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This work investigates inter-subject and inter-activity variability of a given activity dataset and pro-
vides some new definitions to quantify such variability. The definitions are sufficiently general and
can be applied to a broad class of datasets that involve time sequences or features acquired using
wearable sensors. The study is motivated by contradictory statements in the literature on the need
for user-specific training in activity recognition. We employ our publicly available dataset that con-
tains 19 daily and sports activities acquired from eight participants who wear five motion sensor units
each. We pre-process recorded activity time sequences in three different ways and employ absolute,
Euclidean and dynamic time warping distance measures to quantify the similarity of the recorded
signal patterns. We define and calculate the average inter-subject and inter-activity distances with
various methods based on the raw and pre-processed time-domain data as well as on the raw and pre-
processed feature vectors. These definitions allow us to identify the subject who performs the activ-
ities in the most representative way and pinpoint the activities that show more variation among the
subjects. We observe that the type of pre-processing used affects the results of the comparisons but
that the different distance measures do not alter the comparison results as much. We check the con-
sistency of our analysis and results by highlighting some of our activity recognition rates based on an
exhaustive set of sensor unit, sensor type and subject combinations. We expect the results to be use-
ful for dynamic sensor unit/type selection, for deciding whether to perform user-specific training and

for designing more effective classifiers in activity recognition.
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1. INTRODUCTION AND RELATED WORK

Recent work on automatically recognizing daily activities
focuses on machine learning algorithms that rely on simul-
taneous input from several different sensor modalities such
as visual, inertial, acoustic, force, pressure, strain, physio-
logical and kinetic sensors, among others [1, 2]. Collecting
information about a user’s activities for ambient-assisted
living in smart homes and detecting abnormal behavior to
assist the elderly or people with special needs are challenging
research issues [3, 4]. These systems aim to maintain the user’s

independence, enhancing their personal safety and comfort and
delaying the process of moving to a care home. However, auto-
matic monitoring of people performing daily activities should
be done without restricting their independence, intruding on
their privacy or degrading their quality of life.

A commonly used approach in designing smart environments
involves the use of one or more types of external sensors in a
complementary fashion (e.g. cameras and tactile sensors), usu-
ally with relatively high installation cost and heavy demands
on computing power [5, 6]. If a single camera is used, the 3D
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scene is projected onto a 2D one, with significant information
loss. Other people or pets moving around may easily confuse
such systems. Occlusion or shadowing of points of interest (by
human body parts or objects in the surroundings) is resolved
by using 2D projections from multiple cameras in the envi-
ronment to reconstruct the 3D scene. Each camera needs to be
individually calibrated and suffers from the correspondence
problem. To resolve the latter, points of interest on the human
body are pre-identified by placing special, visible markers at
those points and the positions of the markers are recorded by
cameras. Processing and storing camera recordings is costly
and camera systems obviously interfere with privacy. Recorded
data are highly sensitive to privacy breaches when transmitted
or stored [7]. Continuous monitoring may cause stress and dis-
comfort on the subject and may subsequently cause changes in
his natural movements.

The main advantage of embedding external sensors in the
environment is that the person does not have to wear or carry
any sensors or devices. This approach may also eliminate
problems related to misplacing sensors on the body, although
some camera systems do require wearing/pasting on special
tags or markers as mentioned above. Designing smart envi-
ronments may be acceptable when the activities of the person
are confined to certain parts of a building. However, when the
activities are performed both indoors and outdoors and involve
going from one place to another (e.g. riding a vehicle, going
shopping, commuting, etc.), this approach becomes unsuit-
able. It imposes restrictions on the mobility of the person since
the system operates only in the limited environment being
monitored.

The use of wearable motion sensors in activity recogni-
tion has pervaded since this approach is superior to using
external sensors in many respects. The required infrastruc-
ture and associated costs of wearable sensors are much lower
than designing smart environments. Unlike visual motion-
capture systems that require a free line-of-sight, wearable
sensors can be flexibly used inside or behind objects with-
out occlusion. They can acquire the required 3D motion
data directly on the spot without the need for multiple cam-
era projections. The 1D signals acquired from the multiple
axes of wearable motion sensors are much simpler and
faster to process. Because they are light, comfortable and
easy to carry, wearable sensors do not restrict people to a
studio-like environment and can operate both indoors and out-
doors, allowing free pursuit of activities without intruding on
privacy.

Wearable systems are criticized mainly because people may
forget, neglect or not want to wear them. If they are battery
operated, batteries need to be recharged or replaced from time
to time. However, with the advances of the MEMS technol-
ogy, these devices have been miniaturized. Their lightness,
low power consumption and wireless use have eliminated the
concerns related to carriability and discomfort. Furthermore,
the algorithms developed can be easily embedded to a device

or accessory that the person normally carries, such as a mobile
phone or a hearing aid. Wearable sensors are thus suitable
for automatic monitoring and classification of daily activi-
ties, and we have chosen to follow this approach in our works
[8–10].

Although numerous studies on activity recognition with
wearable sensors exist (see [11, 12] for recent surveys), only a
small number of them have looked into the minimal number and
configuration of sensors to recognize activities. Minimizing the
number of sensors would improve the user’s comfort as well as
reduce the complexity and energy consumption of the system
since less data would have to be processed. Existing works
report conflicting results on the placement of a single device
such as inside the trousers’ pocket, in a bag carried by the user,
on the belt, chest or on the dominant wrist [11]. Some studies
claim that the arms and the legs are not suitable for carrying a
device since they are associated with higher accelerations in
general.

In studies that use multiple sensors, the highest recogni-
tion accuracy is usually achieved when all of the sensors are
employed and decreases when a subset of the sensors is omit-
ted. For example, in [13], bi-axial accelerometers are placed on
the individual’s hip, wrist, arm, ankle, thigh and combinations
of them. They conclude that with only two accelerometers (i.e.
either thigh and wrist or hip and wrist) the recognition perfor-
mance drops only slightly and such a configuration is sufficient
to recognize ambulation and other daily activities. In [14], the
effect of the number of sensors on recognizing 10 manipula-
tive upper-body activities of assembly-line workers in a car
production environment is investigated. Sensors are selected
according to their contribution to the classification accuracy
while training the system. The accuracy tends to increase with
the number of sensors used. The highest accuracy of 98% is
achieved when all of the 19 sensors are included and drops
to 97% with only three sensors out of 19. Considering that
most studies on activity recognition use their own customized
datasets (usually not publicly available) with different char-
acteristics and the classification techniques differ widely, it is
not possible to reach a general conclusion about the number
and placement of the sensors. It appears that the best sensor
configuration depends on the application, the type of activities
to be recognized and the desired level of recognition accuracy.

