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1. Introduction

This paper is the third in a trilogy concerning a map which might have seemed to be 
merely a remarkable curiosity when it was first introduced by Tornehave [14] in 1984. 
For a finite group G and a set of primes π, he characterized his map torn π

G in two 
different ways: by means of a symplectic construction involving real representations and 
Galois automorphisms; and by means of a π-adic formula involving the sizes of orbits 
in permutation sets. We call torn π

G the reduced Tornehave map. In his application, he 
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made use of the observation that torn π
G commutes with restriction. In fact, torn π

G also 
commutes with induction, inflation and isogation. That observation immediately suggests 
a reassessment of the significance of his map, since it allows us to reinterpret the ideas in 
the context of group functors. Recall that inflaky functors – inflation Mackey functors – 
are equipped with restriction, induction, inflation and isogation maps.

The construction involving real representations is discussed in the first paper [3] of 
the trilogy. There, it is explained how, as an inflaky morphism, the reduced Tornehave 
morphism torn π can be factorized through the orientation functor OR, which is a quotient 
of the real representation functor AR. In the second paper [4], the π-adic formula is lifted 
to the dual of the Burnside functor, and it is shown that, if p ∈ π then, for finite p-groups, 
the lifted Tornehave morphism tornπ is, up to Q-multiples, the unique inflaky morphism 
with a certain specified domain and codomain.

Still, to reassure ourselves that the morphisms torn π and tornπ are indeed of funda-
mental interest, we need to see a substantial application beyond the original one in [14]. 
That is the purpose of the present paper. Recently, Bouc [9] discovered a link between 
two lines of research which had previously seemed to be quite separate from each other: 
the study of rational units and real units of the Burnside ring; the study of rational and 
rhetorical biset functors. The link is expressed by his result, Theorem 2.4 below, which 
asserts the existence and uniqueness of an isomorphism of p-biset functors

bouc p : pK/QpK → pB
×/QpB

×.

The notation, here, will be introduced in Section 2. For the moment, let us just mention 
that the presubscript p indicates that we are dealing with p-biset functors rather than 
biset functors for arbitrary finite groups.

Our main result, Theorem 2.5 below, describes how the isomorphism bouc p is induced 
by the reduced Tornehave morphism torn p = torn {p}. Actually, the case of odd p is 
degenerate. Indeed, when p is odd, bouc p is the zero morphism between two zero functors. 
For the vital case p = 2, the piece-by-piece construction of the isomorphism bouc =
bouc 2, in the proof of [9, 6.5], is quite complicated. We shall show how that construction 
can be avoided by using the characterization of bouc in terms of the morphism torn =
torn 2.

Thus, the focus of our attention in the present paper is with the 2-biset functor 
2B

×/Q2 B
× ∼= 2K/Q2 K, which is evidently of importance in the study of 2-groups, es-

pecially the real representations of 2-groups. The inflaky morphisms torn π and tornπ

have not yet seen any application to the representation theory of arbitrary finite groups. 
However, one of the main motives behind this trilogy of papers has been the hope of sub-
sequently extending some of the ideas to a scenario involving the linearization morphism 
linF : BF → AF, where BF and AF are, respectively, the monomial Burnside functor and 
the character functor associated with a field F. In this monomial scenario, inflaky mor-
phisms and surjectivity properties appear again: Brauer’s Induction Theorem says that 
linF is an inflaky epimorphism; on the downside, it is not a morphism of biset functors 
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when F has prime characteristic but, on the upside, the surjectivity of the linearization 
map holds for all finite groups, not just for finite p-groups.

There will be three main variables: When working with group representations, our 
highest level of generality will be that where the coefficient ring is a given field K with 
characteristic zero. We take G to be given finite group and P to be a given finite 2-group.

2. Summary

In this section, we state the main relevant results from previous work and the main 
original results. We also outline the flow of deductions, deferring details to later sections.

We shall be concerned with the Burnside functor B, the rational representation functor 
AQ, the real representation functor AR and the Burnside unit functor B×. Their coordi-
nate modules at G are the Burnside ring B(G), the ring of QG-representations AQ(G), 
the ring of RG-representations AR(G) and the unit group B×(G). All four of them are 
biset functors; in particular, they are equipped with deflation maps as well as restric-
tion, induction, inflation and isogation maps. The linearization morphism lin : B → AR, 
the reduced tom Dieck morphism die : AR → B× and the reduced exponential mor-
phism exp = die ◦ lin are reviewed in [3] and [4]. These three morphisms of biset functors 
are also discussed in Bouc and Yalçın [11] and other papers cited therein. The reduced 
Tornehave morphism is an inflaky morphism torn π : K → B×, where K = Ker(lin). We 
shall be invoking some results whose proofs make use of the lifted morphisms die, exp, 
tornπ, which all have codomain B∗, the dual of the Burnside functor. Thankfully, those 
results have already been established in [3] and [4]; there will be no need to discuss the 
lifted morphisms in the present paper.

