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Optimal Signal Design for Multi-Parameter
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Abstract—In this paper, the optimal stochastic design of multiple
parameters is investigated for an array of fixed estimators both
in the absence and presence of an average power constraint. Two
different performance criteria are considered: the total Bayes risk
criterion and the maximum Bayes risk criterion. It is obtained that
in the presence of parameters and the average power constraint,
the optimal stochastic parameter design results in randomization
(time sharing) among at most two and different signals
for the total Bayes risk and the maximum Bayes risk criteria, re-
spectively. The average transmitted signal powers corresponding
to the optimal parameter design approaches are specified, and the
characterization of the optimal approaches is provided in various
scenarios. In addition, sufficient conditions are derived to specify
when the stochastic parameter design or the deterministic param-
eter design is optimal. Finally, numerical examples are presented
to investigate the theoretical results, and to illustrate performance
improvements achieved via the proposed approaches.
Index Terms—Bayes risk, minimax,multi-parameter, parameter

estimation, stochastic parameter design.

I. INTRODUCTION

I N many parametric estimation problems, the aim is to
design the optimal estimator for an unknown parameter

based on a given probability distribution of observations.
The common estimators employed in such problems can be
categorized into two groups based on the presence of prior
information about the parameter to be estimated. If there exists
prior information about the parameter, Bayesian estimators,
such as the minimum mean-absolute error (MMAE) estimator
and the minimum mean-squared error (MMSE) estimator, are
commonly used [1]. On the other hand, when there is no prior
information about the parameter, the minimum variance unbi-
ased estimator (MVUE) or the maximum likelihood estimator
(MLE) can be designed [2]. All these approaches involve the
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design of an optimal estimator under certain constraints. In
a recent study, an alternative formulation is investigated by
considering the stochastic design of a parameter when the
estimator is fixed, where the aim is to improve the estimation
performance by optimally designing the transmitted signal
(which can be deterministic or stochastic) for each possible
parameter value [3]. It is shown that the performance of a given
estimator can be enhanced by the optimal stochastic parameter
design, which involves randomization (time sharing) between
at most two different values for the signal transmitted for each
parameter.
Randomization (time sharing) among different signal values

has been utilized in various frameworks to improve perfor-
mance of detection and estimation systems [4]–[17]. For
example, performance of some detectors can be enhanced by
the addition of a randomized noise component to the input (ob-
servation) without modifying the detector structure [4]–[10].
Such noise enhancement effects have been studied according
to various criteria such as Neyman-Pearson (NP) [4], [5],
Bayes [7], minimax [8], and restricted Bayes [9]. As another
application of randomization, transmitting randomized signals
for each information symbol can reduce the error probability of
an average power constrained digital communication system in
the presence of non-Gaussian noise [11], [12]. It is shown in
[11] that the optimal strategy is to perform randomization (time
sharing) among no more than three different transmitted signal
values for each information symbol under second and fourth
moment constraints. Randomization (time sharing) can be also
utilized in jammer systems for improved jamming performance
[18]–[20]. In [18], it is proved that a weak jammer employs
on-off time sharing to maximize the average probability of
error for a receiver operating in the presence of symmetric
unimodal noise. On the other hand, for an average power
constrained jammer that operates over an arbitrary additive
noise channel, the detection probability of an instantaneously
and fully adaptive receiver that employs the NP criterion is
minimized via randomization between at most two different
power levels [20]. In an estimation framework, benefits of
randomization are observed in the context of noise enhanced
estimation in [17], which proves that performance of some
suboptimal estimators can be improved by adding randomized
‘noise’ to the observations before the estimation process.
In some estimation problems, the optimal estimator can be

very complicated, and its implementation can be quite costly.
In such scenarios, it can be reasonable to employ a suboptimal
estimator with a low complexity, and try to employ alternative
approaches for improving the performance of that suboptimal
estimator. In [3], the optimal stochastic design of a single pa-
rameter is proposed in order to optimize the performance of a
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Fig. 1. System model for . Devices and transmit stochastic sig-
nals and for each value of parameters and , respectively. Devices

and estimate and based on the noise and interference corrupted
version of and , respectively.

