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For a suitable small category F of homomorphisms between 
finite groups, we introduce two subcategories of the biset 
category, namely, the deflation Mackey category M←

F and the 
inflation Mackey category M→

F . Let G be the subcategory of 
F consisting of the injective homomorphisms. We shall show 
that, for a field K of characteristic zero, the K-linear category 
KMG = KM←

G = KM→
G has a semisimplicity property and, 

in particular, every block of KMG owns a unique simple 
functor up to isomorphism. On the other hand, we shall show 
that, when F is equivalent to the category of finite groups, 
the K-linear categories KM←

F and KM→
F each have a unique 

block.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Mackey functors are characterized by induction and restriction maps associated with 
some group homomorphisms. For example, the groups involved can be the subgroups of 
a fixed finite group and the homomorphisms can be the composites of inclusions and 
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conjugations. As another example, the groups can be arbitrary finite groups and the 
homomorphisms can be arbitrary.

We shall use Bouc’s theory of bisets [4] to recast the theory of Mackey functors in the 
following way. Let K be a set of finite groups that is closed under taking subgroups. (In 
applications, K can play the role of a proper class. For instance, if K owns an isomorphic 
copy of every finite group, then K can play the role of the class of all finite groups.) 
Generalizing the notion of a fusion system on a finite p-group, we shall introduce the 
notion of a Mackey system on K, which is a category F such that the set of objects 
is Obj(F) = K and the morphisms in F are group homomorphisms subject to certain 
axioms. In the case where all the homomorphisms in F are injective, we call F an 
ordinary Mackey system.

For any Mackey system F on K, we shall define two subcategories of the biset category, 
namely, the deflation Mackey category M←

F and the inflation Mackey category M→
F . The 

category M←
F is generated by inductions via homomorphisms in F and restrictions via 

inclusions. The category M→
F is generated by inductions via inclusions and restrictions 

via homomorphisms in F . When F is an ordinary Mackey system, M←
F and M→

F coin-
cide, and we write it as MF , calling it an ordinary Mackey category.

Let R be a commutative unital ring and let RM←
F be the R-linear extension of M←

F . 
The notion of a Mackey functor over R will be replaced by the notion of an RM←

F -functor, 
which is a functor from RM←

F to the category of R-modules. Our approach to the 
study of RM←

F -functors will be ring-theoretic. We shall introduce an algebra ΠRM←
F

over R, called the extended quiver algebra of RM←
F , which has the feature that every 

RM←
F -functor is a ΠRM←

F -module. We define a block of RM←
F to be a block of ΠRM←

F . 
As in the block theory of suitable rings, every indecomposable RM←

F -functor belongs 
to a unique block of RM←

F . Similar constructions can be made for the inflation Mackey 
category M→

F .
Let K be a field of characteristic zero. Regarding the blocks of KM←

F as a partitioning 
of the simple KM←

F -functors, the blocks sometimes partition the simple functors very 
finely. Corollary 4.7 says that, for any ordinary Mackey system G, each block of KMG
owns a unique simple KMG-functor. But the blocks can also partition the simple functors 
very coarsely. Our main result, Theorem 7.1, asserts that if K owns an isomorphic copy 
of every finite group and F owns every homomorphism between groups in K, then KM←

F
and KM→

F each have a unique block.
We shall be needing two theorems whose conclusions have been obtained before under 

different hypotheses. Theorem 4.6 asserts that the category KMG , though sometimes 
infinite-dimensional, has a semisimplicity property. This result was obtained by Webb 
[10, 9.5] in the special case where G is equivalent to the category of injective group 
homomorphisms. The same conclusion was established by Thévenaz–Webb [8], [9, 3.5]
in a different scenario where the group isomorphisms that come into consideration are 
conjugations within a fixed finite group. Their result is not a special case of ours because 
their relations [9, page 1868] on the conjugation maps are weaker than ours. Theorem 5.2
asserts that, taking G to be the largest ordinary Mackey system that is a subcategory 
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of F , restriction and inflation yield mutually inverse bijective correspondences between 
the simple KM←

F -functors and the simple KMG-functors. A similar result holds for the 
simple KM→

F -functors. A version of this result was obtained by Yaraneri [11, 3.10] in 
the scenario where the isomorphisms are conjugations within a fixed finite group and, 
again, the relations on the conjugation maps are as in [9, page 1868].

A scenario similar to ours was studied in Boltje–Danz [2]. We shall make much use of 
their techniques. They considered some subalgebras of the double Burnside algebra that 
can be identified with endomorphism algebras of objects of Mackey categories. Boltje 
and Danz obtained analogues [2, 5.8, 6.5] of Theorems 4.6 and 5.2 for the endomorphism 
algebras. Those analogues can be recovered from Theorems 4.6 and 5.2 by cutting by 
idempotents.

The material is organized as follows. Section 2 is an account of the general notion of a 
block of an R-linear category. In Section 3, we classify the simple functors of the R-linear 
extension of a Mackey category. In Section 4, we prove that the K-linear extension of 
an ordinary Mackey category has a semisimplicity property. In Section 5, we compare 
the K-linear extension of a deflation Mackey category with the K-linear extension of an 
ordinary Mackey category. Section 6 concerns the unique non-ordinary deflation Mackey 
category in the case where K consists only of a trivial group and a group with prime 
order. Section 7 proves a theorem on the uniqueness of the block of a deflation Mackey 
category that is, in some sense, maximal among all deflation Mackey categories.

The author would like to thank Robert Boltje for contributing some of the ideas in 
this paper.

2. Blocks of linear categories

An R-linear category (also called an R-preadditive category) is defined to be a cat-
egory whose morphism sets are R-modules and whose composition is R-bilinear. An
R-linear functor between R-linear categories is defined to be a functor which acts on 
morphism sets as R-linear maps. We shall define the notion of a block of an R-linear 
category, and we shall establish some of its fundamental properties. It will be necessary 
to give a brief review of some material from [1] on quiver algebras and extended quiver 
algebras of R-linear categories.

Let L be a small R-linear category. Consider the direct product Π =∏
F,G∈Obj(L) L(F, G) where Obj(L) denotes the set of objects of L and L(F, G) de-

notes the R-module of morphisms F ← G in L. Given x ∈ Π, we write x = (FxG) where 

FxG ∈ L(F, G). Let ΠL be the R-submodule of Π consisting of those elements x such 
that, for each F ∈ Obj(L), there exist only finitely many G ∈ Obj(L) satisfying FxG �= 0
or GxF �= 0. We make ΠL become a unital algebra with multiplication operation such 
that

F (xy)G =
∑

FxGyH

G∈Obj(L)
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where F, H ∈ Obj(L) and x, y ∈ ΠL and FxGyH = FxG . GyH . The sum makes sense 
because only finitely many of the terms are non-zero. We call ΠL the extended quiver 
algebra of L. The rationale for the term will become apparent later in this section.

A family (xi : i ∈ I) of elements xi ∈ ΠL is said to be summable provided, for each 
F ∈ Obj(L), there are only finitely many i ∈ I and G ∈ Obj(L) such that F (xi)G �=
0 or G(xi)F �= 0. In that case, we define the sum

∑
i xi ∈ ΠL to be such that its 

(F, G)-coordinate is F (
∑

i xi)G =
∑

i F (xi)G. Any element x ∈ ΠL can be written as a 
sum

x =
∑

F,G∈Obj(L)
FxG .

The unity element of ΠL is the sum

1L =
∑

G∈Obj(L)

idG .