The group B×(G) is an elementary abelian 2-group, and we can regard B× as a biset 
functor over the field F2 with order 2. As biset subfunctors of B×, we define the rational 
unit functor and the real unit functor to be, respectively,

QB× = die(AQ), RB× = die(AR)

where AQ is regarded as a biset subfunctor of AR in the usual way. The elements of 
the groups QB×(G) and RB×(G) are called, respectively, the rational units and the real 
units of B×(G).

We shall be dealing with biset functors at two quite different levels of generality: 
sometimes for arbitrary groups, sometimes for p-groups. The distinction between the 
two is very important. So, to signal when we are confining our attention to biset functors 
for p-groups, we shall often call them p-biset functors, we shall often write them in the 
form pL and, for additional emphasis, we shall often insert a warning clause: for p-groups. 
The statement of Theorem 2.4, below, illustrates all three idioms employed in a single 
sentence.

Theorem 2.1 (Ritter–Segal Theorem). If G is a p-group, then AQ(G) = linG(B(G)). That 
is to say, for p-groups, pAQ = lin(pB).
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More generally, Rasmussen [13] provided a necessary and sufficient criterion for the 
equality when G is nilpotent. For such G, the smallest counter-example to the equality 
is the case G = Q8 × C3. Theorem 2.1 has the following immediate corollary.

Corollary 2.2. If G is a p-group, then QB×(G) = expG(B(G)). That is to say, for 
p-groups, QpB× = exp(pB).

Tornehave’s application of the map tornG was to prove the next theorem [14]. We 
shall present an updated rendition of his argument in Sections 3 and 4.

Theorem 2.3 (Tornehave’s Unit Theorem). If G is nilpotent, then B×(G) = RB×(G). In 
particular, for p-groups, pB× = R

pB
×.

In Section 1, we mentioned that the isomorphism bouc provides a link between two 
different lines of study. One of those two lines of study concerns a comparison between 
the rational unit functor QB× and the real unit functor RB×. As a chain of biset functors,

exp(B) ≤ QB× ≤ RB× ≤ B×.

Corollary 2.2 and Theorem 2.3 tell us that, for p-groups,

exp(pB) = Q
pB

× ≤ R
pB

× = pB
×.

Thus, for p-groups, all the units of the Burnside ring are real, and the question arises: 
for which p-groups are all of the units rational?

The question is trivial when p is odd. Indeed, Yoshida [16, 6.5] implies that, if p is odd 
and G is a p-group, then B×(G) = {±1}, hence QB×(G) = RB×(G) and QpB

× = R
pB

×. 
So the question reduces to the case p = 2: for which 2-groups P do we have QB×(P ) =
RB×(P )?

The question was tackled in a succession of papers. Matsuda [12] observed that 
QB×(G) �= RB×(G) when G = D2n with n ≥ 4 (the dihedral 2-group with order 2n). 
Yalçın [15, 7.6] showed that QB×(G) = RB×(G) when G is a 2-group with no subquotient 
isomorphic to D16. But the converse is false: in [15, 7.7], Yalçın exhibited a group G with 
order 32 such that QB×(G) = RB×(G) yet G has a subgroup isomorphic to D16. The role 
of the dihedral groups became clear when Bouc [8, 8.7] gave a necessary and sufficient 
criterion for the equality: supposing that G is a 2-group, then QB×(G) = RB×(G) if 
and only if QG has no irreducible character with genotype D2n where n ≥ 4. This is 
equivalent to the condition that every absolutely irreducible RG-representation is real-
izable over Q. In fact, a result of Bouc, recorded below as Theorem 5.3, tells us that 
the F2-dimension of the biset functor 2B×/Q2 B

× = R
2B

×/Q2 B
× is equal to the number 

of Galois conjugacy classes of absolutely irreducible RG-representations that are not 
realizable over Q.