given (suboptimal) estimator. (Please see Section II of [3] for
motivation and examples for stochastic parameter design.) It is
shown that the Bayes risk of a given estimator can be reduced
by performing randomization between at most two different
signal levels for each parameter. In this manuscript, the aim is to
propose a framework for the optimal stochastic design of mul-
tiple parameters. In this way, the approach in [3] for the single
parameter case is extended to the multi-parameter scenario in
which there exist multiple parameters (each can be a scalar or a
vector) and corresponding fixed estimators. That is, the optimal
stochastic design of multiple parameters is performed in order
to optimize the performance of an array of fixed estimators. It
should be emphasized that the difference of the multi-parameter
case investigated in this study from the single parameter case in-
vestigated in [3] is not only related to the number of parameters.
The proposed multi-parameter formulation in this study also
takes into account the possible interference among parameter re-
lated signals (cf. Fig. 1). In addition, two different performance
criteria, the total Bayes risk and the maximum Bayes risk, are
considered, and the probability distributions of the transmitted
signals are specified for the optimal stochastic parameter design
approaches. Furthermore, the average transmitted signal powers
corresponding to the optimal parameter design approaches are
determined, and the characterization of the optimal approaches
is provided for various scenarios. Also, sufficient conditions are
derived to specify when the stochastic parameter design or the
deterministic parameter design (which involves no randomiza-
tion) is optimal. Numerical examples are presented to inves-
tigate the theoretical results, and to illustrate performance im-
provements obtained via the proposed approaches.
The main contributions of this study can be summarized as

follows:
• The optimal stochastic design of multiple parameters for
improving the performance of a set of given estimators is
studied for the first time.

• Both the total Bayes risk and the maximum Bayes risk
criteria are considered, and it is shown that the optimal
solution involves randomization between/among at most
2 and different signals for the total Bayes risk
and the maximum Bayes risk criteria, respectively, under
an average power constraint, where is the number of
parameters.

• For the total Bayes risk criterion, it is shown that when
the optimal solution involves randomization between two
different signals, the average transmitted power is always

equal to the average power limit. Based on this result, a low
complexity approach for obtaining the optimal solution is
proposed.

• For the maximum Bayes risk criterion, a simple condition
is derived in order to specify scenarios in which the optimal
solution involves randomization between at most two dif-
ferent signals.

• Optimality conditions are derived to specify cases in which
the stochastic parameter design or the deterministic param-
eter design is optimal.

A. Motivation

The main motivation behind the stochastic parameter design
is to improve performance of a given (fixed) estimator at the
receiver by performing optimal mapping (which can be sto-
chastic in general) of parameter values at the transmitter [3].
This is especially useful when the optimal estimator is costly
and a suboptimal estimator is employed at the receiver. In such
cases, the stochastic parameter design provides a way of im-
proving the accuracy of parameter estimation. In addition to the
arguments provided in Section II of [3] for the stochastic de-
sign of a single parameter, additional motivations can also be
provided for the multi-parameter case. Estimation of multiple
parameters naturally arises in multiuser systems in which mul-
tiple devices send parameter related signals to multiple intended
devices. For example, a wireless sensor network with multiple
users, in which each user (Devices and in Fig. 1) aims
to send a parameter value (such as temperature or pressure) to a
corresponding device (Devices and in Fig. 1), can be con-
sidered. Since communications occur in the same environment,
interference can also be observed at each receiving device, as
shown in Fig. 1. In particular, when code division multiple ac-
cess (CDMA) is employed, each user transmits its parameters
via a waveform that depends on a specific spreading code for
orthogonalization purposes.1 However, in practical scenarios,
waveforms of different users cannot be perfectly orthogonal
(due to effects such as propagation delay) and some non-zero
cross-correlations exist, which leads to multiuser interference
[21]. Hence, the interference is determined by the cross-corre-
lation properties of the employed spreading sequences in the
system (cf. (1)). In addition, transmitters can obtain the knowl-
edge of the probability distributions of the noise via feedback.
Then, stochastic parameter design can be performed, and per-
formance of the estimators at the receivers can be optimized.

B. Organization

The remainder of the manuscript is organized as follows:
In Section II, the problem formulation is introduced and the
optimal randomization strategies are obtained. In Section III,
some properties of the optimal stochastic parameter design
approaches are discussed. Sufficient conditions are derived in
Section IV in order to specify when the stochastic parameter
design or the deterministic parameter design is optimal. After
the numerical examples in Section V, concluding remarks are
made in Section VI.

1Note that the model in (1) provides an abstraction for all the operations in
the system such as quantizer, encoder/decoder, modulator/demodulator, and ad-
ditive noise channel [3].
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II. STOCHASTIC DESIGN FOR MULTI-PARAMETER ESTIMATION

In this section, we establish a framework for the stochastic de-
sign of multiple parameters for a given set of fixed estimators.
Consider a parameter estimation scenario in which there exist

parameters denoted by , where each parameter re-
sides in . Information about parameter is transmitted by
device , which can transmit any signal related to ,
where . The transmitted signal is corrupted
by both additive noise and the interference from other trans-
mitted signals, and device tries to estimate the unknown pa-
rameter based on the noise and interference corrupted signal.
An example system is depicted in Fig. 1 for . It should be
emphasized that parameter is not necessarily transmitted as it
is; instead, device can transmit any function of , say . In
addition, function can be of any type; it can be a determin-
istic function of , or it can be a stochastic function. The aim of
this study is to find the optimal , i.e., the optimal probability
distribution of , for each .
It is noted that the difference between the single parameter

case studied in [3] and the multi-parameter case investigated
in this manuscript is not only related to the number of param-
eters. The proposed multi-parameter formulation in this study
also takes into account the possible interference among the pa-
rameter related signals, as shown by the dashed cross lines in
Fig. 1. Considering parameters, the received signal (obser-
vation) at device can be expressed as