Proof of the next remark is straightforward.

Remark 2.1. Any element z of the centre Z(ΠL) can be expressed as a sum

z =
∑

G∈Obj(L)

zG

where zG ∈ L(G, G). Conversely, given elements zG ∈ L(G, G) defined for each G ∈
Obj(L), then we can form the sum z ∈ ΠL as above, whereupon z ∈ Z(ΠL) if and only 
if, for all F, G ∈ Obj(L) and x ∈ L(F, G), we have zFx = xzG.

We define a block of a unital ring Λ to be a primitive idempotent of Z(Λ). Let blk(Λ)
denote the set of blocks of Λ. It is easy to see that Z(Λ) has finitely many idempotents if 
and only if Λ has finitely many blocks and the sum of the blocks is the unity element 1Λ. 
In that case, we say that Λ has a finite block decomposition. We define a block of L to 
be a block of ΠL.

Theorem 2.2. If the algebra L(G, G) = EndL(G) has a finite block decomposition for all 
G ∈ Obj(L), then

1L =
∑

b∈blk(L)

b .

Proof. We adapt the proof of Boltje–Külshammer [3, 5.4]. Let

E =
⋃

blk(L(G,G)) .

G∈Obj(L)
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Let ∼ be the reflexive symmetric relation on E such that, given F, G ∈ Obj(L) and 
d ∈ blk(L(F, F )) and e ∈ blk(L(G, G)), then d ∼ e provided dL(F, G)e �= {0} or 
eL(G, F )f �= {0}. Let ≡ be the transitive closure of ∼. We mean to say, ≡ is the 
equivalence relation such that d ≡ e if and only if there exist elements f0, . . . , fn ∈ E
such that f0 = d and fn = e and each fi−1 ∼ fi. The hypothesis on the algebra L(G, G)
implies that every subset of E is summable. Plainly, 1L =

∑
e∈E e. It suffices to show 

that there is a bijective correspondence between the equivalence classes E under ≡ and 
the blocks b of L such that E ↔ b provided b =

∑
e∈E e.

Let E be an equivalence class under ≡ and let b =
∑

e∈E e. We must show that b is 
a block of L. Plainly, b is an idempotent of ΠL. Given F, G ∈ Obj(L) and x ∈ L(F, G), 
then

bFx = bFx1L =
(∑
d∈EF

d
)
x
( ∑
e∈blk(L(G,G))

e
)

=
∑

d∈EF , e∈EG

dxe = xbG

where EF = E ∩ blk(L(F, F )). So, by Remark 2.1, b ∈ Z(ΠL). Suppose that b = b1 + b2
as a sum of orthogonal idempotents of Z(ΠL) with b1 �= 0. Since bb1 �= 0, there exist 
F ∈ Obj(L) and d ∈ EF such that db1 �= 0. We have db1 = d(b1)F = d because (b1)F is 
a central idempotent of L(F, F ). For all G ∈ Obj(L) and e ∈ EG, we have

dL(F,G)b1e = db1L(F,G)e = dL(F,G)e .

So, if dL(F, G)e �= {0}, then b1e �= 0, whereupon, by an argument above, b1e = e. 
Similarly, the condition eL(G, F )d �= {0} implies that b1e = e. We deduce that b1e = e

for all e ∈ E. Therefore, b1 = b and b2 = 0. We have shown that b is a block of L.
Conversely, given a block b of L, letting f ∈ E such that bf �= 0 and letting E be the 

equivalence class of f , then b 
∑

e∈E e �= 0, hence b coincides with the block 
∑

e∈E e. We 
have established the bijective correspondence E ↔ b, as required. �

As a subalgebra of ΠL, we define

⊕L =
⊕

F,G∈Obj(L)

L(F,G) .

We call ⊕L the quiver algebra of L. When no ambiguity can arise, we write L = ⊕L. 
Plainly, the following three conditions are equivalent: Obj(L) is finite; the algebra L is 
unital; we have an equality of algebras L = ΠL.

We define an L-functor to be an R-linear functor L → R–Mod. Given an L-functor 
M , we can form a ΠL-module MΠ =

⊕
G M(G) where an element x ∈ L(F, G) acts 

on MΠ as M(x), annihilating M(G′) for all objects G′ distinct from G. By restriction, 
we obtain an L-module M⊕. Note that LMΠ = MΠ, in other words, LM⊕ = M⊕. 
Given another L-functor M ′, then each natural transformation M → M ′ gives rise, in 
an evident way, to a ΠL-map MΠ → M ′

Π which is also an L-map M⊕ → M ′
⊕. Conversely, 
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the L-maps M⊕ → M ′
⊕ coincide with the ΠL-maps MΠ → M ′

Π and give rise to natural 
transformations M → M ′. Putting the constructions in reverse, given an L-module M⊕
such that LM⊕ = M⊕, we can extend M⊕ to a ΠL-module MΠ and we can also form 
an L-functor M such that M(G) = idGM⊕ = idGMΠ. Henceforth, we shall neglect to 
distinguish between M and MΠ and M⊕. That is to say, we identify the category of L
functors with the category of ΠL-modules M satisfying LM = M and with the category 
of L-modules M satisfying LM = M .

An L-functor M is said to belong to a block b of L provided bM = M . In that case, 
we also say that b owns M . Theorem 2.2 has the following immediate corollary.

Corollary 2.3. If L(G, G) has a finite block decomposition for all G ∈ Obj(L), then every 
indecomposable L-functor belongs to a unique block of L.

Proof. Let M be an indecomposable L-functor. Choose an object G of L such that 
M(G) �= 0. We have idG =

∑
b∈blk(L) bG as a sum with only finitely many non-zero 

terms. So bGM(G) �= 0 for some b. In particular, bM �= 0. But M = bM ⊕ (1 − b)M and 
M is indecomposable, so M = bM . �

The next three results describe how the simple L-functors and the blocks of L are 
related to the simple functors and blocks of a full subcategory of L.

Proposition 2.4. Let K be a full subcategory of L. Then there is a bijective correspondence 
between the isomorphism classes of simple K-functors S and the isomorphism classes of 
simple L functors T such that 1KT �= 0. The correspondence is such that S ↔ T provided 
S ∼= 1KT .

Proof. We have ΠK = 1K .ΠL . 1K. So the assertion is a special case of Green [6, 6.2]
which says that, given an idempotent i of a unital ring Λ, then the condition S ∼=
iT characterizes a bijective correspondence between the isomorphism classes of simple 
iΛi-modules S and the isomorphism classes of simple Λ-modules T satisfying iT �= 0. �
Proposition 2.5. Suppose that L(G, G) has a finite block decomposition for all G ∈
Obj(L). Let K be a full subcategory of L and let S and S′ be simple K-functors. Let T and 
T ′ be the isomorphically unique simple L-functors such that S ∼= 1KT and S′ ∼= 1KT ′. If 
S and S′ belong to the same block of K, then T and T ′ belong to the same block of L.

Proof. Let a and a′ be the blocks of K owning S and S′, respectively. Let b and b′ be 
the blocks of L owning T and T ′, respectively. The central idempotent b1K of ΠK acts 
as the identity on S, so ab = a. Similarly, a′b′ = a′. If a = a′ then abb′ = a �= 0, hence 
bb′ �= 0, which implies that b = b′. �
Proposition 2.6. Suppose that L(G, G) has a finite block decomposition for all G ∈
Obj(L). Let T and T ′ be simple L-functors. Then T and T ′ belong to the same block 



40 L. Barker / Journal of Algebra 446 (2016) 34–57
of L if and only if there exists a full R-linear subcategory K of L such that Obj(K) is 
finite and the simple K-functors 1KT and 1KT ′ are non-zero and belong to the same 
block of K.