L. Barker / Journal of Algebra 446 (2016) 19–33 23
The other line of study concerns a comparison between the rhetorical biset functors 
introduced in [2] and the rational p-biset functors introduced in Bouc [6]. It is easily 
shown that every rhetorical p-biset functor is rational. Bouc [9] showed that the converse 
holds if and only if p �= 2. Let us say a few words about how Bouc established that result. 
We define QpK to be the p-biset subfunctor of pK generated by the coordinate module 
K(D) where D is dihedral with order 8 (when p = 2) or extra-special with order p3

(when p is odd). Let L be a p-biset functor and consider the cross product operation

B(P ×Q) × L(Q) → L(P )

where P and Q are p-groups. By the definition of a rhetorical biset functor, L is rhetorical 
if and only if, for all P and Q, every element of K(P ×Q) acts as the zero map L(Q) →
L(P ). On the other hand, [9, 5.3] asserts that L is rational if and only if every element 
of QpK(P × Q) acts as the zero map L(Q) → L(P ). Now [9, 3.8] says that, if p is odd, 
then QpK = pK, hence every rational p-biset functor is rhetorical. But [9, 6.3] implies 
that, for 2-groups, Q2 K < 2K, and it follows that the 2-biset functor 2B/Q2 K is rational 
but not rhetorical.

Thus, the p-biset functor pK/QpK can be interpreted as a measure of the difference 
between the category of rhetorical p-biset functors and the category of rational p-biset 
functors. Meanwhile, in view of comments above, the p-biset functor pB×/QpB

× can 
be interpreted as a measure of the difference between the absolutely irreducible real 
representations and the absolutely irreducible rational representations. The next result 
shows that, in some sense, the two differences coincide, indeed, the two measures of 
difference are isomorphic as p-biset functors.

Theorem 2.4 (Bouc). For p-groups, there exists a unique isomorphism of p-biset functors

bouc p : pK/QpK → pB
×/QpB

×.

The domain and the codomain are non-zero if and only if p = 2.

The version of the theorem in Bouc [9, 6.5] does not mention the uniqueness property 
of bouc p but, in Section 5, we shall explain how the uniqueness follows easily from 
Bouc’s filtration [9, 6.4] of 2B×. Also in Section 5, we shall give a quick alternative to 
part of Bouc’s proof of Theorem 2.4, and we shall give a proof of the next result. It 
was conjectured by Yalçın in June 2006, when he (and the author) received a draft copy 
of [9].

Theorem 2.5. Let πK
Q : pK → pK/QpK and π×

Q : pB
× → pB

×/QpB
× be the canonical 

epimorphisms of p-biset functors. Then

bouc p
◦ π

K
Q = π×

Q ◦ torn p
.
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In the rest of this paper, we shall be showing how an exploration of the properties of 
torn p leads to proofs of Theorems 2.3, 2.4, 2.5. The proof we shall give for Theorem 2.3
will be a review of Tornehave’s argument [14], except that we shall be making a note of 
the functorial features that arise. The proof we shall give for Theorem 2.4 will overlap 
with Bouc’s argument [9], but we shall also be making use of some ideas and intermediate 
results of Tornehave. The first of those intermediate results will be the following theorem, 
which is implicit in Tornehave [14, Section 3]. Note that it holds for arbitrary finite 
groups. We shall review Tornehave’s proof of it in Section 3.

Theorem 2.6 (Tornehave). As a sum of biset subfunctors, B× = K× + QB×.

In Section 4, we shall complete the proof of Theorem 2.3 by establishing the inequali-
ties K×(P ) ≤ torn(K(P )) ≤ RB×(P ) for all 2-groups P . After reviewing some structural 
features of the 2-biset functor 2B×/Q2 B

× in Section 5, we shall complete the proofs of 
Theorems 2.4 and 2.5 in Section 6.

3. A short filtration of the unit functor

We shall establish a short exact sequence of inflaky functors for arbitrary finite groups

Lin× : 0 −→ K× −→ B× lin×
−→ A×

Q −→ 0.

Then, making use of the reduced tom Dieck morphism die, we shall prove Theorem 2.6. 
Our notation will be consistent with [3] and [4], but we shall present it in a self-contained 
way, beginning with a brief review of the Burnside ring B(G), the Q-representation ring 
AQ(G) and the linearization map linG : B(G) → AQ(G). It will be convenient to express 
some of the definitions in the more general context of the K-representation ring AK(G), 
where K is a field of characteristic zero.

The elements of the Burnside ring B(G) have the form [X] −[Y ] where [X] and [Y ] are 
the isomorphism classes of (finite) G-sets X and Y . Letting U run over representatives 
of the conjugacy classes of subgroups of G, the elements dGU = [G/U ] comprise a Z-basis 
for B(G). Of course, the elements dGU also comprise a Q-basis for the Burnside algebra 
QB(G). The primitive idempotents comprise another Q-basis for QB(G). Letting I run 
over representatives of the conjugacy classes of subgroups of G, the primitive idempotents 
are the elements eGI specified by Gluck’s Idempotent Formula

eGI = 1
|NG(I)|

∑
U≤I

|U |μ(U, I) dGU .