In many of the studies on human activity recognition, the
acquired activity data vary considerably among subjects, which
we refer to as inter-subject variability. More specifically, the
amplitude and pace of performing activities vary from subject
to subject according to their personal styles and anthropome-
try (i.e. physical attributes). This kind of variability may also
be caused by movement disorders. The variation in time is
often nonlinear and may be difficult for an artificial system to
perceive. Another type of variation in the data is intra-subject
variability, where the nature of a given activity performed by
the same subject at different times shows variations. Possi-
ble reasons for this type of variability are natural variations
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in the movements, the random nature of an activity (such as
playing basketball), changes in the subject or the environment
(such as motivation and physical energy level, clothing, shoes
worn, surface on which the subject performs activities), devi-
ation in sensor positions and orientations, and measurement
errors.

This study is motivated by the contradictory statements in
the literature related to user-specific training. In [13], an aver-
age accuracy of 80% is achieved with decision-tree-based
classifiers in recognizing the daily activities considered, and
the authors claim that user-specific training is not necessary to
achieve good recognition accuracy. In [15], an activity dataset is
acquired from 25 subjects whose physical properties are homo-
geneous. In activity recognition, leave-one-subject-out cross
validation performed significantly better than user-specific
training, even when the size of the training set was equalized in
both cases by randomly sampling the training set in the former.
This is explained by the homogeneity of the subjects and contra-
dicts most of the existing studies where leave-one-subject-out
cross validation performs worse. For example, in [16], where
physical therapy exercises are classified using feature vectors
obtained from accelerometer data, three cases are considered:
using the training data of (i) the subject being tested (within-
subject cross validation), (ii) all subjects (across-subjects cross
validation) and (iii) subjects other than the one being tested
(leave-one-subject-out cross validation). It is shown that the
accuracy achieved in the last case is significantly lower than in
the first two. As expected, classification accuracy degrades sig-
nificantly if one attempts to recognize the activities of a given
subject with a system trained on other subjects’ data. For this
reason, most systems designed, for example, for physical ther-
apy and rehabilitation, are individually trained for each subject
so that the reference data are directly acquired from the subject
who will use the system [16–18].

Building a system that can perform well when presented
with an unknown subject’s data (or first-seen data) for testing is
challenging. Trying to build a subject-independent classifier by
including a variety of subjects in the training set may improve
classifier accuracy by encompassing all common variations
and capturing more of the personal styles. Another solution
may be to develop an individual compensation method for each
subject based on his physical parameters. However, measuring
and recording the parameters of the subjects may not be trivial.
This approach is followed in some studies on energy expen-
diture estimation that use wearable sensors, such as [19]. In a
system that estimates the joint angles of the knees from inertial
sensor data, physical properties of the legs of each subject are
calculated from captured photos and provided to the system
to get more accurate results [20]. Although these systems are
individually calibrated for each person, personal variations
in the properties and their effects on the system has not been
investigated.

Although inter-subject variability of vision-based systems
has been examined to some extent [21–23], there are very few

studies that explore inter- and intra-subject variability of wear-
able sensor data in activity recognition. In [24], the intra-subject
variability of the accelerometer data of free-living activities
performed by 17 male patients with chronic obstructive pul-
monary disease is studied, and observed to be low. In [25],
intra- and inter-subject variations in the walking behavior of
24 subjects with multiple sclerosis are investigated. Based on
the integrated signals acquired from accelerometers on the
waist and the ankle, a quantity called ‘movement count’ is esti-
mated and observed to be highly correlated with the walking
speed, which is considered to be a subject-specific property. In
both of these studies, the recorded data are from rare disease
populations that cannot be generalized to people free from
movement disorders.

The purpose of this study is to investigate inter-subject and
inter-activity variability of wearable sensor data and provide
some definitions to quantify such variability [26, 27]. We
demonstrate our analysis and results on our publicly available
daily- and sports-activities dataset acquired using five wear-
able motion sensor units from eight subjects while performing
19 types of activities. Each sensor unit contains three tri-axial
devices: an accelerometer, a gyroscope and a magnetometer.
We calculate the average inter-subject and inter-activity dis-
tances of wearable sensor data in various forms by employing
absolute, Euclidean and dynamic time warping (DTW) distance
measures to quantify the similarity of the time sequences. The
comparisons are based on raw and pre-processed time-domain
data as well as on feature vectors. First, we calculate the aver-
age inter-subject distances per subject and per activity. Based
on the minimum average inter-subject distance per subject,
we identify the subject who performs the activities in the most
representative way. We also specify the activities that show
more variation among the subjects. Then, we present the aver-
age inter-activity distances and their standard deviations per
subject, per sensor unit and per sensor type. We summarize
the results in various forms and discuss the effects of using
different types of pre-processing and distance measures on the
results.

The rest of this article is organized as follows: In Section 2,
we provide a brief description of our publicly available activity
dataset. In Section 3, we present the three distance measures
used to quantify the similarity between time sequences and fea-
ture vectors. Section 4 describes the pre-processing of the time
sequences and feature vectors. In Section 5.1, we calculate the
average inter-subject distance per subject, and based on this
quantity, identify the subject who performs the activities in the
most representative way. We calculate the average inter-subject
distance per activity in Section 5.2, and in Section 5.3, we
investigate the average inter-activity distances per subject,
per sensor unit and per sensor type separately. To verify some
of our results, in Section 6, we provide activity classification
results based on an exhaustive set of sensor unit, sensor type
and subject combinations. We draw conclusions and indicate
directions for future research in Section 7.
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(a) (b)

FIGURE 1. (a) MTx with sensor-fixed coordinate system overlaid.
(b) MTx held between two fingers (both parts of the figure are reprinted
from [29]).

