switching problem is stud-
ied for generic cost functions in Section III. In Section IV,
logarithmic functions are considered for the optimal channel
switching problem, and numerical examples are presented in
Section V. Finally, various extensions and some concluding re-
marks are provided in Section VI and Section VII, respectively.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a communication system in which K additive
noise channels are available between the transmitter and the
receiver, as shown in Fig. 1. The transmitter-receiver pair can
synchronously switch among those K channels over time; i.e.,
they can perform time sharing among different channels by em-
ploying only one channel at a given time [1], [12]. The channels
are corrupted by independent zero-mean Gaussian noise com-
ponents, denoted by N i for i ∈ {1, . . . ,K}. For channel i, the
components of N i are independent and identically distributed
with a variance of σ2

i . In addition, there is a cost associated with
the usage of each channel, denoted by Ci for i ∈ {1, . . . ,K}.
The cost values are specified by nonnegative numbers and they
satisfy Ci > Cj if σ2

i < σ2
j for all i �= j. In other words, if a

channel has a smaller (larger) average noise power, it has a
higher (lower) cost. Assigning costs to different channels or
measurement devices has various motivations and implications,
as discussed for example in [21]–[26].

A generic M -ary communication system is considered,
where the received signal corresponding to the ith channel is
expressed as

Y =
√
Pi s

(j)
i +N i, j∈{0, 1, . . . ,M−1}, i∈{1 . . .K}, (1)

where s
(0)
i , s

(1)
i , . . . , s

(M−1)
i represent the signal constellation

employed for communication over channel i, Pi denotes the av-
erage power of the transmitted signal (assuming normalization
for the average energy of the signal constellation), and N i is the
Gaussian noise over channel i, which is independent of s(j)i . It
is assumed that the symbols are equally likely; that is, the prior
probabilities of the signals are equal to 1/M for each channel.

Let λi denote the fraction of time during which channel
i is employed for transmission, which is called the channel
switching factor for channel i. The channel switching factors
satisfy

∑K
i=1 λi = 1 and λi ≥ 0 ∀ i ∈ {1 . . .K}. In practice,

channel switching is performed by utilizing the ith channel for
100λi percent of time for i = 1, . . . ,K. The aim of this study
is to jointly optimize the channel switching factors and signal
powers to minimize the average probability of error (symbol
error rate) under average power and cost constraints. The error
probability of channel i for a transmit power of P is represented
by gi(P ), and the following assumptions are employed.

Assumption 1: The error probability over channel i, denoted
by gi(P ), is a convex and a monotone decreasing function of P .

Assumption 2: For Ci > Cj (equivalently, for σ2
i < σ2

j ),
gi(P ) < gj(P ), ∀P > 0.

As studied in [3], for maximum likelihood (ML) detection
over additive Gaussian channels, the error probability is a
convex function of the signal power for all 1-dimensional and
2-dimensional constellations (such as BPSK, PAM, QPSK,
and QAM, which are commonly employed in practice), and
it is convex also for higher dimensional constellations at high
SNRs. In addition, for Gaussian channels, the error probability
is a monotone decreasing function of the signal power and a
monotone increasing function of the noise power. Therefore,
Assumption 1 and Assumption 2 are applicable in practical
scenarios.

When power Pi is allocated to channel i, the average prob-
ability of error is expressed as

∑K
i=1λi gi(Pi), where λi’s are

the channel switching factors. In practical systems, there exist
an average power constraint and a peak power constraint, which
can be expressed as

∑K
i=1 λi Pi≤Ap and Pi∈ [0, Pmax], where

Ap and Pmax represent the average power limit and the peak
power limit, respectively. It is assumed that Pmax>Ap>0.
In addition, an average transmission cost constraint can be
stated as

∑K
i=1 λi Ci ≤ Ac, where Ac denotes the average cost

limit (budget). Then, the proposed optimization problem can be
expressed as

min
{λi,Pi}Ki=1

K∑
i=1

λi gi(Pi)

subject to
K∑
i=1

λi Pi ≤ Ap,
K∑
i=1

λi Ci ≤ Ac,

K∑
i=1

λi = 1, λi ≥ 0, Pi∈ [0, Pmax], ∀ i∈{1 . . . K}

(2)

In other words, the aim is to obtain the optimal channel switch-
ing strategy that minimizes the average probability of error
under constraints on the average power, average cost, and peak
power.

In the remainder of the manuscript, it is assumed that the
noise variances σ2

i ’s of the channels are distinct without loss of
generality. This is mainly because of the fact that if there are
multiple channels with the same noise variances, it is always
better to employ only one of them due to the convexity of
the error probability.1 Hence, the problem formulation that
considers only the channels with distinct noise variances is
sufficient to achieve the overall optimal solution.

In the proposed problem formulation in (2), stochastic sig-
naling [12], [13] is not considered and the power levels, Pi’s,
are modeled as deterministic quantities for each channel. This
is mainly due to the convexity of the error probability gi(P )
with respect to P , which implies that stochastic signaling (i.e.,
time sharing among different power levels) over a given channel
increases the error probability under an average power con-
straint. For example, instead of performing stochastic signaling
over channel i via time sharing between power levels Pi,1 and
Pi,2 and time sharing factors λi and (1− λi), respectively,
performing deterministic signaling with power λiPi,1 + (1−
λi)Pi,2 yields a lower error probability since λigi(Pi,1)+(1−
λi)gi(Pi,2)>gi(λiPi,1+(1−λi)Pi,2). Based on this argument
for each channel, it is concluded that the proposed formulation

1To verify this statement, let channel i and channel j have the same
noise variances specified by σ2

i = σ2
j = σ2, and let g(P ) denote their error

probability expression. Then, it can be shown that instead of employing channel
i and channel j with powers Pi and Pj and channel switching (time sharing)
factors of λi and λj , respectively, it is always better to employ only one of these
channels with power (λiPi + λjPj)/(λi + λj) and a time sharing factor of
(λi + λj). This is because of the convexity of g(P ) for P > 0, which implies
that λig(Pi) + λjg(Pj) > (λi + λj)g((λiPi + λjPj)/(λi + λj)) for all
λi, λj ∈ (0, 1) and Pi, Pj > 0.
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in (2) covers the scenarios in the presence of stochastic signal-
ing as well since the joint optimization of channel switching
and stochastic signaling results in channel switching with de-
terministic signaling in the considered scenario.

Finally, it is worth mentioning that the results in this study
can also be applied to multipath channels with block frequency-
flat fading under the assumption of perfect channel estimation
at the receiver. In that case, the proposed channel switching
approach can be employed for each fading state.

III. OPTIMAL CHANNEL SWITCHING

In this section, a detailed theoretical investigation of the
optimal channel switching problem in (2) is presented. In the
following analysis, it is assumed without loss of generality
that the noise variances of the channels satisfy σ2

1 < σ2
2 <

· · · < σ2
K , which implies that the cost values are ordered as

C1 > C2 > · · · > CK . In addition, the average cost limit Ac

in (2) is assumed to be larger than or equal to the minimum
of the cost values; i.e., Ac ≥ CK , since (2) would yield no
solution otherwise. Then, the following remark, which specifies
two simple cases, is presented first.

Remark 1: (i) If Ac = CK , the optimal solution of (2) is to
transmit over channel K exclusively with power Ap.

(ii) If Ac ≥ C1, the optimal solution of (2) is to transmit over
channel 1 exclusively with power Ap.

Proof: The first part is obvious since the use of another
channel apart from channel K would violate the average cost
constraint in (2) as C1 > C2 > · · · > CK = Ac. Also, since
gi(P ) is a monotone decreasing function of P , the optimal
strategy operates at the average power limit Ap in (2).

To prove the second part, consider a generic strategy that em-
ploys channel switching with power Pi and channel switching
factor λi for channel i, which achieves an average probability of
error given by

∑K
i=1 λi gi(Pi). Then, the following inequalities

can be obtained:

K∑
i=1

λi gi(Pi) >
K∑
i=1

λi g1(Pi) > g1

(
K∑
i=1

λi Pi

)
(3)

The first inequality follows from the fact that g1(P ) < gi(P )
for all P ≥ 0 and i ∈ {2, . . . ,K} since channel 1 has the
smallest noise variance (the largest cost). On the other hand,
the second inequality follows from the strict convexity of g1
for positive arguments. It is noted that the expression on the
right-hand-side of (3) is the probability of error that is achieved
by employing channel 1 exclusively with power

∑K
i=1 λi Pi.