(1)

for , where is the multiplier that is set
according to the interference between the parameter related
signals for the and parameters2, and represents the
channel noise, which has a probability density function (PDF)
denoted by . Each device tries to estimate based on
the corresponding observation in (1). It is assumed that the
devices employ fixed estimators specified by in order to
estimate . Let denote the overall parameter vector, which
is defined as . The prior distribution of
is represented by , and the parameter space in which
resides is denoted by . It should be emphasized that ( )
in (1) can be any function of .
The aim is to obtain the optimal probability distributions of
for each in order to minimize a function of the Bayes

risk for the given estimators, where . Since
the parameters can interfere with each other, the optimization
cannot be performed independently for each parameter in gen-
eral; therefore, a joint optimization should be performed.

A. Unconstrained Optimization

In this section, the optimal stochastic parameter design
problem is formulated without any constraints as [3]

(2)

2For the example of a CDMA system as in Section I-A, the terms in (1)
can be determined by the cross-correlation properties of the employed spreading
sequences in the system.

where represents the set of PDFs for for all pos-
sible values of parameter , and is the objective function
for the overall system. For the single parameter case, the Bayes
risk of the estimator was a natural choice for this objective func-
tion [3]. On the other hand, it is possible to consider various risk
functions for the multi-parameter case. In this section, two dif-
ferent objective functions are considered. The first one is the
sum of the Bayes risks of the estimators in the system (called
the total Bayes risk), and the second one is the maximum of the
Bayes risks of the estimators (called the maximum Bayes risk).
For both of these objective functions, the Bayes risk of each es-
timator should be calculated first. For the two parameter case,
the Bayes risk of the first estimator is expressed as

(3)

where denotes the cost of estimating as
[2], and . (The Bayes risk of the second estimator
can be expressed in a similar fashion.)
Defining an auxiliary function for the first estimator

as

(4)

and a similar function for the second estimator, the total Bayes
risk can be expressed as

(5)

with , , , and

(6)

For the parameter case, similar expressions can be obtained
by updating (3) and (4) in order to include the interference due
to the other parameters as well. In that case, (5) still has the
same form with the updated definition of which is given by

.
Similarly to [3], it can be shown that the solution of the op-

timization problem in (2) for the total Bayes risk in (5) can be
obtained as

(7)

for all , where denotes the Dirac delta function. Hence,
the deterministic parameter design is optimal and there is no
need for stochastic modeling in this scenario. Also it can be
observed from (7) that the solution is independent of the prior
distribution as the optimal solution is obtained for each
separately.
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When the maximum Bayes risk criterion is considered, the
objective function in (5) can be updated as

(8)

Based on similar arguments to those employed above for the
total Bayes risk criterion, it can be observed that the solution
is independent of the prior distribution and the optimal
solution can be obtained for each separately. Hence, the opti-
mization problem for the maximum Bayes risk criterion can be
formulated as follows:

(9)

The study in [8] considers an optimization problem that is in the
same form as (9) (please see (13) in [8]). Hence, Proposition
1 in [8] also applies to the problem in (9), which implies that
the optimal solution corresponds to a discrete random variable
with at most point masses for each under some mild and
practical conditions. Based on this result, the optimal stochastic
parameter design problem for the maximumBayes risk criterion
can be expressed as

(10)

for , where takes the value of with probability
for . Compared to (9), the formulation in (10)

provides a significant reduction in computational complexity as
it requires optimization over a finite number of variables instead
of over all possible PDFs. Since generic cost functions and noise
distributions are considered in the theoretical analysis, function

in (4) is generic as well; hence, the optimization problem in
(15) can be nonconvex in general.

B. Constrained Optimization
In this section, an average power constraint is considered [3]:

(11)

for , where is the Euclidean norm of vector ,
and represents the average power limit for . In general,
constraint can be a function of as well. From (5) and (11),
the optimal stochastic parameter design problem for the total
Bayes risk criterion can be expressed as

(12)

where is as defined in (6). Due to the structure of the ob-
jective function and the constraint, the constrained optimization
problem in (12) can be solved individually for each as

(13)

for . Therefore, the solution does not depend on the prior
distribution .
When the maximum Bayes risk criterion is considered, it can

be obtained from (8) and (11) that the problem becomes

(14)

for . Similar optimization problems in the form of (13)
and (14) have been investigated in the literature [3]–[5], [11].
The problem in (13) has the same form as the one considered in
[3]. Therefore, the statistical behavior of the optimal solution
is the same; that is, the optimal solution can be achieved by
a randomization (time sharing) between at most two different
values of for each , as stated in Proposition 1 in [3]. Then,
the optimal solution can be obtained based on a similar approach
to that in [3]. Namely, the optimal stochastic parameter design
problem for the total Bayes risk criterion can be expressed as

