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Projection-Based Wavelet Denoising

I
n this lecture note, we describe a 
wavelet domain denoising method 
consisting of making orthogonal pro-
jections of wavelet (subbands) signals 
of the noisy signal onto an upside 

down pyramid-shaped region in a multi-
dimensional space. Each horizontal slice 
of the upside down pyramid is a diamond 
shaped region and it is called an 1, -ball. 
The upside down pyramid is called the epi-
graph set of the 1, -norm cost function. We 
show that the method leads to soft-thresh-
olding as in standard wavelet denoising 
methods. Orthogonal projection opera-
tions automatically determine the soft-
threshold values of the wavelet signals. 

PrerequIsItes
Prerequisites for understanding the 
material of this article are linear algebra, 
discrete-time signal processing, and wave-
lets. Orthogonal projection of a vector 
onto a hyperplane is the key mathematical 
operation used in this lecture note. Let wo  
be a vector in .RK  The orthogonal projec-
tion wpo  of wo  onto the hyperplane 
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where [ ], [ ],n nw wo po  and [ ]na  are the 
nth  entries of the vectors , ,w wo po  and ,a  
respectively, and a 2  is the Euclidean 
length (norm) of the vector .a

In this lecture note, orthogonal pro-
jections onto an upside down-shaped 

pyramid are computed. Each face of the 
upside down pyramid is a wedge-shaped 
subset of a hyperplane. Therefore, we 
can make an orthogonal projection 
onto an upside down pyramid by per-
forming an orthogonal projection onto 
a face of the pyramid. 

Orthogonal projection onto a hyper-
plane is also routinely used in the well-
known normalized least mean squares 
(NLMS) adaptive filtering algorithm and 
many online learning algorithms [1]. 

ProBlem statement
Denoising refers to the process of reduc-
ing noise in a given signal, image, and 
video. In standard wavelet denoising, a sig-
nal corrupted by additive noise is trans-
formed to the wavelet domain and the 
resulting wavelet signals are soft- or hard-
thresholded. After this step, the denoised 
signal is reconstructed from the thresh-
olded wavelet signals [2], [3]. Threshold-
ing wavelet coefficients intuitively makes 
sense because wavelet signals obtained 
from an orthogonal or biorthogonal wave-
let filter bank exhibit large amplitude coef-
ficients only around edges or jumps of the 
original signal. The assumption is that 
other small amplitude wavelet coefficients 
should be due to noise. Signals that can be 
represented with a small number of coeffi-
cients are called sparse signals and it turns 
out that most natural signals are sparse in 
some transfer domain [4], [5]. A wide 
range of wavelet denoising methods that 
take advantage of the sparse nature of 
practical signals in wavelet domain are 
developed using this baseline denoising 
idea by Donoho and Johnstone; see, e.g., 
[2]–[4] and [6]–[9]. 

Consider the following basic denoising 
framework. Let v  be a discrete-time signal 
and x  be its noisy version, i.e., [ ]nx =  

[ ] [ ], , , , ,n n n N1 2v fp+ =  where p  is 
some additive, independent and identically 
distributed (i.i.d.), zero-mean, white 
Gaussian noise with variance .2v  An 
L-level discrete wavelet transform of x  is 
computed and the lowband signal xL  and 
wavelet signals , , ,w w wL1 2 f  are 
obtained. After this step, wavelet signals 
are soft-thresholded as shown in Figure 1. 
The soft-threshold value, ,i  can be 
selected in many ways using statistical 
methods [3], [4], [6], [10]. Donoho pro-
posed the following threshold for all wave-
let signals: 

 . . ( ) / ,log N N2i c v=  (2)

where N  is the number of samples of the 
signal ,x  and the constant c  is defined in 
[3]. In (2), the noise variance 2v  has to be 
known or properly estimated from the 
observations, ,x  which may be difficult to 
achieve in practice. In [3], a single thresh-
old is used for all wavelet signals. We refer 
the reader to [3], [4], [6], and [10] for 
many ways of estimating the parameters 
c  and v  in Donoho’s method. 

