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Abstract We provide a simple counter-example to prove and illustrate that the back-
ward differential flow approach, proposed by Zhu, Zhao and Liu for finding a global
minimizer of coercive even-degree polynomials, can converge to a local minimizer
rather than a global minimizer. We provide additional counter-examples to stress that
convergence to a local minimum via the backward differential flow method is not a
rare occurence.
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1 Introduction

In their recent article, Zhu et al. [1] provide a method for finding a solution to global
minimization of multivariate polynomials of even degree. In this note, we exemplify,
and thus prove, that their method does not necessarily yield a global minimizer.
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2 Preliminaries

For simplicity, we focus on the special case of monic quartic univariate polynomials
f : R — R such that

f(x) =x4+a3x3 +a2x2+a1x + ag,
where ag, aj, a; and a3z are real numbers. What Zhu et al. propose in [1] can be

translated into this setting as one of solving the following initial value problem. With
x : R — R as the dependent variable and ¢ as the independent variable,

. x()
H=——— 0<t<ty, x(to)=x0, 1
x(t) ) 11 <t=ty, x(f)=xo (H
where x = dx/dr, such that
f'(x0) +t0x0 =0 2
and
f’(x)+1t >0, forallxeR. 3)

Theorem 4.1 in [1], which is the main result for the so-called backward differential
flow method, can then be rephrased as follows.

“If x(¢) solves (1) and f"(x(z)) + ¢ > 0 for all ¢ €]0, tg], then x(0) is a global
minimizer of f(x).”

We note that, because f is a monic quartic polynomial, and so is coercive, a large
enough positive 7y can always be found so that Condition (3) is satisfied. Zhu et
al. provide an estimate of ¢y by restricting the domain of f to a closed ball (in the
univariate case, —a < x < a), in which a global minimizer is contained. In the quartic
univariate case, one can even find the smallest 7y satisfying (3) easily (as illustrated
in the counter-example below). Therefore, an estimate for 7y as proposed in [1] is
not needed. Then, by (3), there exists a unique solution xg to (2). Finally, the initial
value problem (1) is solved from x (fy) = xo backward in ¢, with the resulting solution
referred to as backward differential flow by Zhu et al., to obtain x (0). The point x (0)
is claimed in [1] to be a global minimizer. We will prove, via a counter-example, that
x(0) is not necessarily a global minimizer.

Before providing a counter-example to Theorem 4.1 of [1], we will make some
remarks in order to view the problem from a slightly different point.

Remark 2.1 Define
-
p(x, 1) = f(x)+ 7%

Then, ¢(x, t) can be viewed as a quadratic regularization of f(x), with regularization
parameter ¢ > 0. Note that ¢, (x, 1) = f'(x) + ¢ x and @5 (x, 1) = f”(x) + t, where
the subscripts x and xx stand for 3/dx and 3%/dx>, respectively. Therefore, (2)—(3)
above can be rewritten as
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@x(x0, 10) =0,
and
Yex(x,f0) >0, forallx € R.

We now recall a well-known fact regarding maximal extension of solutions of
ODEs.

Remark 2.2 Assumethat f : R — Ris twice continuously differentiable everywhere.
Let 7o € R and xo € R such that

f(x0) +tox0=0 and f"(xg) + 1o > 0. 4)

The following hold.

(a) There exists r > 0 such that there is a unique solution x(-) of (1) in Jtg —r, to+r][.
(b) There exists a maximal interval to the left of 7o, say ]my, fo], such that there exists
a solution of (1) in ]myg, 19].

(c) Either my = —o0, ormg € R and f”(x(mg)) + mg = 0.

Part (a) follows from the classical Picard-Lindelof existence and uniqueness theorem
(see [2]), because the right-hand side of the ODE in (1) is Lipschitz continuous in x
and continuous in ¢ in a neighborhood of #y. Part (b) is the classical result on maximal
extension of solutions of ODEs. The option mo = —oo of part (c) corresponds to the
case in which the right-hand side remains Lipschitz continuous in x for all # < #y. The
remaining option happens when the denominator

q() = f"(x@) +1 (5)

vanishes at t = my.

In the following simple lemma, we state a straightforward reformulation of the
initial value problem in (1).

Lemma 2.1 Assume that f : R — R is twice continuously differentiable everywhere.
Lettg € Rand xo € R be chosen as in (4). Let x (-) be the maximally extended solution
of (1), and Imy, to] the corresponding maximal interval. Then, we have that

or(x(@), 1) = f/x@®) +1x(@) =0, @ex(x(1),1)
= f"(x()+1t >0, Vt € [mo, 1o].