Here, μ denotes the Möbius function for the poset of subgroups of G. The species of 
QB(G) (we mean, the algebra maps QB(G) → Q) are the functions εGI given by

εGI ([X] − [Y ]) = |XI | − |Y I |



L. Barker / Journal of Algebra 446 (2016) 19–33 25
where XI denotes the set of I-fixed points in X. The species and the primitive idempo-
tents are related by the condition that εGI (eGI′) = 1 when I =G I ′, otherwise εGI (eGI′) = 0. 
So any element x ∈ QB(G) can be written in the form

x =
∑

I≤GG

εGI (x) eGI

where the notation indicates that, again, I runs over representatives of the conjugacy 
classes of subgroups of G.

The K-representation ring AK(G), also called the K-character ring, can be described 
in a similar way. Its elements can be expressed in the form [L] − [M ] where [L] and [M ]
are the isomorphism classes of (finite-dimensional) KG-modules L and M . The elements 
can also be expressed in the form λ − μ, where λ and μ are KG-characters. Writing 
Mμ to denote a KG-module with character μ, we make the identification μ = [Mμ]. 
Thus, as elements of AK(G), we identify KG-characters with isomorphism classes of 
KG-modules.

Since character values are algebraic integers, we can embed AK(G) in the complex 
representation ring AC(G) by fixing an embedding from the ring of algebraic integers in 
K to the ring of algebraic integers in C. In this way, CAK(G) becomes a C-vector subspace 
of CAC(G). We regard the CG-representation algebra CAC(G) as the C-vector space of 
G-invariant functions G → C. The primitive idempotents eGg of AC(G) are determined 
by the condition that, for all ξ ∈ CAC(G), we have

ξ =
∑

g∈GG

ξ(g) eGg

where the notation indicates that g runs over representatives of the conjugacy classes 
of G.

The linearization map linG : B(G) → AK(G) is the ring homomorphism given by 
linG[X] = [KX] where KX denotes the permutation KG-module associated with X. 
The Z-module K(G) = Ker(linG) is independent of K and, except for an ambiguity as 
to the codomain, linG is also independent of K. Indeed, [QX] = [KX] = [CX], and we 
can equally well understand the codomain of linG to be AQ(G) or AK(G) or AC(G).

By restriction, linG restricts to a group homomorphism

lin×
G : B×(G) → A×

K (G)

between the unit groups B×(G) and A×
K (G) of B(G) and AK(G). Again, we can equally 

well understand the codomain of lin×
G to be A×

Q (G) or A×
K (G) or A×

C (G). We define 
K×(G) = Ker(lin×

G). Thus, K×(G) is the group consisting of those units in B(G) that 
can be written in the form 1 + κ with κ ∈ K(G). More concisely,

K×(G) = B×(G) ∩ (1 + K(G)). (∗)
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It is easy to see that the C-linear extension linG : CB(G) → CAC(G) is given by

linG(eGI ) =
∑

g∈GG : I=G〈g〉
eGg

where the notation indicates that g runs over representatives of those conjugacy classes 
of G such that I is G-conjugate to the cyclic group 〈g〉 generated by g. The next remark 
follows easily.

Remark 3.1. Given an element x ∈ B(G), then:

(1) x ∈ B×(G) if and only if εGI (x) = ±1 for every subgroup I of G,
(2) x ∈ K(G) if and only if εGC(x) = 0 for every cyclic subgroup C of G,
(3) x ∈ K×(G) if and only if εGI (x) = ±1 for every subgroup I of G and εGC(x) = 1 for 

every cyclic subgroup C of G.

We have the following analogous remark for the unit group A×
Q (G).

Remark 3.2. Given ξ ∈ AQ(G), then ξ ∈ A×
Q (G) if and only if ξ(g) = ±1 for all g ∈ G.

Proof. The function A×
Q (G) � ξ 
→ ξ(g) ∈ Q is a group homomorphism. The numbers 

ξ(g) are rational, yet they are also units in the ring of algebraic integers, so each ξ(g) =
±1. �

Tornehave [14, Lemma 3.1] gave the following more powerful description of A×
Q (G).

Lemma 3.3 (Tornehave). The unit group A×
Q (G) is the set whose elements have the form 

±φ where φ is a linear QG-character.