Therefore, it is concluded from (3) that employing channel 1
exclusively always achieves a smaller average probability of
error than any strategy that employs channel switching. (Since
Ac ≥ C1, it is possible to employ channel 1 exclusively.) In
addition, since g1(P ) is a monotone decreasing function of P ,
the optimal strategy operates at the average power limit Ap. �

Remark 1 presents intuitive results for two simple cases,
which can be summarized as follows: If the budget (average
cost limit) allows the use of the worst (cheapest) channel only,
then the only feasible approach is to employ that channel
exclusively, which becomes the optimal solution of (2). On the

other hand, if the budget allows the use of any channel with
any switching factors, then the optimal solution is to employ
the best channel all the time by using all the available power;
that is, channel switching can only degrade the performance in
this scenario. Since the solutions in these two special cases are
obtained in a simple manner, we focus on the other scenarios
for which the average cost limit satisfies CK < Ac < C1 in the
remainder of this study.

Instead of trying to solve the problem in (2) directly for
obtaining the optimal channel switching strategy, the proper-
ties of the optimal solution are investigated first to propose
alternative approaches that yield the optimal channel switching
strategy with reduced computational complexity. To that aim,
the following proposition states that the optimal solution of (2)
always satisfies the average power and average cost constraints
with equality.

Proposition 1: Assume that CK < Ac < C1 and let
{λ∗

i , P
∗
i }Ki=1 denote the solution of the optimization problem

in (2). Then,
∑K

i=1 λ
∗
iP

∗
i = Ap and

∑K
i=1 λ

∗
iCi = Ac; that is,

the optimal channel switching strategy utilizes the maximum
average power and the maximum average cost.

Proof: The claims in the proposition can be proved
via contradiction. To prove the claim about the utilization of
the maximum average power, suppose that {λl, Pl}Kl=1 is an
optimal solution of (2) with

∑K
l=1 λlPl < Ap and channel i is

one of the employed channels (i.e., λi > 0) with Pi < Pmax.
Note that such a channel must exist since Ap < Pmax. Next,
define another solution as {λl, P

′
l}Kl=1, where P ′

l = Pl, ∀ l �= i

and P ′
i = min{Pi + (Ap −

∑K
l=1 λlPl)/λi, Pmax}. It is noted

that P ′
i > Pi. Then, the following relation can be derived:

K∑
l=1

λl gl(Pl) = λi gi(Pi) +

K∑
l=1
l �=i

λl gl(Pl)

> λi gi (P
′
i) +

K∑
l=1
l �=i

λl gl (P
′
l ) =

K∑
l=1

λl gl (P
′
l ) (4)

where the inequality is obtained due to the facts that gi is
monotone decreasing, P ′

l = Pl, ∀ l �= i, and P ′
i > Pi. From (4),

it is concluded that the solution {λl, Pl}Kl=1, which operates at
an average power below Ap, has a higher average probability
of error than {λl, P

′
l}Kl=1. This leads to a contradiction since

{λl, Pl}Kl=1 was assumed to be an optimal solution of (2).
Therefore, a solution that operates at an average power below
Ap cannot be optimal. In other words, an optimal solution must
utilize all the available power; i.e., operate at the average power
limit, Ap.

To prove the claim about the operation at the maximum aver-
age cost, first suppose that the optimal solution employs at least
two different channels, say channel i and channel j with powers
Pi and Pj and channel switching factors λi and λj , respectively,
where i < j (hence, Ci > Cj), and it operates at an average
cost of A′

c, which is strictly less than Ac; that is, A′
c < Ac. For

notational convenience, define Pij � λiPi + λjPj and Cλ �
λiCi + λjCj . Then, consider an alternative solution which
employs a similar strategy to the optimal solution except that
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it uses channel i with power P ′
i and channel switching factor

γ, and channel j with power Pj and channel switching factor
λi + λj − γ, where λi < γ < λi + λj with γP ′

i + (λi + λj −
γ)Pj = Pij (the same average power as the optimal one) and
γCi + (λi + λj − γ)Cj = Cλ +Ac −A′

c (larger average cost
than the optimal one). By equating the average power terms
(that is, γP ′

i + (λi + λj − γ)Pj = λiPi + λjPj), P ′
i can be

obtained as P ′
i = λiPi/γ + (1− λi/γ)Pj . Then, the following

relations can be obtained:

γ gi(P
′
i)+(λi+λj−γ)gj(Pj)

= γ gi (λiPi/γ+(1−λi/γ)Pj)+(λi+λj−γ)gj(Pj) (5)

< λi gi(Pi)+(γ−λi) gi(Pj)+(λi+λj−γ)gj(Pj) (6)

≤ λi gi(Pi)+λj gj(Pj) (7)

where the first inequality is obtained from the strict convexity of
gi and the second inequality follows from the fact that gi(Pj) ≤
gj(Pj) since channel i has a smaller noise variance (higher cost)
than channel j. The inequality in (5)–(7), namely, λi gi(Pi) +
λj gj(Pj) > γ gi(P

′
i) + (λi + λj − γ)gj(Pj), leads to a con-

tradiction since the optimal solution results in a higher average
probability of error than the alternative solution, which uses
the same average power but operates at the maximum average
cost. Therefore, it is concluded that a solution that employs at
least two channels and operates below the average cost limit
Ac cannot be optimal. To complete the proof, suppose that an
optimal solution employs a single channel (say, channel i) and
operates below Ac; that is, channel i is employed exclusively
with power Pi and its cost Ci is strictly smaller than Ac; that
is, Ci < Ac < C1. Next, consider an alternative solution that
employs channel i and channel 1 with channel switching factors
λ′
i and 1− λ′

i, respectively, and with the same power Pi, where
λ′
i ∈ (0, 1). Then,

λ′
igi(Pi) + (1− λ′

i) g1(Pi)

< λ′
igi(Pi) + (1− λ′

i) gi(Pi) = gi(Pi) (8)

where the inequality follows from the fact that g1(P ) < gi(P ),
∀P , by definition (note that C1 > Ci). The inequality in (8)
leads to a contradiction since the alternative solution achieves
a smaller average probability of error than the optimal one
by using the same average power. Therefore, a solution that
employs a single channel and operates below the maximum
average cost cannot be optimal. Overall, since any channel
switching strategy either uses a single channel or switches
among multiple channels, the previous arguments prove that an
optimal channel switching strategy must always operate at the
maximum average cost. �

Proposition 1 states that the optimal channel switching strat-
egy utilizes all the average power and average cost. Therefore,
the optimization problem in (2) can be solved by considering
equality constraints (instead of inequality constraints) for the
average power and average cost, which leads to an important
reduction in computational complexity. Another implication of
Proposition 1 is presented in the following corollary.

Corollary 1: Assume that CK < Ac < C1. If Ci �= Ac, ∀ i ∈
{1, . . . ,K}, then the optimal solution of (2) involves channel
switching among multiple channels; that is, transmission over a
single channel is not optimal.

Proof: Let {λ∗
i , P

∗
i }Ki=1 denote the solution of the opti-

mization problem in (2). Proposition 1 states that
∑K

i=1 λ
∗
iCi =

Ac must hold. If Ci �= Ac, ∀ i ∈ {1, . . . ,K}, then the condition
of

∑K
i=1 λ

∗
iCi = Ac cannot be satisfied unless at least two

of λ∗
i ’s are nonzero, which implies switching among multiple

channels. �
It should be noted that the converse of Corollary 1 is not nec-

essarily true. That is, when Ci = Ac for some i ∈ {1, . . . ,K},
the structure of the optimal solution depends on the cost val-
ues and the average power constraint. In other words, either
transmission over a single channel or channel switching can be
optimal depending on the system parameters.

Although the optimization problem in (2) is formulated to
search over strategies that involve channel switching among up
to K channels, a similar approach to those in [8], [12], [13] can
be employed to restrict the optimal solution to a smaller subset
of strategies. Namely, the following proposition states that the
optimal solution of (2) can be expressed as channel switching
among min{K, 3} or fewer channels.

Proposition 2: The optimal channel switching strategy is to
switch among at most min{K, 3} channels.

