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Dynamic Nonlinear Optical Processes in Some
Oxygen-Octahedra Ferroelectrics: First Principle

Calculations
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Turkey
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3Department of Physics, Faculty of Science and Letters, Harran University,

Sanliurfa, Turkey
4Nanotechnology Research Center, Bilkent University, Ankara, Turkey
5International Scientific Center, Baku State University, Baku, Azerbaijan

The nonlinear optical properties and electro-optic effects of some oxygen-octahedra
ferroelectrics are studied by the density functional theory (DFT) in the local density
approximation (LDA) expressions based on first principle calculations without the
scissor approximation. We present calculations of the frequency- dependent complex
dielectric function vð Þ and the second harmonic generation response coefficient
x 2ð Þ ¡ 2v;v;vð Þ over a large frequency range in tetragonal and rhombohedral
phases. The electronic linear electro-optic susceptibility x 2ð Þ ¡v;v; 0ð Þ is also evalu-
ated below the band gap. These results are based on a series of the LDA calculation
using DFT. The results for x 2ð Þ ¡v;v; 0ð Þ are in agreement with the experiment below
the band gap and those for x 2ð Þ ¡ 2v;v;vð Þ are compared with the experimental data
where available.

Keywords ABO3; ferroelectrics; nonlinear optic processes

1. Introduction

Nowadays, nonlinear optics has developed into a field of major study because of the rapid

advance in photonics [1]. Nonlinear optical techniques have been applied to many diverse

disciplines such as condensed matter physics, medicine and chemical dynamics. The

development of new advanced nonlinear optical materials for special applications is of

crucial importance in technical areas such as optical signal processing and computing,

acousto-optic devices and artificial neuro-network implementation. There are intense

efforts in experimenting, fabricating and searching for various nonlinear optical materials

including ferroelectrics and related compounds. However there is a comparatively much
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smaller effort to understand the nonlinear optical process in these materials at the micro-

scopic level. The theoretical understanding of the factor that controls the figure of merit

is extremely important in improving the existing electro-optic (EO) materials and in the

search for new ones [2].

There exist a number of calculations for the electronic band structure and optical

properties using different methods [3–10]. There is a large variation in the energy gaps,

suggesting that the energy band gap depends on the method of the energy spectra calcula-

tion. We, therefore, thought it worthwhile to perform calculations using the density func-

tional theory (DFT) in the local density approximation (LDA) expressions, as

implemented within the ABINIT package [11] of the following convention. Static fields

will be labeled by Greek indices (a,b,. . .) while we refer to optical fields with Latin sym-

bols (i,j,. . .). To simplify the notation, we will also drop labels such as 1 for quantities

that do not involve the response of the ions. Using this convention, we can write eij and
eab, respectively, for the optical and static dielectric tensors, respectively, and rijk Rijkl

� �
for the linear (quadratic) EO tensor that involves two optical and one static electric fields.

On the other hand, the family of the oxygen-octahedral crystals (ABO3, where

ADAg, Sr, Ba, Li, K, Pb, Bi, and other elements, BDTi, Nb, Ta, and other d-transition

elements) is one of the most important and numerous groups of nonlinear materials. The

structure of these crystals is a combination of oxygen octahedra, in the centers and voids

of which other ions are located. The family of ABO3 ferroelectrics has three basic

structures:

1. Perovskite (simple and distorted)

2. Trigonal pseudoilmenite

3. Potassium tungsten bronze.

The ferroelectric oxides have a number of properties that make them attractive for

use in nonlinear optical devices. Further investigations of these compounds have shown

them to be promising for the purposes of the optical reduction of information. As a class

of compounds they have wide band gaps, large electro-optical (EO) and nonlinear optical

(NLO) coefficients, high static dielectric constants, and the possibility of sustaining a

spontaneous polarization. The interest in these compounds, however, is not restricted to

applications only. The presence of the BO6 octahedron with different B-O bonds in

ABO3 and the displacement of the B-ion in the octahedron in the course of phase transi-

tions lead to changes in many of the macroscopic and microscopic parameters of these

crystals. A study of the role of the BO6 octahedron can cast light on the many physical

phenomena that take place in ABO3. All of these have motivated investigations of the

linear and nonlinear optical properties of the ABO3 ferroelectrics.