Proof. In one direction, this is immediate from the previous proposition. Conversely, 
suppose that T and T ′ belong to the same block b of L. Let G, G′ ∈ Obj(L) such that 
T (G) �= 0 and T ′(G′) �= 0. Let e ∈ blk(L(G, G)) and e′ ∈ blk(L(G′, G′)) be such that 
eT (G) �= 0 and e′T ′(G′) �= 0. Since ebT (G) = eT (G), we have eb �= 0. Similarly, e′b �= 0. 
Therefore e ≡ e′ where ≡ is the equivalence relation in the proof of Theorem 2.2. So 
there exist G0, . . . , Gn ∈ Obj(L) and fi ∈ blk(L(Gi, Gi)) such that G0 = G, f0 = e, 
Gn = G′, fn = e′ and each fi−1 ∼ fi. Let K be the full subcategory of L such that 
Obj(K) = {G0, . . . , Gn}. Then e and e′ are still equivalent under the equivalence relation 
associated with K. By the proof of Theorem 2.2, there exists a block a of K such that 
ae = e and ae′ = e′. We have ea1KT = e1KT = eT (G) �= 0, hence a1KT �= 0 and, 
similarly, a1KT ′ �= 0. Therefore 1KT and 1KT ′ both belong to a. �
3. Mackey categories and their simple functors

We shall introduce the notions of a Mackey system and a Mackey category. We shall 
also classify the simple functors of the R-linear extension of a given Mackey category.

First, let us briefly recall some features of the biset category C. Details can be found in 
Bouc [4, Chapters 2, 3]. Let F , G, H be finite groups. The biset category C is a Z-linear 
category whose class of objects is the class of finite groups. The Z-module of morphisms 
F ← G in C is

C(F,G) = B(F ×G) =
⊕

A≤GF×G

Z[(F ×G)/A]

where B indicates the Burnside ring, the index A runs over representatives of the con-
jugacy classes of subgroups of F × G and [(F × G)/A] denotes the isomorphism class 
of the F–G-biset (F × G)/A. The morphisms having the form [(F × G)/A] are called
transitive morphisms. The composition operation for C is defined in [4, 2.3.11, 3.1.1]. 
A useful formula for the composition operation is[

F ×G

A

] [
G×H

B

]
=

∑
p2(A)gp1(B)⊆G

[
F ×H

A ∗ (g,1)B

]
.

Here, the notation indicates that g runs over representatives of the double cosets of p2(A)
and p1(B) in G. For an account of the formula and for specification of the rest of the 
notation appearing in it, see [4, 2.3.24].

Given a group homomorphism α : F ← G, we define transitive morphisms

F indα
G = [(F ×G)/{(α(g), g) : g ∈ G}] , GresαF = [(G× F )/{(g, α(g)) : g ∈ G}]
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called induction and restriction. The composite of two inductions is an induction and 
the composite of two restrictions is a restriction. Indeed, using the above formula for the 
composition operation, it is easy to see that, given a group homomorphism β : G ← H

then,

F indα
Gindβ

H = F indαβ
H , HresβGresαF = HresαβF .

When α is injective, we call F indα
G an ordinary induction and we call GresαF an ordinary 

restriction. When α is an inclusion F ←↩ G, we omit the symbol α from the notation, 
just writing F indG and GresF . When α is surjective, we write

Fdef αG = F indα
G , Ginf αF = GresαF

which we call deflation and inflation. Note that, for arbitrary α, we have factorizations

F indα
G = F indα(G)def αG , GresαF = Ginf αα(G)resF .

When α is an isomorphism, we write

F isoαG = F indα
G = F resα

−1

G

which we call isogation. In C, the identity morphism on G is the isogation isoG = Giso1
G. 

Given g ∈ G, we let c(g) denote left-conjugation by g. Let V, V ′ ≤ G. Again using the 
above formula for composition, we recover the familiar Mackey relation

V resGindV ′ =
∑

V gV ′⊆G

V indV ∩gV ′ isoc(g)V g∩V ′resV ′ .

A transitive morphism τ : F ← G is said to be left-free provided τ is the isomor-
phism class of an F -free F–G-biset. The left-free transitive morphisms F ← G are the 
morphisms that can be expressed in the form

F indα
V resG = F indα(V )def α

V resG =
[

F ×G

S(α, V )

]
where V ≤ G and α : F ← V and

S(α, V ) = {(α(v), v) : v ∈ V } .

Evidently, the left-free transitive morphisms are those transitive morphism which can 
be expressed as the composite of an ordinary induction, a deflation and an ordinary 
restriction. The right-free transitive morphisms, defined similarly, are those transitive 
morphisms which can be expressed as the composite of an ordinary induction, an inflation 
and an ordinary restriction.
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Proposition 3.1 (Mackey relation for left-free transitive morphisms). Let F and V ≤ G

and W ≤ H be finite groups. Let α : F ← V and β : G ← W be group homomorphisms. 
Then

F indα
V resGindβ

W resH =
∑

V gβ(W )⊆G

F indαgc(g)βg

β−1(V g) resH

where αg : F ← V ∩ gβ(W ) and βg : V g ∩ β(W ) ← β−1(V g) are restrictions of α and β.

Proof. Using the star-product notation of Bouc [4, 2.3.19],

{(v, v) : v ∈ V } ∗ (g,1)S(β,W ) = S(c(g)βg, β
−1(V g)) .

Hence V resGindβ
W =

∑
V gβ(W )

V indc(g)βg

β−1(V g)resW . �

As in Section 1, let K be a set of finite groups that is closed under taking subgroups. 
We define a Mackey system on K to be a category F such that the objects of F are the 
groups in K, every morphism in F is a group homomorphism, composition is the usual 
composition of homomorphisms, and the following four axioms hold:
MS1: For all V ≤ G ∈ K, the inclusion G ←↩ V is in F .
MS2: For all V ≤ G ∈ K and g ∈ G, the conjugation map gV 
 gv �→v ∈ V is in F .
MS3: For any morphism α : F ← G in F , the associated homomorphism α(G) ← G is 
in F .
MS4: For any morphism α in F such that α is a group isomorphism, α−1 is in F .
We call F an ordinary Mackey system provided all the morphisms in F are injective. 
As an example, a fusion system on a finite p-group P is precisely the same thing as an 
ordinary Mackey system on the set of subgroups of P .

Remark 3.2. Given a Mackey system F on K, then:
(1) There exists a linear subcategory M←

F of C such that Obj(M←
F ) = K and, for 

F, G ∈ K, the morphisms F ← G in M←
F are the linear combinations of the left-free 

transitive morphisms F indα
V resG where V ≤ G and α : F ← V is a morphism in F .

(2) There exists a linear subcategory M→
F of C such that Obj(M→

F ) = K and, for 
F, G ∈ K, the morphisms F ← G in M→

F are the linear combinations of the right-free 
transitive morphisms F indU resβG where U ≤ F and β : U → G is a morphism in F .

Proof. In the notation of Proposition 3.1, supposing that F, G, H ∈ K and that α and 
β are morphisms in F then, by axioms MS1 and MS3, each αg and βg are in F and, 
by axiom MS2, each c(g) is in F . Part (1) is established. Part (2) can be demonstrated 
similarly or by considering duality. �

We call M←
F the deflation Mackey category of F . The rationale for the terminology 

is that M←
F is generated by inductions from subgroups, restrictions to subgroups and 
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deflations coming from surjections in F . We call M→
F the inflation Mackey category

of F .