Proof: If K ≤ 3, the statement in the proposition is
satisfied trivially. Assume that K > 3 and define the following
sets:

W=

{(
K∑
i=1

λi Pi,

K∑
i=1

λi gi(Pi),

K∑
i=1

λi Ci

)
,

∀ λi ≥ 0,

K∑
i=1

λi = 1, ∀Pi ∈ [0, Pmax]

}
(9)

U={(P, gi(P ), Ci) , ∀ i∈{1, . . . ,K}, ∀P ∈ [0, Pmax]} (10)

It is noted that set U is the set of all triples (P, gi(P ), Ci), for
i ∈ {1, . . . ,K} and P ∈ [0, Pmax], which consists of infinitely
many elements. Also, by definition, set W contains the optimal
solution of (2) since it consists of all possible average power,
average probability of error and average cost triples. In addition,
it is observed from (9) and (10) that W is a subset of the convex
hull of set U ; i.e., W ⊂ hull(U). This is because of the fact that
all the triples in W can be obtained as the convex combinations
of K elements in U whereas some convex combinations of the
elements of U , which involve the use of at least one channel
multiple times,2 are not included in W . Since W is contained
in the convex hull of set U , any element of W can be expressed
as a convex combination of dim(U) + 1 = 4 elements in U as a
result of Carathéodory’s theorem [27], where dim(U) denotes
the dimension of the space in which U resides. (Note that
U ⊂ R

3.) In addition, since the aim is to achieve the minimum
average probability of error (see (2)), the optimal solution

2For example, the convex combination of (P1, g1(P1), C1) and
(P2, g1(P2), C1) is not included in W , which involves the use of channel 1
twice.
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corresponds to a point on the boundary of hull(U), which can
be achieved by a convex combination of dim(U) = 3 elements
in U by Carathéodory’s theorem [27]. Finally, it is noted that all
such convex combinations are guaranteed to be elements of set
W due to the following reason: The difference of hull(U) from
W (that is, hull(U) \W) consists of the points corresponding to
strategies that use at least one channel multiple times. However,
such strategies cannot be optimal solutions since the use of a
channel multiple times always increases the average probability
of error compared to the use of that channel once with the same
average power (which can be proved by an argument similar
to that in Footnote 1). Therefore, the optimal solution cannot
be in hull(U) \W; i.e., it is always in W , which implies that
the optimal solution can be expressed as a convex combination
of up to 3 elements in U that correspond to different channel
indices (see index i in (10)). Hence, channel switching among
up to 3 different channels is optimal. �

Based on Proposition 1 and Proposition 2, the optimal
channel switching corresponds to one of the following three
strategies:

Strategy 1—Transmission Over a Single Channel: In this
case, one of the channels is employed exclusively. Based on
Corollary 1, this strategy cannot be an optimal solution of
(2) unless there exists a channel with cost Ac. If there exists
such a channel and i∗ denotes the index of that channel (that
is, Ci∗ = Ac), then the minimum average probability of error
achieved by this strategy is given by gi∗(Ap), which corre-
sponds to transmission over channel i∗ exclusively by utilizing
the maximum available power (cf. (2)). Note that this strategy
may or may not be the optimal solution of the problem in (2)
depending on the system parameters.

Strategy 2—Channel Switching Between Two Channels:
In this strategy, channel switching is performed between two
different channels. Let channel i and channel j denote those
channels. Then, based on Proposition 1, the problem in (2) can
be formulated under Strategy 2 as

min
λ, Pi, Pj

λ gi(Pi) + (1− λ) gj(Pj)

subject to λ Pi + (1− λ)Pj = Ap,

λ Ci + (1− λ) Cj = Ac, λ ∈ [0, 1],

Pi ∈ [0, Pmax], Pj ∈ [0, Pmax]. (11)

It is observed from the average cost constraint in (11) that,
for the optimal channel switching between two channels, one
of the channels should have a cost higher than Ac and the
other channel should have a cost lower than Ac. Therefore, to
obtain the optimal solution for Strategy 2, the problem in (11)
should be solved for KsKg channel pairs, where Ks (Kg) is the
number of channels the costs of which are lower (higher) than
Ac. In other words, the problem in (11) should be solved for
all channel pairs (i, j) ∈ S2, where S2 = {(i, j) : Ci > Ac >
Cj and i, j ∈ {1, . . . ,K}}.

To investigate the properties of the solution of (11), a specific
expression is considered for the error probability over each
channel.

Assumption 3: The error probability for channel i is ex-
pressed as

gi(P ) = η Q

(
κ
√
P

σi

)
(12)

where Q denotes the Q-function, P is the average symbol
energy, σ2

i is the noise variance, and η and κ are some positive
constants that depend on the modulation type and order [28].

As discussed in [28], the error probability for many co-
herent modulation schemes can be represented either exactly
or approximately (at high SNRs) in the form of (12); hence,
Assumption 3 provides a generic expression that can represent
various different scenarios.

Assume, without loss of generality, that Ci > Ac > Cj for
the problem in (11). Then, the optimal value of λ can be
obtained from the average cost constraint as λ∗ = (Ac − Cj)/
(Ci − Cj). Also, suppose that Pmax is sufficiently large so that
the optimal power levels for Strategy 2 are always below Pmax.
(The condition for this assumption is specified in Proposition 3
below.) Then, due to the average power constraint, the powers
are related as Pj = (Ap − λ∗Pi)/(1− λ∗). From (12), the op-
timization problem in (11) can then be expressed as follows:

min
Pi∈(0, Ap/λ∗)

λ∗η Q

(
κ
√
Pi

σi

)

+ (1− λ∗)η Q

(
κ

σj

√
Ap − λ∗Pi

1− λ∗

)
(13)

where the constraint for Pi is obtained from the relation λ∗Pi +
(1− λ∗)Pj = Ap. From (13), it is observed that the optimal
solution for Strategy 2 requires a search over a one-dimensional
space only (for each possible channel pair). In addition, it can
be shown that the objective function in (13) is strictly convex for
Pi ∈ (0, Ap/λ

∗).3 Therefore, convex optimization algorithms
can be employed to obtain the result in polynomial time [29].
In fact, as stated in the following proposition, the structure of
the objective function also leads to additional properties, which
result in further simplifications.

Proposition 3: Suppose that Ci > Ac > Cj , Pmax >

Apσ
2
j /σ

2
i , and define Aij �

σ2
i σ

2
j

κ2(σ2
j
−σ2

i
)

log
(

σ2
j

σ2
i

)
, where log

denotes the natural logarithm. Then, the optimal solution of
(11), denoted by {λ∗, P ∗

i , P
∗
j }, satisfies the following relations

depending on the average power limit:

(i) If Ap = Aij , then P ∗
i = P ∗

j = Aij .
(ii) If Ap > Aij , then P ∗

j > Ap > P ∗
i > Aij .

(iii) If Ap < Aij , then Aij > P ∗
i > Ap > P ∗

j .

In addition, the ratio between the optimal power levels cannot
exceed σ2

j /σ
2
i ; that is,

max

{
P ∗
j

P ∗
i

,
P ∗
i

P ∗
j

}
<

σ2
j

σ2
i

. (14)

3The first-order derivative of the objective function is presented in (25),
which is a monotone increasing function of Pi for Pi ∈ (0, Ap/λ∗).
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Proof: Please see Appendix A.
Under the conditions in Proposition 3, the search space for

the optimization problem in (13) can be reduced. Specifically,
for each channel pair (i, j) with Ci > Cj , the value of Aij is
calculated first, as defined in the proposition. Then, the optimal
power levels are obtained as follows:

• IfAp=Aij, the optimal solution is given byP∗
i =P∗

j =Aij .
• If Ap > Aij , the optimization problem in (13) is solved

for Pi ∈ (max{Aij , σ
2
iAp/σ

2
j }, Ap), which is obtained

from (14) and the relation in the second part of the
proposition.

• If Ap < Aij , the problem in (13) is solved for Pi ∈ (Ap,
min{Aij , Ap/λ

∗, σ2
jAp/σ

2
i }), which is obtained from

(14) and the relation in the third part of the proposition.

Once the optimal value of Pi, denoted by P ∗
i , is ob-

tained, the optimal value of Pj is calculated as P ∗
j =

(Ap − λ∗P ∗
i )/(1− λ∗), where λ∗ = (Ac − Cj)/(Ci − Cj).

Strategy 3—Channel Switching Among Three Channels:
In this strategy, channel switching is performed among three
different channels. Let channel i, channel j, and channel k de-
note those channels. Then, based on Proposition 1, the problem
in (2) can be formulated under Strategy 3 as

min
λi,λj ,λk,Pi,Pj ,Pk

λi gi(Pi) + λj gj(Pj) + λk gk(Pk)

subject to λi Pi + λj Pj + λk Pk = Ap,

λi Ci + λj Cj + λk Ck = Ac,

λi + λj + λk = 1, λi, λj , λk ≥ 0,

Pi, Pj , Pk ∈ [0, Pmax]. (15)

Due to the strict average cost constraint, it is required that
at least one of the channels must have a cost lower than Ac

and at least one of the channels must have a cost higher than
Ac. Therefore, to obtain the optimal solution for Strategy 3,
the problem in (15) should be solved for KsKg(K − 2) channel
triples, where Ks (Kg) is the number of channels the costs of
which are lower (higher) than Ac, and K is the total number of
channels. In other words, the problem in (15) should be solved
for all channel triples (i, j, k) ∈ S3, where S3 = {(i, j, k) :
Ci > Ac > Cj and i, j, k ∈ {1, . . . ,K}}. In addition, it is ob-
served that the solution of (15) can be obtained via optimization
over a three-dimensional space instead of six by utilizing the
three equality constraints.