Our aim in this study is to understand the origin of the x2.v/, Rijkl and rijk in these

materials as well as to study the trends with moving from Ti to Nb and Nb to Ta

(Ba!Li!K!Ag) and also to develop the relation between the nonlinear optical pro-

perties of ABO3 ferroelectrics and their electronic band structure.

In this paper, we describe the detailed calculations of the nonlinear optical properties,

includes linear .rijk/ and quadratic .Rijkl/ electro-optic tensors for some ABO3

ferroelectrics.

Our paper is organized as follows. In sec. 2, we describe the methodology, structure

and computational details. In sec. 3, we describe the computation of the nonlinear optical

susceptibilities and linear and quadratic EO tensors. In sec. 4, we illustrate the validity of

the formalism by applying methodology and theory (see sec. 2 and sec. 3) to ABO3

Dynamic Nonlinear Optical Processes 27
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ferroelectrics. Some of the tensor that we consider in this work depends on static electric

fields: They include contributions of both the electrons and ions. Other quantities imply

only the response of the valence electrons: They are defined for the frequencies of the

electric fields high enough to get rid of the ionic contributions but sufficiently low to

avoid electronic excitations.

2. Computational Details

The nonlinear optical properties of ABO3 were theoretically studied by means of first

principles calculations in the framework of density functional theory (DFT) and based on

the local density approximation (LDA) [11] as implemented in the ABINIT code [8, 12].

The self consistent norm-conserving pseudopotentials are generated using the Troullier-

Martins scheme [13] which is included in the Perdew-Wang [14] scheme as parameter-

ized by Ceperly and Alder [15]. For calculations, the wave functions were expanded in

plane waves up to a kinetic-energy cutoff of 40 Ha (LiNbO3 and LiTaO3), 42 Ha

(AgTaO3), 35 Ha (tetragonal and rhombohedra KNbO3), 38 Ha (BaTiO3). The Brillouin

zone was sampled using a 6 £ 6 £ 6 the Monkhorst-Pack [16] mesh of special k points.

Rhombohedral position coordinates of AgTaO3, LiNbO3 and LiTaO3 using both experi-

mental value [17, 18, 19] were calculated to relate to the hexagonal coordinates given in

the literature by the transformation [20]. The coordinates of KNbO3 [21] and BaTiO3

[22] are reported in Table 1. All calculations of ABO3 have been used with the experi-

mental lattice constants and atomic positions. The lattice constants and atomic positions

are given in Table 1. The coordinates of the other atoms can easily be obtained by using

the symmetry operations of the space groups. These parameters were necessary to obtain

converged results in the nonlinear optical properties.

3. Linear and Nonlinear Optical Response

3.1 Linear Optical Response

It is well known that the effect of the electric field vector, E.v/, of the incoming light is to

polarize the material. In an insulator, the polarization can be expressed as a Taylor expan-

sion of the E.v/

Pi vð ÞDPi
s C

X ​3

jD 1

x
1ð Þ
ij ¡v;vð ÞEj vð ÞC

X​3

j;lD 1

x
2ð Þ
ijl E

j vð ÞEl vð ÞC . . . (1)

where Pi
s is the zero field (spontaneous) polarization, x

1ð Þ
ij is the linear optical susceptibil-

ity tensor and is given by ref. [23].

x
1ð Þ
ij ¡v;vð ÞD e2

�hv

X
n;m;K

!
fnm K

!� � ri
nm K

!ð Þr
j

mn K
!ð Þ

vmn K
!� �

¡v
D eij vð Þ¡ dij

4p
(2)

where n, m denote energy bands, fmn.K
!

/D fm.K
!

/¡ fn.K
!

/ is the Fermi occupation

factor, and V is the normalization volume.

28 S. Simsek et al.
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vmn.K
!

/ � [vm.K
!

/¡vn.K
!

/] is the frequency difference and �hvn. K
!
/ is the energy of

band n at wave vector K
!
. The rijk are the matrix elements of the position operator and

are given by

rinm K
!� �

D
ninm K

!� �
ivnm

; vn 6¼ vm

rinm K
!� �

D 0; vn Dvm

(3)

where ninm. K
!
/D [Pi

nm.K
!