Remark 3.3. Given an ordinary Mackey system G, then M←
G = M→

G .

Proof. This follows from axiom MS4. �
The category MG = M←

G = M→
G is called an ordinary Mackey category.

For the rest of this section, we focus on the deflation Mackey category M←
F . Similar 

constructions and arguments yield similar results for the inflation Mackey category M→
F . 

We shall need some notation for extension to coefficients in R. Given a Z-module A, we 
write RA = R⊗ZA. Given a Z-map θ : A → A′, we abuse notation, writing the R-linear 
extension as θ : RA → RA′. Given a Z-linear category L, we write RL to denote the 
R-linear category such that (RL)(F, G) = R(L(F, G)) for F, G ∈ Obj(L).

Remark 3.4. Given a Mackey system F on K and F, G ∈ K, then the following three 
conditions are equivalent: that F and G are isomorphic in F ; that F and G are isomorphic 
in M←

F ; that F and G are isomorphic in RM←
F .

Proof. Given an isomorphism γ : F ← G in F , then F isoγG : F ← G is an isomorphism 
in M←

F . So the first condition implies the second. Trivially, the second condition implies 
the third. Assume the third condition. Let θ : F ← G and φ : G ← F be mutually inverse 
isomorphisms in RM←

F . Writing θ =
∑

i λiθi and φ =
∑

j μjφj as linear combinations of 
transitive morphisms θi and φj , then isoF = θφ =

∑
i,j λiμjθiφj . An argument in Bouc 

[4, 4.3.2], making use of [4, 2.3.22], implies that θi and φj are isogations for some i and j. 
We have deduced the first condition. �

For F, G ∈ K, we write F(F, G) to denote the set of morphisms F ← G in F . We 
make F(F, G) become an F×G-set such that

(f,g)α = c(f)α c(g−1)

for (f, g) ∈ F × G and α ∈ F(F, G). Since α c(g−1) = c(α(g−1)) α, the F×G-orbits of 
F(F, G) coincide with the F -orbits. Let α denote the F -orbit of α. We have αβ = αβ

for H ∈ K and β ∈ F(G, H). So we can form a quotient category F of F such that the 
set of morphisms F ← G in F is F(F, G) = {α : α ∈ F(F, G)}. In F , the automorphism 
group of G is

OutF (G) = AutF (G)/Inn(G)

where Inn(G) denotes the group of inner automorphisms of G.
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Remark 3.5. Let F be a Mackey system on K. Given F, G ∈ K and α, α′ ∈ F(F, G), then 
the following three conditions are equivalent: that F indα

G = F indα′

G ; that GresαF = Gresα′

F ; 
that α = α′.

Proof. Another equivalent condition is S(α, G) =F×G S(α′, G). �
Let PF

F,G denote the set of pairs (α, V ) where V ≤ G and α ∈ F(F, V ). We allow 
F ×G to act on PF

F,G such that

(f,g)(α, V ) = ((f,g)α, gV )

for f ∈ F and g ∈ G. Let PF
F,G denote the set of F×G-orbits in PF

F,G. Let [α, V ] denote 
the F×G-orbit of (α, V ).

Proposition 3.6. Let F be a Mackey system on K. Then, for F, G ∈ K, the R-module of 
morphisms F ← G in RM←

F is

RM←
F (F,G) =

⊕
[α,V ]∈PF

F,G

R . F indα
V resG .

Proof. For V, V ′ ≤ G and α ∈ F(F, V ) and α′ ∈ F(F, V ′), we have F indα
V resG =

F indα′

V ′resG if and only if S(α, V ) = S(α′, V ′), in other words, [α, V ] = [α′, V ′]. �
We define a seed for F over R to be a pair (G, V ) where G ∈ K and V is a simple 

ROutF (G)-module. Two seeds (F, U) and (G, V ) for F over R are said to be equivalent
provided there exist an F-isomorphism γ : F ← G and an R-isomorphism φ : U ← V

such that, given η ∈ OutF (G), then γηγ−1 ◦ φ = φ ◦ η.
The next result is different in context but similar in form to the classifications of 

simple functors in Thévenaz–Webb [9, Section 2], Bouc [4, 4.3.10], Díaz–Park [5, 3.2]. 
It can be proved by similar methods. It is also a special case of [1, 3.7]. Observe that, 
given G ∈ K and an RM←

F -functor M , then M(G) becomes an ROutF (G)-module such 
that an element η ∈ OutF (G) acts as GisoηG. We call G a minimal group for M provided 
M(G) �= 0 and M(F ) = 0 for all F ∈ K with |F | < |G|.

Theorem 3.7. Let F be a Mackey system on K and let M = M←
K . Given a seed 

(G, V ) for F over R, then there is a simple RM-functor SRM
G,V determined up to iso-

morphism by the condition that G is a minimal group for SRM
G,V and SRM

G,V (G) ∼= V as 
ROutF (G)-modules. The equivalence classes of seeds (G, V ) for F over R are in a bi-
jective correspondence with the isomorphism classes of simple RM-functors S such that 
(G, V ) ↔ S provided S ∼= SRM

G,V .
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4. Ordinary Mackey categories and semisimplicity

Throughout this section, we let G be an ordinary Mackey system on K. We shall 
consider the ordinary Mackey category N = MG . Recall, from Section 1, that K is a field 
of characteristic zero. We shall prove that the K-linear category KN has a semisimplicity 
property. As mentioned in Section 1, this conclusion was obtained by Webb [10, 9.5] in 
a special case and by Thévenaz–Webb [8], [9, 3.5] in scenario involving a fixed finite 
group. Another related result, with a different conclusion but in a similar scenario, is 
Boltje–Danz [2, 5.8], which says that the algebra KN (G, G) is semisimple for all G ∈ K.

Let us discuss, in abstract, the semisimplicity property that we shall be establishing.

Remark 4.1. Given an R-linear category L, then the following two conditions are equiv-
alent:
(a) For every full linear subcategory L0 of L with only finitely many objects, the quiver 
algebra L0 is semisimple.
(b) The algebra iLi is semisimple for every idempotent i of the quiver algebra L.

Proof. If each iLi is semisimple then, given L0, we have L0 = 1L0 . L . 1L0 , which is 
semisimple. Conversely, suppose that each L0 is semisimple. Given i, let L0 be a subcat-
egory of L such that Obj(L0) is finite and i has the form i =

∑
F,G∈Obj(L0) F iG with each 

F iG ∈ L(F, G). Then 1L0i = i = i1L0 . Since the algebra L0 = 1L0 . L . 1L0 is semisimple, 
the algebra iLi = i1L0 . L . 1L0i is semisimple. �

When the equivalent conditions in the remark hold, we say that L is locally semisimple. 
In Theorem 4.6, we shall prove that the K-linear category KN is locally semisimple.

For G, H ∈ K, let L(G, H) be the Z-module freely generated by the formal symbols 
Gind β

H where β runs over the elements of G(G, H). It is to be understood that Gind β
H =

Gind β′

H if and only if β = β′. Thus

L(G,H) =
⊕

β∈G(G,H)

ZGind β
H .

We define a Z-module

L =
⊕

G,H∈K

L(G,H) .