It is possible to define a soft-threshold 
ii  for each wavelet signal .wi  Here we 

present how to estimate a soft-threshold 
value ii  for each wavelet signal wi  using 
a deterministic approach based on linear 
algebra and orthogonal projections. In 
this approach, there is no need to estimate 
the variance .2v  Thresholds are automat-
ically determined by orthogonal projec-
tions onto an upside-down pyramid 
shaped region, which is the epigraph set of  
the 1, -norm cost function. 

Wavelet sIgnals DenoIsIng WIth 
ProjectIons onto 1, -Balls
Let us first study the projection of wavelet 
signals , , ,w w wL1 2 f  onto 1, -balls, which 
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we will use to describe the projection onto 
the epigraph set of 1, -norm cost function. 
We will use the term vector and signal in 
an interchangeable manner from now on. 
An 1, -ball ,Ci  with size di  is defined  
as follows: 

 {  :  | [ ] | },n dw wRCi
N

n
i! #= /  (3)

where [ ]nw  is the nth  component of the 
vector w  and di  is the size of the 1, -ball. 
In other words, an 1, -ball is the set of vec-
tors characterized by the fact that the sum 
of the magnitude of its components is 
lower than some specified value. Geomet-
rically, such an 1, -ball is a diamond 
shaped region bounded by a collection of 
hyperplanes as depicted in Figure 2. The 
orthogonal projection of a wavelet vector 
wi  onto an 1, -ball is mathematically 
defined as follows: 

 arg minw w wi 2
2

pi = -

| [ ] | ,n dsuch that w wi
n

i i1 #=/  (4)

where wi  is the i th wavelet signal, . 2  is 
the Euclidean norm, and . 1  is the 

1, -norm. The orthogonal projection oper-
ation onto an 1, -ball is graphically shown 
in Figure 2. When dwi i1 #  is satisfied, 
the wavelet signal is inside the ball, the 
projection has no effect and .w wl lp =  In 
general, it can be shown that the orthog-
onal projection operation soft-thresholds 
each wavelet coefficient [ ]nwi  as follows: 
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where ( [ ])nsign wi  is the sign of [ ],nwi  
and ii  is a soft-thresholding constant 
whose value is determined according to the 
size of the 1, -ball, di  [11]. Algorithm 1 is an 
example of a method to solve the minimiza-
tion problem (4) and thereby provide the 
constant ii  for a given di  value [11]. 

Projection of a wavelet signal onto an 
1, -ball reduces the amplitude of the wave-

let coefficients of the input vector and 
eliminates the small valued wavelet coeffi-
cients, which are lower than the threshold 

.ii  As a result, wavelet coefficients, which 
are probably due to noise, are removed by 
the projection operation. Projection oper-
ation onto an 1, -ball retains the edges and 

sharp variation regions of the original sig-
nal because wavelet signals have large 
amplitude valued coefficients correspond-
ing to edges [2] and they are not signifi-
cantly affected by soft-thresholding. In 
standard wavelet denoising methods, the 
low-band signal xL  is not processed 
because xL  is a low resolution version of 
the original signal containing large ampli-
tude coefficients almost for all n  for most 
practical signals and images. 

The next step is the estimation of the 
size of the 1, -ball, .di  We estimate the 
size of the 1, -ball, ,di  by projecting wi  
onto the epigraph set of the 1, -norm cost 
function, which is an upside-down pyra-
mid in RN 1+  as shown in Figure 3. An 
upside-down pyramid is constructed by a 
family of 1, -balls or diamond-shaped 
regions with different sizes ranging from 
0 to d ,max i =  [ ] ,nwin

/  whose value is 
the 1, -norm of .wi  When we orthogo-
nally project wi  onto the upside down 
pyramid, we not only estimate the size of 
the 1, -ball, but also soft-threshold the 
wavelet signal wi  as discussed in the fol-
lowing section. 

Estimation of DEnoising 
thrEsholDs
The epigraph set of the 1, -norm cost func-
tion is an upside-down pyramid shaped 
region as shown in Figure 3. Each hori-
zontal slice of the upside down pyramid is 
an 1, -ball. The smallest value of the 1, -ball 
is 0, which is at the bottom of the pyramid. 
The largest value of the 1, -ball in the 

upside-down pyramid is ,d w,max i i 1=  
which is determined by the boundary of 
the 1, -ball touching the wavelet signal ,wi  
i.e., the wavelet signal wi  is on one of the 
boundary hyperplanes of the 1, -ball. 