It is noted from Proposition 2 that Strategy 3 is guaranteed to
provide the optimal solution of the channel switching problem
in (2). In addition, it covers Strategy 2 and Strategy 1 as special
cases, which may be suboptimal in general. Therefore, to obtain
the optimal channel switching solution, it can be necessary
in general to solve the optimization problem in (15), which
is computationally more complex than obtaining the optimal
solutions under Strategy 1 and Strategy 2. However, in some
cases (see Proposition 5), it is guaranteed that Strategy 1 or
Strategy 2 can provide the optimal solution of the channel

switching problem in (2); that is, it is not necessary to solve the
optimization problem in (15) for obtaining the optimal channel
switching solution. Therefore, whenever the conditions under
which Strategy 1 or Strategy 2 is optimal are satisfied, the
optimal channel switching solution can be obtained in a low-
complexity manner as follows: If there exist no channels with
cost Ac, then Strategy 2 provides the optimal solution. If there
exists a channel with cost Ac, then the optimal solution is either
to employ that channel exclusively with the maximum power
(Strategy 1), or to switch between two channels as specified by
the solution of (11) (Strategy 2). In that case, the strategy that
achieves the smaller average probability of error becomes the
optimal solution of (2).

IV. OPTIMAL CHANNEL SWITCHING FOR

LOGARITHMIC COST FUNCTIONS

In this section, specific theoretical results are obtained by
considering a suitable cost function for the channels. Since
each channel can be regarded as a measurement device, a cost
function similar to that proposed in [26] can be adopted for
relating the noise power of each channel to a cost value as
follows:

Ci = log

(
1 +

b

σ2
i

)
, i ∈ {1 . . .K}, (16)

where b > 0 is a given system parameter (a constant). It is noted
that the function in (16) has the desirable property that it assigns
higher (lower) cost values to less (more) noisy channels; that
is, σ2

i < σ2
j implies Ci > Cj . In addition, lim

σi→∞
Ci = 0 and

lim
σi→0

Ci = ∞. As in the previous section, it is assumed without

loss of generality that the noise variances of the channels
satisfy σ2

1 < σ2
2 < · · · < σ2

K , which implies that the cost values
are ordered as C1 > C2 > · · · > CK . In addition, the error
probability expression in (12) is considered.

Based on the cost function in (16), the following result is
obtained first.

Lemma 1: Consider infinitely many channels and assume
that the channels take a continuum of cost values in the interval
[Cmin, Cmax] based on the cost function in (16), where 0 <
Cmin < Cmax < ∞. Let g(P,C) denote the error probability
when transmission is performed by utilizing a power level of
P over a channel with cost C. Then, g(P,C) is a strictly
convex function over set Sc, which is a convex set defined as
Sc � {(P,C) : P > b/(κ2(eC + 1)), C ∈ (Cmin, Cmax)}.

Proof: Please see Appendix B.
Lemma 1 describes the convexity properties of the error

probability, which is considered as a function of power and
cost. Based on Lemma 1, the solutions of the optimal channel
switching problem can be specified in certain scenarios. To that
aim, the following proposition presents the optimal solution
when channel switching is performed between two channels
(i.e., Strategy 2).

Proposition 4: Suppose there exist K channels and each
channel has a cost value obtained from the cost function in



1914 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 5, MAY 2015

(16). If the power limits satisfy Ap ≥ b σ4
K

κ2σ2
1(2σ

2
K
+b)

and Pmax >

Apσ
2
K/σ2

1 , then the optimal solution for Strategy 2 employs
channel i and channel j, where

i = argmin
k∈{1,...,K}

Ck subject to Ck > Ac, (17)

j = argmax
k∈{1,...,K}

Ck subject to Ck < Ac. (18)

Proof: From Proposition 1, it is known that the optimal
channel switching solution utilizes the maximum average cost.
Therefore, for Strategy 2, the optimal pair of channels, say
(k, l), must satisfy k ≤ i and l ≥ j, where i and j are as defined
in (17) and (18), respectively. (Note that the cost values are
ordered as C1 > C2 > · · · > CK .) For simplicity of notation,
define zk � (Pk, Ck), for k = 1, . . . ,K, and a � (Ap, Ac). To
prove that the optimal channel pair for Strategy 2 is (i, j),
first consider channel pair (k, l), where k = i and l > j. The
optimal solution for channel pair (i, l) must utilize the maxi-
mum average power and cost due to Proposition 1. In addition,
consider an alternative solution that employs channel pair (i, j)
and operates at the average power and cost limits. Then, the
following inequalities are obtained:

λ zi + (1− λ) zj = a and γ zi + (1− γ) zl = a, (19)

where λ = (Ac − Cj)/(Ci − Cj) and γ = (Ac − Cl)/(Ci −
Cl), which are obtained from the average cost constraint. Since
Ci > Ac > Cj > Cl, it can be shown that γ > λ. Therefore, zj
can be expressed as

zj =
γ − λ

1− λ
zi +

1− γ

1− λ
zl. (20)

Then, it is shown in the following that channel pair (i, l) cannot
be optimal since it results in a higher average probability of
error than channel (i, j):

λ g(zi) + (1− λ)g(zj)

= λ g(zi) + (1− λ) g

(
γ − λ

1− λ
zi +

1− γ

1− λ
zl

)
(21)

< λ g(zi) + (1− λ)

(
γ − λ

1− λ
g(zi) +

1− γ

1− λ
g(zl)

)
(22)

= γ g(zi) + (1− γ) g(zl) (23)

where g(zi) = g(Pi, Ci) denotes the average probability of
error as a function of power and cost, as defined in (31).
In obtaining the equality in (21), the expression in (20)
is employed, and the inequality in (22) follows from the
strict convexity of g, which is guaranteed under the con-

ditions in the proposition, namely, Ap ≥ b σ4
K

κ2σ2
1(2σ

2
K
+b)

and

Pmax > Apσ
2
K/σ2

1 . To verify the convexity of g in this
scenario, Lemma 1 is considered first, which states that
the power levels should satisfy P > b/(κ2(eC + 1)) for
strict convexity. Since the cost values are ordered as C1 >
C2 > · · · > CK (equivalently, σ2

1 < σ2
2 < · · · < σ2

K), P >

b/(κ2(eCK + 1)) is required to guarantee that function g
is strictly convex for all channels. From Proposition 3,
it is concluded that the optimal power levels under Strategy 2
always satisfy min{Pk, Pl} > σ2

kAp/σ
2
l for channel pair (k, l)

with Ck > Ac > Cl.4 Therefore, if σ2
1Ap/σ

2
K > b/(κ2(eCK +

1)) holds, then it is guaranteed that the optimal power levels for
any channel pair for Strategy 2 satisfy the convexity condition
in Lemma 1. Mathematically stated,

min{Pk, Pl} >
σ2
kAp

σ2
l

>
σ2
1Ap

σ2
K

>
b

κ2(eCK + 1)
=

b

κ2(2 + b/σ2
K)

(24)

for all k ≤ i and l ≥ j, where first inequality is obtained from
Proposition 3, the second one follows from the relation σ2

1 <
σ2
2 < · · · < σ2

K , the third one is imposed to guarantee that the
power levels satisfy the convexity condition in Lemma 1, and
the equality is obtained from (16). From (24), it is deduced that
the condition Ap > b σ2

K/(κ2(2 σ2
1 + b σ2

1/σ
2
K)) guarantees

the strict convexity of g.
Similar arguments to those in (19)–(23) can be used to prove

that channel pair (k, j) with k < i results in a larger average
probability of error than channel pair (i, j). Then, it can be
concluded that channel pair (k, l) cannot be optimal if k < i
and/or l > j. Hence, the optimal channel pair for Strategy 2 is
shown to be the channel pair (i, j) as defined in the proposition
when the power limits are larger than the specified values. �

Proposition 4 states that if the average and peak power limits
are larger than certain values, then the optimal solution for
Strategy 2 is to switch between the two channels, one of which
has the lowest cost among the channels with costs higher than
Ac, and the other has the highest cost among the channels with
costs lower than Ac. In other words, among all the channel
pairs, where each pair has one channel with a cost higher than
Ac and another channel with a cost lower than Ac, the one
that has the minimum cost difference is selected to achieve the
minimum average probability of error, which is mainly due to
the convexity of the error probability, as specified in Lemma 1.
Thanks to Proposition 4, it is not necessary to search over
all feasible channel pairs to obtain the optimal solution for
Strategy 2 under the conditions in Proposition 4.

