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GROUP ACTIONS ON SPHERES WITH RANK ONE

PRIME POWER ISOTROPY

IAN HAMBLETON AND ERGÜN YALÇIN

Abstract. We show that a rank two finite group G admits a finite G-CW-complex
X ≃ Sn with rank one prime power isotropy if and only if G does not p′-involve Qd(p) for
any odd prime p. This follows from a more general theorem which allows us to construct
a finite G-CW-complex by gluing together a given G-invariant family of representations
defined on the Sylow subgroups of G.

1. Introduction

Actions of finite groups on spheres can be studied in various different geometrical set-
tings. The fundamental examples come from the unit spheres S(V ) in a real or complex
G-representation V , and already natural questions arise for these examples about the
dimensions of the non-empty fixed sets S(V )H , H ≤ G, and the structure of the isotropy
subgroups.

A useful way to measure the complexity of the isotropy is the rank. We say that G has
rank k if it contains a subgroup isomorphic to (Z/p)k, for some prime p, but no subgroup
(Z/p)k+1, for any prime p. In this paper we answer the following question:

Question. For which finite groups G, does there exist a finite G-CW-complex X ≃ Sn

with all isotropy subgroups of rank one ?

By P. A. Smith theory, the rank one assumption on the isotropy subgroups implies that
G must have rank(G) ≤ 2 (see [6, Corollary 6.3]). Since every rank one finite group can
act freely on a finite complex homotopy equivalent to a sphere (Swan [17]), we can restrict
our attention to rank two groups. Here are three natural settings for the study of finite
group actions on spheres:

(A) smooth G-actions on closed manifolds homotopy equivalent to spheres;
(B) finite G-homotopy representations (see tom Dieck [20, Definition 10.1]);
(C) finite G-CW-complexes X ≃ Sn.

In contrast to G-representation spheres S(V ), the non-linear smooth G-actions on a
smooth manifold M ≃ Sn exhibit more flexibility. For example, in the linear case, the
fixed sets S(V )H are always linear subspheres. For smooth actions, the fixed sets are
smoothly embedded submanifolds but may not even be integral homology spheres.
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Well-known general constraints on smooth actions arise from P. A. Smith theory: if H
is a subgroup of p-power order, for some prime p, then MH is a Z(p)-homology sphere.
In addition, even if the fixed sets are diffeomorphic to spheres, they may be knotted or
linked as embedded subspheres in M (see [21], [3]). One can also consider topological
G-actions, usually with the assumption of local linearity, otherwise the fixed sets may not
be locally flat submanifolds.

In the setting (B) of G-homotopy representations, the objects of study are finite (or
more generally finite-dimensional) G-CW-complexes X satisfying the property that for
each H ≤ G, the fixed point set XH is homotopy equivalent to a sphere Sn(H) where
n(H) = dimXH . We could also consider a version of this setting where dimXH is the
same as its homological dimension, and XH is a Z(p)-homology n(H)-sphere, for H of
p-power order.

The third setting (C) is the most flexible of all. Here we suppose that X ≃ Sn is a fi-
nite G-CW-complex homotopy equivalent to a sphere, but do not require that dimX = n.
Moreover, we make no initial assumptions about the homology of the fixed sets XH , al-
though the conditions imposed by P. A. Smith theory with Fp-coefficients still hold. In
the setting (C), we will see that dimXH must be (much) higher in general than its ho-
mological dimension, and this provides new obstructions to understanding our motivating
question in setting (A) or (B).

In this paper we provide a complete answer for the existence question in setting (C).
Our construction produces G-CW-complexes with prime power isotropy.

Theorem A. Let G be a finite group of rank two. If G admits a finite G-CW-complex
X ≃ Sn with rank one isotropy then G is Qd(p)-free. Conversely, if G is Qd(p)-free, then
there exists a finite G-CW-complex X ≃ Sn with rank one prime power isotropy.

The group Qd(p) is defined as the semidirect product

Qd(p) = (Z/p× Z/p)⋊ SL2(p)

with the obvious action of SL2(p) on Z/p×Z/p. We say Qd(p) is p′-involved in G if there
exists a subgroup K ≤ G, of order prime to p, such that NG(K)/K contains a subgroup
isomorphic to Qd(p). If a group G does not p′-involve Qd(p) for any odd prime p, then
we say that G is Qd(p)-free.

In our earlier work [5] and [6], we studied this problem in the setting (B) of G-homotopy
representations, introduced by tom Dieck (see [20, Definition 10.1]). We found a list of
conditions on a rank two finite group G that guarantees the existence of a finite G-
homotopy representation with rank one prime power isotropy. Identifying the full list of
necessary and sufficient conditions is still an open problem, but we did provide a complete
answer [6, Theorem C] for rank two finite simple groups.

The necessity of the Qd(p)-free condition was established in [23, Theorem 3.3] and [6,
Proposition 5.4]. In the other direction, if G is a rank two finite group which is Qd(p)-free
then G has a p-effective representation Vp : Gp → U(n) (see Definition 5.6) which can be
used to construct finite G-CW-complexes X ≃ Sn with rank one isotropy. The existence
of these p-effective representations was proved by Jackson [8, Theorem 47] and they were
also one of the main ingredients for the constructions in Hambleton-Yalçın [6].
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To do the construction in Theorem A, we prove a more technical theorem. We now
introduce more terminology to state this theorem. For each prime p dividing the order of
G, let Gp denote a fixed Sylow p-subgroup of G.