Orthogonal projection of wi  onto an 
1, -ball with d 0=  produces an all-zero 

result. Projection of wi  onto an 1, -ball 
with size ,d ,max i  does not change wi  
because wi  is on the boundary of the 

1, -ball. Therefore, for meaningful results, 
the size of the 1, -ball, ,d zi ip=  must sat-
isfy the inequality ,z d0 ,maxi ip1 1  for 
denoising. This condition can be expressed 
as follows: 

 | [ ] | ,k zw wi
k

K

i i1
1

p#=
=

/  (6)

where K  is the length of the wavelet vec-
tor [ [ ], [ ], , [ ]] .K1 2w w w w RT Kf !=  
The condition (6) corresponds to the epi-
graph set C  of the 1, -norm cost function 
in ,RK 1+  which is graphically illustrated 

[FIg1] soft-thresholding: wout  [ ]n =
( [ ]) {(| [ ] | ), } .n n 0sign w max win in i-
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Algorithm 1:  Order ( ( ))logK K  algorithm implementing projection onto the  
1, -ball with size .di

1): Inputs: 
   A vector [ [ ], , [ ]]K1w w wi i if=  and a scalar d 0i 2
2): Initialize: 
    Sort | [ ] |nwi  for , ,n K1 f=  and obtain the rank ordered sequence 

, , .K1 2 f$ $ $n n n  The soft-threshold value, ,ii  is given by 
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3): Output: 
   [ ] ( [ ]) {| [ ] | , },maxn n n 0signw w wi i i ip i= -  , , ,n K1 2 f=  
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in Figure 3 for w Ri
2!  [8], [9]. The epi-

graph set C  is defined in RN 1+  as follows: 
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which represents a family of 1, -balls for 
z d0 ,maxi ip1 #  in .RK 1+  In (7) there are 

K 1+  variables: [ ], , [ ],K1w wi if  and 
.z ip  Since the space is now K 1+  dimen-

sional, we increase the size of wavelet sig-
nals by one: 
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where .w Ri
K 1! +  The signal wi  is the 

K 1+  dimensional version of vector 

.w Ri
K!  From now on, we underline 

vectors in RK 1+  to distinguish them from 
K -dimensional vectors. 

The extended wavelet vector wi  can 
be projected onto the epigraph set C  to 
determine the vector [ [ ], ,1w wi ip p f=  

[ ], ]K zw pi i
T

p  as graphically illustrated in 
Figure 3. This projection is unique and is 
the closest vector on the epigraph set to 

[ , ] .0w wi i
T T=  The baseline mathemati-

cal operation is an orthogonal projection 
onto a hyperplane which is the face 
(boundary) of the epigraph set C  in the 
quadrant of the .wi  The orthogonal 
 projection w ip  of wi  is a denoised ver-
sion of wi  because it is equivalent to the 
orthogonal projection of wi  onto the  

1, -ball with size z ip  in ,RK  as graphi-
cally illustrated in Figure 3. 

Orthogonal projection onto the epi-
graph set C  can be computed in two 
steps. In the first step, [ , ]0wi

T T  is pro-
jected onto the boundary hyperplane of 
the epigraph set which is defined as: 

 ( [ ]) . [ ] ,n n z 0sign w w p
n

K

i i i
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=

/  (9)

where the coefficients of the above hyper-
plane are determined according to the 
signs of [ ] .nwi  This hyperplane deter-
mines the boundary of the epigraph set C  
facing the vector wi  as shown in Figure 3. 
The projection vector w ip  onto the hyper-
plane (9) in RK 1+  is determined using (1): 
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w h e r e  [ ( [ ]), ,K 1 1sign wi f+ =   
( [ ]), ]k 1sign wi

2-  and the last compo-
nent z ip  of w ip  is given by 
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As mentioned earlier above, this orthog-
onal projection operation also determines 
the size of the 1, -ball, ,d zi ip=  which can 
be verified using geometry. 