Remark 2: Under the condition in Proposition 4, if there ex-
ists a channel with cost Ac, then it outperforms the channel pair
(i, j) specified in (17) and (18); that is, Strategy 1 outperforms
Strategy 2 in that scenario. This is due to the strict convex-
ity of g, which results in λ g(Pi, Ci) + (1− λ) g(Pj , Cj) >

g(Ap, Ac). In other words, if Ap ≥ b σ4
K

κ2σ2
1(2σ

2
K
+b)

and Pmax >

Apσ
2
K/σ2

1 , transmission over a single channel with cost Ac

at the maximum power level Ap achieves a smaller average
probability of error than performing optimal channel switching
between two channels.

4This result is obtained by combining the inequality in (14) with the three
possible scenarios in Proposition 3. Note that Pmax > Apσ2

K/σ2
1 guarantees

that the assumption in Proposition 3 holds for all channel pairs.
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Based on Lemma 1, it is also possible to describe scenarios
in which Strategy 1 or Strategy 2 is the optimal solution of the
channel switching problem; that is, switching among more than
two channels is not needed. The following proposition presents
such a scenario:

Proposition 5: Consider the optimal channel switching prob-
lem in (2) with the cost values as defined in (16), and assume
that Pmax → ∞. Then, the optimal channel switching strategy
involves at most two channels if the average power limit satis-

fies Ap ≥ 2 b σ4
K

κ2σ2
1(2σ

2
K
+b)

.

Proof: Please see Appendix C.
Proposition 5 states that in the absence of peak power con-

straints, if the average power limit is larger than a certain value,
then the optimal channel switching strategy is to use a single
channel exclusively or to switch between two channels; that
is, Strategy 3 is not optimal. In such a scenario, the optimal
solution is either to transmit over a single channel with cost
Ac if such a channel exists, or to switch between channel i
and channel j as specified in Proposition 4 if there exists no
channels with cost Ac.

Remark 3: Based on the results in Section III and Section IV,
the following algorithm can be described for obtaining the
optimal channel switching solution:

• If Ac = CK , the optimal channel switching strategy is to
transmit over channel K exclusively with power Ap (see
Remark 1-(i)).

• If Ac ≥ C1, the optimal channel switching strategy is to
transmit over channel 1 exclusively with power Ap (see
Remark 1-(ii)).

• If CK < Ac < C1,
— if the cost function is the logarithmic cost

function in (16), Ap ≥ 2 b σ4
K

κ2σ2
1(2σ

2
K
+b)

, and no

peak power constraints exist,
∗ if there exists a channel with cost Ac, trans-

mission over that channel at the maximum
power level Ap is the optimal strategy (see
Proposition 5 and Remark 2).

∗ otherwise, the optimal strategy is to per-
form time sharing between channel i and
channel j specified in (17) and (18) (see
Proposition 4), and the optimal solution
can be obtained based on (11).

— otherwise, the optimal channel switching
strategy is obtained based on the optimiza-
tion problem in (15).

V. NUMERICAL EXAMPLES

In this section, various numerical examples are presented to
provide illustrations of the theoretical results and to investigate
performance gains that can be achieved via channel switch-
ing. The following strategies are compared in the numerical
examples:

Optimal Single Channel: In this strategy, channel switching
is not allowed, and only one channel is employed exclusively.

Fig. 2. Average probability of error versus Ap for the optimal single channel
and optimal channel switching strategies, where K = 4, σ = [0.4 0.6 0.8 1],
C = [7 5 3 1], and Ac = 2.

The optimal solution for this approach is obtained by using
Strategy 1 in Section III.

Optimal Channel Switching: In this strategy, channel
switching is allowed, and the optimal solution of the channel
switching problem in (2) is obtained based on Strategy 3. (Since
Strategy 3 covers Strategy 2 as a special case, Strategy 2 is not
considered separately.)

A scenario with K Gaussian channels is considered, and
the standard deviations and the costs of the channels are
represented, for notational simplicity, in the vector form as
σ = [σ1 · · ·σK ] and C = [C1 · · ·CK ], respectively. For all the
examples, the peak power limit in (2) is set to Pmax = 10Ap,
where Ap is the average power limit. In addition, binary an-
tipodal signaling is considered, which corresponds to an error
probability expression as in (12) with η = κ = 1. First, a four-
channel system is studied, where σ = [0.4 0.6 0.8 1], C =
[7 5 3 1], and the average cost limit is equal to 2; that is, Ac = 2.
In Fig. 2, the average probabilities of error are plotted versus
the average power limit Ap for the optimal single channel and
optimal channel switching approaches. It is observed that the
optimal channel switching strategy outperforms the optimal
single channel strategy for all values of Ap. This is an expected
result since the optimal single channel approach cannot be the
optimal solution of the channel switching problem in this sce-
nario as there exists no channel with a cost of Ac and Ac < C1

(Corollary 1). To provide further investigations of the results in
Fig. 2, the parameters of the optimal channel switching strategy
are presented in Table I for some values of Ap. In the table, the
optimal channel switching solution is represented by channel
switching factors (λi, λj , λk) and power levels (Pi, Pj , Pk),
where i < j < k. The channels that are not employed in the
optimal solution are marked with “-” in the table. Since at
most three channels can be utilized in the optimal solution
according to Proposition 2, only two of the channel switching
factors are shown in the table, and the remaining one can be
calculated as λk = 1− λi − λj . It should be noted that λi,
λj , and λk correspond to the channel switching factors of the
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TABLE I
PARAMETERS OF THE OPTIMAL CHANNEL

SWITCHING STRATEGY IN FIG. 2

employed channels with the smallest index, the second smallest
index, and the third smallest index, respectively. For example,
for Ap = 0.1, channel 1 is employed with channel switching
factor 0.1667 and power 0.1821 and channel 4 is employed
with channel switching factor 0.8333 and power 0.0836. (In this
case, λk = 0, meaning that only two channels are employed
in the optimal solution). It is observed from Table I that the
optimal channel switching strategy performs channel switching
between two channels, which in compliance with Proposition 2.
In addition, the calculations show that the optimal channel
switching solution utilizes the maximum average power and
maximum average cost as claimed in Proposition 1. In addition,
the statements in Proposition 3 are verified, which can be
exemplified as follows: Parameter Aij in Proposition 3 can be
calculated for channel 3 and channel 4 as A34 = 0.7934. As
observed from Table I, when channel 3 and channel 4 are em-
ployed, Ap > A34 is satisfied and the conditions in Part (ii) of
Proposition 3 hold; that is, P4 > Ap > P3 > A34. In addition,
the ratio of the optimal power levels is always smaller than
the ratio of the noise variances, 1/(0.8)2 = 1.5625, as stated in
(14) in Proposition 3. (Note that Pmax = 10Ap > Apσ

2
4/σ

2
3 =

1.5625Ap is also satisfied.) Compared to the optimal channel
switching strategy, which performs channel switching between
channel 4 and another channel, the optimal single channel
solution always utilizes channel 4 at the maximum power limit
Ap since it is the only channel with a cost that is lower than the
average cost limit Ac. However, as observed from Fig. 2 and
Table I, performing time sharing between channel 4 and a
channel with a higher cost (lower error probability) reduces the
average probability of error in this scenario.

Next, the same channel configuration is considered with a
different average cost limit, which is given by Ac = 5, and the
average probability of error curves are presented in Fig. 3. In
this case, since there is a channel with a cost that is equal to Ac,
Corollary 1 does not apply; i.e., channel switching is not nec-
essarily optimal. As observed from the figure, for small values
of the average power limit Ap, the optimal channel switching
strategy outperforms the optimal single channel strategy (please
see Fig. 4 for a zoomed-in version of Fig. 3 for Ap ∈ [0, 1]),
whereas both strategies achieve the same performance as Ap

increases. Table II presents the parameters of the optimal chan-
nel switching solution, which indicates that employing channel
2 exclusively at the power limit (which is the optimal single
channel solution) becomes optimal when Ap is larger than a
certain value whereas switching between channel 1 and channel
4 is optimal for small values of Ap. Hence, it is concluded that
when there exists a channel with a cost equal to Ac, employing

Fig. 3. Average probability of error versus Ap for the optimal single channel
and optimal channel switching strategies, where K = 4, σ = [0.4 0.6 0.8 1],
C = [7 5 3 1], and Ac = 5.

