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Based on density functional theory, we have studied the electronic, and optical
properties of narrow-band ferroelectric compounds – (Ge,Sn) Te. Generalized
gradient approximation has been used for modeling exchange-correlation effects. The
lattice parameters of the considered compounds have been calculated. The calculated
electronic band structure shows that GeTe and SnTe compounds have a direct
forbidden band gap of 0.742 eV and 0.359 eV. The real and imaginary parts of dielec-
tric functions and therefore, the optical functions such as energy-loss function, as
well as the effective number of valance electrons and the effective optical dielectric
constant are all calculated. Our structural estimation and some other results are in
agreement with the available experimental and theoretical data.

Keywords ab initio calculation; electronic structure; optical properties

1. Introduction

A4B6 (A D Ge, Sn, Pb; BDTe, Se, S) are the interesting materials from both fundamental

and industrial perspectives. When alloyed with Sb, the optical and electronic properties

of A4B6 become dramatically modified due to the change in the structure from the crystal-

line to the amorphous phase [1–2]. This makes A4B6 the crucial base materials for optical

storage rewritable devices. Besides the industrial interest, A4B6 compounds also attract

fundamental interest for their ferroelectric and electronic properties. At higher tempera-

tures, they possess a highly symmetric, non-polar, and rocksalt cubic structure (Fm3m).

Below a critical temperature Tc, they stabilize in a lower symmetry polar structure (R3m)

with A- and B-ions being displaced from ideal rocksalt sites. The polar (ferroelectric)

transition is characterized by the softening of a zone-center transverse optic phonon mode

propagating in the [111] direction and the freezing in of a relative displacement of the

crystal sublattices [3]. Due to their interesting properties as ferroelectric and phase change
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materials, A4B6 compounds have been the subject of many experimental and theoretical

studies. The electronic, structural, and optical properties have been investigated in the dif-

ferent phases [1, 3–7].

On the other hand, many emerging phenomena in A4B6 compounds are explained by

the notion of elementary excitations between them. While the phases are usually topologi-

cally referred to as a geometrical characteristic of their electronic structures at equilib-

rium conditions, it is also of great physical interest to explore whether the elementary

excitations or interactions between them can lead to the development of topological

phases or to new emerging phenomena associated with the topological phases (PbTe,

SnTe, GeTe). It is very viable in these compounds that the interplay of crystalline symme-

tries and the time-reversal symmetry leads to the very rich behavior of topological phases

[8–14].

In this work, we present the first principle calculation of optical and electronic

properties of GeTe and SnTe compounds in both the ferroelectric (rhombohedral) and

paraelectric (cubic) phases.

2. Method of Calculation

In this study, all of our calculations have been performed using the ab-initio total-energy

and molecular-dynamics program VASP (Vienna ab-initio simulation program) devel-

oped at the Faculty of Physics of the University of Vienna [15–18] within the density

functional theory (DFT) [19]. The exchange-correlation energy function is treated within

the GGA (generalized gradient approximation) by the density functional of Perdew et al.

[20]. The potentials used for the GGA calculations take into account the 4s24p2 valence

electrons of each Ge-, 5s25p2 valence electrons of each Sn-, and 5s25p4 valence electrons

of each Te-atoms. The GGA calculation within the core-state model potential of A(Ge,

Sn) has only four valence electrons because the 3d10 and 4d10 have become part of the

core. Pseudopotentials are known for being relatively hard, and the properties investi-

gated in this work are well converged when including a plane-wave basis up to a kinetic-

energy cutoff equal to 17 Ha. The Brillouin-zone integration was performed using special

k points sampled within the Monkhorst-Pack scheme [21]. We found that a mesh of 12 £
12 £ 12 k points was required to describe well of these electronic and optical properties.

This k-point mesh guarantees a violation of charge neutrality less than 0.008e. Such a

low value is a good indicator for an adequate convergence of the calculations.

3. Results and Discussion

3.1. Structural Properties and Electronic Properties

In the first step of our calculations, we have calculated the equilibrium lattice constants of

GeTe and SnTe in both ferroelectric and paraelectric phases. Our obtained results are

shown in Table 1 along with the experimental and theoretical results [7, 22–23].

The band structure of GeTe and SnTe along the principal symmetry directions have

been calculated by using the equilibrium lattice constants as shown in Table 1 in ferro-

electric and paraelectric phases. As a result of our calculations the band structure of the

GeTe and SnTe have a direct gap (L-high symmetry point), which are 0.742 eV and

0.359 eV in the ferroelectric phase for GeTe and SnTe, respectively. In the paraelectric

phase, the gaps are 0.376 eV and 0.028 eV for GeTe and SnTe, respectively. The valence

band maximum results from the sp- hybridization of Ge and Te bands. The next lower

44 H. Koc et al.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
6:

20
 2

2 
D

ec
em

be
r 

20
15

 



band to the valence band maximum merges with the valence band maximum on going

from the L point along the high symmetry line to the Z point. On the whole, our calcula-

tions reproduce the essential features of the band structures of GeTe and SnTe, prominent

among which is the arrangement of band symmetries at the L point in which the valence

and conduction bands have LC and L¡ symmetries and vice versa for SnTe and GeTe.