2. DAILY- AND SPORTS-ACTIVITIES DATASET

The dataset used in this study was acquired by our research
team and was made publicly available in July 2013 [28]. In
the experiments, eight subjects wearing five motion sensor
units, performed 19 daily and sports activities, each activity
lasting for 5 min. The subjects were free from any movement
disorders. The physical attributes of the subjects can be found
in [8]. Figure 1 depicts the sensor units and Fig. 2 illustrates
their configuration on the body. Each sensor unit contains three
tri-axial devices: an accelerometer, a gyroscope and a magne-
tometer, resulting in nine sensor axes. The orientations of the
sensor axes are shown in Figs 1a and 3b. The activities are the
following:

Sitting (A1), standing (A2), lying on back and on right side (A3 and
A4), ascending and descending stairs (A5 and A6), standing still in
an elevator (A7) and moving around in an elevator (A8), walking in
a parking lot (A9), walking on a treadmill in flat and 15◦ inclined
positions at a speed of 4 km/h (A10 and A11), running on a treadmill
at a speed of 8 km/h (A12), exercising on a stepper (A13), exercising
on a cross trainer (A14), cycling on an exercise bike in horizontal and
vertical positions (A15 and A16), rowing (A17), jumping (A18) and
playing basketball (A19).

The first four activities are considered to be static, whereas the
remaining ones are dynamic. Dynamic activities can be further
classified as quasi-periodic, such as walking, cycling or rowing,
and those that contain random elements, such as playing basket-
ball.

For each of the eight subjects and 19 activities, we acquired
45 (= 5 units × 9 sensors) recordings, each one of five min-
utes’ duration. Each recording corresponds to a discrete-time
sequence x...[n] that we obtain by uniformly sampling a
continuous-time signal x...(t) at a rate of 25 Hz, and consists of
N = 7500 samples:

xp,a,u,s[n] = xp,a,u,s(t)|t=n/25 (1)

where 0 ≤ t ≤ 300 s, 1 ≤ n ≤ N , p ∈ [1, 8] is the subject index,
a ∈ [1, 19] is the activity index, u ∈ [1, 5] is the unit index and
s ∈ [1, 9] is the sensor index. The number of subjects, activities,

units and sensors are Np = 8, Na = 19, Nu = 5 and Ns = 9,
respectively.

As an alternative to using time sequences, to represent the
data with its statistical properties and reduce the amount of
data to be processed, we extract feature vectors based on the
time sequences in exactly the same way as described in [9].
Since each activity of each subject is recorded for 5 min
and the recording is divided into 5-s segments, we extract
Nk = 60 [= (5 × 60)/5] feature vectors for each activity of
each subject, and a total of 9120 (= 60 feature vectors × 19
activities × 8 subjects) feature vectors of dimension 1170 × 1.
Each feature vector contains the features extracted from the
same 5-s segment of all 45 discrete-time sequences of a partic-
ular activity of a particular subject. The features extracted from
each segment of each axis are the following: the minimum,
maximum, mean, variance, skewness and kurtosis values, the
auto-correlation sequence, and the peaks of the discrete Fourier
transform with the corresponding frequency values. Feature
vectors are denoted by vp,a{k}, where k ∈ [1, Nk] is the seg-
ment index. (Please refer to [9] for further details on the feature
vectors).

3. DISTANCE MEASURES

The choice of the distance measure depends on the invariances
required by the domain of application [30]. Motion capture data
typically requires invariance to warping [30]. We employ three
commonly used distance measures to calculate the distance
between two discrete-time sequences x = {x[1], x[2], . . . , x[N]}
and y = {y[1], y[2], . . . , y[N]}:

(1) absolute (taxicab) distance:

dabs(x, y) =
N∑

n=1

|x[n] − y[n]| (2)

(2) Euclidean distance:

dEuc(x, y) =
√√√√ N∑

n=1

(x[n] − y[n])2 (3)

(2) DTW distance:1

dDTW(x, y) = DTW(x, y) (4)

Here, dD(x, y) denotes the distance between the two time
sequences calculated according to the distance measure D.
Regarding Equation (4), there is no closed-form expression for
the DTW distance between the two sequences. In this type of

1 The basic step pattern is used to calculate the DTW distance, where the
warping path can proceed to one of the three adjacent cells in the horizontal,
vertical or diagonal direction [31]. Costs for the three directions are assigned
uniformly.
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(a)

(b)

(c) (d)

FIGURE 2. Positioning of the MTx units on the body.

distance measure, the sequences x and y are matched by elas-
tically transforming or warping their time (or sample) axes to
make them resemble each other as much as possible. In this
way, similar patterns in the sequences and features, such as
local minima and maxima, can be matched [31]. In the end, the
Euclidean measure (as in this study) or another distance mea-
sure is used, whose square provides the DTW distance between
the matched time sequences. Note that for the absolute and

Euclidean distance measures, the two time sequences must be
of the same length, whereas there is no such constraint for the
DTW distance measure. Therefore, the DTW distance measure
can be used in the more general case where the sequences x
and y have different lengths. An example from our dataset
that illustrates the difference between the Euclidean and DTW
distance measures is provided in Fig. 4. The former makes a
one-to-one alignment, whereas the latter allows a one-to-many
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(a) (b)

FIGURE 3. (a) MTx units and Xbus Master [29] and (b) connection diagram of MTx units (the body drawing in the figure is from
http://www.clker.com/clipart-male-figure-outline.html; the cables, Xbus Master and sensor units were added by the authors).

alignment. We note here that the DTW distance is comparable
to the square of the Euclidean distance. In fact, Euclidean dis-
tance is a special case of the DTW distance: If no warping is
performed in DTW, the DTW distance is exactly equal to the
square of the Euclidean distance. If warping is involved, it is
less than the square of the Euclidean distance.