(15)

for . That is, the optimal parameter design involves the
use of at most two different signal values for each parameter
according to the total Bayes risk criterion. On the other hand,
the optimization problem in (14) has a different form than that
in [3]. Based on arguments similar to those in [22], the following
result can be obtained.
Proposition 1: Suppose that functions for

are continuous, and each component of resides in a finite
closed interval. Then, the optimal solution of (14) can be char-
acterized by the following probability density:

(16)

where and .
Proposition 1 states that the optimal solution can be achieved

by a randomization (time sharing) among at most dif-
ferent values of for each . Based on this result, the optimal
stochastic parameter design problem for the maximum Bayes
risk criterion can be expressed as

(17)

for .
From (15) and (17), it is concluded that randomization (time

sharing) of transmitted signal values may offer improvements
in the presence of an average power constraint for both the total
Bayes risk and the maximum Bayes risk criteria. In addition,
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the optimization problems in (15) and (17) can be nonconvex in
general since generic cost functions and noise distributions are
considered in the theoretical analysis.

III. CHARACTERIZATION OF OPTIMAL STOCHASTIC
PARAMETER DESIGN IN THE PRESENCE OF AVERAGE POWER

CONSTRAINT
In this section, some properties of the optimal stochastic

parameter design approaches in the presence of average power
constraints are discussed. Namely, the average transmitted
signal powers corresponding to the optimal parameter design
approaches are investigated, and the characterization of the
optimal approaches is provided in various scenarios.
For the total Bayes risk criterion, the following two results are

obtained when the stochastic parameter design is the solution
of (15) (equivalently, (13)); that is, when the optimal solution
involves randomization between two different signal values.3
Lemma 1: Assume that the solution of (15) involves random-

ization between two different signals. Then, (i) one of the sig-
nals has a power below the average power limit, and the other
signal has a power above the average power limit; (ii) the signal
with the higher (lower) power has a lower (higher) risk than the
other signal.

Proof: Both results are proved via contradiction. For part
(i), first assume that the powers of both signals are smaller than
or equal to the average power limit. Then, the solution cannot be
a randomization between these two signals since employing the
signal with the lower risk (i.e., lower ) exclusively achieves
a lower total Bayes risk (see (15))) than performing random-
ization between these signals. Second, assume that either the
powers of both signals are larger than the average power limit, or
the power of one signal is equal to and that of the other is larger
than the average power limit. In this scenario, the average power
constraint in (15) is violated; hence, this cannot be a valid sce-
nario. Therefore, it is concluded that if randomization between
two different signals is the solution of (13), then one of the sig-
nals must have a power below the average power limit, and the
other signal must have a power above the average power limit.
For part (ii), if the signal with the lower power has a risk which
is smaller than or equal to the risk of the other signal, then there
is no need for randomization. In that case, employing this signal
exclusively yields a lower risk; hence, randomization between
these signals cannot be optimal. Therefore, if randomization be-
tween two signals is the solution of (13), then the signal with the
higher (lower) power must have a lower (higher) risk than the
other signal.
Based on Lemma 1, the following result is obtained.
Proposition 2: If the solution of (15) (equivalently, (13)) in-

volves randomization between two different signals; that is, if
stochastic parameter design is optimal, then the average signal
power is equal to the average power limit; i.e., the solution op-
erates at the average power limit.

Proof: In order to prove the claim in the propo-
sition, suppose that is an optimal solu-
tion and utilizes a power strictly lower than the average
power limit; i.e., .

3In this study, the statement “the optimal solution involves randomization be-
tween two different signal values” is used to mean that there is no deterministic
solution that achieves the same performance as the optimal stochastic solution.

Without loss of generality, assume that and
as a result of part (i) of Lemma 1. Ac-

cording to part (ii) of Lemma 1, is
satisfied. Next, consider another solution with

. Note that the av-
erage power for this solution is equal to the average power limit;
that is, . In addition, it
can be shown that as , ,
and the average power of solution is larger than
that of solution . Since due
to part (ii) of}Lemma 1 and , it can be shown that
solution achieves a lower total Bayes risk than
solution ; that is,

(18)

Based on (18), it is concluded that solution
cannot be optimal, which results in a contradiction. Hence, it is
concluded that a solution with an average power lower than the
average power limit cannot be optimal for the scenario in the
proposition. That is, the solution of (15) operates at the average
power limit when the stochastic parameter design is optimal.
From Proposition 2, the solution of (15) can be obtained as

stated in the following proposition.
Proposition 3: The solution of (15) corresponds to either

deterministic parameter design or stochastic parameter design,
which can be obtained as follows:
• Deterministic Parameter Design: Transmit exclu-
sively for , where

(19)

• Stochastic Parameter Design: Perform time sharing (ran-
domization) between and with time sharing fac-
tors and

, respectively, where

(20)

for .
The solution of (15) is the one ((19) or (20)) that results in the
lower total Bayes risk.