We define a Z-epimorphism π : N → L such that, given W ≤ H and β ∈ G(G, W ), then

π(G ind β
W resH) =

⎧⎨⎩ Gind β
W if W = H,

0 if W < H.
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By Proposition 3.1, ker(π) is a left ideal of N . We make L become an N -module with 
representation σ : N → EndZ(L) such that σ(m)π(x) = π(mx) for m, x ∈ N . The next 
lemma expresses the action of N more explicitly.

Lemma 4.2. For F, G, H ∈ K, V ≤ G, α ∈ G(F, V ), β ∈ G(G, H), we have

σ(F indα
V resG)Gind β

H =
∑

V gβ(H)⊆G : V≥gβ(H)
F ind αc(g)β

H .

Proof. This follows from Proposition 3.1. �
Let I be the linear subcategory of N generated by the isogations. That is to say, the 

quiver ring I is the subring of M generated by the isogations. In fact, I is the Z-span 
of the isogations and

I(J,K) =
⊕
δ

Z J isoδK

where J, K ∈ K and δ runs over the G-isomorphisms J ← K. Note that, via the corre-
spondence H isoγH ↔ γ, we have an algebra isomorphism

I(H,H) ∼= ZOutG(H) .

We make L become an I-module with representation τ : I → EndZ(L) such that

τ(K isoγJ)Gind β
H =

⎧⎨⎩ Gind βγ−1

K if J = H,

0 otherwise.

Since the actions of N and I commute with each other, σ and τ are ring homomorphisms

σ : N → EndI(L) , τ : I → EndN (L) .

As an N -submodule of L, we define

L(–, H) = τ(isoH)L =
⊕
G∈K

L(G,H) .

Each L(–, H) is an I(H, H)-module and becomes a permutation ZOutG(H)-module via 
the isomorphism I(H, H) ∼= ZOutG(H). The action of ZOutG(H) on L(–, H) is such that 
an element γ ∈ OutG(H) sends the basis element Gind β

H to the basis element Gind βγ−1

H .
Let us recall the notion of a suborbit map on a permutation module. Let Γ be a finite 

group and Ω a finite Γ-set. For ω1, ω2 ∈ Ω, let ε(ω1, ω2) be the Z-linear endomorphism 
of ZΩ such that, given ω ∈ Ω, then
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ε(ω1, ω2)ω =
{

ω1 if ω = ω2,
0 if ω �= ω2.

The endomorphism ring EndZΓ(ZΩ) has a Z-basis consisting of the maps

$(ω1, ω2) =
∑

(ω′
1,ω

′
2)∈Ω×Ω : (ω′

1,ω
′
2)=Γ(ω1,ω2)

ε(ω′
1, ω

′
2) .

We call $(ω1, ω2) a suborbit map on ZΩ. Since $(ω1, ω2) = $(ω′
1, ω

′
2) if and only if 

(ω1, ω2) =Γ (ω′
1, ω

′
2), we have

EndZΓ(ZΩ) =
⊕

(ω1,ω2)∈ΓΩ×Ω

Z $(ω1, ω2)

where the notation indicates that (ω1, ω2) runs over representatives of the Γ-orbits of 
Ω × Ω.

Proposition 4.3. Let H ∈ K. Then there is a bijective correspondence between:
(a) the transitive morphisms F indα

V resG in N such that V ∼=G H,
(b) the suborbit maps $ on the permutation OutG(H)-module L(−, H).

The correspondence F indα
V resG ↔ $ is characterized by the condition that F indα

V resG
acts on L(–, H) as a positive integer multiple of $.

Proof. Fix F, G ∈ K. Two transitive morphisms F indα
V resG and F indα′

V ′resG coincide 
provided [α, V ] = [α′, V ′], in other words, there exist f ∈ F and g ∈ G such that V ′ =
gV and α′ = c(f)αc(g−1). Two suborbit maps $(F indμ

H , Gindν
H) and $(F indμ′

H , Gindν′

H)
coincide provided there exists γ ∈ OutG(H) such that μ′ = μγ−1 and ν′ = νγ−1, in 
other words, there exist f ∈ F and g ∈ G and γ ∈ AutG(H) such that μ′ = c(f)μγ−1

and ν′ = c(g)νγ−1.
Given � = F indα

V resG, we define a suborbit map $ = $(F ind μ
H , Gind ν

H) as follows. We 
choose a G-isomorphism ν0 : V ← H and extend ν0 to a homomorphism ν : G ← H by 
composing with the inclusion G ←↩ V . We define μ = αν. The suborbit map $ does not 
depend on the choice of ν0 because, if we replace ν0 with ν0γ

−1 for some γ ∈ AutF (H), 
then μ and ν are replaced by μγ−1 and νγ−1. To complete the demonstration that $
depends only on �, we must show independence from the choice of α and V . Suppose 
that � = F indα′

V ′resG. Let f and g be such that V ′ = gV and α′ = c(f)αc(g−1). Let 
ν′0 = c(g)ν0. Extending ν′0 to a homomorphism ν′ : G ← H and defining μ′ = α′ν′, 
then ν′ = c(g)ν and μ′ = c(f)μ. So $(F ind μ′

H , Gind ν′

H ) = $. We have established that $
depends only on �.

Conversely, given a suborbit map $ = $(F ind μ
H , Gind ν

H), we define a transitive mor-
phism � = F indα

V resG as follows. Let V = ν(H), let ν0 : V ← H be the isomorphism 
restricted from ν and let α = μν−1

0 : F ← V . We must show that � depends only on $
and not on the choice of μ and ν. Suppose that $ = $(F ind μ′

H , Gind ν′

H ). Let f , g, γ be 
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such that μ′ = c(f)μγ−1 and ν′ = c(g)νγ−1. Letting V ′ = ν′(H), then V ′ = gV . The 
isomorphism V ′ ← H restricted from ν′ is ν′0 = c(g)ν0γ

−1. Defining α′ = μ′ν′0
−1, then

α′ = c(f)μγ−1γν−1
0 c(g−1) = c(f)αc(g−1) .

So F indα′

V ′resG = �. We have established that � depends only on $.
It is easy to check that the above functions � �→ $ and $ �→ � are mutual inverses. 

Now suppose that � ↔ $. It remains only to show that the action of � is a positive 
integer multiple of $. Since the action of N on L(–, H) commutes with the action of 
ZOutG(H), the action of � is a Z-linear combination of suborbit maps. By Lemma 4.2, 
any suborbit map with non-zero coefficient has a positive integer coefficient. Let $1 =
$(F ind μ1

H , Gind ν1
H ) be a suborbit map with non-zero coefficient. We are to show that 

$1 = $. Since σ(�)Gind ν1
H �= 0, Lemma 4.2 implies that V = xν1(H) for some x ∈ G. 

Replacing ν1 with c(x)ν1 does not change Gind ν1
H , so we may assume that V = ν1(H). 

Then ν1 = νγ−1 for some γ ∈ OutG(H). That is to say, Gind ν1
H belongs to the same 

OutG(H)-orbit as Gind ν
H . So we may assume that Gind ν1

H = Gind ν
H . By Lemma 4.2

again, F ind μ1
H = F ind αc(g)ν

H for some g ∈ NG(V ). The proof of the well-definedness of 
the function � �→ $ now shows that � �→ $1, in other words, $1 = $. �
Proposition 4.4. The representation σ : N → EndI(L) is injective.

Proof. Let κ ∈ N . Recall that κ =
∑

F,G FκG as a sum with only finitely many non-zero 
terms. Each term FκG ∈ N (F, G) acts on L as a map

σ(F κG) :
⊕
H∈K

L(F,H) ←
⊕
H∈K

L(G,H) .