Fig. 4. A closer look at Fig. 3 for Ap ∈ [0, 1].

TABLE II
PARAMETERS OF THE OPTIMAL CHANNEL

SWITCHING STRATEGY IN FIG. 3

a single channel exclusively may or may not be the optimal
solution depending on the system parameters.

To investigate the effects of the average cost limit in more
detail, the average probabilities of error are plotted versus Ac

in Fig. 5 for various values of Ap based on the same channel
configuration as in the previous scenario. As expected, the
average probability of error is a non-increasing function of the
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Fig. 5. Average probability of error versus Ac for the optimal single channel
and optimal channel switching strategies, where K = 4, σ = [0.4 0.6 0.8 1],
and C = [7 5 3 1].

average cost limit Ac. Also, in accordance with Part (ii) of
Remark 1, the average probability of error converges to the
error probability of the best channel (channel 1) at the average
power limit Ap when Ac is larger than or equal to the cost of the
best channel; i.e., when Ac ≥ 7. In addition, it is observed that
the optimal single channel strategy results in piecewise constant
average probabilities of error, which is due to the fact that the
optimal single channel solution corresponds the use of the best
channel that has a cost lower than or equal to Ac. Specifi-
cally, the optimal single channel strategy achieves the error
probabilities of g4(Ap), g3(Ap), g2(Ap), and g1(Ap) for Ac ∈
[1, 3), Ac ∈ [3, 5), Ac ∈ [5, 7), and Ac ≥ 7, respectively, where
gi(Ap) = Q(

√
Ap/σi) denotes the error probability of channel

i at power level Ap. Furthermore, Fig. 5 verifies the argument
in Corollary 1 that, for CK < Ac < C1, channel switching is
guaranteed to outperform the optimal single channel strategy if
Ac is not equal to the cost of one of the channels.

As another scenario, a five-channel system is considered, and
the cost values are calculated based on the logarithmic cost
function in (16) with b = 1. The standard deviations of the
channels are set to σ = [0.6 0.7 0.8 0.9 1], and the average cost
limit is given by Ac = 0.9. In Fig. 6, the average probability
of error is plotted versus Ap for the optimal single channel and
optimal channel switching strategies. Similar to the scenario in
Fig. 2, it is observed that channel switching outperforms the
single channel approach for all values of Ap as a consequence
of Corollary 1 as there exists no channel with a cost equal to
Ac. The parameters of the optimal channel switching strategy
in Fig. 6 are presented in Table III for some values of Ap. It
is noted that the optimal solution performs channel switching
among at most three channels in compliance with Proposition 2.
Also, numerical calculations show that the results in
Proposition 1 and Proposition 3 are satisfied. In addition, as
stated in Proposition 4, when Ap ≥ b σ4

5/(σ
2
1(2 σ2

5 + b)) =
0.926,5 the optimal channel switching between two channels

5Pmax > Apσ2
K/σ2

1 = 2.778Ap is always satisfied in this scenario since
Pmax = 10Ap.

Fig. 6. Average probability of error versus Ap for the optimal single
channel and optimal channel switching strategies, where K = 5, σ =
[0.6 0.7 0.8 0.9 1], C = [1.329 1.112 0.941 0.804 0.6931], and Ac = 0.9.

TABLE III
PARAMETERS OF THE OPTIMAL CHANNEL

SWITCHING STRATEGY IN FIG. 6

is performed between channel 3 and channel 4, which is
in accordance with (17) and (18). Furthermore, channel
switching among three channels is not optimal for Ap ≥
2 b σ4

5/(σ
2
1(2 σ2

5 + b)) = 1.852.
Finally, the average probabilities of error are plotted versus

Ac in Fig. 7 for various values of Ap based on the scenario
in Fig. 6. Similar observations to those related to Fig. 5 can be
made. Namely, if Ac is smaller than the cost of the best channel,
which is equal to 1.329, the optimal channel switching strategy
outperforms the single channel one when Ac is not equal to
the cost of a channel. On the other hand, for Ac ≥ 1.329, both
strategies achieve an average probability of error that is equal
to the error probability of the best channel at the power limit.

VI. EXTENSIONS

The problem formulation in Section II assumes that there is
a single RF chain at the transmitter and the receiver; hence,
only one channel is employed at any time during channel
switching. Also, the transmitter has an average power constraint
denoted by Ap, which can, for example, be determined ac-
cording to the hardware constraints and/or the battery life of
the communication system. This power constraint specifies a
restriction on the transmit powers that can be used over different
channels. An important extension is the scenario in which there
exist multiple RF chains at the transmitter and the receiver,
and multiple channels can be used simultaneously. For that
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Fig. 7. Average probability of error versus Ac for the optimal single
channel and optimal channel switching strategies, where K = 5, σ =
[0.6 0.7 0.8 0.9 1], and C = [1.329 1.112 0.941 0.804 0.6931].

scenario, two different cases can be considered. In the first case,
the transmitter has the same average power constraint as in
the single RF chain scenario, and multiple RF chains share the
power at each time. In that case, it can be shown that only one
of the RF chains should be used with all the available power
for minimizing the average probability of error. Therefore, this
case reduces to the case with single RF chains investigated in
the previous sections. For example, consider two RF chains at
the transmitter and the receiver, and assume that power P is
allocated for transmission over two channels simultaneously,
which are denoted as channel i and channel j with average noise
powers of σ2

i and σ2
j , respectively. If power Pi is allocated for

the RF chain that operates over channel i, and power (P − Pi)
for the RF chain over channel j, then the SNR at the receiver
becomes Pi/σ

2
i + (P − Pi)/σ

2
j via optimal processing [28],

which is maximized by setting Pi = P if σi < σj and Pi =
0 otherwise; that is, all the power is used for the RF chain
corresponding to the best channel. In the second case, it is
considered that the same power level can be used for all the RF
chains, which corresponds to an increased total power due to
the use of multiple RF chains. In that case, an equivalent model
can be developed and the proposed model in Section II can still
be employed as follows: Suppose that there exist R RF chains at
the transmitter and the receiver. Then, all R combinations of K
channels can be considered as new combined channels; that is,(
K
R

)
combined channels exist. For the ith combined channel,

let the average noise powers and the costs of the corresponding
R channels be denoted by σ2

i,1, . . . , σ
2
i,R and Ci,1, . . . , Ci,R,

respectively. Then, this combined channel can be considered
as a single channel as in Fig. 1 with an average noise power
of σ̃2

i = (σ−2
i,1 + · · ·+ σ−2

i,R)
−1 and a cost of C̃i = Ci,1 + · · ·+

Ci,R. Hence, the same problem formulation as in Section II is
obtained, and all the results in the previous sections apply. It
should be emphasized that the expression for σ̃2

i is obtained by
considering the SNR at the receiver after optimal processing,
which is expressed as P/σ̃2

i = P/σ2
i,1 + · · ·+ P/σ2

i,R [28].

VII. CONCLUDING REMARKS

In this study, optimal channel switching has been investigated
for Gaussian channels in the presence of average power and
average cost constraints. For generic cost functions, it has been
shown that the optimal channel switching strategy performs
time sharing among at most three channels and operates at
the average power and average cost limits. Also, for channel
switching between two channels, it has been proved that the
ratio of the optimal power levels is upper bounded by the
ratio of the larger noise variance to the smaller one under
certain conditions. In addition, for logarithmic cost functions,
the convexity properties of the error probability have been
characterized as a function of power and cost, and the optimal
channel switching strategy has been shown to employ at most
two channels, which can be determined based on specific for-
mulas, in certain scenarios. Numerical examples have provided
illustrations of the theoretical results. Future work involves the
incorporation of switching costs [20] in the design of optimal
channel switching strategies.

APPENDIX

A. Proof of Proposition 3

First, consider the problem in (11) without the peak power
constraints. Then, it can be solved based on (13). The first-order
derivative of the objective function in (13) with respect to Pi is
expressed as

−λ∗κ η

2
√
2π σi

√
Pi

e
−κ2Pi

2σ2
i +

λ∗√1−λ∗ κ η

2
√
2π σj

√
Ap−λ∗Pi

e
−κ2(Ap−λ∗Pi)

2(1−λ∗)σ2
j .