Proof: There exist two possible scenarios for the solution
of (15). If no randomization is employed, the optimal solution
can be obtained as in (19), which is called the deterministic pa-
rameter design. On the other hand, randomization between two
signals can be performed. As stated in Proposition 2, the av-
erage signal power must be equal to the average power limit in
this scenario; that is, .
Therefore, the time sharing (randomization) factors can be cal-
culated as and

. In addition, from part (i) of}Lemma 1, one
signal has a power higher than the average power limit and the
other signal has a power lower than the average power limit.
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Hence, the optimization problem in (15) can be simplified as the
one in (20). Finally, it is observed that the solution that achieves
the lower risk in (19) and (20) becomes the solution of (15).
Proposition 3 provides a simple approach for solving (15).

Namely, the problems in (19) and (20) are solved, and the one
that achieves the lower total Bayes risk becomes the solution
of (15).
For the maximum Bayes risk criterion, the solution of (17)

(equivalently, (14)) can be characterized as a special form under
certain conditions. To that aim, the following lemma is pre-
sented first.
Lemma 2: Consider a set of functions, , for

. If minimum value of a certain function, say
, is strictly higher than the values of the other functions at

the same point, then this point is the solution of the minimax
problem; that is,

(21)

Proof: Let denote theminimizer of and
, , as stated in the lemma. Sup-

pose that is not the solution of the minimax problem, and
consider another point which yields a lower value for the
minimax problem; that is, . By definition,

. Combining the last two inequalities, it
is obtained that , which contradicts the fact
that the value of is strictly higher than the values of the other
functions at . Hence, it is concluded that no other point, ,
can yield a lower value for the minimax problem than .
Based on Lemma 2, the following result is obtained about the

solution of the optimal parameter design problem according to
the maximum Bayes risk criterion.
Proposition 4: Consider the probability distribution of that

minimizes the risk of the estimator under the average power
constraint, where . For that probability distri-
bution, if the risk of the estimator is strictly higher than the
risks of the other estimators, then this distribution is the optimal
solution of the minimax problem in (14) (equivalently, (17)) and
it involves randomization between at most two signals.

Proof: Consider the minimax problem in (17). Let the min-
imum risk of the estimator be strictly higher than the risks
of the other estimators for the distribution of that minimizes
the risk of the estimator under the average power constraint;
that is,

(22)

for , where denotes the prob-
ability distribution of that minimizes the risk of the
estimator. In this scenario, Lemma 2 implies that the optimal
solution for the estimator is the solution of the minimax
problem as well. Since the optimal solution for a single esti-
mator corresponds to randomization between at most two sig-
nals (consider (14) and (16) as if ), the solution of the
minimax problem in (17) is obtained via randomization between
at most two signals under the conditions in the proposition.

When the number of parameters is large, it can be difficult to
solve the optimization problem in (17) since the dimension of
the problem is high in that case. Proposition 4 offers a relatively
simple test based on the solution of several low dimensional op-
timization problems before trying to solve this high dimensional
optimization problem. If the conditions stated in the proposition
are satisfied then there is no need for solving the high dimen-
sional optimization problem.

IV. OPTIMALITY CONDITIONS
In this section, various conditions are derived in order to

specify when the stochastic parameter design or the determin-
istic parameter design is optimal. In order to investigate such
optimality conditions, the objective function to be considered
should be identified first. In this study, two different objective
functions, the total Bayes risk and the maximum Bayes risk, are
considered, and the optimality conditions differ for these func-
tions. For the total Bayes risk, the problem can be simplified to
minimizing the expectation of a single function, , as given in
(13). As it was stated in Section II-B, this problem has the same
form as the one studied in [3]. Therefore, the optimality condi-
tions proposed in [3] are valid for the total Bayes risk criterion
in this study as well. However, for the maximum Bayes risk cri-
terion, the problem has a different form as given in (14); hence,
the optimality conditions are different in this scenario. In this
section, the optimality conditions are investigated for the max-
imum Bayes risk criterion.
The optimal parameter design problem presented in (14) does

not necessarily yield a stochastic solution in all cases. In certain
scenarios, the deterministic design is the optimal solution and
in such cases the problem in (14) can be reformulated as

(23)

where is modeled as a deterministic quantity for each
. Let represent the minimizer of the optimiza-
tion problem in (23). Then, the minimum Bayes risk
achieved by the optimal deterministic parameter design
is expressed as
(c.f. (8)). On the other hand, the minimum Bayes risk
achieved by the optimal parameter design is denoted by

, where

is the optimal solution of (14) for a given . If the stochastic
parameter design is the optimal solution of the problem in
(14), then is strictly smaller than . Otherwise,
it is concluded that the deterministic parameter design is the
optimal solution and the stochastic design does not provide
any improvements; that is, . In the following
proposition, sufficient conditions presented for the second case.
Proposition 5: For the maximum Bayes risk criterion, the

stochastic parameter design cannot provide any improvements
over the deterministic parameter design if at least one of the
following conditions is satisfied for each :
• The solution of the unconstrained problem (see (9) or (10))
is deterministic (denoted by ) and satisfies the power
constraint; i.e., .