The computational complexity of the DTW distance mea-
sure is proportional to the product of the lengths of the two
sequences to be compared [31]. If the two sequences have
the same length, the computational complexity of DTW is
O(N2), whereas it is O(N) for the Euclidean distance measure.
Thus, when the DTW distance measure is used to calculate
the distances, calculations last about N = 7500 times longer
for time-domain data and Nk = 60 times longer for feature
vectors, compared with using the Euclidean distance measure.
However, by performing a subsequence search or subsequence
monitoring task to compare time-domain sequences [31–33],
the speed of DTW may be improved considerably so that it
becomes slower than the Euclidean distance by less than a
factor of two and can be even further optimized [34].

DTW can be generalized to the multi-dimensional case
(which is the case in this study) in two different ways: In the
first (DTWI : independent DTW), sequences acquired from
multiple data channels are warped independently, whereas,

in the second (DTWD: dependent DTW), they are all warped
in the same way. Whether a given dataset should be handled
using DTWI or DTWD is difficult to determine and, in general,
it contains a mixture of exemplars that belong to either [35].
Reference [35] proposes an adaptive methodology (DTWA:
adaptive DTW) which is at least as accurate as the better of
DTWI or DTWD. In this study, we have chosen to employ
DTWI because we believe that the sequences comprising our
dataset do not have strong dependence.

4. PRE-PROCESSING OF THE ACQUIRED
SEQUENCES

The wearable system is self-calibrating in that the sensor units
are auto-calibrated by the driver of the Xbus kit before and
during the data acquisition process. However, recorded time
sequences still contain bias error that may be constant or time
varying. The level of the bias error is, in general, different for
each axis of a given sensor unit. This error will affect the time
average of the sequence that may be an informative statistical
feature about the activity being performed. The bias error is
an important and complicating issue in interpreting sensor
readings and its effects should be investigated.
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FIGURE 4. Comparison of the Euclidean and DTW distance measures. (a) The Euclidean measure compares the samples at the same time instants,
whereas (b) the DTW measure compares samples with similar shapes to minimize the distance. The sequences x and y are recorded by the x-axis
accelerometers on the right legs of subjects 1 and 2, respectively, while performing activity A10.

If two sequences with different bias levels are compared, the
distance between them depends on the type of distance measure
used. Assuming constant bias levels, suppose that the elements
of the sequences x and y are related by y[n] = x[n] + E, for
1 ≤ n ≤ N , where E > 0 is a constant bias error. Then, accord-
ing to the three distance measures, the distance between x and
y is given by

dabs(x, y) =
N∑

n=1

|E| = NE (5)

dEuc(x, y) =
√√√√ N∑

n=1

E2 =
√

NE2 =
√

NE (6)

dDTW(x, y) ≤ NE2 (7)

We observe from Equations (5)–(7) that for all three dis-
tance measures, the distance between the two sequences is
a function of the amount of bias error E and the sequence
length N . As a numerical example, for N = 100 and E = 0.01,
dabs(x, y) = 1, dEuc(x, y) = 0.1 and dDTW(x, y) ≤ 0.01. Thus,
depending on the values of N and E, there can be several orders
of magnitude difference between the distances calculated by
using different measures.

As an attempt to eliminate the constant part of a bias error, in
the first type of pre-processing, we remove the time average of
the original time sequence xp,a,u,s to obtain the sequence x̄p,a,u,s:

x̄p,a,u,s = xp,a,u,s − 〈xp,a,u,s〉n (8)

Besides removing the time average, the sequence values may
be scaled with their standard deviation, calculated over time, to
have unity standard deviation. Thus, the sequence obtained as a
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result of this second type of pre-processing is given by

x̃p,a,u,s = x̄p,a,u,s

stdnx̄p,a,u,s
(9)

In the third type of pre-processing, we limit the sequence to
the interval [−1, 1] by shifting and scaling it, a common proce-
dure especially before applying DTW. The resulting sequence
is given by

x̂p,a,u,s = 2
xp,a,u,s − minn xp,a,u,s

maxn xp,a,u,s − minn xp,a,u,s
− 1 (10)

Similar pre-processing is also applied to the feature vectors
extracted from the time sequences.

5. INTER-SUBJECT AND INTER-ACTIVITY
VARIATIONS IN THE ACTIVITY DATASET

5.1. Average inter-subject distance per subject

In this section, we calculate the average distance between the
time sequences/features acquired from one subject and those
of all the other subjects to identify the person who performs the
activities in the most representative way. We apply the three
different distance measures to both raw and pre-processed time
sequences as well as to raw and zero-mean feature vectors.

We propose a measure of similarity between two subjects p1
and p2 based on their activity data in the time domain as follows:
For each activity and for each sensor of each unit, we calculate
the distance between the time sequences of the two subjects and
average them out over all activities, units and sensors. The resul-
tant value is considered to be the average inter-subject distance
between the activities of the two subjects:

d time-domain
inter-subject,D (p1, p2)

= 1

NaNuNs

∑
a

∑
u

∑
s

dD(xp1,a,u,s, xp2,a,u,s) (11)

where the subscript D denotes one of the three distance mea-
sures defined in Section 3.

To compare the same two subjects based on their feature vec-
tors, we average out the distance between the feature vectors of
the two subjects over all time segments and activities:

dfeatures
inter-subject,D (p1, p2) = 1

NaNk

∑
a

∑
k

dD(vp1,a{k}, vp2,a{k})

(12)

To identify those subjects who are most similar to the
others in the average distance sense, we first calculate the
inter-subject distances between all subject pairs using Equa-
tions (11) and (12). Then, for each subject, we average out the
distances from that subject to all the others, resulting in the
average inter-subject distance of that person to the others. If

time sequences are used, for the subject with index p1, this is
given by

d time-domain
avg-subject,D (p1) = 1

Np − 1

∑
p 
=p1

d time-domain
inter-subject,D (p1, p) (13)

If feature vectors are used, the corresponding expression is

dfeatures
avg-subject,D (p1) = 1

Np − 1

∑
p 
=p1

dfeatures
inter-subject,D (p1, p) (14)

According to this scheme, the subject with the smallest aver-
age inter-subject distance to the others (in other words, the sub-
ject who performs the activities in the most similar way to the
others) is considered to be the person who performs them most
representatively, and is represented by index p∗ in

(p∗)time-domain
D = arg min

p
d time-domain

avg-subject,D(p) (15)

or

(p∗)features
D = arg min

p
dfeatures

avg-subject,D(p) (16)

depending on whether time sequences or feature vectors are
used.