Suppose that κ �= 0. We must show that σ(κ) �= 0. We may assume that κ = FκG for 
some F, G ∈ K. Write

κ =
n∑

j=1
λj . F indαj

Vj
resG

as a Z-linear combination of distinct transitive morphisms in N with each λj �= 0. Let 
V be maximal among the Vj . Replacing some of the Vj with G-conjugates if necessary, 
we can choose the enumeration such that Vj = V for j ≤ m and Vj �G V for j > m. 
Invoking Proposition 4.3, let $j be the suborbit map corresponding to F indαj

V resG for 
j ≤ m. Note that the $j are mutually distinct. By Lemma 4.2, σ(F indαj

Vj
resG) annihilates 

L(–, V ) for j > m. So, by Proposition 4.3, there exist non-zero integers z1, . . . , zm such 
that the restriction of σ(κ) to L(–, V ) is 

∑m
j=1 λjzj$j . Perforce, σ(κ) �= 0. �

Proposition 4.5. If K is finite then the representation σ : KN → EndKI(KL) is bijective.
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Proof. By the previous proposition, the K-linear map σ is injective. We argue by com-
parison of dimensions. Summing over representatives H of the G-isomorphism classes in 
K, we have

KI =
⊕
H

KIH , KIH =
⊕

H1,H2∈K : H1∼=GH2∼=GH

KI(H1, H2) ,

KL =
⊕
H

KLH , KLH =
⊕

H1∈K : H1∼=GH

KL(–, H1) .

The subalgebra KIH is isomorphic to a full matrix algebra over KI(H, H) ∼= KOutG(H). 
So

EndKI(KL) ∼= End⊕
H KOutG(H)

(⊕
H

KL(–, H)
) ∼= ⊕

H

EndKOutG(H)(KL(–, H)) .

The number of suborbit maps on the permutation ZOutG(H)-module L(–, H) is

dimK(EndKOutG(H)(KL(–, H))) =
∑

F,G∈K

nF,G
H

where nF,G
H is the number of suborbit maps L(F, H) ← L(G, H). By Proposition 4.3, the 

number of transitive morphisms F ← G in N is

dimK(KN (F,G)) =
∑
H

nF,G
H .

So dimK(KN ) =
∑

F,G∈K

(∑
H

nF,G
H

)
=

∑
H

( ∑
F,G∈K

nF,G
H

)
= dimK(EndKI(KL)). �

Theorem 4.6. The K-linear category KN is locally semisimple. In particular, if K is 
finite, then the quiver algebra KN is semisimple.

Proof. First suppose that K is finite. As we saw in the proof of Proposition 4.5, each al-
gebra KIH is isomorphic to a full matrix algebra over the semisimple algebra KOutG(H). 
So KI is semisimple. Therefore, EndKI(KL) is semisimple. An appeal to Proposition 4.5
now completes the argument in this case.

Now let K be arbitrary. Let i be an idempotent of KN . Let K0 be a finite subset of 
K such that K0 is closed under taking subgroups and i can be expressed in the form 
i =

∑
F,G∈K0 F iG with F iG ∈ KN (F, G). Let N0 be the full subcategory of N such 

that Obj(N0) = K0. Since K0 is finite, the algebra 1N0 . KN . 1N0 = KN0 is semisimple. 
Arguing as in the proof of Remark 4.1, we deduce that iKN i is semisimple. �
Corollary 4.7. There is a bijective correspondence between the isomorphism classes of 
simple KN -functors S and the blocks b of KN such that S ↔ b provided S belongs to b.
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Proof. We are to show that, given simple KN -functors S and S′ belonging to the same 
block b of KN , then S ∼= S′. By Theorem 4.6, this is already clear when K is finite. 
Generally, by Proposition 2.6, there exists a full subcategory K of KN such that Obj(K)
is finite and the K-functors 1KS and 1KS′ are non-zero and belong to the same block 
of K. Let K0 be the set of subgroups of elements of Obj(K). Let N0 be the full subcategory 
of N with Obj(N0) = K0. Proposition 2.5, applied to the subcategory K of KN0, tells us 
that 1N0S and 1N0S

′ belong to the same block of KN0. But K0 is finite, so 1N0S
∼= 1N0S

′. 
By Proposition 2.4, S ∼= S′. �
5. Simple functors of deflation Mackey categories

Let F be a Mackey system on K. Let G be the ordinary Mackey system such that 
the morphisms in G are the injective morphisms in F . Consider the deflation Mackey 
category M = M←

F and the ordinary Mackey category N = MG . We shall show that 
the simple KM-functors restrict to and are inflated from the simple KN -functors. By 
similar arguments, a similar result holds for the K-linear extension KM→

F of the infla-
tion Mackey category M→

F . A variant of this result, in a different scenario, appears in 
Yaraneri [11, 3.10]. Another related result is Boltje–Danz [2, 6.5], which asserts that, 
for G ∈ K, the simple KM(G, G)-modules restrict to and are inflated from the simple 
KN (G, G)-modules.

For F, G ∈ K, let V ≤ G and let α : F ← V be a morphism in F . Following 
Boltje–Danz [2, 4.2], we define a K-linear map

ρF,G
α,V : KM(F,G) → K

such that, given an F–G-biset X whose isomorphism class [X] belongs to M(F, G), then

ρF,G
α,V [X] = |XS(α,V )|/|CG(V )|

where XS(α,V ) denotes the set of elements of X fixed by S(α, V ). Let KJ (F, G) be 
the K-submodule of KM(F, G) consisting of those elements x ∈ KM(F, G) such that 
ρF,G
α,V (x) = 0 whenever α is injective. As a K-submodule of KM, we define

KJ =
⊕

F,G∈K

KJ (F,G) .

Proposition 5.1. We have KM = KN ⊕KJ , furthermore, KJ is an ideal of KM. If K
is finite, then KJ = J(KM), the Jacobson radical.

Proof. Following [2, Section 4], we shall construct an isomorphic copy K̃M of the algebra 
KM. For F, G ∈ K, we introduce a K-module K̂M(F, G) with a basis consisting of the 
symbols (α, V )F,G where (α, V ) ∈ PF

F,G. We make the direct sum
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K̂M =
⊕

F,G∈K

K̂M(F,G)

become an algebra with multiplication given by

(α, V )F,G (β,W )G′,H =
{

(αβ,W )F,H |CG(V )|/|G| if G = G′ and V = β(W ),
0 otherwise.

The action of F ×G on PF
F,G gives rise to a permutation action of F ×G on K̂M(F, G). 

Let

K̃M(F,G) = K̂M(F,G)F×G .

As an element of K̃M(F, G), let [α, V ]+F,G denote the sum of the F ×G-conjugates of 
(α, V )F,G. The orbit sums [α, V ]+F,G comprise a basis for K̃M(F, G), indeed,

K̃M(F,G) =
⊕

[α,V ]∈PF
F,G

K . [α, V ]+F,G .

As a subalgebra of K̂M, we define

K̃M =
⊕

F,G∈K

K̃M(F,G) .

It is shown in [2, 4.7] that there is an algebra isomorphism ρ : KM → K̃M given by the 
maps ρF,G : KM(F, G) → K̃M(F, G) such that, for x ∈ KM(F, G), we have

ρF,G(x) =
∑

(α,V )∈PF
F,G

ρF,G
α,V (x)(α, V )F,G =

∑
[α,V ]∈PF

F,G

ρF,G
α,V (x)[α, V ]+F,G .