Definition 1.1. Suppose that we are given a family of Sylow representations {Vp} defined
on Sylow p-subgroups Gp, over all primes p. We say the family {Vp} is G-invariant if

(i) Vp respect fusion in G, i.e., the character χp of Vp satisfies χp(gxg
−1) = χp(x)

whenever gxg−1 ∈ Gp for some g ∈ G and x ∈ Gp; and
(ii) for all p, dimVp is equal to a fixed positive integer n.

Given a G-invariant family of Sylow representations {Vp}, we construct a G-equivariant
spherical fibration q : E → B over a contractible G-space B with isotropy in P such that
for every x ∈ Fix(B,Gp) = BGp , the fiber q−1(x) is Gp-homotopy equivalent to S(V ⊕k

p ) for
some k ≥ 1 (see Theorem 3.4). The total space of this G-fibration has many interesting
properties: in particular, it admits a G-map

f0 :
∐

p

G×Gp
S(V ⊕k

p ) → E.

By adapting the G-CW-surgery techniques introduced by Oliver-Petrie [12] to this G-map,
we obtain a finite G-CW-complex X ≃ S2kn−1 whose restriction to Sylow p-subgroups
resembles the linear spheres S(V ⊕k

p ). In particular, we prove the following theorem (see
Definition 3.6 for the definition of p-local G-equivalence).

Theorem B. Let G be a finite group. Suppose that {Vp : Gp → U(n)} is a G-invariant
family of Sylow representations. Then there exists a positive integer k ≥ 1 and a finite
G-CW-complex X ≃ S2kn−1 with prime power isotropy, such that the Gp-CW-complex
ResGGp

X is p-locally Gp-equivalent to S(V ⊕k
p ), for every prime p | |G|,

This theorem was stated by Petrie [13, Theorem C] in a slightly different form and a
sketched proof was provided. Related results were proved by tom Dieck (see [18, Satz 2.5],
[19, Theorem 1.7]). Although we use some of the steps of these arguments, we believe that
a proof of Theorem B does not exist in the literature. All the previous constructions seem
to aim towards obtaining a finite G-CW-complex X ≃ Sm with dimX = m. However,
we showed in [5] and [6] that there are additional necessary conditions for obtaining such
a complex with prime power isotropy. Here is a specific example.

Example 1.2. Let G denote the dihedral group of order 2q, with q an odd prime. Let
V2 be a trivial representation of G2 = Z/2, and let Vq be a free unitary representation
of Gq = Z/q, such that dimV2 = dim Vq. Then Theorem B shows that there exists a
finite G-CW-complex X ≃ Sm, with Fix(X,G2) ≃ Sm (2-locally), and Fix(X,Gq) = ∅,
for some integer m = 2kn − 1. However, these conditions imply that dimX > m by [5,
Proposition 2.10] (compare [15, Theorem 4.2]).

The paper is organized as follows: In Section 2, we show that for every finite group
G, there is a finite-dimensional contractible G-space B with prime power isotropy, such
that for every p-subgroup H , the fixed point set XH is Z(p)-acyclic. This might be of
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independent interest, since P. A. Smith theory only guarantees that the fixed sets are Fp-
acyclic. In Section 3, using this space as base space, we construct a G-equivariant fibration
q : E → B with fiber type S(V ⊕k

H ), for a given compatible family {VH} of representations.
The total space E has only prime power isotropy and its restriction to Gp is p-locally
Gp-equivalent to S(V ⊕k

p ) for some k ≥ 1. However, E is not a finite G-CW complex, and
this means that the methods of [12] must be applied with care.

In Section 4, we prove Proposition 4.1 which allows us to kill homology groups to
reach to a p-local homotopy equivalence on fixed points of p-subgroups. In Section 5, we
prove our main theorems (Theorem A and Theorem B). Theorem A essentially follows
from Theorem B once we apply a theorem of Jackson [8] on the existence of p-effective
characters for rank two finite groups which are Qd(p)-free.

Finally, we remark that Theorem A was also stated in Jackson [8, Proposition 48], but
the indication of proof appears to confuse homotopy actions with finite G-CW-complexes.
The motivation for Theorem A comes from the work of Adem and Smith [1] on the
existence of free actions of finite groups on a product of two spheres. There is an interesting
set of conditions related to this problem which we discussed in detail in [6, Section 1]. We
refer the reader to this discussion for further details on the history of this problem.

Acknowledgement. The second author would like to thank McMaster University for
the support provided by a H. L. Hooker Visiting Fellowship, and the Department of
Mathematics & Statistics at McMaster for its hospitality while this work was done.

2. Acyclic complexes with prime power isotropy

The main purpose of this section is to prove the following theorem.

Theorem 2.1. Let G be a finite group and P denote the family of all subgroups of G with
prime power order. Then there exists a finite-dimensional contractible G-CW-complex X,
with isotropy in P, such that for every p-subgroup P ≤ G, the fixed point subspace XP is
Z(p)-acyclic.

There is a similar theorem by Leary and Nucinkis [10, Proposition 3.1] for infinite
groups acting on contractible complexes, which implies in particular that for a finite
group G, there is a finite-dimensional contractible G-CW-complex X with isotropy in P.
But this contractible complex is constructed using a mapping telescope, and the fixed
point subspaces are Fp-acyclic but do not have finitely generated Z(p)-homology.

Let Fp denote the family of all p-subgroups of G. The family P is the union of families
Fp over all over all primes p dividing the order of G. To prove Theorem 2.1, we first prove
the following result.