/
.K
!
/=m] m is the free electron mass, and Pnm is the momentum

matrix element. x.2/
ijl the second-order nonlinear susceptibility tensor and is discussed

in sec. 4. As can be seen from equation (2), the dielectric function eij.v/D
[1C 4px

1ð Þ
ij .¡v;v/] and the imaginary part of eij.v/, e

ij
2.v/ is given by

eij2 vð ÞD e2

�hp

X
nm

Z
d K

!
fnm K

!� � ninm K
!� �

njnm K
!� �

v2
mn

d v¡vmn Kð Þð Þ (4)

Table 1

Atomic positions and lattice constants of some ABO3 crystals

Phase

Space

group

Lattice

parameters (A
�
) Atom Position

AgTaO3

Ferroelectric

(Rhombohedral)

R3c a D b D c D
5.5770

Ag

Ta

O

(0.2499, 0.2499, 0.2499)

(0.0, 0.0, 0.0 )

(0.8207, -0.3207, 0.2499)

LiNbO3

Ferroelectric

(Rhombohedral)

R3c a D b D c D
5.4944

Li

Nb

O

(0.2829, 0.2829, 0.2829)

(0.0, 0.0, 0.0 )

(0.1139, 0.3601, ¡0.2799)

LiTaO3

Ferroelectric

(Rhombohedral)

R3c a D b D c D
5.4740

Li

Ta

O

(0.2790, 0.2790, 0.2790)

(0.0, 0.0, 0.0 )

(0.1188, 0.3622, ¡0.2749)

KNbO3

Ferroelectric

(Tetragonal)

P4mm a D b D 3.9970

c D 4.0630

K

Nb

O(1)

O(2)

(0.0, 0.0, 0.023)

(0.5, 0.5, 0. 5 )

(0.5, 0.5, 0.04)

(0.5, 0.0, 0.542)

KNbO3

Ferroelectric

(Rhombohedral)

R3m a D b D c D
4.0160

K

Nb

O(1)

O(2)

(0.0112, 0.0112, 0.0112)

(0.5, 0.5, 0.5 )

(0.5295, 0.5295, 0.0308)

(0.5295, 0.0308, 0.5295)

BaTiO3

Ferroelectric

(Tetragonal)

P4mm a D b D 3.9909

c D 4.0352

Ba

Ti

O(1)

O(2)

(0.0, 0.0, 0.0)

(0.5, 0.5, 0.5224 )

(0.5, 0.5, ¡0.0244)

(0.5, 0.0, 0.4895)
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The real part of eij.v/, e
ij
1 vð Þ, can be obtained by using Kramers-Kronig transforma-

tion

eij vð Þ¡ 1D 2

p
P

Z1
0

v’eij2 v’ð Þ
v’2 ¡v2

dv
0

(5)

As the Kohn-Sham equations only determine the ground-state properties, hence

the unoccupied conduction bands have no physical significance. If they are used as

single-particle states in the optical calculation of semiconductors, a band gap prob-

lem comes into existence: The absorption starts at an excessively low low energy

[19]. In order to remove the deficiency, the many-body effects must be included in

the calculations of response functions. In order to take into account the self-energy

effects, the scissors approximation is generally used [24]. In the calculation of the

optical response in the present work we have used the standard expression for eij vð Þ
(see equations (4) and (5)).

3.2 Nonlinear Response

The general expression of the nonlinear optical susceptibility depends on the frequencies

of the E.v/. Therefore, in the present context of the .2nC 1/ theorem applied within the

LDA to DFT we get an expression for the second order susceptibility [23–27]. As the

sum of the three physically different contributions

x
2ð Þ
ijl .¡vb; ¡vg ; vb; vj/Dx

00
ilj.¡vb; ¡vg ; vb; vj/

C h
00
ilj.¡vb; ¡vg ; vb; vj/C i

s
00
ilj.¡vb; ¡vg ; vb; vj/

vb Cvg

(6)

That includes contributions of interband and intraband transitions to the second order

susceptibility. The first term in equation (6) describes contribution of inter band - transi-

tions to second order susceptibility. The second term represents the contribution of intra-

band transitions to second order susceptibility and the third term is the modulation of

interband terms by intrabands terms. We used this expression to calculate the nonlinear

response functions of ABO3 ferroelectrics.