Proof. Plainly, the elements of AQ(G) that can be written in the specified form are units. 
We must prove the converse. Let 〈– | –〉 denote the usual inner product on the C-vector 
space CAC(G). The latest remark implies that, given ξ ∈ A×

Q (G), then 〈ξ | ξ〉 = 1. It 
follows that ξ = ±φ for some absolutely irreducible QG-character φ. But 0 < φ(1) =
±ξ(1) = ±1, so φ is a linear QG-character. �

The linear QG-characters are easy to classify. The condition Ker(φ) = F characterizes 
a bijective correspondence φ ↔ F between the linear QG-characters φ and the subgroups 
F ≤ G with index |G : F | ≤ 2. Of course, φ(g) = 1 for g ∈ F while φ(g) = −1 for 
g ∈ G − F . So φ = [QG/F ] − 1 = lin×

G(dGF − 1) and −φ = lin×
G(1 − dGF ). Hence, via 

the latest lemma, we deduce that the group homomorphism lin×
G : B×(G) → A×

Q (G) is 
surjective, and we have a short exact sequence of elementary abelian 2-groups

Lin×
G : 0 −→ K×(G) −→ B×(G)

lin×
G−→ A×

Q (G) −→ 0.
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Let us emphasize that the exactness of Lin×
G holds for all finite groups G. For the sake 

of comparison, let us point out that we also have a left-exact sequence of free Z-modules

LinG : 0 −→ K(G) −→ B(G) linG−→ AQ(G).

As we already noted in Section 2, the Ritter Segal Theorem asserts that LinG is right 
exact when G is a p-group, but the right exactness can fail for nilpotent G.

The biset functor structures of the Burnside functor B and the representation functor 
AK were introduced by Bouc [5], [10, 1.1, 1.2] Let us briefly recall some notation (exactly 
the same as is used in [4]). Consider a group homomorphism φ : G → F and subgroups 
H ≤ G � N . Allowing G to vary, the rings B(G) and AK(G) give rise to the biset 
functors B and AK, whose elemental maps are the isogation maps isoφF,G, the restriction 
maps resH,G, the inflation maps infG,G/N , the induction maps indG,H and the deflation 
maps defG/N,G. The linearization maps linG give rise to a morphism of biset functors 
lin : B → AK, and we have a left exact sequence of biset functors

Lin : 0 −→ K −→ B
lin×

G−→ AK.

The biset functor structure of the Burnside unit functor B× was established by Bouc 
[8], [10, 11.2.21]. Again, let us recall some notation (again, exactly the same as in [4]). 
Letting G vary, the rings B(G) admit two kinds of multiplication-preserving functions: 
the Japanese deflation functions jefG/N,G (sometimes called multiplicative deflation); 
the Japanese induction functions jndG,H (sometimes called multiplicative induction or 
tensor induction). The distinction between these and the usual deflation and induction 
on B(G) is that jefG/N,G is given by passage to the N -fixed points whereas defG,G/N is 
given by passage to N -orbits; jndG,H is given by a tensor product construction discussed 
in, for instance, Yoshida [16, Section 3]. The unit groups B×(G) can be regarded as 
vector spaces over the field F2 = {0, 1} and they give rise to a biset functor B× over F2
whose isogation, restriction and inflation maps are the same as for the rings B(G), but 
the induction and deflation maps are jndG,H and jefG/N,G.

We now introduce an inflaky functor A×
Q whose coordinate modules are the unit groups 

A×
Q (G). The rings AK(G) admit multiplication-preserving functions jndG,H : AK(H) →

AK(G) called Japanese induction (or multiplicative induction or tensor induction). These 
functions are discussed in Yoshida [16, Section 3]. Regarding the unit groups A×

K (G) as 
vector spaces over F2, then the function jndG,H restricts to a linear map A×

K (H) →
A×

K (G).
Specializing now to the case K = Q, we claim that the unit groups A×

Q (G) give rise to 
an inflaky functor A×

Q over F2 whose isogation, restriction, inflation and induction maps 
are isoφF,G, resH,G, infG,G/N , jndG,H , respectively. Yoshida [16, Section 3d] observed 
that the functions jndG,H : B(H) → B(G) and jndG,H : AK(H) → AK(G) commute 
with linH and linG. In particular, the F2-linear maps jndG,H : B×(H) → B×(G) and 
jndG,H : A×

K (H) → A×
K (G) commute with lin×

H and lin×
G. But, as we noted above, the 
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maps lin×
G are surjective when K = Q. The claim now follows, and we have also shown 

that the maps lin×
G give rise to an epimorphism of inflaky functors lin× : B× → A×

Q . 
Since lin× is an inflaky morphism, the kernel K× = Ker(lin×) is an inflaky subfunctor 
of B×. We have established the short exact sequence Lin× indicated at the beginning of 
this section.