Let K̂J be the ideal of K̂M spanned by those elements (α, V )F,G such that α is 
non-injective. Let K̃J = K̃M∩ K̂J , which is an ideal of K̃M. Thus, K̃J is spanned by 
those orbit sums [α, V ]+F,G such that α is non-injective. By the definitions of KJ and 

K̃J , we have K̃J = ρ(⊕KJ ). Therefore KJ is an ideal of KM.
Given (α, V ) ∈ PF

F,G with α non-injective then, for all (F, G)-bisets X such that 
[X] ∈ N (F, G), we have XS(α,V ) = ∅, hence ρF,G

α,V [X] = 0. So ρF,G
α,V (KN (F, G)) = {0}. It 

follows that ρ(KN (F, G)) ∩ K̃J (F, G) = {0}. By considering dimensions, K̃M(F, G) =
ρ(KN (F, G)) ⊕ K̃J (F, G). So K̃M = ρ(KN ) ⊕ K̃J = ρ(KN ) ⊕ ρ(KJ ). Therefore, 
KM = KN ⊕KJ .

Now suppose that K is finite. Given a non-zero product (α1, V1)F1,G1 . . . (αn, Vn)Fn,Gn

of basis elements of K̂J , then each Vj = αj+1(Vj+1), which is smaller than Vj+1 be-
cause αj+1 is non-injective. So n ≤ |K|. In particular, K̂J is nilpotent. It follows that 
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K̃J is nilpotent. Therefore KJ is nilpotent, in other words, KJ ≤ J(KM). But The-
orem 4.6 implies that KN is semisimple. So KN ∩ J(KM) = {0}. We deduce that 
KJ = J(KM). �
Theorem 5.2. Let (G, V ) be a seed for F over K. Then the simple KM-functor SKM

G,V and 
the simple KN -functor SKN

G,V are related by

SKN
G,V

∼= KNRes
KM(SKM

G,V ) , SKM
G,V

∼= KMInf
KN (SKN

G,V )

where the inflation is via the canonical algebra epimorphism KM → KN with kernel KJ .

Proof. By the latest proposition, the description of the inflation functor 
KMInf

KN
makes sense. The KM-functor S =

KMInf
KN (SKN

G,V ) is simple and S(G) ∼= SKN
G,V (G) ∼=

V as FOutG(G)-modules. By Theorem 3.7, S ∼= SKM
G,V . It follows that, SKN

G,V
∼=

KNRes
KM(S). �

Theorem 5.3. Every idempotent of Z(ΠKM) belongs to Z(ΠKN ). In particular, every 
block of KM is a central idempotent of ΠKN .

Proof. A lemma in Boltje–Külshammer [3, 5.2] asserts that, given a subring Γ of a ring Λ
such that Λ = Γ ⊕ J(Λ), then every idempotent of Z(Λ) belongs to Z(Γ). This, together 
with Proposition 5.1, immediately implies the required conclusion in the case where K
is finite. For arbitrary K, let e be an idempotent of Z(ΠKM). Let G ∈ K and let KG

be the set of subgroups of G. Let MG and NG be the full subcategories of M and N , 
respectively, such that Obj(MG) = Obj(NG) = KG. Since KG is finite, the idempotent 
1MG

e of Z(ΠKMG) must belong to Z(ΠKNG). The (G, G)-coordinate eG of e coincides 
with the (G, G)-coordinate of 1MG

e. So eG ∈ N (G, G). By Remark 2.1, e =
∑

G∈K
eG, 

hence e ∈ ΠKN . But e is central in ΠKM, so e is central in ΠKN . �
6. Multiple blocks

In Corollary 4.7, we found that, for an ordinary Mackey category N , each block of 
KN owns a unique isomorphism class of simple KN -functors. In this section, we shall 
give an example of a non-ordinary Mackey category such that most of the blocks of the 
K-linear extension still own a unique isomorphism class of simple functors.

Let F�(K) denote the Mackey system on K such that the morphisms in F�(K) are the 
homomorphisms between groups in K. The deflation Mackey category M�

K
= M←

F�(K)
is called the complete deflation Mackey category on K. Let FΔ(K) denote the ordinary 
Mackey system on K such that the morphisms in F�(K) are the injective homomor-
phisms between groups in K. The ordinary Mackey category MΔ

K = MF�(K) is called 
the complete ordinary Mackey category on K. We shall give an example of a complete 
deflation Mackey category whose K-linear extension has p − 1 blocks and p isomorphism 
classes of simple functors, where p is a given prime.
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Lemma 6.1. Consider the complete ordinary Mackey category MΔ
p = MΔ

{1,Cp}. There are 

exactly p isomorphism classes of simple CMΔ
p -functors. The category CMΔ

p has exactly 
p blocks.

Proof. The first part follows from Theorem 3.7. The second part then follows from 
Corollary 4.7. �

As a step towards finding the blocks of CM�
p , we shall first find the blocks of CMΔ

p . 
Write 〈c〉 = C = Cp. For 1 ≤ j ≤ p − 1, let σj be the automorphism of C such that 
c �→ cj . Let

α = 1iso1 , τ = C ind1 , ρ = 1resC , αj = C isoσj

C .

Observe that CMΔ
p has a C-basis consisting of the elements α, τ , ρ, τρ, α1, . . . , αp−1. 

Let

e1,1 = α + τρ/p .

We identify Out(C) with Aut(C). We also identify Out(C) with the unit group (Z/p)×
of the ring Z/p of integers modulo p. Let Irr(COut(C)) denote the set of irreducible 
COut(C)-characters. For χ ∈ Irr(COut(C)), we define eC,χ such that, writing 1 to denote 
the trivial character,

eC,1 = −τρ/p + 1
p− 1

p−1∑
j=1

αj

and, when χ is non-trivial,

eC,χ = 1
p− 1

p−1∑
j=1

χ(j−1)αj .

Lemma 6.2. The blocks of CMΔ
p are e1,1 and eC,χ with χ ∈ Irr(COut(C)).

Proof. For G ∈ {1, C}, let AC(G) denote the character ring of CG. Since G is abelian, 
the character algebra CAC(G) can be identified with the C-module of functions G → C. 
Let e1 be the element of CAC(1) such that e1(1) = 1. Let eC0 , . . . , eCp−1 be the elements 
of CAC(C) such that eCi (ci) = 1 and eCi vanishes off {ci}. Then {e1} and {eC0 , . . . , eCp−1}
are bases for CAC(1) and CAC(C), respectively.

We shall make use of the representation CMΔ
p → EndC(CAC) of the CMΔ

p -functor 
CAC. The C-module CAC = CAC(1) ⊕CAC(C) has a basis consisting of the elements e1

and eCi for 0 ≤ i ≤ p − 1. We have

α(e1) = e1 , τ(e1) = peC0 , ρ(eC0 ) = e1 , αj(eCi ) = eCij
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and α, τ , ρ, αj annihilate the other basis elements of CAC. Letting

sC,χ =
p−1∑
i=1

χ(i−1)eCi

then αj(sC,χ) = χ(j)sC,χ and ρ(sC,χ) = τ(sC,χ) = α(sC,χ) = 0. It is now easy to check 
that, as a direct sum of simple CMΔ

p -functors,

CAC = S1,1 ⊕
⊕

χ∈Irr(COut(C))

SC,χ

where S1,1 = spanC{e1, eC0 } and SC,χ = spanC{sC,χ}. This is a direct sum of p mutu-
ally distinct simple CMΔ

p -functors. (It is also easy to check that the notation here is 
compatible with that which appeared in the classification of simple functors in Theo-
rem 3.7, but we shall not be making use of that fact.) By Lemma 6.1, every isomorphism 
class of simple CMΔ

p -functor occurs exactly once in CAC. So the blocks of CMΔ
p are 

precisely the elements of CMΔ
p that act as the projections to the simple summands. By 

direct calculation, e1,1 acts as the projection to S1,1, while eC,χ acts as the projection 
to SC,χ. �
Proposition 6.3. The blocks of CM�

p are e1,1+eC,1 and eC,χ with χ ∈ Irr(COut(C)) −{1}. 
The block e1,1 + eC,1 owns exactly 2 isomorphism classes of simple CM�

p -functors. Each 
of the other p − 1 blocks owns a unique isomorphism class of simple CM�

p -functors.