Proposition 2.2. Let G be a finite group and p be a prime such that p | |G|. Then, there
exists a finite-dimensional G-CW-complex X, with isotropy in Fp, such that for every
p-subgroup P ≤ G, the fixed point subspace XP is Z(p)-acyclic.

A finite-dimensional Fp-acyclic complex with p-subgroup isotropy is constructed in [7,
Theorem 2.14]. But this construction also uses a mapping telescope so it does not have
finitely generated Z(p)-homology.
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The construction we propose uses some of our earlier methods for constructing G-CW-
complexes. In particular, we use chain complexes over the orbit category. Recall that the
orbit category ΓG := OrH G over a family H is the category with objects G/H , where
H ∈ H, and whose morphisms are given by G-maps G/H → G/K. Given a commutative
ring R with unity, an RΓG-module is defined as contravariant functors from ΓG to the
abelian category of R-modules. For more details on RΓG-modules we refer the reader to
[4] (see also Lück [11, §9, §17] and tom Dieck [20, §10-11]).

Recall that for every family H, there is a universal space EHG such that isotropy sub-
groups of EHG are in H and for every H ∈ H, the fixed point set (EHG)H is contractible.
If C = C(EHG

?;R) denote the cellular chain complex (over the orbit category) of the
space EHG, then C is a chain complex of free RΓG-modules. Note that the augmented
complex

C̃ : · · · → Cn
∂n−→Cn−1

∂n−1

−→Cn−2 → · · · → C1 → C0 → R → 0,

is an exact sequence, where R denotes the constant functor. Hence C is a projective
resolution of R as an RΓG-module.

Lemma 2.3. Let H = Fp, the family of all p-subgroups in G, and let R = Z(p). Then
there is a positive integer n such that ker ∂n−1 is a projective RΓG-module.

Proof. This follows from the fact that R has a finite projective dimension as an RΓG-
module (see [4, Corollary 3.15]). Note that n can be taken as any integer greater or equal
to the homological dimension of R as an RΓG-module. �

Now we are ready to prove Proposition 2.2.

Proof of Proposition 2.2. Let C = C(EFp
G?;R) and P = ker ∂n−1 denote the projective

RΓG-module for a suitably large n (as in Lemma 2.3). To avoid problems in low dimen-
sions, we also assume n ≥ 3. Let Q be a projective RΓG-module such that P ⊕ Q is
a free RΓG-module. Using the Eilenberg swindle, we see that ker ∂n ⊕ F ∼= F , where
F = Q ⊕ P ⊕ Q ⊕ · · · is an infinitely generated free RΓG-module. Adding the chain
complex

· · · → 0 → F
id

−→F → 0 → · · ·

to the truncated complex, we obtain a complex of free RΓG-modules

0 → F
ϕ

−→Cn−1 ⊕ F
(∂n−1,0)
−→ Cn−2 → · · · → C1 → C0 → 0

where the map ϕ is defined as the composition F ∼= ker ∂n−1⊕F →֒ Cn−1⊕F . Note that
this chain complex can be lifted to a chain complex of free ZΓG-modules

D : 0 → Dn → Dn−1 → Dn−2 → · · · → D0 → 0

where the resulting complex has homology groups that are (possibly infinitely generated)
abelian groups with torsion coprime to p. Because of the special structure of the original
RΓG-complex, we can assume that the lifting D is of the form

D : 0 → F̂
ϕ̂

−→ Ĉn−1 ⊕ F̂
(∂n−1,0)
−→ Ĉn−2 → · · · → Ĉ1 → Ĉ0 → 0

where Ĉi = Ci(EFp
G;Z) and F̂ is a free ZΓG-module such that F̂ ⊗R ∼= F .
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The map ϕ̂ is obtained as follows: let {ei} be a basis for F as an RΓG-module. For

each i, there is an integer si, coprime to p, such that ϕ(siei) ∈ Ĉn−1 ⊕ F̂ . Let F̂ be the
ZΓG-submodule of F generated by {siei} and ϕ̂ be the map induced by ϕ. It is easy to
see from this that the reduced homology of this complex D is zero except at dimension
n−1 and Hn−1(D) is a torsion abelian group with torsion coprime to p (possibly infinitely
generated).

Note that we can assume that D is partially realized by the (n − 1)-skeleton of the
complex EFp

G. In fact, by attaching orbits of cells to EFp
G with p-subgroup isotropy, we

can assume that D is realized for dimensions ≤ n − 1. The last realization step can be
done using [4, Lemma 8.1]. Note that for this step we need to assume n ≥ 3.

Hence, we can conclude that for every finite group G, there is a finite-dimensional
G-CW-complex X with isotropy in Fp, such that

(i) X is n-dimensional and (n− 2)-connected where n = max{3, homdimR};
(ii) for each P ∈ Fp, the only nontrivial reduced homology of the fixed point subspace

XP is at dimension n − 1 and Hn−1(X) is a torsion abelian group with torsion
coprime to p.

In particular, for every P ∈ Fp, the fixed point subspace XP is Z(p)-acyclic. Hence this
completes the proof of Proposition 2.2. �

Proof of Theorem 2.1. In Proposition 2.2 we have constructed a Z(p)-acyclic complex Xp

of dimension np, for each p | |G|. Let X be the join >Xp of all the Xp’s over all p | |G|.
The reduced homology of X is nonzero only at dimension n− 1, where n =

∏
np, and

Hn−1(X) ∼=
⊗

p||G|

Hnp−1(Xp).