Proof Solvability of (1) over Jmyg, fo] implies that the right-hand side of the ODE is
continuous on ]my, fp]. In other words, the denominator of the right-hand side of the
ODE is not zero and so it does not change sign on ]my, fo]. Since ¢, (x(ty), fo) > 0
and the solution exists in |mg, fg], we must have

Qex(x(), 1) = f"(x(0)) +1 >0, (6)
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forall ¢ € Jmyg, t9]. Then, for all ¢ € |my, t9], we can rewrite the ODE in (1) as

() (f"(x(@®) + 1)+ x1) =0,

which can be rewritten in terms of ¢ as

d
a ¥ (x(1),1) =0. (7
By (4), we also have
@x (x(10), 10) = f'(x(20)) + x(t0) to = 0. ®

Equalities (7) and (8) imply that

Px(x(0), 1) = f'(x(0)) + x(t) 1 =0, )
for all ¢ € Jmy, to]. Equality (9) holds at r = mg by continuity of f’ and x(-). O

Nextlemma shows that if we start with a negative initial value at #(, then the solution
of the initial value problem (1) remains negative over its maximal domain of definition.

Lemma 2.2 Let f : R — R be twice continuously differentiable everywhere. Let
to € R and xo € R be chosen as in (4). Consider the initial value problem (1). Let
x(+) be the maximally extended solution of (1), and Jmy, ty] the corresponding (finite
or infinite) maximal interval of definition of x(-). If xo < 0, then x(t) < 0 for all
t €lmg, tol. If mg € R, then x(mp) < 0.

Proof Suppose that for some ¢ € Jmy, tp], we have x(t) > 0. Consider the set § :=
{t € mo, to] : x(t) > 0}. This set is non-empty and bounded above by 7. Let

t; :=sup S.

Note that 1 € S and #; < f9. We claim that x(¢;) > 0. Indeed, if x(¢;) < 0, then for
some r > 0, we have

x(t) <0, forallt €ty —r,t; +r]. (10)
By definition of #; as a supremum of S, there exists ¢ € S such that r €]y — 7, 11],
which means that x(z) > 0, contradicting (10). Hence, x(¢;) > 0 and by definition of

t1, we have
x(t) <0, forallt €]z, t9]. (11)

Using (11) and Lemma 2.1 in the ODE in (1), we conclude that

%(t) > 0, forallt €], fo]. (12)

@ Springer



J Optim Theory Appl (2015) 167:401-408 405

By the mean value theorem, there exists s € ]¢1, #9] such that
x(11) = x(19) + x(s) (t1 — t0) < xo,
where we used (12). The above expression implies that
x(t1) < x9 <0, forall ¢t €]t, 9], (13)

which is a contradiction. Hence, x(¢) < 0, for all ¢+ € ]my, tp]. To prove the last
assertion of the lemma, assume on the contrary that x (mo) > 0. Since x(¢t) < 0, for
all ¢ € Jmo, 1], use again Lemma 2.1 in the ODE in (1), to obtain (12) with m¢ in the
place of 1. Using the mean value theorem again, we get

0 < x(mg) = x(tp) + x(s) (mo — t9) < xo9 <0,

for some s € |my, tp]. The above expression entails a contradiction, which implies that
x(mg) < 0. O

Lemma 2.3 Let f : R — R be twice continuously differentiable everywhere. Let
to € R and xop € R be chosen as in (4). Consider the initial value problem (1) with
xo < 0. Assume that the system, with the unknown (x, t) € R?, given by

ffx)+tx=0, f'x)+t=0, (14)

has a unique real solution (X,1) withX > 0 andt > 0. Then, the solution of (1) can
be infinitely extended to the left; in other words, my = —o00, and so x(t) < 0, for all
t <ty

Proof Indeed, assume that, on the contrary, my € R. By Remark 2.2(c), this can only
happen if the right-hand side of (1) becomes discontinuous at + = m. This implies
that

f"(x(mo)) +mo = 0. 15)

By Lemma 2.1, we have
Flx@) +1x@) =0,
for all ¢ € [my, to]. This fact combined with (4) implies that
f(x(mo)) + mo x(mg) = 0. (16)
By Lemma 2.2, we have that x (mg) < 0. Equations (15) and (16) imply that there is
apair (x, t) = (x(mg), mgo) which solves system (14), with x < 0. Since system (14)

has a unique solution (x, 7) with x > 0, we arrive at a contradiction. Hence, we must
have my = —oo. It follows by Lemma 2.2 that x(r) < 0, for all r < fg. O
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3 Counter-Example
Proposition 3.1 Consider
fx) =x*—8x> —18x? + 56x.