Although the proposed method to identify the subject who
performs the activities most representatively may appear to
evaluate the subjects’ performances, this is not the case. The
most representative subject p∗ is not necessarily the person who
performs the activities most properly or correctly; he is the one
in the middle, in the sense that he does not perform the activities
in any extreme way. In other words, the selection depends on
how similarly a subject performs the activities compared with
all the others. For instance, assuming that the dataset consists
of only the walking activity and the subjects differ only in their
walking speed, this approach would identify the subject who
walks nearest to the average speed as the most representative.

The results for identifying the most representative subjects
are summarized in Fig. 5, where the calculations of the expres-
sions in Equations (13) and (14) are presented for each of the
eight subjects. From the figure, we observe that pre-processing
the time sequences and feature vectors decreases the average
inter-subject distance by a factor of ∼5000. This is more vis-
ible when we use the DTW distance, because for the DTW
algorithm to warp the two sequences properly, they must be of
comparable amplitude scale. If the amplitude levels and ampli-
tude ranges of the sequences differ too much, DTW cannot
match their similar parts because DTW cannot scale or shift the
sequences’ amplitude values; it only warps their time (or sam-
ple) axes. For this reason, applying the DTW distance measure
to the raw sequences is not expected to result in small distance
values. When we compare the time sequences normalized
between −1 and 1 by using the absolute, Euclidean and DTW
distance measures, we observe that Subject 2 is identified to be
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FIGURE 5. Average inter-subject distance in terms of the (a), (d): absolute, (b), (e): Euclidean, and (c), (f): DTW distances when (a)–(c): raw
and pre-processed time sequences and (d)–(f): feature vectors are used. The subject index with the smallest distance (for the sequences normalized
between −1 and 1) is enclosed in brackets.

the most representative (Fig. 5a–c). On the other hand, when
we compare the feature vectors normalized between –1 and 1
by using the first two distance measures, Subject 3 is identified
to be the most representative (Fig. 5d and e). When we use
the DTW distance measure to compare the same, Subject 5 is
identified as the most representative (Fig. 5f).

5.2. Average inter-subject distance per activity

The average inter-subject distance for a given activity is a mea-
sure of how differently a specific activity can be performed
by different subjects. This quantity can be considered as a

measure of the inter-subject variability of the activity. For
a given activity a, the average inter-subject distance for the
distance measure D is

davg-activity,D(a) =
1

Np(Np − 1)

∑
p1

∑
p2 
=p1

[
1

NuNs

∑
u

∑
s

dD(xp1,a,u,s, xp2,a,u,s)

]

(17)

In the equation above, the term in the square brackets is the
inter-subject distance between two subjects p1 and p2 for
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FIGURE 6. Average inter-subject distance for each activity in terms of the (a), (d): absolute, (b), (e): Euclidean, and (c), (f): DTW distances when
(a)–(c): raw and pre-processed time sequences and (d)–(f): feature vectors are used.

activity a, averaged over all units and sensors. This expression
is then averaged out over all distinct subject pairs, resulting in
the average inter-subject distance for activity a.

The results are shown in Fig. 6 for the three distance mea-
sures applied to the raw and pre-processed data. From the
figure, we again observe that in almost all cases, pre-processing
reduces the calculated distance values considerably. This is
especially significant when feature vectors are used (Fig. 6d–f).
When the time averages of the sequences are removed, the
average inter-subject distances of the sequences correspond-
ing to the static activities (A1–A4) are smaller than the other
activities even though their raw (not pre-processed) forms have

larger distance values than some of the other activities. This is
because these activities are static, unlike the others; thus, the
inter-subject differences in the sequences are mostly caused by
noise and the sensors’ bias and drift errors. Hence, when the
time-average values of the sequences are removed, they resem-
ble each other more and the distances decrease considerably.
The raw forms of the feature vectors obtained from these first
four activities also result in relatively small distance values
(Fig. 6d–f).

The inter-subject distance of the standing activity (A2) varies
the least among the participants in our study because standing is
a stationary activity, where the body posture is about the same
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Inter-Subject and Inter-Activity Variations in Activity Recognition 11

in all subjects, and the subjects’ physical attributes do not affect
the sensor readings significantly. This is especially visible when
feature vectors are used in their raw form (Fig. 6d–f). On the
contrary, vigorous activities (A12) or activities that contain ran-
dom elements, such as jumping (A18) and playing basketball
(A19), result in consistently larger inter-subject distances. For
example, while playing basketball, subjects perform random
motions such as dribbling or shooting at different times, result-
ing in large distance values. This is the case even when the
DTW distance measure is used, which allows warping in time.
Although the DTW algorithm can match random activities
of different subjects to some extent to maximize similarity, it
penalizes unmatched subsequences and large amounts of warp-
ing, still resulting in a relatively large DTW distance. On the
other hand, DTW can relatively easily match dynamic activi-
ties of a quasi-periodic nature, leading to smaller distances, as
expected.

The average inter-subject distance per activity obviously
depends on the type of pre-processing used. For example, when
the absolute distance measure is used and the average values
of the sequences are removed, activity A4 (lying on right side)
has the smallest average inter-subject distance. However, when
the same distance measure is used but the sequences are nor-
malized between −1 and 1, activity A8 (moving around in an
elevator) has the smallest average inter-subject distance.

5.3. Average inter-activity distance per subject, unit and
sensor type

In this section, we calculate inter-activity distances (i.e. dis-
tances between two distinct activities) using pre-processed
time sequences. This is a measure of how different the two
activities are and can be useful in providing guidance for their
classification.