3.3 Principal Refractive Indices Calculation

The principal refractive indices, ni, can be computed as a square root of the eigenvalues

of the optical dielectric tensor. At finite temperature, T , we can write

eij.ur; h/
� �D dij C 4pm1

ij ur; hð Þ where h . . . i refers to the average value at a given T . Let

us write ur and h as ur D h u i C dur and D h h i C dh, where dur and dh denote the devia-

tions from average values (here, ur - the ionic degree of freedom in r unit cell, h - the

macroscopic strains). If we develop hx 1ð Þ
ij .ur; h/ i as a Taylor expansion about the para-

electric structure, we can separate the terms depending on h u i and h h i only from those

involving also dur and dh. At a finite temperature, the dielectric susceptibility can

30 S. Simsek et al.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
6:

22
 2

2 
D

ec
em

be
r 

20
15

 



therefore be expressed as

hx 1ð Þ
ij ur; hð Þ i Dx

1ð Þ
ij h u i ; h h ið ÞC hx 1ð Þ

ij h u i ; h h i ; dur; dhð Þ i (7)

The first term describes the variations of x
1ð Þ
ij due to the averaged crystal lattice dis-

tortions. It is responsible for the discontinuity of ni at the phase transition in ferroelectrics

such as BaTiO3. The second term represents the variations of x
1ð Þ
ij due to thermal fluctua-

tions and to their correlations [23]. It determines the variations of ni in the paraelectric

phase. This term is difficult to compute in practice. However, in the usual ferroelectric

such as BaTiO3 or KNbO3, the variations of ni in the paraelectric phase are small com-

pared to their variation at the phase transition. Following ref. [23] we neglect the second

term in equation (7) since we are interested in the variation of ni below the phase transi-

tion temperature Tcð Þ where we expect the first term to dominate. The linear EO effect is

related to the first order change of the optical dielectric tensor induced by a static or low

frequency electric field (E).

3.4 Electro-Optic Tensor

The optical properties of the material usually depend on external parameters such as the

temperature, electric or magnetic fields or mechanical constraints (stress, strain). Now we

consider the variations of the refractive index induced by a static or low-frequency elec-

tric field E. The band theoretical expression for the EO effect has been given in [23]. The

first principles calculations of this type not only neglect important excitonic contributions

to eij2 vð Þ in ionic crystals, but they also are not presently feasible even for such relatively

simple compounds as TiO2. For this reason, theories of the EO effect require some

approximations and parameterizations within the framework of either general quantum

theories or physically appealing simplified models, like the quantum anharmonic oscilla-

tor model of Robinson [28], where the octapole moment of the ground state (valance

band) charge density serves as a measure of acentricity. When the reasonably accurate

wavefunctions are available, this theory provides a formalism for the computation of the

EO effect. It should be noted that the ground state theory of Robinson does not explicitly

display the importance of the interband transitions to electrooptics. Although, as empha-

sized by Robinson and other investigators [28], knowledge of the excited states (conduc-

tion bands) is contained within the exact ground state (valance bands) wavefunctions,

there appears to be no straightforward procedure for establish in the accuracy of the con-

duction bands generated by the necessarily approximate ground state. A connection

between the energy band approach and the ground state (moment) theory can be obtained

by an equation

TK;ji � ¡ a0e

24p2Pe
K

� 	
P

Z ​1

vg1

v
0
De2;ij v0ð Þ
v02 ¡v2
� � (8)

Thus the octapole moment Tk;ji per valence electron is related to a Kramers-Kronig

integral over the polarization-induce changes in the fundamental eij2 vð Þ spectrum. Pe
K is

the field induced electronic polarization) To summarize, the fundamental theories of the

EO effect involving either k-space integrations are presently capable of quantitatively

predicting the magnitude of EO coefficients, because the first principles calculations
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using DFT in the LDA expressions are successful. Below, we review this approach to lin-

ear and quadratic EO effects.