• is a convex function for .
Proof: The first part of the proof can be obtained sim-

ilarly to that of Proposition 2 in [3]. If the first condition in
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the proposition is satisfied, i.e., if the unconstrained problem
has a deterministic solution and , then the solu-
tion of (23) is the same as that of the unconstrained problem
in Section II-A; that is, . Therefore, the solution
of the optimal stochastic parameter design problem in (14) is
expressed as . Hence, the deterministic
parameter design is optimal in this case, and the stochastic pa-
rameter design cannot provide any improvements.
For the second condition in the proposition, it is noted that, for

any , holds due to Jensen’s inequality
as norm is a convex function. Therefore, in
(14) implies that must hold for any feasible
PDF of . Let be denoted by ; that is, .
Since the minimizer of (23), , achieves the minimum value
of among all that satisfy , the

inequality implies that

(24)

holds. If 's are convex functions, then

(25)

is obtained from Jensen’s inequality and from (24). Therefore,
when 's are convex, is never smaller

than the minimum value of (23), , for any
PDF of that satisfies the average power constraint. For this
reason, the minimum value of (14) cannot be smaller than

, which means that it is always equal to

as (14) covers (23) as a special case.
Overall, if at least one of the conditions in the

proposition is satisfied for all , the deterministic
and stochastic parameter design approaches achieve
the same minimum values for all parameters; that is,

, .

Hence, and

are equal.

For an example of Proposition 5, consider a scenario in which
two scalar parameters and are to be estimated in the pres-
ence of zero-mean additive noise n. The average power con-
straint is in the form of for all , and the esti-
mator is specified by . Also, the cost function is mod-
eled as . In this
case, in (4) can be calculated as

(26)

Fig. 2. Total Bayes risk versus and .

where is the variance of the noise component for the
first parameter. From (26), it is observed that is a convex
function for any value of . Similarly it is possible to show
that is also a convex function for any . Therefore, the
second condition in Proposition 5 is satisfied for all , which im-
plies that the performance of the deterministic parameter design
cannot be improved via the stochastic approach in this scenario.
In the following proposition, a modified version of Proposi-

tion 3 in [3] is obtained in order to present sufficient conditions
that specify scenarios in which the stochastic parameter design
provides improvements over the deterministic one.
Proposition 6: For the maximum Bayes risk criterion, the

stochastic parameter design achieves a lower Bayes risk than the
deterministic parameter design if there exists for which
all 's are second-order continuously differentiable around

, and a real vector and a positive number can be found
such that

(27)

(28)

for , where is the solution of (23),
denotes the gradient of at ,

is the Hessian of at , and
.

The conditions in Proposition 6 provide a relatively simple
technique, which is based on the first and second order deriva-
tives of , for determining if the stochastic parameter design
can provide improvements over the deterministic one. If the
conditions are satisfied, the stochastic parameter design is
guaranteed to outperform the deterministic parameter design,
in which case the optimization problem in (15) can be solved
to obtain the optimal solution. It should also be noted that there
may exist scenarios in which the stochastic parameter design
provides improvements over the deterministic one even though
the ‘ conditions in Proposition 6 are not satisfied, which is due
to the fact that the conditions are sufficient but not necessary. In
the next section, examples are presented for various scenarios.
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V. NUMERICAL RESULTS

In this section, numerical examples are presented in order to
investigate the performance of the optimal parameter design ap-
proach in various scenarios. Consider a wireless sensor network
scenario in which two CDMA users aim to send information
about two scalar parameters, and , to two intended devices
as in Fig. 1. Then, parameter vector is to be esti-
mated based on observation vector , which is mod-
eled via (1) as

(29)

where consists of the transmitted (stochastic)
signals for the two intended devices in the wireless sensor
network for parameter values and ( and can be
any function of and , respectively), repre-
sents additive noise at the intended devices,
denotes the crosscorrelation parameter that is determined
by the spreading sequences employed by the users (see
Section I-A), is the identity matrix of size 2 2, and is
the matrix of ones with the same size. The components
and of the additive noise are independent and identically
distributed Gaussian random variables, specified by PDFs

, which
is a common model employed in wireless communication sys-
tems. The estimator is specified by , which estimates
each parameter independently based on the corresponding ob-
servation. The cost function for each parameter is chosen as the
uniform cost function, which is calculated as
if and otherwise for ,
2. Based on this model, in (4) can be obtained as