Since Hnp−1(Xp) is a torsion group coprime to p, the homology group Hn−1(X) is a
torsion abelian group with torsion coprime to |G|. Such an abelian group has two step
free resolution. To see this, note that as a ZG-module N = Hn−1(X) is cohomologically
trivial since it is a torsion group with torsion coprime to the order of the group. If we
take a free cover of N , then we get an exact sequence of the form

0 → M → F0 → N → 0.

Note that the module M is both torsion free and cohomologically trivial. Hence by [2,
Theorem 8.10, p. 152], M is a projective module. By an Eilenberg swindle argument,
we can add free modules to M and F0 to obtain a two step free resolution for N . This
means, we can kill the last homology group at dimension n − 1 by adding free orbits of
cells. By taking further joins if necessary, we an assume that X is simply connected,
hence the resulting G-CW-complex is contractible. For each 1 6= P ∈ Fp, we have
H∗(X

P ;Z(p)) ∼= H∗(X
P
p ;Z(p)) ∼= H∗(pt;Z(p)), so the fixed subspace XP is Z(p)-acyclic for

every P ∈ Fp. �

3. G-equivariant fibrations

Let G be a finite group. In this section, we first give some necessary definitions related
to G-fibrations and then construct a G-fibration over a contractible base space with prime



GROUP ACTIONS ON SPHERES WITH RANK ONE PRIME POWER ISOTROPY 7

power isotropy. For more details on this material we refer the reader to [24, Section 2]
and to some earlier references mentioned in that paper.

Definition 3.1. A G-fibration is a G-map q : E → B which satisfies the following homo-
topy lifting property for every G-space X : given a commuting diagram of G-maps

X × {0}

��

h
// E

q

��

X × I
H

// B,

there exists a G-map H̃ : X × I → E such that H̃|X×{0} = h and p ◦ H̃ = H .

If p : E → B is a G-fibration, then for every x ∈ B, the isotropy subgroup Gx ≤ G acts
on the fiber space Fx = q−1(x). So, Fx is a Gx-space.

Definition 3.2. Let H be a family of subgroups of G and {FH} denote a family of H-
spaces over all H ∈ H. If for every x ∈ B, the isotropy subgroup Gx lies in H and the
fiber space Fx is Gx-homotopy equivalent to FGx

, then p : E → B is said to have fiber type
{FH}.

Here and throughout the paper a family of subgroups always means a collection of
subgroups which are closed under conjugation and taking subgroups. In general a G-
fibration does not have to satisfy the above criteria: for x, y ∈ B with Gx = Gy = H , it
may happen that Fx and Fy are not H-homotopy equivalent. Throughout the paper we
only consider G-fibrations which do have a fiber type.

We will construct G-equivariant spherical fibrations whose fiber type is given by a
family of linear G-spheres. To start we assume that we are given a compatible family of
representations.

Definition 3.3. Let H be a family of subgroups of G and V = {VH} denote a family
of complex H-representations defined over H ∈ H. We say V is a compatible family of
representations if f ∗(VK) ∼= VH for every G-map f : G/H → G/K. In this case, we call
V an H-representation (see [6, Definition 3.1]).

Note that since 1 ∈ H, all the H-representations VH in V have the same dimension.
We call this common dimension the dimension of V. We have the following result as a
main tool for constructions of G-fibrations which was first proved by Klaus [9, Proposition
2.7]].

Theorem 3.4. Let G be a finite group, with H a family of subgroups. Let B be a finite-
dimensional G-CW-complex such that the isotropy subgroup Gx lies in H, for every x ∈ B.
Given a compatible family of complex representations V = {VH} defined over H, there
exists an integer k ≥ 1 and a G-equivariant spherical fibration q : E → B such that the
fiber type of q is {S(V ⊕k

H )}.

Proof. See [24, Proposition 4.3]. �
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We will apply this theorem to construct a G-fibration over a base space with prime
power isotropy. As before, let P denote the family of all subgroups of G with prime power
order, and Fp denote the family of all p-subgroups of G.

Lemma 3.5. Let G be a finite group and {Vp} be a G-invariant family of Sylow repre-
sentations (see Definition 1.1). For each H ∈ Fp, let VH be the representation obtained
from Vp via the map

H
cg

−→ gHg−1 →֒ Gp

where cg denotes the conjugation map h 7→ ghg−1 and the second map is the inclusion
map (the element g ∈ G is chosen arbitrarily such that gHg−1 ≤ Gp). Then the collection
V = (VH)H∈P is a compatible family of representations over P.

Proof. We only need to check that when H,K ≤ Gp are such that H = gKg−1 for some
g ∈ G, then (cg)∗(VH) ∼= VK as K-representations. Note that the isomorphism holds
because for every x ∈ K, we have

(cg)∗(χp)(x) = χp(gxg
−1) = χp(x)

by the character formula given in Definition 1.1. This also shows that the compatible
family {VH} does not depend on the elements g ∈ G chosen to define it (up to isomor-
phism). �

Suppose that we are given a G-invariant family of Sylow representations {Vp}. Then
by Lemma 3.5, this gives a compatible family of representations V = (VH). Let B be the
G-CW-complex constructed in Proposition 2.1. By applying Proposition 3.4 to the base
space B with family V, we obtain a G-equivariant spherical fibration q : E → B with
fiber type {S(V ⊕k

H )}H∈P for some k ≥ 1.
The total space E satisfies the certain properties which will be used in our construction

of finite homotopy G-spheres.