(25)

It is observed that the first-order derivative in (25) is a monotone
increasing function of Pi for Pi ∈ (0, Ap/λ

∗), which starts
from −∞ at Pi = 0 and increases monotonically towards infin-
ity as Pi goes to Ap/λ

∗. Therefore, there is a unique minimizer
P ∗
i for the optimization problem in (13), which corresponds to

the point at which the first-order derivative is zero. Equating the
first-order derivative in (25) to zero yields the following neces-
sary and sufficient condition for the optimal solution of (13):

e

κ2Pi
2σ2

i

−κ2(Ap−λ∗Pi)

2(1−λ∗)σ2
j =

σj

√
Ap − λ∗Pi√

1− λ∗ σi

√
Pi

. (26)

Since λ∗Pi + (1− λ∗)Pj = Ap, the condition in (26) can also
be expressed as

e
κ2

(
Pi
σ2
i

−Pj

σ2
j

)
=

σ2
jPj

σ2
i Pi

. (27)

If Ap = Aij , it can be shown, by using the definition of Aij

in the proposition, that Pi = Pj = Aij satisfies the condition
in (27). Since the solution of (27) is unique, the optimal
solution of (13) is obtained as P ∗

i = P ∗
j = Aij . In addition, as

Pmax > Ap = Aij , the optimal solution of the problem in (11)
is the same as that of (13) in this case; hence, the first part of
Proposition 3 is obtained.
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To prove the second part of the proposition, it is first observed
that the first-order derivative in (25) is a monotone decreasing
function of Ap and a monotone increasing function of Pi.
Therefore, the value of Pi at which the first-order derivative
becomes zero gets larger as Ap increases. Since the first-
order derivative becomes zero at Pi = Aij when Ap = Aij (as
proved in the first part), the first-order derivative becomes zero
at a value larger than Aij when Ap > Aij . Hence, the optimal
solution of (13) satisfies P ∗

i > Aij for Ap > Aij . In addition, it
is concluded from (27) that as P ∗

i increases, the optimal value of
Pj should also increase for the optimality condition in (27) to
be satisfied. In other words, P ∗

i > Aij also implies P ∗
j > Aij

based on the relation in (27). Next, the ordering between P ∗
i

and P ∗
j should be determined. To that aim, the optimal signal

values are expressed as P ∗
i = αAij and P ∗

j = βAij , where α
and β are some positive numbers that are larger than one. Then,
the optimality condition in (27) becomes eκ

2Aij(α/σ
2
i−β/σ2

j ) =
βσ2

j /(ασ
2
i ). From the definition of Aij in the proposition,

σ2
j /σ

2
i can be expressed as σ2

j /σ
2
i = eκ

2Aij(1/σ
2
i−1/σ2

j ). Then,
the optimality condition is stated as

α

β
= e

κ2Aij

(
β−1

σ2
j

−α−1

σ2
i

)
. (28)

If it is assumed that α > β, then (28) implies that β−1
α−1 >

σ2
j

σ2
i

. However, since σ2
i < σ2

j (as Ci > Cj), this inequality

leads to a contradiction. Therefore, α cannot be larger than
β. On the other hand, if it is assumed that α < β, then (28)

becomes α−1
β−1 >

σ2
i

σ2
j

, which is not a contradiction. Therefore,

it is obtained that α < β, that is, P ∗
i < P ∗

j , when Ap > Aij .
Furthermore, due to the average power constraint, λ∗P ∗

i + (1−
λ∗)P ∗

j = Ap, it is concluded that P ∗
j > Ap > P ∗

i . Combining
this result with the first result in this paragraph, it is obtained
that when Ap > Aij , the optimal signal values satisfy P ∗

j >
Ap > P ∗

i > Aij . Hence, the second part of Proposition 3 is
proved. The third part of the proposition can be proved in a
similar manner to the proof of the second part, and it can be
shown that Aij > P ∗

i > Ap > P ∗
j based on (25) and (27).

The final statement in the proposition can be proved as
follows: For Ap > Aij , it is obtained in the previous paragraph

that α−1
β−1 >

σ2
i

σ2
j

, where β > α > 1 with P ∗
i = αAij and P ∗

j =

βAij . The inequality can be manipulated as follows:

σ2
j

σ2
i

>
β − 1

α− 1
>

β

α
=

P ∗
j

P ∗
i

(29)

where the second inequality is obtained from the relation β >
α > 1. For Ap < Aij , the second part of the proposition states
that P ∗

i > P ∗
j . Since σ2

i < σ2
j by definition (as Ci > Cj), it is

obtained that P ∗
i /σ

2
i > P ∗

j /σ
2
j . Therefore, the relation in (27)

yields

σ2
jP

∗
j

σ2
i P

∗
i

= e

P∗
i

σ2
i

−
P∗
j

σ2
j > 1, (30)

which results in P ∗
i /P

∗
j < σ2

j /σ
2
i . Finally, for Ap = Aij ,

P ∗
i /P

∗
j = 1 as stated in the first part of the proposition. Overall,

the ratio between the optimal power levels is upper bounded by
σ2
j /σ

2
i for any value of Ap, as stated in the proposition.

Based on the three conditions in the proposition and the
inequality in (14), it can be shown that the optimal power
levels P ∗

i and P ∗
j are always smaller than Pmax since Pmax >

Apσ
2
j /σ

2
i . Hence, the properties of the solution of (11) obtained

without the peak power constraints (via the solution of (13))
also hold for the solution of the problem in (11) in the presence
of peak power constraints. �

B. Proof of Lemma 1

The error probability for a transmission power of P is
expressed as η Q(κ

√
P/σ) as in (12), where σ is the standard

deviation of the channel noise. Based on the cost function in
(16), σ is expressed as σ =

√
b/(eC − 1), which leads to the

following expression for the error probability:

g(P,C) = η Q (h(P )f(C)) , (31)

where h(P ) � κ
√
P and f(C) �

√
(eC − 1)/b. To investi-

gate the convexity of (31), the derivatives of h and f are
calculated first, which are expressed as

h′ =
κ2

2h
, f ′ =

bf2 + 1

2bf
,

h′′ = − κ4

4h3
, f ′′ =

(bf2 − 1)(bf2 + 1)

4b2f3
. (32)

Then, the first-order partial derivatives of g(P,C) with respect
to P and C are given by

∂g(P,C)

∂P
= η h′f Q′(hf) and

∂g(P,C)

∂C
= η hf ′ Q′(hf),

(33)
where Q′(x) denotes the first derivative of the Q-function.
(From (33), it is observed that the error probability is a mono-
tone decreasing function of power and cost as expected since
Q-function is monotone decreasing.) Next, the second-order
partial derivatives are calculated as

∂2g(P,C)

∂P 2
= η (h′f)2Q′′(hf) + η h′′f Q′(hf)

= η
(
fh′′ − f3h(h′)2

)
Q′(hf) (34)

∂2g(P,C)

∂C2
= η (hf ′)2Q′′(hf) + η hf ′′Q′(hf)

= η
(
hf ′′ − h3f(f ′)2

)
Q′(hf) (35)

∂2g(P,C)

∂P∂C
= η hh′ff ′Q′′(hf) + η h′f ′Q′(hf)

= η(1− h2f2)h′f ′Q′(hf) (36)

where the relation Q′′(x) = −x Q′(x) is employed to obtain
the final expressions. From (34)–(36), the 2 × 2 Hessian matrix
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can be formed for g(P,C), and the convexity of g(P,C)
can be investigated based on the positive definiteness of the
Hessian matrix, which requires the leading principal minors
to be positive [30]. It noted from (34) that the second-order
derivative with respect to P is always positive. Therefore, the
only condition for positive definiteness becomes the determi-
nant of the Hessian matrix to be positive, which leads, after
some manipulation, to the following inequality:

P >
b

κ2(bf2 + 2)
=

b

κ2(eC + 1)
, (37)

where the final expression is obtained based on the defini-
tion of f ; i.e., f(C) =

√
(eC − 1)/b. Therefore, the convex-

ity of g(P,C) requires that power P should be larger than
b/(κ2(eC + 1)) as stated in the lemma.