In general, the projection vector w ip  
may or may not be the projection of wi  
onto the epigraph set .C  In Figures 2 
and 3, it is. The 1, -ball in Figure 2 can 
be interpreted as the projection of 3-D 

1, -ball onto 2-D plane (view from the 
top). The issue comes from the fact that 
projecting onto the 1, -ball has been 
simplified to projecting onto a single 
hyperplane, which may not yield the 
desired result in some specific geometrical 
configurations. For instance, in Figure 2, 
the vector w op  is neither the orthogonal 
projection of wo  onto the 1, -ball, nor to 
the epigraph set of the 1, -ball, because w op  
is not on the 1, -ball. Such cases can easily 
be spotted by checking the signs of the 
entries of the projection vectors. If the 
signs of the entries [ ]nw ip  of projection 

[FIg2] a graphical illustration of s projection onto an 1, -ball with size :di  vectors w ip  and 
w opu  are orthogonal projections of w i  and wo  onto an 1, -ball with size ,di  respectively. 
the vector w l  is inside the ball, ,dw l i1 #  and projection has no effect: .w wl lp =

wo wl
wpo
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vector w ip  are the same as [ ]nwi  for all ,n  
then the w ip  is on the epigraph set ,C  
otherwise w ip  is not on the 1, -ball. If w ip  
is not on the 1, -ball we can still project wi  
onto the 1, -ball using Algorithm 1 or 
Duchi et al’s 1, -ball projection algorithm 
[11] using the value of d zi ip=  deter-
mined in (11). 

In summary, we have the following 
two steps: 1) project [ , ]0w wi i

T T=  onto 
the boundary hyperplane of the epigraph 
set C  and determine di  using (11); and 
2) if ( [ ]) ( [ ])n nsign signw wi ip=  for all 

,n  w ip  is the projection vector; otherwise, 
use d zi ip=  in Algorithm 1 to determine 
the final projection vector. Since there are 

, , ,i L1 2 f=  wavelet signals, each wave-
let signal wi  should be projected onto pos-
sibly distinct 1, -balls with sizes .di  Notice 
that di  is not the value of the soft-
threshold, it is the size of the 1, -ball. The 
value of the soft-threshold is determined 
using Algorithm 1. 

In practice, we may further simplify 
step 2 in denoising applications. Our 
goal is to zero-out insignificant wavelet 
coefficients. Therefore, we compare signs 
of entries of w op  and .wo  We can zero-
out those entries whose signs change 
after the orthogonal projection. Step 2 is 
then becomes as is shown in (12) below.

This operation is also graphically illus-
trated in Figure 2. The vector wo  is 

projected onto the boundary hyperplane 
facing wo  to obtain ,w op  which then pro-
jected back to the quadrant of wo  to 
obtain the denoised version .w opW  This 
process can be iterated a couple of times 
to approach the orthogonal projection 
vector w opM  as shown in Figure 2. 

Stronger denoising of the input vector is 
simply a matter of selecting a zp  value 

smaller than z ip  in (11). A zp value closer 
to zero leads to a higher threshold and 
forces more wavelet coefficients to be zero 
after the projection operation. 

how to DEtErminE thE  
numbEr of wavElEt 
DEcomposition lEvEls
There are many ways to estimate the 
number of wavelet decomposition levels 
[6]. It is also possible to use the Fourier 
transform of the noisy signal to approxi-
mately estimate the bandwidth of the sig-
nal. Once the bandwidth 0~  of the 

original signal is approximately deter-
mined, it can be used to estimate the 
number of wavelet transform levels and 
the bandwidth of the low-band signal .xL  
In an L-level wavelet decomposition, the 
low-band signal xL  approximately comes 
from the [ , / ]0 2Lr^ h  frequency band of the 
signal .x  Therefore, /2Lr^ h must be com-
parable to 0~  so that the actual signal 
components are not soft-thresholded. 
Only wavelet signals , , , ,w w wL L1 1f -  
whose Fourier transforms approximately 
occupy the bands [ / , ], , [( / ),2 2L 1fr r r -^ h  