For a given subject, unit, sensor and distance measure D,
we first form a 19 ×19 activity distance matrix Dp,u,s,D for
the pairwise distances between the 19 activities. The rows and
columns of this matrix are indexed by the different activities,
and the (a1, a2)th element of the matrix is calculated using the
zero-mean time sequences

dp,u,s,D(a1, a2) = dD(x̄p,a1,u,s, x̄p,a2,u,s) (18)

where (a1, a2) is an activity pair, and p, u and s are the sub-
ject, unit and sensor indices, respectively. Since distance
measures have the symmetry property, this is a symmetric
matrix. In addition, the diagonal elements are zero because
the distance of a sequence to itself is always zero. Hence,
the essential part is the upper-triangular submatrix with
Na(Na − 1)/2 = (19 × 18)/2 = 171 elements, corresponding
to the pairwise distances between the 19 activities. For eight sub-
jects, five units and nine sensors, there are 360 (= 8 × 5 × 9)

such distance matrices indexed by p, u and s, and considering
the distances in the upper diagonal part of each matrix, a total
of 61 560 (= 171 × 360) pairwise distance values.

Averaging the values of the elements in the upper-triangular
part of one of these activity distance matrices, corresponding
to a given subject, sensor and unit (indexed by p, u and s), pro-
vides us the average inter-activity distance over all distinct
activity pairs

d̄p,u,s,D = 2

Na(Na − 1)

Na−1∑
a1=1

Na∑
a2=a1+1

dp,u,s,D(a1, a2) (19)

and the corresponding standard deviation is

d̃p,u,s,D =

√√√√√ 2

Na(Na − 1)

Na−1∑
a1=1

Na∑
a2=a1+1

[
dp,u,s,D(a1, a2) − d̄p,u,s,D

]2

(20)

In the following subsections, further averages of these quanti-
ties are taken to calculate the average inter-activity distance and
its standard deviation for each subject over all units and sensors,
for each unit over all subjects and sensors, and for each sensor
over all subjects and units.

5.3.1. Average inter-activity distance and standard deviation
per subject

To find the average inter-activity distance and its standard devi-
ation for a given subject over all units and sensors, we calculate
the averages of Equations (19) and (20) over all units and sensors

d̄p,D = average
u,s

(d̄p,u,s,D) = 1

NuNs

∑
u

∑
s

d̄p,u,s,D (21)

and

d̃p,D = average
u,s

(d̃p,u,s,D) = 1

NuNs

∑
u

∑
s

d̃p,u,s,D (22)

The results are shown in Fig. 7. We observe that among the
eight subjects, the sixth one has the smallest average inter-
activity distance for all three distance measures. The average
inter-activity distance is consistently the largest for Subject 7,
indicating that he or she performs the activities in an extreme
way, for example, with a larger amplitude or more distinctively,
unlike Subject 6.

From the figure, we observe that the average standard devia-
tions obtained using the DTW distance measure are, in general,
relatively larger fractions of the average inter-activity distances
compared with the other two distance measures.

5.3.2. Average inter-activity distance and standard deviation
per unit

To find the average inter-activity distance and its standard devi-
ation for a given unit over all subjects and sensors, we calcu-
late the averages of Equations (19) and (20) over all subjects and
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FIGURE 7. Average mean and standard deviation of inter-activity distances for each subject in terms of the (a) absolute, (b) Euclidean and (c) DTW
distances calculated using zero-mean time-domain data. Gray bars represent the average distance values d̄p,D, whereas the vertical lines indicate

one standard deviation around the average, ranging between d̄p,D ± d̃p,D.

sensors

d̄u,D = average
p,s

(d̄p,u,s,D) = 1

NpNs

∑
p

∑
s

d̄p,u,s,D (23)

and

d̃u,D = average
p,s

(d̃p,u,s,D) = 1

NpNs

∑
p

∑
s

d̃p,u,s,D (24)

The results are presented in Fig. 8. As expected, average inter-
activity distances of the sensor units on the subjects’ legs are the
largest, followed by the arms, for all three distance measures.
For most of the dynamic activities considered in this study, the
limbs move a lot more than the torso; therefore, the accelera-
tions recorded at the limbs are larger on the average. The torso
unit has the smallest average inter-activity distance for all three
distance measures. We do not observe any significant difference

between the average inter-activity distances of the right and left
limbs, indicating that on the average they are used equally dur-
ing activities.

Again, the average standard deviations obtained using the
DTW distance measure are, in general, relatively larger frac-
tions of the average inter-activity distances compared with the
other two distance measures.

5.3.3. Average inter-activity distance and standard deviation
per sensor type

To find the average inter-activity distance and its standard devi-
ation for the axes of a given sensor type over all subjects and
units, we calculate the averages of Equations (19) and (20) over
all subjects and units

d̄s,D = average
p,u

(dp,u,s,D) = 1

NpNu

∑
p

∑
u

d̄p,u,s,D (25)
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FIGURE 8. Average mean and standard deviation of inter-activity distances for each unit in terms of the (a) absolute, (b) Euclidean and (c) DTW
distances calculated using zero-mean time-domain data. T, torso; RA, right arm; LA, left arm; RL, right leg; LL, left leg. Gray bars represent the
average distance values d̄u,D, whereas the vertical lines indicate one standard deviation around the average, ranging between d̄u,D ± d̃u,D.

and

d̃s,D = average
p,u

(d̃p,u,s,D) = 1

NpNu

∑
p

∑
u

d̃p,u,s,D (26)

The results are illustrated in Fig. 9 for the three sensor types
(accelerometer, gyroscope and magnetometer). The x-, y-,
z-axes displayed in the figure for each sensor type point in the
same directions as the axes of the torso unit and correspond to
the three perpendicular axes of the human body. (The x-axis of
the torso unit points up along the vertical axis, its y-axis points
to the right along the transverse axis and its z-axis points to
the front along the sagittal axis of the human body, as shown
in Fig. 3b.) In other words, the measurements made by the x-,
y-, z-axes of the sensor units have been projected onto the axes
of the torso unit to be able to interpret the results in a unified
way. Comparing the average inter-activity distances recorded
by the sensor axes with respect to the three perpendicular axes

of the human body is more meaningful, since this removes the
effect of the initially different orientations of the sensor units
(Fig. 3b). Therefore, the average inter-activity distances dis-
played in the figure are caused by the differences in the nature
of the activities only and help us identify those directions along
which the variation between the activities is the largest.