(30)

where denotes the
-function. For each , is employed as the

constraint stated in (11). Similarly to (30), for the second
parameter can be obtained.
In the numerical examples, the parameter spaces for both pa-

rameters are specified as . Also, and
can take values in the interval [ 10, 10] subject to the av-

erage power constraint, . Also, the Gaussian
distribution of the noise is taken to be zero mean with

and is chosen to be 0.25. Since the noise is a zero-mean
random variable, can be considered as a practical esti-
mator.4 In addition, is used for the uniform cost function
described in the previous paragraph. To solve the optimization
problems, the Multi-Start algorithm [23] is used in MATLAB,
which employs a local solver from multiple start points to reach
the global optimal solution of a non-convex problem.
In Fig. 2, the total Bayes risks for the stochastic parameter de-

sign, the unconstrained parameter design and the conventional

4Although this is not the optimal estimator, it can be used in practice due to
its simplicity compared to the optimal estimator.

Fig. 3. Total Bayes risk versus and .

Fig. 4. Maximum Bayes risk versus and .

parameter design (which transmits the parameters as they are;
that is, employs ) are illustrated. Also in Fig. 3, the total
Bayes risks for the stochastic parameter design and the deter-
ministic parameter design are compared. It is observed that the
stochastic parameter design achieves improvements over the de-
terministic and conventional designs. Also, for some values of

and , the performance of the stochastic design is the same
as the unconstrained one.
In Fig. 4, the maximum Bayes risks for the stochastic param-

eter design, the unconstrained parameter design and the con-
ventional parameter design are plotted. Also, in Fig. 5, the max-
imum Bayes risks for stochastic parameter design and the de-
terministic parameter design are illustrated. Similar to the pre-
vious scenario, it is observed that the stochastic parameter de-
sign provides improvements over the conventional and deter-
ministic parameter design approaches for certain range of pa-
rameter values.
In Table I, the total Bayes risk criterion is considered, and

the optimal solutions for the stochastic, the deterministic and
the unconstrained parameter design approaches are presented
for various values of . It is observed from the table that the
optimal stochastic parameter design can involve randomization
between two different signals for certain values of , which
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TABLE I
UNCONSTRAINED SOLUTION , OPTIMAL DETERMINISTIC SOLUTION , AND OPTIMAL STOCHASTIC SOLUTION

FOR THE TOTAL BAYES RISK CRITERION

TABLE II
UNCONSTRAINED SOLUTION , OPTIMAL DETERMINISTIC SOLUTION , AND OPTIMAL STOCHASTIC SOLUTION

FOR THE MAXIMUM BAYES RISK CRITERION

Fig. 5. Maximum Bayes risk versus and .

corresponds to the cases in which the stochastic approach out-
performs the deterministic parameter design, as can be verified
from Fig. 3. Similarly, Table II presents the optimal solutions for
the stochastic, the deterministic and the unconstrained param-
eter design approaches for the maximum Bayes risk criterion.
The main difference in this scenario is that randomization (time
sharing) among up to three different signals can be performed

for the optimal stochastic parameter design in accordance with
Proposition 1.
Next, the maximum Bayes risk criterion is considered, and

the conditions in Proposition 6 are studied. Namely, the exis-
tence of a real vector and a positive number that satisfy the
conditions in Proposition 6 for a certain value of is investi-
gated. Consider the parameter value . If all the four
conditions (two conditions for each estimator) are satisfied for
this value of , then it is guaranteed that the stochastic parameter
design yields a lower maximum Bayes risk than the determin-
istic design. To test the first condition for each estimator, we
need the value of and the gradients of and at

. As it can be observed from Table II, for
, and the gradients of and at

can be calculated based on the following equations:

(31)

where ,
, , and

. Based on these equations,
the first condition in Proposition 6 can be evaluated for each
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Fig. 6. Regions (white) in which the optimality conditions stated in Proposition
6 are satisfied for different values of for .

estimator. The first two plots in Fig. 6 illustrate the values of
for which the first condition in Proposition 6 is satisfied for the
first and the second estimator, respectively, for and

. Namely, in the white (black) regions, the conditions are
satisfied (not satisfied). As observed from the figure, there are
certain regions in which the first condition is satisfied for each
estimator. Next, the second condition in Proposition 6 is tested.
To that aim, the Hessians of and at
are calculated. The Hessians of these functions can be found as
follows:

(32)

where , , , and are as defined previously. Based on
(31) and (32), the second condition in Proposition 6 can be
evaluated for each estimator. The results of these evaluations
are shown in the second and third plots in Fig. 6 for different
values of . Similar to the first condition, the second condition
is satisfied in certain range of values (white regions). The last

Fig. 7. The total Bayes risk for .