3.4.1. Linear Electro-Optic Effect. At linear order, these variations are described by the

linear electro-optical (EO) coefficients (Pockels effect).

D e¡ 1
� �

ij
D
X3

kD 1

rijkEk (9a)

where .e¡ 1/ij is the inverse of the electronic dielectric tensor and rijk the EO tensor.

Within the Born-Oppenheimer approximation, the EO tensor can be expressed as the sum

of the three contributions: a bare electronic part relijk an ionic contribution rionijk and a piezo-

electric contribution r
piezo
ijk . The electronic part is due to an interaction of Ek with the

valence electrons when considering the ions artificially as clamped at their equilibrium

positions. It can be computed from the nonlinear optical coefficients. As can be seen from

equation (6) x
2ð Þ
ijl defines the second order change of the induced polarization with respect

to Ek. Taking the derivation of equation (9) we also see that x.2/
ijl defines the first-order

change of the linear dielectric susceptibility, which is equal to .1=4p/Deij. Since the EO

tensor depends on D.e¡ 1/ij rather than Deij, we have to transform Deij to D.e¡ 1/ij by the

inverse of the zero-field electronic dielectric tensor [8].

D e¡ 1
� �

ij
D ¡

X3

m;nD 1

e¡ 1
im Demne¡ 1

nj (9b)

Using equation (9b) we obtain the following expression for the electronic EO tensor:

relijk D ¡ 8p

X ​l;l
0 D 1

3

e¡ 1
� �

il
x

2ð Þ
ll
0k e¡ 1
� �

l
0
j

(10)

Equation (10) takes a simpler from when expressed in the principal axes of the crys-

tal under investigation [8]:

relijk D ¡ 8p

n2i n
2
j

x
2ð Þ
ijk (11)

where ni coefficients are the principal refractive indices.

The origin of ionic contribution to the EO tensor is the relaxation of the atomic posi-

tions due to the applied electric field Ek and the variations of the eij induced by these dis-

placements. It can be computed from the Born effective charge Z�
k;a;b and the @xij=@Tka

coefficients introduced in [8].

32 S. Simsek et al.
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The ionic EO tensor can be computed as a sum over the transverse optic phonon

modes at q
! D 0.

rionijk D ¡ 4pffiffiffiffi
V

p
n2i n

2
j

X
m

am
ij Pmk

v2
m

(12)

where am is the Raman susceptibility of mode m and Pm;k the mode polarity

Pmk D
X
k
0
;b

Z�
k
0
;kb
um.k

0
b/ (13)

which is directly linked to the make oscillator strength

Sm;ab DPm;aPmb (14)

For simplicity, we have expressed equation (14) in the principal axes while a more

general expression can be derived from equation (10).

Finally, the piezoelectric contribution is due to the relaxation of the unit cell shape

due to the converse piezoelectric effect [8]. It can be computed from the elasto-optic coef-

ficients Pijmn and the piezoelectric strain coefficients Pkmn:

r
kpiezo
ij D

X3

m;nD 1

Pijmndkmn (15)

In the discussion of the EO effect, we have to specify whether we are dealing

with strain-free (clamped) or stress-free (unclamped) mechanical boundary condi-

tions. The clamped EO tensor r
h
ijk takes into account the electronic and ionic contribu-

tions but neglects any modification of the unit cell shape due to the converse

piezoelectric effect [8].

r
h
ijk D relijk C rionijk (16)

Experimentally, it can be measured for the frequencies of Ek high enough to elimi-

nate the relaxations of the crystal lattice but low enough to avoid excitations of optical

phonon modes (usually above »102 MHz). To compute the unclamped EO tensor rsijk we

added the piezoelectric contribution to r
h
ijk. In the noncenterosymmetric phases of ABO3

the EO tensor has four independent elements r13; r22; r33; r15 D r42. In contrast to the

dielectric tensor, the EO coefficients can either be positive or negative. The sign of these

coefficients is often difficult to measure experimentally. Moreover, it depends on the

choice of the Cartesian axes. The z-axis is along the direction of the spontaneous polariza-

tion and the y–axis lies in a mirror plane. The z and y–axes are both piezoelectric.