/ ], [( / ), ( / )],2 2 2L L L2 1r r r- -^ h  respectively, 
should be soft-thresholded in denoising. 
For example, consider the cusp signal 
defined in MATLAB. It is possible to esti-
mate an approximate frequency value 0~  
for this signal. The cusp signal is cor-
rupted by additive zero-mean white 
Gaussian noise with %20v =  of the max-
imum amplitude of the original signal as 
shown in Figure 4. The magnitude of the 
Fourier transform of the cusp signal is 
shown in Figure 5. For this signal, an 
L 5=  level wavelet decomposition is suit-
able because the magnitude of the Fourier 
transform approaches the noise floor level 
at high frequencies after /460 .~ r^ h as 
shown in Figure 5. Therefore, L 5=  

/25
02r ~^^ h h is selected as the number 

of wavelet decomposition levels. 
It is also possible to use a pyramidal 

structure for signal decomposition 
instead of the wavelet transform. In this 
case, the noisy signal is filtered with a 
lowpass filter with a cut-off frequency of 

/8r^ h and the output xlp  is subtracted 

[FIg4] the cusp signal and its corrupted version with gaussian 
noise with %20v =  of maximum amplitude of the original 
signal.
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[FIg5] the discrete-time Fourier transform magnitude of cusp 
signal corrupted by noise. the wavelet decomposition level l is 
selected as five satisfying / ,25

02r ~^ h  which is the approximate 
bandwidth of the signal.
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from the noisy signal x  to obtain the 
high-pass signal xhp  as shown in [12]. 
The highpass signal xhp  is projected onto 
the epigraph of 1, -norm cost function 
and the denoised signal xhd  is obtained. 
Projection onto the epigraph set of 

1, -ball (PES- 1, ) removes the noise by 
soft-thresholding. The pyramidal signal 
decomposition approach is similar to the 
undecimated wavelet transform. The 
denoised signal is reconstructed by add-
ing xhd  and .xlp

In Figure 6, the signal is restored 
using PES- 1,  with a pyramid structure, 
PES- 1,  with wavelet, MATLAB’s wavelet 
multivariate denoising algorithm [6], 
MATLAB’s soft-thresholding denoising 
algorithms (minimaxi and rigrsure 
thresholds), and wavelet thresholding 
denoising method. The denoised signals 
have signal-to-noise (SNR) values equal to 
28.26, 25.30, 25.08, 23.28, and 24.52 dB, 
respectively. In average, PES- 1,  with pyra-
mid and PES- 1,  with wavelet method pro-
duce better denoising results than the 
other soft-thresholding methods. The 
SNR is calculated using the formula: 
SNR = ( / ) .log20 x x x10 orig orig rec# -  
Extensive simulation results and the 
denoising software are available on the 
Internet [12]. 

conclusIons

pros
Orthogonal projection-based denoising is 
computationally efficient because  projection 
onto a boundary hyperplane of an 1, -ball or 
the epigraph set can be implemented by 
performing only one division and K 1+  
additions and/or subtractions, and sign 
computations. Once the size of the  

1, -ball using (10) and (11) is determined, 
the orthogonal projection onto an 1, -ball 
operation is an order ( )K  operation. Equa-
tions (10) and (11) only involve multiplica-
tions by .1!

cons
It is not possible to incorporate any prior 
knowledge about the noise probability den-
sity function or any other statistical infor-
mation to the orthogonal projection based 
denoising method. However, it produces 
good denoising results under additive white 
Gaussian noise. Most of the denoising 
methods available in MATLAB also assumes 
that the noise is additive, white Gaussian. 
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[FIg6] original cusp signal (blue), denoised signal (green) using Pes- 1, -ball with 
pyramid; snr = 28.26 dB, denoised signal (cyan) using Pes- 1, -ball with wavelet; snr = 
25.30 dB, denoised signal (magenta) using matlaB wavelet multivariate method;  
snr = 25.08 dB [6], denoised signal (petroleum blue) using wavelet denoising 
rigrsure algorithm [3]; snr = 23.28 dB, and denoised signal (red) using wavelet 
denoising minimaxi algorithm [7]; snr = 24.52 dB.