Definition 3.6. A G-map f : X → Y between two G-spaces is called a p-local G-
equivalence if for every subgroup H ≤ G, the map on fixed point sets fH : XH → Y H

induces an isomorphism on Z(p)-homology.
We say that two G-spaces X and Y are p-locally G-equivalent if for some k there is are

G-spaces {Xi} and {Yi}, for 0 ≤ i ≤ k, such that X0 = X and Yk = Y , together with
two families of G-maps Xi → Yi for i ≥ 0, and Xi → Yi−1 for i > 0, which are p-local
G-equivalences.

Now we prove the main result of this section.

Proposition 3.7. Let G be a finite group, and let {Vp} be a G-invariant family of Sylow
representations. Then there exists an integer k ≥ 1 and a finite-dimensional G-CW-
complex E, with isotropy in P, satisfying the following properties:

(i) E is homotopy equivalent to a sphere S2kn−1 where n = dim Vp;
(ii) For every H ∈ P, the fixed point subspace EH is simply connected;
(iii) For every p | |G|, there is a Gp-map jp : S(V

⊕k
p ) → E which is a p-local Gp-

equivalence.
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Proof. Let B be a contractible G-CW-complex as in Theorem 2.1, and E be the total space
of a fibration q : E → B with fiber type {S(V ⊕k

H )}H∈P for some k ≥ 1. By construction
of the G-fibration, the total space E is a G-homotopy equivalent to a finite-dimensional
G-CW-complex (see [24, Proposition 4.4]). Since B has isotropy in P, the total space E
has isotropy in P. Since B is contractible, E is homotopy equivalent to S2kn−1.

For every H ≤ G, the induced map qH : EH → BH on fixed subspaces is a fibration
with fiber type FH. We can assume that for every P ∈ Fp, the fixed point subspace
BH is simply connected (if not we can replace B with B ∗ B). We can also assume that
the subspaces FH are simply connected by replacing k with a larger integer if necessary.
Using the long exact homotopy sequence for the fibration FH → EH → BH , we obtain
that EH is simply connected for every H ∈ P.

For second statement, observe that for every p | |G|, the fixed point space BGp is non-
empty, by P. A. Smith Theory. If we take x ∈ BGp , then the inclusion map ix : {x} → BGp

induces a Gp-map jx : Fx → E, where Fx = q−1(x). By the definition of fiber type, we
have Fx ≃ S(V ⊕k

p ) as a Gp-space. We define jp as the composite S(V ⊕k
p ) ≃ Fx

jx
−→E

which is a Gp-map. For each subgroup H ≤ Gp, we have a fibration diagram:

FH
x

��

FH
x

��

FH
x

��

jHx
// EH

��

{x}
iHx

// BH .

Since iHx induces a Z(p)-homology isomorphism, the map jHx also induces a Z(p)-homology
isomorphism. This can be seen easily by a spectral sequence argument. Note that BH is
simply connected, so the E2-term of the Serre spectral sequence for the second fibration is
of the form Ei,j

2 = H i(BH ;Hj(FH
x ,Z(p))) with untwisted coefficients. By comparing two

spectral sequences, we see that jHx induces an isomorphism on Z(p)-homology. This shows
that jp is a p-local Gp-equivalence. �

4. p-local G-CW-surgery

Let G be a finite group, P denote the family of subgroups of G with prime power order,
and {Vp} be a G-invariant family of Sylow representations Vp : Gp → U(n) over all primes
p dividing the order of G. In Section 3, we proved that there is a finite-dimensional
G-CW-complex E, with isotropy in P, homotopy equivalent to S2kn−1 for some k ≥ 1,
satisfying some further fixed point properties.

To prove Theorem B we will need to replace E with a finite G-CW-complex X having
properties similar to E, with possibly a larger k ≥ 1. We will do this by applying the
G-CW-surgery techniques introduced in [12] to a particular G-map (see also [22]).

By part (iii) of Proposition 3.7, there is a Gp-map jp : S(V
⊕k
p ) → E which induces a

Z(p)-homology isomorphism on fixed subspaces, for every p | |G|. Using these maps we
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can define a G-map

f0 :
∐

p||G|

G×Gp
S(V ⊕k

p ) → E

by taking f0(g, x) = gjp(x) for every g ∈ G and x ∈ S(V ⊕k
p ). It is clear that f0 is well-

defined and it is a G-map, where the G-action on G×Gp
S(V ⊕k

p ) is by left multiplication.
We will applyG-CW-surgery methods to this map to convert it to a homotopy equivalence.

The first step of this surgery method is to get a p-local homology equivalence on H-
fixed subspaces for every nontrivial p-subgroup H ≤ G. We will do this step-by-step by
a downward induction starting from Sylow p-subgroups. At a particular step H we will
need to attach cells to complete that step. The following proposition is the main result of
this section and it states exactly what we will need to complete a particular step in the
downward induction.

Proposition 4.1. Let G be a finite group and f : X → Y be a G-map between two simply
connected G-CW-complexes, with isotropy subgroups in Fp, such that

(i) X is a finite complex and XP is an odd-dimensional Z(p)-homology sphere for
every p-subgroup 1 6= P ≤ G;

(ii) Y is a finite-dimensional complex with finitely generated Z(p)-homology;
(iii) The Euler characteristic

∑
i dimQ(−1)i[Hi(Y ;Q)] = 0 ∈ RQ(G), the rational

representation ring of G.