Their positive ends are chosen in the direction that becomes negative under compression.

The orientation of these axes can easily be found from pure geometrical arguments. Our results

are reported in the Cartesian axes where the piezoelectric coefficients d22 and d33 are positive.

These coefficients, as well as their total and electronic part, are reported in Table 2. All EO

coefficients are positive as is the case for the noncentro-symmetric phases [8], the phonon

modes that have the strongest overlap with the soft mode of the paraelectric phase dominate

the amplitude to the EO coefficients. Moreover, the electronic contributions are found to be
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quite small. All of our investigation of EO coefficients of ABO3 shows a good agreement and

also between our results and earlier experimental investigations.

3.4.2. Quadratic Electro-Optic Effect (Kerr Effect). For our knowledge of the energy

band structure and polarization induced energy band changes, we can compute the qua-

dratic EO (Rijkl) coefficients. This model applies in the zero-strain limit, and as conse-

quence, we compute the “clamped” coefficients, defined by [28].

D
1

n2

� 	
ij

D
X​3

K;lD 1

RijklEKEe (17)

for the ABO3 ferroelectrics in their centrosymmetric phase. The refractive index change

Dn resulting from polarization induced band changes ..e=hc/DEg/ can be related to the

EO Rijkl coefficients and the polarization-potential tensor concept introduced in [28], as

DnD 1

2
n3RP2 (18)

(for the different geometry and symmetry of the compounds R!R11;R12;R44, and

Table 2

EO tensors of some ABO3 crystals

Crystals

Symmetry

class Linear

EO coefficients

x 10¡7 (esu) Quadratic EO

coefficients,

x 10¡12 (esu) TotalElectronic Total Exp.

r13 0.358 1.653 3.06 [29] R11 8.2

BaTiO3 4mm r33 0.505 3.570 12.18 [29] R12 1.7

r51 D r42 0.399 19.533 R33 12.5

r13 0.288 1.279 R11 91.3

KNbO3 4mm r33 1.029 5.117 R12 20.7

r51 D r42 0.288 1.279 R14 12.5

r13 0.569 3.417

3m r33 0.942 6.276

r51 D r42 0.623 3.459

r22 0.254 1.333

r13 0.230 1.756 2.58 [29]

LiNbO3 3c r33 0.082 6.085 9.24 [29]

r51 D r42 0.236 1.879 8.40 [29]

r22 0.002 0.402 1.02 [29]

r13 0.092 3.513 2.52 [29]

LiTaO3 3c r33 0.718 5.151 ¡0.06 [29]

r51 D r42 0.091 1.105 9.15 [29]

r22 0.039 0.132 6.00 [29]

r13 0.039 0.387

AgTaO3 3c r33 0.104 0.656

r51 D r42 0.039 0.276

34 S. Simsek et al.

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
6:

22
 2

2 
D

ec
em

be
r 

20
15

 



so on). The relationship between rijk of a polarized crystal and Rijkl of an unpolarized crys-

tal were derived in [28] for all crystals symmetries from Oh to C4v (for four-fold octahe-

dral axes) and C3v (for threefold octahedral axes).

4. Results and Discussion

The calculation of the nonlinear optical properties is much more complicated than the

same procedure in the linear case. The difficulties concern both the numerical and the

analytical solutions. The k-space integration in expression (6) has to be performed

more carefully using a generalization of methods [25–27]. More conduction bands have

to be taken into account to reach the same accuracy. The fact that the SHG coefficients

are related to the optical transitions has remarkable consequences. First of all, we note

that the equations for SHG consist of a number of resonant terms. In this sense the imagi-

nary part, Imx 2ð Þ.¡ 2v;v;v/ resembles the e2.v/ and provides a link to the band struc-

ture. The difference, however, is that in e2.v/ only the absolute value of the matrix

elements squared enters, whereas the matrix elements entering the various terms in x 2ð Þ

are more varied.