Proof. By Theorem 5.3, every central idempotent of the algebra CM�
p = ΠCM�

p is a 
central idempotent of the algebra CMΔ

p = ΠCMΔ
p . We have CM�

p = CMΔ
p ⊕Cδ where 

δ = 1defC . So the central idempotents of CM�
p are precisely those central idempotents 

of CMΔ
p which commute with δ. Using a formula for composition in Section 3, we obtain 

the commutation relations

δα = αjδ = τρδ = 0 , αδ = δαj = δ , δτρ = ρ .

We find that δ does not commute with e1,1 nor with eC,1, but δ does commute with 
e1,1 + eC,1 and with eC,χ for χ �= 1. So the blocks of CM�

p are as asserted.
By Theorem 5.2 and the proof of Lemma 6.2, there exist simple CM�

p -functors S�
1,1

and S�
C,χ that restrict to the simple CMΔ

p functors S1,1 and SC,χ, respectively, where 
χ ∈ Irr(COut(C)). Furthermore, every simple CM�

p -functor is isomorphic to S�
1,1 or one 

of the S�
C,χ. Since e1,1 + eC,1 acts as the identity on S1,1 and SC,1, the CM�

p -functors 
S�

1,1 and S�
C,1 belong to e1,1 + eC,1. Similarly, S�

C,χ belongs to eC,χ for χ �= 1. �
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7. A unique block

Throughout this section, we shall assume that every finite group is isomorphic to a 
group in K. We shall prove the following theorem.

Theorem 7.1. Consider the complete deflation Mackey category M = M�
K
. The K-linear 

extension KM has a unique block.

We shall make use of the theorem of Hartley–Robinson [7], which implies that, given 
a finite group G and a prime p not dividing |G|, then there exists a finite p-group P and 
a semidirect product F = G �P such that Out(F ) = 1. In particular, every finite group 
is a quotient of a finite group with a trivial outer automorphism group.

Let b be the block of KM owning the simple KM-functor SKM
1,1 . To prove Theorem 7.1, 

we must show that b = 1M. Consider the complete ordinary Mackey category N = MΔ
K . 

By Theorem 5.3, b ∈ Z(ΠKN ). By Remark 2.1, we can write b =
∑

G∈K
bG with each 

bG ∈ KN (G, G). Since b owns SKM
1,1 , the (1, 1)-coordinate of b is b1 = iso1.

Let P�
G,G denote the set of pairs (α, V ) such that V ≤ G and α : F ← V is a homomor-

phism. Let PΔ
G,G denote the subset of P�

G,G consisting of those pairs (α, V ) such that α
is injective. In the notation of the proof of Proposition 5.1, ρ(bG) is a linear combination 
of elements (α, V )G,G ∈ K̂M(G, G) where (α, V ) runs over the elements of P�

G,G. As we 

saw in the proof of Proposition 5.1, when α is non-injective, ρG,G
α,V (KN (G, G)) = {0}. In 

particular, when α is non-injective, ρG,G
α,V (bG) = 0. Therefore,

ρ(bG) =
∑

(α,V )∈PΔ
G,G

ρG,G
α,V (b) (α, V )G,G .

Lemma 7.2. Let H, K ∈ K and let π : H ← K be a surjective homomorphism. Then, in 
the notation of the proof of Proposition 5.1,

[π,K]+H,K =
∑

hZ(H)⊆H

(c(h)π,K)H,K .

Proof. Every H×K-conjugate of (π, K) has the form (c(h)π, K) for some h ∈ H. �
Lemma 7.3. For all G ∈ K, we have 

∑
α∈Out(G)

ρG,G
α,G (b) = 1.

Proof. Let π be the homomorphism 1 ← G. By Lemma 7.2, [π, G]+1,G = (π, G)1,G. In 

particular, (π, G)1,G belongs to K̃M and commutes with ρ(b). Therefore

(π,G)1,G = ρ(b1)(π,G)1,G = (π,G)1,G ρ(bG) =
∑

α∈Out(G)

ρG,G
α,G (b) (π,G)1,G . �
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Lemma 7.4. For all G ∈ K and α ∈ Out(G), we have ρG,G
α,G (bG) =

{
1 if α = 1,
0 otherwise.

Proof. By the theorem of Hartley and Robinson mentioned at the beginning of this 
section, there exists a group F ∈ K such that Out(F ) = 1 and G is isomorphic to a 
quotient of F . Let π : G ← F be a surjective homomorphism. We have

[π, F ]+G,F ρ(bF ) = [π, F ]+G,F ρ(b) = ρ(b)[π, F ]+G,F = ρ(bG)[π, F ]+G,F .

Using Lemma 7.2,

[π, F ]+G,F ρ(bF ) =
∑

(β,W )∈PΔ
F,F , gZ(G)⊆G

ρF,F
β,W (bF )(c(g)π, F )G,F (β,W )F,F

= ρF,F
1,F (bF )

∑
gZ(G)⊆G

(c(g)π, F )G,F .

On the other hand, using Lemma 7.2 again,

ρ(bG)[π, F ]+G,F =
∑

(α,V )∈PΔ
G,G, gZ(G)⊆G

ρG,G
α,V (bG)(α, V )G,G (c(g)π, F )G,F

=
∑

α∈Out(G), gZ(G)⊆G

ρG,G
α,G (bG)(αc(g)π, F )G,F .

Comparing coefficients, we deduce that ρG,G
α,G (bG) �= 0 when α �= 1. Lemma 7.3 now yields 

ρG,G
1,G (bG) = 1. �

Lemma 7.5. For G ∈ K, let KN<(G, G) be the ideal of KN (G, G) spanned by the tran-
sitive morphisms that have the form Gindβ

W resG with W < G. Then bG ≡ 1 modulo 
KN<(G, G).

Proof. By Proposition 3.1, KN<(G, G) is indeed an ideal of KN (G, G). We can write

bG = cG +
∑

α∈Out(G)

bα,G .GisoαG

where cG ∈ KN<(G, G) and each bα,G ∈ K. Since ρG,G
α,G (bG) = bα,G, the required conclu-

sion follows from Lemma 7.4. �
The latest lemma implies that, for every seed (G, V ) of KM, the idempotent bG

acts as the identity on SKM
G,V . So b owns SKM

G,V . By Theorem 3.7, b owns every simple 
KM-functor. Therefore b = 1M. The proof of Theorem 7.1 is complete.

We mention that, if we were to assume that the isomorphism classes in K are those of 
the finite solvable groups, then the conclusion of Theorem 7.1 would still hold because, 
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in the proof of Lemma 7.4, we could take F to be solvable. We do not know whether the 
conclusion of the theorem still holds when the isomorphism classes in K are those of the 
finite p-groups.
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