Suppose that x(t) solves (1). Then, one has that f"(x(t)) +t > 0 for all t €10, ty],
but that x(0) is not a global minimizer of f(x).

Proof We will first show that this quartic polynomial function f(x) verifies the
hypotheses of Lemma 2.3. Then, we will conclude that there exists 7y such that the
denominator g (#), defined in (5), is positive for all ¢ € }-00, #9]. Hence, f(x) satisfies
the assumptions of Theorem 4.1 in [1].

Note that f(x) has local minima at x = —2 and x = 7 and a local maximum at
x = 1. We also note that f(—2) = —104, f(7) = —833 and f(1) = 31. Therefore,
x = 7 is the global minimizer of f(x).

Let us now compute 7y and xo. We have

@ (x0, 10) = 4 x5 — 24 x5 + (1o — 36) x0 + 56 = 0 (17)
and
Qux(x,10) = 12x% —48x + 19 — 36 > 0, forall x € R.
The minimum of the quadratic function g, (x, f9) above occurs at x = 2. Therefore,

one gets fyp > 84, to guarantee that (3) holds. Let 1o = 100. Then we obtain, as the
only real solution of (17),

Xo=2+ ((\/18417/9) - 15)1/3 - 4/ (3 ((\/18417/9) - 15)1/3) <0,

by means of some computer algebra package, e.g., MATLAB. Approximately, xo &
—0.681220. The initial value problem (1) becomes

x(1)

)= 12x2(1) — 48x(1) + 1 — 36

0 <t <100, x(100) = xo. (18)

Next, let us show that f verifies the hypotheses of Lemma 2.3. From ¢, (X, 7) = 0,
which is the second equation of (14), we get

T=—12x>+48x + 36.

Substitution of this expression for 7 into ¢y (X, 7) = 0, which is the first equation of
(14), yields

8% —24%2 —56 = 0.
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Fig. 1 Backward differential flow for the counter-example, f(x) = x*—8x3 —18x2 +56x

The only real solution of the latter equation is found as

1/3
_ 9+ /77 / 2 173
=1+ —(—=— > 0,
2 94+ 77

by MATLAB. Approximately, X &~ 3.554149 and, in turn, f ~ 55.01544.

Therefore, the hypotheses of Lemma 2.3 are satisfied. Note also that the denom-
inator in (5), g(to) = ¢(100) > 0. Since, by Lemma 2.3, the solution of (18) is
well-defined on }-oo, 100], we have that the denominator ¢ (#) > Oforallz € [0, 100],
satisfying the hypotheses of Theorem 4.1 in [1].

Since xg < 0 and ¢(100) > 0, we have x(100) > 0, and so, by Lemma 2.3, the
unique x(¢) which solves (18) is negative for all # € [0, 100]. However, x(0) < 0 is
not the global minimizer of f(x). O

In Fig. 1, an illustration of the backward differential flow method, as applied to
the polynomial in Proposition 3.1, is given. The solution curve of (18) is depicted
on a surface plot of the function ¢(x, ). The curve is generated by solving (18)
numerically using the MATLAB function odel113, with RelTol = le-06.Itcan
be clearly observed in the figure that x (0) approximates the local minimizer x = —2,
rather than the global minimizer x = 7.

3.1 Other Counter-Examples

The fact that x(0) is not a global minimizer is not a rare occurence; indeed, it is
frequently encountered. In what follows, we provide a few more examples for which
x(0) of the backward differential flow is not a global minimizer.

fx) = xt— (16/3) X3=2x24+16x42 (global minimizer: x = 4;local minimizer:
x=-1)
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f(x) = x* 4+ (20/3) x> —2x? —20x + 3 (global minimizer: x = —5; local
minimizer: x = 1)

4 Conclusions

We have demonstrated, via a counter-example, that the backward differential flow
approach presented by Zhu et al. [1] does not necessarily yield a global minimizer of
a coercive even-degree polynomial. The counter-example will hopefully help/prompt
to determine where the proof of Theorem 4.1 in [1] breaks down. This might in turn
help find a correct statement for the theorem.
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