They are in general complex and can have any sign. Thus, Imx 2ð Þ.¡ 2v;v;v/ can be

both positive and negative. Secondly, there appear both resonances when 2v equals an

interband energy and when v equals an interband energy. Figures (1–6) shows the 2v

and single v resonances contributions to Imx 2ð Þ.¡ 2v;v;v/ compared to e2.v/
(Figure 7) for a number of ABO3. They clearly show a greater variation from high sym-

metry to the lowest symmetry than the linear optic function. In some sense they resemble

a modulated spectrum. Third, we note that the 2v resonances occur at half the frequency

corresponding to the interband transition. Thus, the incoming light need not be as high in

the UV to detect this higher lying interband transition. This is important for wide band

gap materials like ABO3 compounds where laser light sources reaching the higher inter-

band transitions are not available. Nevertheless, one still needs to be able to detect the

corresponding 2v signal in the UV. Unfortunately, the intrinsic richness of x 2ð Þ spectra
remains largely to be explored experimentally and we are not aware of any attempts to

measure both the real and imaginary parts of these spectral functions as one standard

does in linear optics. We also calculated the real part (total, intra and inter components)

of the SHG susceptibilities Re x
2ð Þ
ijk 0ð Þ (Table 2). As can be seen from Table 3, the value

of x311 0ð Þ is the dominant component for all ABO3.

It is well known that nonlinear optical properties are more sensitive to small changes

in the band structure than the linear optical properties. That is attributed to the fact that

the second harmonic response x
2ð Þ
ijk vð Þ contains 2v resonance along with the usual v reso-

nance. Both the v and resonances can be further separated into interband and intraband

contributions. The structure in x
2ð Þ
ijk 0ð Þ can be understood from the structures in e2 vð Þ.

Our calculations for e2 vð Þ give two fundamental oscillator bands at »6 and »10 eV

which correspond to the optical transitions from the valance bands to the conduction

band, formed by the d orbits of the B (Ti,Nb,Ta) atoms and consisting of two subbands. It

is well known that the e2 vð Þ function computed from moments .P
!
/ appear to be very

sensitive to the ab initio parameters and seem to be particularly appropriate to test the

electronic band structure. In ABO3 perovskites the two peaks present in the experimental

reflectivity data are obtained in theoretical curves only when the interband transition

moments varied with respect to the energies and k
!

wave vectors. In this computation on

ABO3, compounds many parameters that have been borrowed from existing computations

have been neglected, thereby explaining some discrepancies between theory and
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experiments [9–10, 29–36]. The structure 2–6 eV in x
2ð Þ
ijk .v/ is associated with interfer-

ence between a v and 2v resonances, while the structure above 6 eV is due to mainly to

v resonance. In Figures 1–6 we show the 2v interband and intraband contributions for

ABO3 compounds. Also given is their decomposition into intra- and interband contribu-

tions. They are arranged so as to move the Ag ! Ba ! K ! Li, Ti ! Nb ! Ta trends

obvious. For example x 2ð Þ obviously increases when going from Ba to K and Li and from

Ti to Nb. Unfortunately, the agreement between theory and experiment is by no means

perfect [37].

Note that the interband part is negative in all cases and in most cases it largely com-

pensates for the intraband part. The exceptions are the LiBO3 (BDNb,Ta) compounds in

both cases of which interband part is much smaller in magnitude than the intraband part.

This is quite interesting because it is unexpected. It raises the question of what features in

the band structure of these two compounds distinguish them from the other compounds

Figure 1. Second-order susceptibility Imx2
333(¡2v,v,v) for BaTiO3.

Figure 2. Second-order susceptibility Imx2
333(¡2v,v,v) for tetragonal KNbO3.
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[38, 39]. We investigated the reasons for the cancellation of the intra- and interband parts

by inspecting the corresponding frequency dependent imaginary parts of the

x 2ð Þ.¡ 2v;v;v/.
First of all, one now sees that the opposite sign of intra- and inter-band parts not only

occurs in the static value but also occurs almost energy by energy. This is true over the

entire energy range in BaTiO3 and over most of the range (E >1 eV) for other ABO3.

The sign of the inter and intraband part are difficult to understand a priori because a vari-

ety of matrix element products comes into play and both v and 2v resonances occur in

both the pure interband, and the interband contribution modified by intraband motion when

these are further worked out into separate resonance terms. The spectra e2.v/
(Figure 6) for the ABO3 compounds are rather similar. They look like the superposition of

the spectra of more or less four pronounced oscillators with resonance frequencies close to

the M and Z line structures appearing in the 2v and v – terms of the imaginary parts.