The change in the energy gap for the SnTe and GeTe can be understood qualitatively in

terms of the difference between the relativistic effect in Ge and Sn (spin-orbital coupling)

and the relativistic correction is extremely important in determining the positions of the

energy bands (such as a weak topological insulator). Furthermore our results are in agree-

ment with the results obtained in previous calculations [7, 8]. We have summarized the

band gap energies for SnTe and GeTe in Table 2 with previous theoretical and experi-

mental results.

3.2. Optical Properties

It is well known that the effect of the electric field vector, E.v/, of the incoming light is to

polarize the material. At the level of a linear response, this polarization can be calculated

using the following relation [28,29]:

Pi.v/Dx.1/
ij .¡v;v/:Ej.v/; (1)

where x.1/
ij is the linear optical susceptibility tensor and it is given by [30]

x.1/
ij .¡v; v/D e2

9V

X
nm k

!
fnm. k

!
/
rinm. k

!
/rimn. k

!
/

vmn. k
!
/¡v

D eij.v/¡ dij

4p
(2)

Table 1

The calculated equilibrium lattice parameters (a, and c) for GeTe and SnTe in ferroelec-

tric and paraelectric phase

Material Structure Reference a (A
�
) c (A

�
)

GeTe

SnTe

Rhombohedral (R3m)

Cubic (Fm3m)

Rhombohedral (R3m)

Cubic (Fm3m)

Present

Experimentala

Present

Theory (GGA)b

Theory (LDA)b

Experimentalc

Present

Present

Theory (GGA)b

Theory (LDA)b

Experimentalc

4.228

4.156

6.024

6.011

5.858

5.996

4.502

6.309

6.404

6.231

6.327

10.886

10.663

11.489

aReference [7]; bReference [22]; cReference [23].
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Table 2

Energy band gap for GeTe and SnTe in ferroelectric and paraelectric phase

Material Structure Reference Eg.eV/

GeTe

SnTe

Rhombohedral (R3m)

Cubic (Fm3m)

Rhombohedral (R3m)

Cubic (Fm3m)

Present

Theorya

Theoryb

Theoryc

Present

Theory (LDA-GGA)d

Experimentald

Present

Present

Theory (LDA-GGA)d

Experimentald

0.742 direct

0.48 direct

0.48

0.3369

0.376 direct

0.399–0.340

0.2

0.359 direct

0.028 direct

0.074–0.061

0.2

aReference [24]; bReference [25]; cReference [26]; dReference [7, 27].

Figure 1. Energy band structure for GeTe and SnTe in ferroelectric phase.
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where n; m denote energy bands, fmn. k
!

/ � fm. k
!

/¡ fn. k
!

/ is the Fermi occupation

factor, V is the normalization volume. vmn. k
!

/ � vm. k
!

/¡v. k
!

/ are the frequency

differences, �hvn. k
!

/ is the energy of band n at wave vector k. The r
!
nm are the matrix ele-

ments of the position operator [30].

As can be seen in Eq. (2), the dielectric function eij.v/D 1C 4px.1/
ij .¡v; v/ and the

imaginary part of eij.v/; eij2.v/, is given by

eij2.w/D
e2

�hp

X
nm

Z 

d k
!

fnm. k
!

/
vinm. k

!
/vjnm. k

!
/

v2
mn

d.v¡vmn. k
!

//: (3)

The real part of eij.v/; e
ij
1.v/, can be obtained by using the Kramers-Kroning trans-

formation [30]. Because the Kohn-Sham equations determine the ground state properties,

the unoccupied conduction bands as calculated, have no physical significance.

Figure 2. The total and projected density of states for GeTe in ferroelectric phase.

Figure 3. The total and projected density of states for SnTe in ferroelectric phase.
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The known sum rules [31] can be used to determine some quantitative parameters,

particularly the effective number of the valence electrons per unit cell Neff , as well as the

effective optical dielectric constant eeff , which make a contribution to the optical con-

stants of a crystal at the energy E0. One can obtain an estimate of the distribution of oscil-

lator strengths for both intraband and interband transitions by computing the Neff .E0/

defined according to

Neff .E/D 2me0
p92e2Na

Z1

0

e2.E/EdE; (4)

where Na is the density of atoms in a crystal, e and m are the charge and mass of the elec-

tron, respectively, and Neff .E0/ is the effective number of electrons contributing to optical

transitions below an energy of E0.