If for every p-subgroup 1 6= P ≤ G, the induced map fP : XP → Y P on fixed point sets is
a Z(p)-homology equivalence, then by attaching finitely many free G-orbits of cells to X,
we can extend f to a Z(p)-homology equivalence f ′ : X ′ → Y .

Given a G-map f : X → Y between two G-CW-complexes, we define the n-th homotopy
group of f , denoted by πn(f), as the equivalence classes of pairs of maps (α, β) such that
the diagram

Sn−1

α

��

i
// Dn

β
��

X
f

// Y

commutes, where i : Sn−1 → Dn is the inclusion map of the boundary of Dn. The
equivalence relation is given by a pair of homotopy that fits into a similar diagram. It is
easy to show that πn(f) isomorphic to the n-th homotopy group of the pair πn(Zf , X),
where Zf denotes the mapping cylinder (X × I) ∪f Y . We consider X as a subspace by
identifying X with X × {0}.

In a similar way, we can define relative homology group of a G-map f : X → Y in
coefficients in R as follows:

K∗(f ;R) := H∗(Zf , X ;R) ∼= H̃∗(Mf ;R),

following the notation in [12], where Mf denotes the mapping cone of f . We recall the
relative Hurewicz theorem for homotopy groups of pairs.
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Lemma 4.2. Let R = Z or Z(p) for some prime p, and let f : X → Y be a map between
two simply connected spaces. For n ≥ 2, if πi(f)⊗R = 0 for all i < n, then Kn(f ;R) = 0
for all i < n and the Hurewicz map πn(f)⊗ R → Kn(f ;R) is an isomorphism.

Proof. See [14, Theorem 7.5.4]. �

The Hurewicz theorem allows us to realize homology classes as homotopy classes. We
kill the corresponding homotopy class by attaching free orbits of cells to X and extending
the map f . If the homotopy class is represented by a pair of maps (α, β) as above, then
the space X ′ is defined as the space X ′ = X ∪α Dn and the map f ′ : X ′ → Y is defined
by

f ′(x) =

{
f(x) if x ∈ X

β(x) if x ∈ Dn

In the homotopy group πn(f
′), the homotopy class for the pair (α, β) is now zero and this

cell attachment does not introduce any more homotopy classes at dimensions i ≤ n.
Let f : X → Y be a G-map as in Proposition 4.1. By applying this cell attachment

method we can assume that f is extended to a map f1 : X1 → Y such that d := dimX1 >
dimY and f1 induces an Z(p)-homology isomorphism in dimensions i < d. Since Y
has finitely generated Z(p)-homology, in the process only finitely many free G-orbits are
attached to X . So X1 is still a finite complex.

Note that Ki(f1;Z(p)) is nonzero only at dimension i = d+ 1, and

M := Kd+1(f1;Z(p)) ∼= Hd(X1;Z(p)).

Since X1 is a finite complex and d = dimX1, as a Z(p)-module M is a finitely generated
and torsion free. We claim that M is a free Z(p)G-module. First we prove a lemma which
shows, in particular, that M is projective.

Lemma 4.3. Let R = Z or Z(p), and let f : X → Y be a G-map such that d := dimX >
dimY and f induces an R-homology isomorphism on dimensions i < d. Assume also that
for every 1 6= H ≤ G, the induced map fH : XH → Y H on fixed point subspaces is an
R-homology equivalence. Then Kd+1(f ;R) is a projective RG-module.

Proof. Let Xs = ∪16=H≤GX
H and f s : Xs → Y s denote the the restriction of f to the

singular set. For every nontrivial subgroup H ≤ G, the induced map fH : XH → Y H

is an R-homology equivalence. This gives, in particular, that f s : Xs → Y s is an R-
homology equivalence. Let Zs

f := X ∪Zfs. Consider the homology sequence for the triple
(Zf , Z

s
f , X) with coefficients in R:

· · · → Hi(Z
s
f , X) → Hi(Zf , X) → Hi(Zf , Z

s
f) → Hi−1(Z

s
f , X) → · · ·

We have

Hi(Z
s
f , X) = Hi(X ∪ Zfs , X) ∼= Hi(Zfs, Xs) = 0

for all i, because f s is an R-homology equivalence. From this we obtain that Hi(Zf , Z
s
f)

∼=
Hi(Zf , X), hence Hi(Zf , Z

s
f ;R) = 0 for i < d+1 and it is isomorphic to Kd+1(f ;R) when

i = d+ 1.
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The chain complex for the pair (Zf , Z
s
f) in R-coefficients gives an exact sequence of

RG-modules

0 → Kd+1(f ;R) → Cd+1(Zf , Z
s
f ;R) → · · · → C0(Zf , Z

s
f ;R) → 0.

For all i, the modules Ci(Zf , Z
s
f ;R) are free RG-modules, hence this exact sequence splits

and Kd+1(f ;R) is a projective RG-module. �

Applying this lemma to the map f1 : X1 → Y constructed above, we obtain that M =
Kd+1(f1;Z(p)) ∼= Hd(X1 : Z(p)) is a projective Z(p)G-module. Now we show that M is a
free Z(p)G-module.

Lemma 4.4. Let f : X → Y be a G-map as in Proposition 4.1 and f1 : X1 → Y is the
map obtained by attaching cells to X as above. Then, Kd+1(f1;Z(p)) is a finitely-generated
free Z(p)G-module.