However, a straightforward calculation in the case 1 < N < G ∼= V4 shows that K× is 
not a biset subfunctor of B×. Indeed, for such G and N , we have 1 − 2eGG ∈ K×(G) but

jefG/N,G(1 − 2eGG) = 1 − 2eG/N
G/N /∈ K×(G/N).

Perforce, there is no way of imposing deflation maps on A×
Q so as to make lin× become a 

morphism of biset functors. We speculate that, for arbitrary K, the unit groups A×
K (G)

give rise to an inflaky functor A×
K in a similar way. Possibly, the above argument could be 

adapted by replacing the Burnside functor B with the monomial Burnside functor BK.
We define the parity of an integer n to be par(n) = (−1)n. Recall that the reduced 

tom Dieck map dieG : AR(G) → B×(G) is defined to be the linear map such that, given 
an RG-character χ, then

εGI (dieG(χ)) = par(dimR(M I
χ)).

Here, Mχ is an RG-module affording χ and M I
χ denotes the subspace of Mχ fixed by the 

subgroup I ≤ G. By Yoshida [16, 3.5], the maps dieG give rise to a morphism of biset 
functors

dieG : AR → B×.

A review of the morphism die, in our context of concern, appears in [3, Section 3].
Consider an element ξ ∈ B×(G). By Lemma 3.3, there exists a linear QG-character 

φ such that linG(ξ) = ±φ. Let F = Ker(φ). The defining formula for dieG yields

εGI (dieG(φ)) =
{
−1 if I ≤ F,

1 if F � I ≤ G.

So the values of the character linG(dieG(φ)) are

linG(dieG(φ))(g) =
{
−1 if g ∈ F,

1 if g ∈ G− F.

In other words, linG(dieG(φ)) = −φ. Replacing φ with the trivial QG-character, we 
obtain linG(dieG(1)) = −1, hence linG(dieG(1 + φ)) = φ. If linG(ξ) = −φ, we put 
η = dieG(φ), while if linG(ξ) = φ, we put η = dieG(1 + φ). Either way, η ∈ QB×

and lin×
G(η) = lin×

G(ξ). Since K×(G) is the kernel of lin×
G, we deduce that B×(G) =

K×(G) + QB×(G). This completes the proof of Theorem 2.6.
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4. Tornehave’s Unit Theorem

Here, we prove Theorem 2.3 and we pave the way towards a new proof of Theorem 2.4
and a proof of Theorem 2.5. The crucial case of Theorem 2.3 is that of a 2-group, and 
we shall deal with that case first. The generalization to nilpotent groups will be done in 
an easy little paragraph at the end of this section.

Recall (see Section 2) that the reduced exponential map expG : B(G) → B×(G) and 
the reduced exponential morphism exp : B → B× are the composites expG = dieG ◦ linG

and exp = die ◦ lin. Thus

εGI (expG([X] − [Y ])) = par(|I\X| − |I\Y |) = par|I\X| . par|I\Y |

where X and Y are G-sets, I is a subgroup of G and I\X denotes the set of I-orbits 
in X.

For a set π of prime numbers, we now define the reduced Tornehave map torn π
G :

K(G) → B×(G) and the reduced Tornehave morphism

torn π : K → B×.

The definition involves the π-adic valuation logπ on the positive integers, which is given 
by the conditions logπ(n1n2) = logπ(n1) + logπ(n2) and, if p ∈ π, then logπ(p) = 1, 
otherwise logπ(p) = 0. Observe that the Z-module K(G) consists of those elements of 
B(G) that can be written in the form [X] − [Y ] where KX ∼= KY as KG-modules. We 
define torn π

G such that, assuming KX ∼= KY , then

εGI (torn π
G([X] − [Y ])) = par

( ∑
O∈I\X

logπ |O| −
∑

O∈I\Y
logπ |O|

)

=
∏

O∈I\X
par(logπ |O|) .

∏
O∈I\Y

par(logπ |O|).

It is shown in [3, Section 7] that the maps torn π
G give rise to an inflaky morphism 

torn π. In the present paper, we shall be concerned with the morphism of p-biset functors 
torn p = torn {p}, especially the morphism of 2-biset functors torn = torn 2.

Tornehave’s proof [14] of the following result is presented also in [3, Section 7].

Lemma 4.1 (Tornehave). We have torn π
G(K(G)) ≤ RB×(G). In other words, torn π(K)

is an inflaky subfunctor of RB×.

The next result, again due to Tornehave [14], is recorded in [4, Section 10].