The average inter-activity distances along the three perpen-
dicular axes of the human body are quite different for each of the
three sensor types. For the accelerometers, the activities show
greater variation along the x-axis, followed by the z- and y-axes.
This indicates that the inter-activity distances along the vertical
axis are the largest, followed by the sagittal and transverse axes
of the human body. For the gyroscopes, the corresponding order
is y, x, z, indicating that the angular rate about the transverse
axis shows the greatest variation among the different activi-
ties. Smallest variation being along the z-axis for gyroscopes
indicates that during the activities, the body does not rotate
much about the sagittal axis. For the magnetometers, average
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FIGURE 9. Average mean and standard deviation of inter-activity distances for each sensor in terms of the (a)–(c): absolute, (d)–(f): Euclidean and
(g)–(i): DTW distances calculated using zero-mean time-domain data. Gray bars represent the average distance values d̄s,D, whereas the vertical

lines indicate one standard deviation around the average, ranging between d̄s,D ± d̃s,D.

inter-activity distances are sorted as z, y, x in decreasing order
where x- and y-axis distances are about the same. The x-axis
of the magnetometers have the smallest average inter-activity
distance because the body posture is vertical (as in standing)
in most of the activities, and the Earth’s magnetic field vector,
pointing to the magnetic North, lies on the horizontal y−z plane
which is perpendicular to the vertical (x) axis of the body. We
observe that the average inter-activity distance values recorded
by the three magnetometer axes are closer to each other than
the accelerometers and gyroscopes. This may be because the
Earth’s magnetic field vector has an almost constant norm,
whereas the norms of the acceleration and angular rate change
over time depending on the motion of the sensor units.

The average inter-activity distances of the different sen-
sor types are not comparable because the sensors’ operating
ranges, measured quantities and sensitivities are different. We
observe that the average inter-activity distances of different
sensor types can differ up to a factor of 1000.

Once again, we observe that the average standard deviations
obtained using the DTW measure are, in general, relatively

larger fractions of the average inter-activity distances compared
with the first two distance measures. Furthermore, one can
observe that smaller average inter-activity distances are associ-
ated with smaller average standard deviations in general.

6. CLASSIFICATION RESULTS WITH THE
DATASET

We have implemented a number of classifiers for activity recog-
nition based on the dataset that we analyze here. Among these
are the naïve Bayesian (NB) classifier, Bayesian decision-
making (BDM), dissimilarity-based classifier (DBC), the
least-squares method (LSM), the k-nearest neighbor algorithm
(k-NN) (with k = 7), support vector machines (SVM), random
forest decision tree (RF-T), artificial neural networks (ANNs),
Gaussian mixture models (GMMs) with one-to-four compo-
nents and a classifier based on the DTW distance measure. The
last classifier can, in fact, be considered to be a one-nearest-
neighbor (1-NN) classifier that uses the DTW distance instead
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TABLE 1. Different sensor unit combinations and the corresponding correct classification rates for various classifiers using 10-fold cross
validation [9, 10].

Units used NB BDM DBC LSM k-NN SVM RF-T ANN GMM NN-DTW

T 73.5 96.6 79.5 79.0 92.8 95.7 89.4 95.3 96.3 92.9
RA 72.8 94.5 77.3 72.5 88.4 95.1 89.8 95.5 94.8 87.5
LA 72.5 93.7 77.1 75.3 87.8 96.2 88.5 92.6 95.1 84.4
RL 87.0 97.3 87.1 82.3 91.0 96.8 93.2 97.6 97.4 87.3
LL 87.7 94.8 86.3 79.1 96.7 97.6 93.2 98.2 97.7 97.5
RA + LA 83.9 97.6 84.5 83.4 95.5 97.5 94.9 95.5 96.9 94.8
RL + LL 91.3 98.8 89.6 84.0 96.6 98.1 96.6 98.5 98.5 95.6
RA + LA + RL + LL 94.4 99.0 93.2 88.0 98.3 99.1 98.6 99.1 99.0 98.5

T + RA 86.2 98.1 86.8 84.0 95.8 97.8 95.2 97.5 96.7 95.7
T + LA 87.8 98.1 87.3 87.2 95.6 97.9 95.7 97.7 97.5 94.6
T + RL 88.1 98.4 98.5 85.4 97.2 98.3 96.4 98.4 98.1 97.6
T + LL 89.3 98.4 89.3 85.4 97.3 98.4 96.6 98.6 98.7 97.5
T + RA + LA 91.6 98.5 89.6 86.8 97.5 98.5 97.0 98.0 97.9 97.4
T + RL + LL 93.3 99.0 92.0 86.3 97.7 98.8 97.7 98.8 98.8 97.7
T + RA + LA + RL + LL 96.6 99.2 94.8 89.6 98.7 99.2 98.6 99.2 99.0 98.5

T, torso; RA, right arm; LA, left arm; RL, right leg; LL, left leg.
The lower part of the table displays the results when the torso unit is added to the sensor unit combinations in the upper part.

of the Euclidean distance. Since it classifies a test vector into
the class of the training vector that is nearest in terms of the
DTW distance, we abbreviate it as NN-DTW.

For effective sensor selection, we have considered an exhaus-
tive set of sensor unit and sensor type combinations. In Table 1,
we highlight some of our sensor unit combination results for
the 10 classifiers mentioned above. Background information
on the classifiers, details of the implementations and more
extensive results can be found in our earlier works [8–10]. The
classification results given in Table 1 correspond to the average
values over all activity types and are consistent with the results
in Fig. 8. Since the average inter-activity distances of the sen-
sor units on the subjects’ legs are the largest, followed by the
arms, according to this figure, using only the units on the legs
results in higher classification rates than those on the arms, in
general (rows 2–5 of Table 1). When both arm or both leg units
are used, the results improve compared with using a single arm
or a single leg unit (rows 6 and 7). In this case, units on the legs
are still more informative compared with those on the arms.
Although the torso unit has the smallest average inter-activity
distance for all three distance measures (Fig. 8), it provides
quite good classification results when used on its own (first
row), usually better than using a single arm unit but worse than
using a single leg unit. This may be because recordings made at
the chest (torso) filter out the large fluctuations in acceleration
recorded at the limbs which may not always be informative or
meaningful. When the torso unit is added to the sensor combi-
nations given in the first column of the upper part of Table 1,
improvement is achieved in all of the classification results.
Best classification results are obtained when all five units are

used (last row). Among the different classifier types, BDM,
SVM, ANN and GMM (with two mixture components) seem
to outperform the others. As expected, the results of BDM are
significantly better than NB results, especially when a small
number of sensor units is used. As the recordings of more and
more units are included, the difference between BDM and NB
decreases from 23% down to ∼3%.