Proof. By Lemma 4.3, M = Kd+1(f1;Z(p)) is a projective Z(p)G-module. Let QM =
Q ⊗M . By [12, Lemma 2.4], M is a free Z(p)G-module if χQM(g) = 0 for all 1 6= g ∈ G.
Since M ∼= Hd(X1;Z(p)) and X1 is a finite G-CW-complex, we can calculate χQM using
the the chain complex of X1. Let

0 → Cd(X1;Q) → Cd−1(X1;Q) → · · · → C0(X1;Q) → 0

be the chain complex for X1 in Q-coefficients. In rational representation ring of G, we
have

(−1)d[Hd(X1;Q)] +
d−1∑

i=0

(−1)i[Hi(X1;Q)] =
d∑

i=1

(−1)i[Ci(X1;Q)]

Since f1 induces Z(p)-homology isomorphism at dimensions i < d, we get

d−1∑

i=0

(−1)i[Hi(X1;Q)] =

d−1∑

i=0

(−1)i[Hi(Y ;Q)] = 0

by the assumption in Proposition 4.1. This gives that for every 1 6= g ∈ G,

(−1)dχQM(g) =
d∑

i=1

(−1)i dimQ Ci(X
g
1 ;Q) =

d∑

i=1

(−1)i dimQ Hi(X
g
1 ;Q) = χ(X

〈g〉
1 )

Since for every p-group 1 6= H ≤ G, the fixed point set XH
1 is an odd dimensional Z(p)-

homology sphere, we have χ(XH
1 ) = 0 for every nontrivial p-subgroup H ≤ G. When

1 6= H ≤ G is a p′-subgroup, then XH
1 is empty, so again the Euler characteristic is zero.

Hence χQM(g) = 0 for all 1 6= g ∈ G. We conclude that M is a free Z(p)G-module. �

Proof of Proposition 4.1. Let f : X → Y be a G-map as in Proposition 4.1, and let
f1 : X1 → Y be the G-map obtained by attaching cells, as described above, so that
f1 induces an Z(p)-homology isomorphism in dimensions i < d. By Lemma 4.4, M =
Kd+1(f1;Z(p)) is a finitely-generated free Z(p)G-module. By Lemma 4.2,

Kd+1(f1;Z(p)) ∼= πd+1(f1)⊗ Z(p),
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and hence πd+1(f1) contains a finitely-generated free ZG-module M ′ ⊆ πd+1(f1) with
index prime to p. We attach free orbits of G-cells to X1 using the pairs of maps (α, β)
representing homotopy classes of ZG-basis elements inM ′. The resulting map f ′ : X ′ → Y
is a Z(p)-homology equivalence. �

5. Proof of main theorems

In this section we prove Theorem A and Theorem B as stated in the introduction.
Theorem A will follow from Theorem B almost directly by applying a theorem by Jackson
[8, Theorem 47].

Let G be a finite group, P denote the family of all subgroups of G with prime power
order. Suppose we are given a G-invariant family of Sylow representations {Vp} over the
primes dividing the order of G. We will construct a finite G-CW-complex X ≃ S2kn−1

such that for every p | |G|, the restriction of X to Gp is p-locally Gp-equivalent to S(V ⊕k
p ),

for some k ≥ 1. We showed in Section 4 that there is a G-map f0 : X0 → E where

X0 =
∐

p||G|

G×Gp
S(V ⊕k

p )

and E is the total space of the fibration constructed in Section 3. The G-map f0 is induced
from the Gp-maps jp : S(V

⊕k
p ) → E which were introduced in Proposition 3.7.

We will first show that by a downward induction and by attaching cells at each step,
we can extend the map f0 to a map f1 : X1 → E such that fH

1 : XH
1 → EH is a p-local

homology equivalence for every nontrivial p-subgroup H ≤ G. Since we work with unitary
representations, the fixed point subspace EH is an odd dimensional sphere with trivial
NG(H)/H-action. This implies in particular that as an NG(H)/H-space the fixed point
subspace EH satisfies the Euler characteristic condition for the target space in Proposition
4.1.

To show that each step of the downward induction can be performed, suppose H is a
nontrivial p-subgroup such that fK

1 is a p-local homology equivalence for every K with
|K| > |H|. Consider the induced NG(H)/H action on XH

1 . By Proposition 4.1, we can
add free NG(H)/H-orbits of cells to XH

1 to extend fH
1 to a p-local homology equivalence.

In fact, by adding cells of orbit type G/H (instead of just NH(H)/H-orbits) to X1 we
can make XL

1 a mod-p equivalence for every L ≤ G conjugate to G. This shows that
downward induction can be carried out until we reach to a map f1 : X1 → E such that
fH
1 is a p-local homology equivalence for every nontrivial p-subgroup H ≤ G, for all the
primes p | |G|.

As we did in the previous section, we can add free cells to X1 and extend f1 to a map
f2 : X2 → E such that f2 induces a homotopy equivalence for dimensions i < d where
d := dimX2 > dimE.

Lemma 5.1. The module ZG-module M := Kd+1(f2) ∼= Hd(X2,Z) is a finitely-generated
projective module.

Proof. It is enough to show that for every p | |G|, the Z(p)Gp-module ResGGp
M ⊗ Z(p) is

projective. This follows from Lemma 4.3. �



14 IAN HAMBLETON AND ERGÜN YALÇIN

In general, M does not have to be a free ZG-module, but we will obtain this condition
by taking further joins. To describe the obstructions for finiteness, we need to introduce
more definitions.