Lemma 4.2 (Tornehave). Suppose that the 2-group P is non-cyclic. Then 2ePP ∈ K(P )
and tornP (2ePP ) = 1 − 2ePP .
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Lemma 4.3 (Tornehave). We have K×(P ) ≤ tornP (K(P )).

Proof. We define a function σP : K×(P ) � η 
→ η−1 ∈ K(P ). The definition makes sense 
in view of the equality (∗) in Section 3. We claim that the function tornP ◦ σP : K×(P ) →
K×(P ) is a bijection. Deny, and assume that P is a counter-example with minimal 
order. Then tornP ◦ σP is not injective. Perforce, |K×(P )| ≥ 2 so P cannot be cyclic. 
Let η1 and η2 be distinct elements of K×(P ) such that tornP (σp(η1)) = tornP (σp(η2)). 
The functions tornP and σP commute with restriction so, by the minimality of P , we 
have resI,P (η1) = resI,P (η2) for all I < P . Therefore η1 − η2 = ±ePP , in other words, 
σP (η1) − σP (η2) = ±ePP . Since B×(G) is an elementary abelian 2-group,

1B(P ) = tornP (σP (η1)) . tornP (σP (η2)) = tornP (σP (η1 − η2)) = tornP (2ePP ).

This contradicts Lemma 4.2. The claim is established and the required conclusion follows 
immediately. �

We can now complete the proof of Theorem 2.3. By Lemmas 4.1 and 4.3, K×(P ) ≤
RB×(P ). Trivially, QB×(P ) ≤ RB×(P ). So, by Theorem 2.6, B×(P ) = RB×(P ). We 
have established Theorem 2.4 in the case of a finite 2-group. Finally, suppose that G
is nilpotent, and write G = P × Q where P is the Sylow 2-subgroup. Bouc [8, 6.3]
showed that the map infG,G/Q ◦ isoG/Q,P : B×(P ) → B×(G) is an isomorphism. Plainly, 
infG,G/Q ◦ isoG/Q,P sends RB×(P ) to RB×(G). Therefore Theorem 2.3 holds in gen-
eral.

5. Genotypes of irreducible representations

As we noted in Section 1, the focus of our attention is the 2-biset functor 2B×/Q2 B
×. 

Bouc [8, Section 9], [9, Section 6] determined its structure, interpreting the simple compo-
sition factors in terms of irreducible rational representations. However, as we also noted 
in Section 1, much of the motive for studying the functor B× arises from its relevance to 
the study of irreducible real representations. This brief section is a review, linking Bouc’s 
results to some material [1, Sections 5, 6] concerning irreducible real representations.

The following theorem is due to Kronstein in the special case K = C and to Bouc in 
the special case K = Q. Citations and a proof for arbitrary K can be found in [1, 1.1]. 
Below, we shall be making use of the case K = R.

Theorem 5.1. Suppose that G is a p-group. Let ψ be an irreducible KG-character. Then 
there exists a section K � H ≤ G such that the following three conditions hold: every 
normal abelian subgroup of H/K is cyclic; ψ = indG,H(infH,H/K(φ)) for some faithful 
irreducible KH/K-character φ; no Galois conjugate of φ occurs in the KH/K-character 
defH/K,H(resH,G(ψ)) −φ. Furthermore, if K ′�H ′ ≤ G is another such subquotient, then 
H/K ∼= H ′/K ′.
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As a group well-defined up to isomorphism, the group Type(ψ) = H/K is called the
genotype of ψ. The following theorem, a special case of [1, 3.5], says that the genotype 
is invariant under change of fields.

Theorem 5.2. Suppose that G is a p-group. Then there is a bijective correspondence be-
tween the irreducible QG-characters χ and the Galois conjugacy classes of irreducible 
KG-characters ψ. The correspondence is characterized by the condition that χ is a 
Z-multiple of the sum of the Galois conjugates of ψ. The genotypes of χ and ψ coin-
cide.

Via the latest theorem, Bouc [8, 9.5, 9.6] can be expressed as the next result. Recall 
that the simple biset functors over a field F are the biset functors denoted SL,V where 
L is the minimal group such that SL,V (L) �= 0 and, as FOut(L)-modules, SL,V

∼= V . We 
let Cn denote the cyclic group with order n ≥ 1.

Theorem 5.3 (Bouc). For finite 2-groups, the 2-biset functor B× is uniserial with filtra-
tion 0 < Q

2 B
× = L3 < L4 < . . . < 2B

× where Q2 B
× ∼= SC1,F2 and Ln/Ln−1 ∼= SD2n ,F2 for 

n ≥ 4. Furthermore, dimF2(SC1,F2(P )) is the number of Galois conjugacy classes of irre-
ducible KP -characters with genotype C1 or C2, while dimF2(SD2n ,F2(P )) is the number 
of Galois conjugacy classes of irreducible KP -characters with genotype D2n, for n ≥ 4.