As an example of such a prediction the SHG coefficients of ABO3 compounds are

Figure 3. Second-order susceptibility Imx2
333(¡2v,v,v) for rhombohedral KNbO3.

Figure 4. Second-order susceptibility Imx2
333(¡2v,v,v) for LiNbO3.
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given in Table 4. For incident light with a frequency that is small compared to the energy

gap. The independent tensor components are listed for v D 0. The comparison with recent

experimental values and theoretical calculations [40–41] are also rather successful where

available for the static SHG coefficients of the ABO3 compounds.

5. Conclusion

The linear and nonlinear optical properties for important group of oxygen-octahedron fer-

roelectrics ABO3 (AgTaO3, LiNbO3, LiTaO3, KNbO3 and BaTiO3) have been calculated

over a wide energy range. We studied some possible combination of A and B. This

allowed us to study the trends in the second order optical response with chemical compo-

sition. The results for the zero-frequency limit of second harmonic generation are in

agreement with available experimental results. The calculated linear and quadratic elec-

tro-optical coefficients for AgTaO3, LiNbO3, LiTaO3, KNbO3 and BaTiO3 are also show

agreement with recent experimental data in the energy region below the band gap. For all

the considered compounds the SHG coefficient x 2ð Þ is of the order of »10-7 esu. Our cal-

Figure 5. Second-order susceptibility Imx2
333(¡2v,v,v) for LiTaO3.

Figure 6. Second-order susceptibility Imx2
333(¡2v,v,v) for AgTaO3.
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Figure 7. The calculated imaginary part of z –components of the dielectric function of some ABO3

crystals.

Table 3

Total, Intraband and Interband values of Re x.2/
ijk (0), (10

¡9 esu)

Compound Rex.2/
ijk (0) x.2/

113 Dx.2/
131 x.2/

222 x.2/
311 x.2/

333

BaTiO3 Inter(v) ¡0.2319 ¡ 0.0217 08522

Inter(2v) ¡0.5912 ¡ ¡0.4714 ¡2.3513

Intra(v) 0.0272 ¡ ¡0.2121 ¡0.3977

Intra(2v) 1.0027 ¡ ¡0.0978 ¡0.2230

Total 0.2068 ¡ ¡0.7581 ¡2.1197

KNbO3 Inter(v) 0.0339 ¡ ¡0.9580 0.3651

Inter(2v) 0.6190 ¡ 1.5967 ¡1.2382

Intra(v) 0.0858 ¡ 0.2758 0.053

Intra(2v) ¡1.2742 ¡ 0.8832 2.0256

Total ¡0.5355 ¡ 1.7997 1.2077

LiNbO3 Inter(v) ¡0.0629 ¡0.1208 ¡0.1655 0.5775

Inter(2v) ¡1.7209 0.7369 ¡1.7243 ¡1.750

Intra(v) ¡0.2768 ¡0.0170 ¡0.1463 ¡0.0783

Intra(2v) 2.8817 ¡0.6579 3.0059 2.0675

Total 0.214 ¡0.0588 0.9718 0.3962

LiTaO3 Inter(v) ¡0.0932 ¡0.1182 ¡0.2068 0.1451

Inter(2v) ¡0.0731 0.3972 ¡0.0425 ¡0.6212

Intra(v) ¡0.1124 ¡0.0376 0.0165 0.0173

Intra(2v) 0.5419 ¡0.3019 0.6362 0.6414

Total 0.2634 ¡0.0606 0.4030 0.1825

AgTaO3 Inter(v) ¡0.420 0.053 ¡0.412 ¡0.202

Inter(2v) ¡0.016 ¡0.022 ¡0.015 0.028

Intra(v) ¡1.095 0.091 ¡1.115 ¡0.453

Intra(2v) 4.149 ¡0.331 3.710 1.697

Total 2.618 ¡0.208 2.168 1.069
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culations of the SHG susceptibility shows that the intra-band and interband contributions

are significantly changed with the changes of the B and A – ions.
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