Definition 5.2. Let X be a finite G-CW-complex which has integral homology of an m-
dimensional (orientable) sphere for i ≤ m and for each i ≥ m+ 1, assume that Hi(X,Z)
is a projective ZG-module. Then we say X is a G-resolution of an m-sphere.

Let K̃0(ZG) denote the Grothendieck ring of finitely generated projective ZG-modules,
modulo finitely generated free modules. We define the finiteness obstruction ofG-resolution
of an m-sphere as follows:

Definition 5.3. Let X be a G-resolution of an m-sphere. The finiteness obstruction of

X is defined as an element in K̃0(X) as follows:

σ(X) =
dimX∑

i=m+1

(−1)i[Hi(X)] ∈ K̃0(ZG).

We have the following observation:

Lemma 5.4. Let X1 and X2 be G-resolutions of spheres of dimensions m1−1 and m2−1.
Then the join space X1∗X2 is a resolution of a sphere of dimension m1+m2−1. Moreover,
we have σ(X1 ∗X2) = (−1)m2σ(X1) + (−1)m1σ(X2).

Proof. Since tensor product (over Z) of a projective module with any torsion-free ZG-
module is projective, it is easy to see that all the homology above the dimension m1 +
m2 − 1 will be projective. So, X1 ∗X2 is a G-resolution. Moreover, the tensor product of
any two finitely generated projective ZG-modules is stably free as a ZG-module (See [4,
Proposition 7.7]). So the only homology groups that contribute nontrivially to σ(X1 ∗X2)
will be the homology modules of the form Hi(X1) ⊗ Hm2−1(X2), with i ≥ m1, or of the
form Hm1−1(X1)⊗Hi(X2), with i ≥ m2. �

By Swan [16, Prop. 9.1], the obstruction group K̃0(ZG) is a finite abelian group, so
we can apply the above lemma to conclude that there is a positive integer l, such that
σ(>lX2) = 0. Note that f2 induces a G-map >lf2 : >l X2 → >lE. We need the following
result to complete the proof of Theorem B.

Lemma 5.5. Let X be a G-resolution of an (m−1)-dimensional sphere and let f : X → E
be a G-map which induces a homotopy equivalence in dimensions ≤ m− 1. If σ(X) = 0

in K̃0(ZG), then by adding finitely many free cells to X, the G-map f can be extended to
a G-map f ′ : X ′ → E which induces an isomorphism on homology.

Proof. By adding free cells to X above dimension m− 1, we can assume we have a map
f1 : X1 → E such that all the homology of X1 is concentrated at d = dimX1 > m − 1.
Then, it is easy to see that (−1)d[Hd(X1)] = σ(X1) = 0, hence Hd(X1) is stably free. By
adding free cells to X1 at dimension d and d− 1, we can kill all the remaining homology
and extend f to a G-map f ′ : X ′ → E which induces an isomorphism on homology. �
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Proof of Theorem B. Starting from the map f0 : X0 → E, we first apply p-local surgery
methods to get a map f1 : X1 → E which induced a p-local homology equivalence on fixed
points XH

1 → EH for every nontrivial p-subgroup H ≤ G. This is done by a downward
induction as described above. Then we add free orbits of cells to X1 to obtain a map
f2 : X2 → E where X2 is a G-resolution. Here we use Lemma 5.1 to conclude that X2 is
indeed a G-resolution. Finally we use Lemma 5.4 and 5.5 to kill the remaining homology
by taking further joins.

As a result of the above construction we obtain a finite G-CW-complex X and a G-map
f : X → >lE which induces a homotopy equivalence. Since >lE ≃ S2kln−1, it follows that
X is homotopy equivalent to a sphere of dimension 2kln − 1. For every p | |G|, we have
Gp-maps X → E and S(V ⊕lk

p ) → E which induce p-local homology equivalences on fixed

points. So ResGGp
X and S(V ⊕lk

p ) are p-locally Gp-equivalent. �

Before giving a proof for Theorem A, we recall the following definition.

Definition 5.6. A finite group G has a p-effective representation if it has a representation
Vp : Gp → U(n) which respects fusion (see Definition1.1) and satisfies 〈Vp|E, 1E〉 = 0 for
each elementary abelian p-subgroup E ≤ G with rankE = rankpG.

Proof of Theorem A. Let G be a finite group of rank two which is Qd(p)-free. By Jackson
[8, Theorem 47], for each p | |G|, there is a p-effective representation Vp. By taking
multiples of these representations if necessary, we can assume that they have a common
dimension. This gives a G-invariant family {Vp} such that 〈Vp|E , 1E〉 = 0 for every
elementary abelian p-subgroup E ≤ G with rankE = 2. Applying Theorem B to this
G-invariant family, we obtain a finite G-CW-complex X homotopy equivalent to a sphere
S2kn−1, for some k ≥ 1, such that ResGGp

X is p-locally Gp-equivalent to S(V ⊕k
p ), for every

p | |G|. In particular, for every p-subgroup H ≤ G, the fixed point space XH has the same
p-local homological dimension as the fixed point sphere S(V ⊕k

p )H . Since S(Vp)
E = ∅, we

have S(V ⊕k
p )H = ∅ for every subgroup H ≤ G with rank(H) = 2. Hence the isotropy

subgroups of X are all rank one subgroups with prime power order. �
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