In the proof of Theorem 2.4 presented in the next section, the overlap with the argu-
ments in [9] lies in the invocation of the following result, [9, 6.3]. Again, our rendition of 
the result depends on Theorem 5.2.

Lemma 5.4. The dimension of K(P )/QK(P ) is equal to the number of Galois conjugacy 
classes of irreducible KP -characters ψ such that Type(ψ) = D2n for some n ≥ 4.

The next result is a special case of [1, 5.13].

Theorem 5.5. Let ψ be an irreducible RP -character. Then:

(1) Type(ψ) ∼= C1 if and only if ψ is the trivial character.
(2) Type(ψ) ∼= C2 if and only if ψ is non-trivial, absolutely irreducible and realizable 

over Q.
(3) Type(ψ) ∼= D2n for some n ≥ 4 if and only if ψ is non-trivial, absolutely irreducible, 

and not realizable over Q.
(4) Type(ψ) is semidihedral with order at least 16 or generalized quaternion with order 

at least 8 if and only if ψ is not absolutely irreducible.

Combining the latest three results, we recover the following corollary, which will be 
of crucial use in the next section. Via [1, 6.6, 6.7], the corollary is already essentially in 
Bouc [9, 6.5].
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Corollary 5.6 (Bouc). The dimensions of B×(P )/QB×(P ) and K(P )/QK(P ) are both 
equal to the number of Galois conjugacy classes of absolutely irreducible RP -characters 
that are not realizable over Q.

6. Bouc’s isomorphism

We shall prove Theorems 2.4 and 2.5 simultaneously. Most of that task will be showing 
that there exists an isomorphism of biset functors bouc p such that the following square 
commutes.

pK
torn p

πK
Q

pB
×

π×
Q

pK/QpK
bouc p

pB
×/QpB

×

First suppose that p is odd. Bouc [7, 6.12] asserts that QpK = pK. Another proof 
of that equality appears in Bouc [9, 3.8]. As we observed in Section 2, QpB× = pB

×. 
Theorems 2.4 and 2.5 are now clear for odd p. It remains to deal with the case where 
p = 2.

Proposition 6.1. The composite π×
Q ◦ torn : 2K → 2B

×/Q2 B
× is an epimorphism of 

2-biset functors.

Proof. It was shown in [4, Section 10] that π×
Q ◦ torn is a morphism of 2-biset functors. 

By Theorem 2.6 and Lemma 4.3, π×
Q ◦ torn is an epimorphism. �

Recall that Q2 K is defined to be the 2-biset functor generated by the coordinate module 
Q
2 K(D8). Every RD8 character is realizable over Q so, by Corollary 5.6, QB×(D8) =
B×(D8). Hence Ker(πK

Q ) ≤ Ker(π×
Q ◦ torn). Since πK

Q is an epimorphism, Proposition 6.1
implies that there exists a unique morphism of 2-biset functors bouc such that the 
diagram above commutes. The proposition also implies that bouc is an epimorphism. By 
Corollary 5.6 again, bouc is an isomorphism.

We complete the proof of Theorem 2.4 with the following slightly stronger version for 
the case p = 2. Theorem 2.5 will then follow because of the way we constructed bouc.

Theorem 6.2. For 2-groups, there is a unique non-zero morphism of 2-biset functors

bouc : 2K/Q2 K → 2B
×/Q2 B

×.

Furthermore, bouc is an isomorphism.

Proof. All that remains is to establish the uniqueness. It suffices to show that the endo-
morphism algebra of 2B×/Q2 B

× is isomorphic to F2. Theorem 5.3 tells us that 2B×/Q2 B
×
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has a unique filtration 0 = L2 < L3 < . . . such that each Ln/Ln−1 is simple. Further-
more, the terms Ln/Ln−1 are mutually non-isomorphic and they all have endomorphism 
algebra isomorphic to F2. Any endomorphism θ of 2B×/Q2 B

× must act on Ln/Ln−1 ei-
ther as zero or as the identity. So θ or θ − 1 sends Ln to Ln−1. But Ln/Ln−1 does not 
occur as a simple composition factor of Ln−1, so θ or θ− 1 must annihilate Ln. In other 
words, θ must act on Ln either as zero or as the identity. For distinct n and m, it is 
impossible for θ to act as zero Ln and as the identity on Lm. So θ must act either as 
zero on all the Ln or else as the identity on all the Ln. �
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