Further information on the role of the core and semi-core bands may be obtained by

computing the contribution that the various bands make to the static dielectric constant,

e0: According to the Kramers-Kronig relations, one has

e0.E/¡ 1D 2

p

Z1

0

e2.E/E¡ 1dE: (5)

One can therefore define an ‘effective’ dielectric constant, that represents a different

mean of the interband transitions from that represented by the sum rule, Eq. (5), accord-

ing to the relation

eeff .E/¡ 1D 2

p

ZE0

0

e2.E/E¡ 1dE: (6)

Figure 4. Energy spectra of dielectric function eD e1 ¡ ie2 and energy-loss function (L) along the

x- and z-axes for GeTe in ferroelectric phase.
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The physical meaning of eeff is quite clear: eeff is the effective optical dielectric con-
stant governed by the interband transitions in the energy range from zero to E0, i.e. by the

polarization of the electron shells.

The GeTe and SnTe single crystals have a rhombohedral structure that is optically a

uniaxial system. For this reason, the linear dielectric tensor of the GeTe and SnTe com-

pounds has two independent components that are the diagonal elements of the linear

dielectric tensor. We first calculated the real and imaginary parts of the linear dielectric

function of the GeTe and SnTe compounds that have been along the x- and z-directions

(Fig. 4 and Fig. 5). All the GeTe and SnTe compounds studied so far have ex1.e
z
1/ are

equal to zero in the energy region between 1 eV and 18 eV for the decreasing

(de1=dE< 0) and increasing (de1=dE> 0) of e1.eV/ (see Table 3). In addition, values of

e1 versus photon energy have main peaks in the energy region between 0.3 eV and 5 eV .

Some of the principal features and singularities of the eij for both investigated compounds

are shown in Table 3. The peaks of the ex2 and ez2 correspond to the optical transitions

from the valence band to the conduction band and are in agreement with the previous

results. The maximum peak values of ex2 and ez2 for GeTe are around 1.63 eV and 1.99 eV ,

respectively, whereas the maximum values of ex2 and ez2 for SnTe are around 1.99 eV and

2.05 eV , respectively. In general, there are various contributions to the dielectric function,

but Fig. 4 and Fig. 5 show only the contribution of the electronic polarizability to the

dielectric function. In the range between 0.5 eV and 4 eV , ez1 decrease with increasing

Figure 5. Energy spectra of dielectric function eD e1 ¡ ie2 and energy-loss function (L) along the

x- and z-axes for SnTe in ferroelectric phase.

Table 3

Some of principal features and singularities of the linear optical responses for GeTe and

SnSe in ferroelectric phase

Material e1 eVð Þ de1=dE< 0 de1=dE> 0 e2 eVð Þ
GeTe ex1 1.19 17.45 ex2;max 1.63

ez1 2.12 17.53 ez2;max 1.99

GeTe ex1 2.23 16.07 ex2;max 1.99

ez1 2.29 16.13 ez2;max 2.05

Optical Properties of the Narrow-Brand: FPC 49
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photon-energy, which is characteristic of an anomalous dispersion. In this energy range,

the transitions between occupied and unoccupied states mainly occur between s and p

states that can be seen in the DOS and PDOS displayed in Fig. 2 and Fig. 3.

The corresponding energy-loss functions, L.v/, are also presented in Fig. 4 and

Fig. 5. In this figure, Lx and Lz correspond to the energy-loss functions along the x- and z-

directions. The function L.v/ describes the energy loss of fast electrons traversing the

material. The sharp maxima in the energy-loss function are associated with the existence

of plasma oscillations [32]. The curves of Lx and Lz in Fig. 4 and Fig. 5 have a maximum

near 17.67 and 17.69 eV for GeTe, respectively and 16.32 and 16.50 eV for SnTe,

respectively.

The calculated effective number of valence electrons Neff and the effective dielectric

constant eeff are given in Fig. 6. The effective number of valence electron per unit cell,

Neff , contributing in the interband transitions, reaches a saturation value at approx. 30 eV .

This means that deep-lying valence orbitals participate in the interband transitions as well

(see Fig. 1). The effective optical dielectric constant, eeff , shown in Fig. 6, reaches a satu-
ration value at about 10 eV. This means that the greatest contribution to eeff arises from
interband transitions between 0 and 10 eV.

Conclusion

In the present work, we have made a detailed investigation of the structural, electronic,

and frequency-dependent linear optical properties of the GeTe and SnTe crystals using

the density functional methods. The results of the structural optimization implemented

using the GGA are in good agreement with the experimental and theoretical results. We

have examined photon-energy dependent dielectric functions, some optical properties

Figure 6. Energy spectra of Neff and eeff along the x- and z- axes in ferroelectric phase.
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such as the energy-loss function, the effective number of valance electrons and the effec-

tive optical dielectric constant along the x- and z-axes.
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