In Fig. 10, we provide a comparison of combining different
sensor types for some of the classifiers in terms of correct dif-
ferentiation rates, using 10-fold cross validation [10]. When a
single sensor type is used, magnetometers provide the highest
classification rates, followed by accelerometers and gyro-
scopes. When two sensor types are used together, combinations
that involve the magnetometer result better. When all three
types of sensors are used, the results improve slightly com-
pared with using only magnetometers, or magnetometers used
in conjunction with another sensor type.

Using some of the better performing classifiers (BDM, k-NN
and SVM), we calculated the correct classification rates using
data from subsets of the subjects [8]. An exhaustive set of
subject combinations are considered and those that result in
the highest correct classification rates are reported in Table 2
when 10-fold cross validation is used. According to the table,
performances of all three classifiers are comparable. Highest
classification rates are observed for all three classifiers when
data from two subjects are used. Using data from more than two
subjects causes a slight decrease in classification performance,
as expected.

In Section 5.1, Subjects 2, 3 and 5 were identified to be
the most representative subjects depending on the distance
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FIGURE 10. Comparison of combining different sensor types for some of the classifiers in terms of correct differentiation rates using 10-fold cross
validation [10]. The sensor type combinations represented by the different colors in the bar chart are identified in the legend (gyro, gyroscope; acc,
accelerometer; mag, magnetometer). WEKA and PRTools are two commonly used open source machine learning environments.

TABLE 2. Combinations of subjects resulting in the highest correct
classification rates using 10-fold cross validation [8].

BDM k-NN SVM

Subject no. % Subject no. % Subject no. %

5 99.0 1 98.9 5 98.5
2,5 99.6 1,2 99.4 1,2 99.4
2,5,6 99.5 1,2,5 99.3 1,2,5 99.4
1,2,4,6 99.5 1,2,5,6 99.1 1,2,5,6 99.3
2,4,5,6,7 99.4 1,2,3,5,6 99.0 1,2,5,6,7 99.1
1,2,3,5,6,7 99.4 1,2,3,4,5,6 98.9 1,2,3,4,5,6 99.0
1,2,3,4,5,6,7 99.2 1,2,3,4,5,6,8 98.8 1,2,3,4,5,6,7 98.9

measure and whether raw time sequences or feature vectors are
used. Consistent with this finding, we observe that Subjects 2
and 5 appear in almost all of the subject combinations that
result in the highest classification rates. Subject 3 also appears
in about one-third of the combinations, especially when data
from five or more subjects are included. Subject 1 turns out
to be a participant who appears in many of the successful
combinations.

7. CONCLUSIONS AND FUTURE WORK

We investigated inter-subject and inter-activity variability
based on a publicly available activity dataset that our research

team acquired [28] and provided some definitions that quantify
such variability. Because of their many advantages, we have
chosen to employ wearable sensors as opposed to external
sensors that function as part of a smart environment. We con-
sidered pre-processing the acquired time sequences and feature
vectors in different ways and used three different distance mea-
sures to compare them. We presented the inter-subject distances
between the recorded activity sequences of distinct subjects
in the dataset by averaging them out for each activity and
subject. We identified the subject who performed an activity
in the most representative way based on the minimum inter-
subject distance. We also pinpointed the activities that show
more variation among the subjects and presented the average
inter-activity distances for each subject, unit and sensor.

We observe that the type of pre-processing used affects the
results of the comparisons.

Although the average distance values that provide informa-
tion about the similarity between the sequences are different
for the three distance measures, the sorting of the distance
values rarely changes, indicating that using different distance
measures does not alter the comparison results as much as the
type of pre-processing does.

We have verified some of our findings related to the dataset
analyzed in this article by providing classification results based
on the same dataset. In particular, we have considered an
exhaustive set of sensor unit, sensor type and subject combina-
tions and various classifiers.
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Quantifying the inter-subject distances may be useful in a set-
ting where a subject is training others to perform some activity
(such as in dance or sports), teaching others to use a tool or an
instrument or teaching rehabilitation exercises to a patient. Even
though the trainer should perform the activity properly, trainees
will often deviate from the proper motion during the learning
phase. The average inter-subject distance can be used as a mea-
sure of the errors or deviations of the trainees during the learn-
ing process and can be provided as feedback to improve perfor-
mance. Since subjects’ physical parameters and personal styles
vary, it might be better to acquire the reference data from the sub-
jects themselves (under supervision) rather than from the trainer.

Average inter-activity distances can be used to identify
activities that are easier or more difficult to distinguish. We
expect our analysis and definitions on inter-activity distances
to provide guidance in designing more effective classifiers for
activity recognition. Identifying the sensor units and sensor
types that are more informative for activity recognition is use-
ful in dynamic sensor unit/type selection which will reduce the
amount of data and processing time as well as optimize power
consumption and minimize the number of units to be worn,
while achieving a desired level of activity recognition accu-
racy [14]. Sensor unit/type selection may be performed online
specific for the on-going activity. Reference [36] provides a
framework for multi-dimensional time series classification by
weighting each classifier’s track record with a self-reported
confidence score that is adjusted online. Our ongoing work in
this area investigates sensor-activity relevance in human activ-
ity recognition with wearable motion sensors using the mutual
information criterion [37].

The definitions of inter-subject and inter-activity variabil-
ity provided in this work are sufficiently general and can be
applied to a broad class of datasets that involve time sequences
or features, acquired using wearable sensors. In future work,
the methodology proposed here may be used to analyze other
types of activity datasets such as motion data from patients
with movement disorders or from dance/sports training. The
effects of subjects’ physical properties may be compensated
for by developing techniques to reduce inter-subject variability
of the sensor data as an attempt to build subject-independent
classifiers.
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