plot in Fig. 6 shows the intersection of the regions in which
the conditions are satisfied. As observed from the figure, the
intersection is not an empty set, hence we can conclude that
there exist a real vector and a positive number for which
all the conditions in Proposition 6 are satisfied. Therefore, in
this scenario, it is guaranteed that the stochastic parameter de-
sign achieves a lower Bayes risk than the deterministic design
for as a result of Proposition 6. The applicability of
Proposition 6 is also investigated for the whole parameter space,

, and the sets of parameter values for
which the stochastic design provides (i) no improvements over
the deterministic design, (ii) improvements over the determin-
istic design but Proposition 6 does not apply, and (iii) improve-
ments over the deterministic design and Proposition 6 applies
are specified. The calculations show that, in the considered ex-
ample, Proposition 6 provides sufficient conditions for improv-
ability that are valid over a significant portion (about 58%) of
the improvability region (in particular, for large values of the
parameters in the improvability region) but the conditions are
not necessary in general.
In order to gain intuition and further understanding, Fig. 7 and

Fig. 8 visualize how the stochastic design approach provides
performance improvements over the deterministic one for the
total Bayes risk and the maximum Bayes risk criteria, respec-
tively. In Fig. 7, the total Bayes risk is illustrated for

. The region inside the circle corresponds to the
values of that satisfy the power constraint individually. Here
it can be seen that the minimum value of is observed at
a value of which does not satisfy the power constraint. In
that case, the unconstrained solution simply picks that value
of as . On the other hand, the optimal deterministic so-
lution, picks the value of residing on or inside the circle,
which minimizes the value of , denoted as . Obvi-
ously, there is a performance gap between the unconstrained so-
lution and the optimal deterministic solution, as can be observed
from Fig. 2 and Fig. 3. The proposed stochastic design approach
aims to achieve improvements over the deterministic solution.
To that aim, the stochastic design perform randomization (time
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Fig. 8. The Bayes risk for the first estimator, , and the Bayes risk for the second estimator, , for .

sharing) between two signals, i.e., one that satisfies the power
constraint with low performance, the other that does not satisfy
the constraint but has high performance, as can be seen from
Fig. 7. By randomizing between these two signals, it is possible
to satisfy the power constraint on the average and to achieve
a better performance than the optimal deterministic design. In
Fig. 8, the Bayes risks for the estimators, and ,
are illustrated for . As stated in (14), the stochastic
design aims to minimize the maximum of the expectations of

and . It is observed from Fig. 8 that the minimum
values of and coincide outside the power con-
straint. Therefore, it is not possible to pick a single point which
minimizes the maximum Bayes risk and satisfy the constraint at
the same time. Similar to the total Bayes risk case, the stochastic
design should perform randomization between some signals in-
side and outside the constraint to achieve improvements over
the deterministic design. However, as seen in Fig. 8, the min-
imum values of and do not coincide inside the
constraint and as a result any signal minimizing one of
and maximizes the other one. Hence it is not possible to
pick just one signal that satisfies the constraint and randomize it
with another signal that does not satisfy the constraint. To over-
come this problem, two signals satisfying the constraint should
be chosen and these two signals should be randomized with a
signal that does not satisfy the power constraint. As a result, the
expectations of both and are minimized to a cer-
tain point, which makes it possible to minimize the maximum
of these expectations.
Finally, in Fig. 9 and Fig. 10, the total Bayes risks (black) and

the maximum Bayes risks (red) of the different approaches are
plotted versus the standard deviation of the noise components
and the cross-correlation parameter in (29), respectively, for

, where in Fig. 9 and in and
Fig. 10. It is observed that the optimal stochastic design provides
improvements over the optimal deterministic design, and the
two algorithms have similar performance for small and/or for
large values of (i.e., in the noise-limited regime).

Fig. 9. The total Bayes risk (black) and the maximum Bayes risk (red) versus
the noise standard deviation for and .

Fig. 10. The total Bayes risk (black) and the maximum Bayes risk (red) versus
the cross-correlation parameter in (29) for and .
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VI. CONCLUSIONS

In this paper, the optimal stochastic design of multiple param-
eters has been studied for a given set of fixed estimators. Two
different performance criteria have been considered; namely,
the total Bayes risk criterion and the maximum Bayes risk cri-
terion. It has been shown that, in the presence of param-
eters, the optimal stochastic parameter design results in time
sharing (randomization) among at most two and dif-
ferent signals values for the total Bayes risk and the maximum
Bayes risk criteria, respectively. In addition, the average trans-
mitted signal powers corresponding to the optimal parameter
design approaches have been specified, and the characterization
of the optimal approaches has been provided in various sce-
narios. Furthermore, various conditions have been derived in
order to specify when the stochastic parameter design or the de-
terministic parameter design is optimal. Finally, the numerical
examples have been presented to investigate the theoretical re-
sults, and to illustrate the amount of improvements achieved via
the proposed approach.
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