Finally, it is shown that Sc, as defined in the lemma, is a
convex set. Let (Pi, Ci) and (Pj , Cj) denote any two elements
from set Sc. Then, their convex combination is given by (λ Pi +
(1− λ)Pj , λ Ci + (1− λ)Cj), where λ ∈ [0, 1]. Since both Ci

and Cj are in (Cmin, Cmax), their convex combination resides
in the same interval as well. In addition, the convex combination
of the powers satisfies the condition for set Sc due to the
following inequalities:

λ Pi + (1− λ)Pj > λ
b/κ2

eCi + 1
+ (1− λ)

b/κ2

eCj + 1

>
b/κ2

eλ Ci+(1−λ) Cj + 1
(38)

where the second inequality follows from the strict convexity
of b/(κ2(eC + 1)). Therefore, Sc is a convex set, and g(P,C)
is a strictly convex function over set Sc. �

C. Proof of Proposition 5

The statement in the proposition can be proved via contra-
diction. Suppose that the optimal solution is to switch among
three different channels, and let the channel indices, channel
switching factors, and power levels for that optimal solution be
denoted by (i, j, k), (λi, λj , λk) and (Pi, Pj , Pk), respectively,
where Ci > Cj > Ck without loss of generality. Since the
optimal solution must utilize the maximum average cost Ac

(see Proposition 1), either Ci > Ac > Cj > Ck or Ci > Cj >
Ac > Ck must hold. Assume that Ci > Ac > Cj > Ck. (The
proof for the other scenario can be obtained in a similar man-
ner.) As stated in Proposition 1, the optimal solution operates
at the maximum average power and cost, which leads to the
following equality:

λi zi + λj zj + (1− λi − λj) zk = a, (39)

where zi = (Pi, Ci) and a = (Ap, Ac), as in the proof of
Proposition 4. Consider an alternative solution that switches
between two channels, channel i and channel j, with channel
switching factors γ and (1− γ) and powers Pi and Pj , re-

spectively, and utilizes the maximum average power and cost;
that is,

γ zi + (1− γ) zj = a. (40)

Based on (39) and (40), γ and λi can be obtained from the
average cost constraint as γ = (Ac − Cj)/(Ci − Cj) and λi =
(Ac − Ck − λj(Cj − Ck))/(Ci − Ck). First, it is shown that
λi > γ. To that aim, the following inequality is obtained from
the condition λi > γ based on the definition of λi and γ: (Ac −
Ck − λj(Cj − Ck))(Ci − Cj) > (Ac − Cj)(Ci − Ck), which
reduces, after some manipulation, to λj Cj + (1− λj) Ci >
Ac. Since (1− λj) = λi + λk, Ci > Ck, and λi Ci + λj Cj +
λk Ck = Ac, the inequality λj Cj + (1− λj) Ci > Ac always
holds, which verifies that λi > γ. Then, from (39) and (40), zj
can be expressed as

zj =
λi − γ

1− γ − λj
zi +

1− λi − λj

1− γ − λj
zk. (41)

The remaining part of the proof depends on the values of
powers Pi, Pj , and Pk.

Case 1: If all the power levels satisfy the convexity condition
in Lemma 1, then the following inequality can be obtained:

γ g(zi) + (1− γ) g(zj)

= γ g(zi) + λj g(zj) + (1− γ − λj) g(zj) (42)

< γ g(zi) + λj g(zj) + (1− γ − λj)

×
(

λi − γ

1− γ − λj
g(zi) +

1− λi − λj

1− γ − λj
g(zk)

)
(43)

= λi g(zi) + λj g(zj) + (1− λi − λj) g(zk) (44)

where g(zi) = g(Pi, Ci) denotes the average probability of
error as a function of power and cost, as defined in (31). In
obtaining the inequality in (43), the definition of zj in (41) and
the strict convexity of g are employed. Note that g is strictly
convex when the power levels satisfy the condition in Lemma 1,
which is the assumption in Case 1. In addition, it is noted that
the (1− γ − λj) term in (42) is never negative since γ < λi as
proved in the previous paragraph and λi < 1− λj by definition.
The inequality in (42)–(44) implies that the channel switching
between channel i and channel j with channel switching factors
γ and (1− γ), respectively, achieves a lower average probabil-
ity of error than the optimal solution, which switches among
channels i, j, and k with channel switching factors λi, λj ,
and λk, respectively. Hence, a contradiction arises. Therefore,
the strategy that switches among three channels cannot be
optimal. In other words, for any strategy that switches among
three channels, there exist a strategy that performs channel
switching between two channels and achieves a smaller average
probability of error.

Case 2: Suppose that some of the power levels do not satisfy
the convexity condition in Lemma 1. Since the average power
should be equal to Ap due to Proposition 1, at least one power
level should be below Ap. Assume without loss of generality
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that Pi < Ap. Then, the average probability of error for the
optimal solution that switches among three different channels
can be bounded from below as follows:

λi g(zi) + λj g(zj) + λk g(zk)

= λi g(zi) + (λj + λk)
(
λ̃j g(zj) + λ̃k g(zk)

)
(45)

≥ λi g(zi) + (λj + λk) (νj g(z̃j) + νk g(z̃k)) (46)

= λi g(zi) + ν̃j g(z̃j) + ν̃k g(z̃k) (47)

with λ̃j � λj/(λj + λk), λ̃k � λk/(λj + λk), ν̃j � (λj +

λk)νj , ν̃k � (λj + λk)νk, z̃j � (P̃j , Cj), and z̃k � (P̃k, Ck),
where P̃j and P̃k are the optimal power levels and νj and νk are
the corresponding optimal channel switching factors when the
channel switching is performed between channel j and channel
k only under the average cost limit Ãc � λ̃j Cj + λ̃k Ck and
the average power limit Ãp � λ̃j Pj + λ̃k Pk > Ap.6 Since
(P̃j , P̃k) and (νj , νk) are the solution of the optimal channel
switching problem in the presence of channel j and channel
k only under the average power limit Ãp and the average
cost limit Ãc, the average probability of error is bounded
from below by the expression in (46). From Proposition 3,
min{P̃j , P̃k} > σ2

j Ãp/σ
2
k. Then, based on a similar argument

to that in (24), it can be shown that the convexity condition
in Lemma 1 is satisfied for power levels P̃j and P̃k if Ãp >
b σ4

K/(κ2(2 σ2
1σ

2
K + b σ2

1)), which always holds due to the
assumption in the proposition and the fact that Ãp > Ap. Next
assume without loss of generality that ν̃j P̃j ≥ ν̃k P̃k. Then, the
lower bound in (47) can be improved as follows:

λi g(zi) + ν̃j g(z̃j) + ν̃k g(z̃k)

= (λi + ν̃j)
(
λ∗
i g(zi) + λ∗

j g(z̃j)
)
+ ν̃k g(z̃k) (48)

≥ (λi + ν̃j)
(
ν∗i g(z∗i ) + ν∗j g(z∗j)

)
+ ν̃k g(z̃k) (49)

= ν̂i g(z
∗
i ) + ν̂j g(z

∗
j) + ν̃k g(z̃k) (50)

with λ∗
i � λi/(λi + ν̃j), λ∗

j � ν̃j/(λi + ν̃j), ν̂i � (λi + ν̃j)ν
∗
i ,

ν̂j � (λi + ν̃j)ν
∗
j , z∗i � (P ∗

i , Ci), and z∗j � (P ∗
j , Cj), where

P ∗
i and P ∗

j are the optimal power levels and ν∗i and ν∗j are
the corresponding optimal channel switching factors when the
channel switching is performed between channel i and channel
j only under the average cost limit A∗

c � λ∗
i Ci + λ∗

j Cj and

the average power limit A∗
p � λ∗

i Pi + λ∗
j P̃j > 0.5 Ap.7 From

Proposition 3, min{P ∗
i , P

∗
j } > σ2

iA
∗
p/σ

2
j . Then, similar to (24),

it can be shown that the convexity condition in Lemma 1 is sat-
isfied for power levels P ∗

i and P ∗
j if A∗

p > b σ4
K/(κ2(2 σ2

1σ
2
K +

b σ2
1)), which is true due to the assumption in the proposition

and the fact that A∗
p > 0.5Ap. From (45)–(50), it is concluded

that when the assumption in the proposition holds, for any
strategy that performs channel switching among three different
channels, there exists another strategy that switches among

6The inequality Ãp > Ap follows from the assumption that Pi < Ap.
7The inequality A∗

p > 0.5 Ap follows from the assumptions that ν̃j P̃j ≥
ν̃k P̃k and Pi < Ap.

the same channels with power levels that satisfy the convexity
condition in Lemma 1, and achieves a smaller average prob-
ability of error. Therefore, the arguments in the previous part
of the proof (Case 1) can be employed to show that there
exists a strategy that performs channel switching between two
channels and achieves a smaller average probability of error
than the lower bound in (50). Therefore, channel switching
among three channels cannot be optimal under the condition
in the proposition. �
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