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conjugations. As another example, the groups can be arbitrary finite groups and the
homomorphisms can be arbitrary.

We shall use Bouc’s theory of bisets [4] to recast the theory of Mackey functors in the
following way. Let K be a set of finite groups that is closed under taking subgroups. (In
applications, K can play the role of a proper class. For instance, if & owns an isomorphic
copy of every finite group, then £ can play the role of the class of all finite groups.)
Generalizing the notion of a fusion system on a finite p-group, we shall introduce the
notion of a Mackey system on R, which is a category F such that the set of objects
is Obj(F) = & and the morphisms in F are group homomorphisms subject to certain
axioms. In the case where all the homomorphisms in F are injective, we call F an
ordinary Mackey system.

For any Mackey system F on K, we shall define two subcategories of the biset category,
namely, the deflation Mackey category M’s and the inflation Mackey category M7 . The
category M¥% is generated by inductions via homomorphisms in F and restrictions via
inclusions. The category M7 is generated by inductions via inclusions and restrictions
via homomorphisms in F. When F is an ordinary Mackey system, M*% and M7FZ coin-
cide, and we write it as Mz, calling it an ordinary Mackey category.

Let R be a commutative unital ring and let RM*% be the R-linear extension of M*%.
The notion of a Mackey functor over R will be replaced by the notion of an RM*% -functor,
which is a functor from RM¥% to the category of R-modules. Our approach to the
study of RM - -functors will be ring-theoretic. We shall introduce an algebra HRM‘;
over R, called the extended quiver algebra of RM* , which has the feature that every
RM % -functor is a " RM ¥ -module. We define a block of RM¥% to be a block of "RM .
As in the block theory of suitable rings, every indecomposable RM < -functor belongs
to a unique block of RM* . Similar constructions can be made for the inflation Mackey
category MZ.

Let K be a field of characteristic zero. Regarding the blocks of KM% as a partitioning
of the simple KM% -functors, the blocks sometimes partition the simple functors very
finely. Corollary 4.7 says that, for any ordinary Mackey system G, each block of KMg
owns a unique simple KMg-functor. But the blocks can also partition the simple functors
very coarsely. Our main result, Theorem 7.1, asserts that if £ owns an isomorphic copy
of every finite group and F owns every homomorphism between groups in £, then KM%
and KM% each have a unique block.

We shall be needing two theorems whose conclusions have been obtained before under
different hypotheses. Theorem 4.6 asserts that the category KMg, though sometimes
infinite-dimensional, has a semisimplicity property. This result was obtained by Webb
[10, 9.5] in the special case where G is equivalent to the category of injective group
homomorphisms. The same conclusion was established by Thévenaz—Webb [8], [9, 3.5]
in a different scenario where the group isomorphisms that come into consideration are
conjugations within a fixed finite group. Their result is not a special case of ours because
their relations [9, page 1868] on the conjugation maps are weaker than ours. Theorem 5.2
asserts that, taking G to be the largest ordinary Mackey system that is a subcategory
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of F, restriction and inflation yield mutually inverse bijective correspondences between
the simple KMz -functors and the simple KMg-functors. A similar result holds for the
simple KM Z-functors. A version of this result was obtained by Yaraneri [11, 3.10] in
the scenario where the isomorphisms are conjugations within a fixed finite group and,
again, the relations on the conjugation maps are as in [9, page 1868].

A scenario similar to ours was studied in Boltje-Danz [2]. We shall make much use of
their techniques. They considered some subalgebras of the double Burnside algebra that
can be identified with endomorphism algebras of objects of Mackey categories. Boltje
and Danz obtained analogues [2, 5.8, 6.5] of Theorems 4.6 and 5.2 for the endomorphism
algebras. Those analogues can be recovered from Theorems 4.6 and 5.2 by cutting by
idempotents.

The material is organized as follows. Section 2 is an account of the general notion of a
block of an R-linear category. In Section 3, we classify the simple functors of the R-linear
extension of a Mackey category. In Section 4, we prove that the K-linear extension of
an ordinary Mackey category has a semisimplicity property. In Section 5, we compare
the K-linear extension of a deflation Mackey category with the K-linear extension of an
ordinary Mackey category. Section 6 concerns the unique non-ordinary deflation Mackey
category in the case where K consists only of a trivial group and a group with prime
order. Section 7 proves a theorem on the uniqueness of the block of a deflation Mackey
category that is, in some sense, maximal among all deflation Mackey categories.

The author would like to thank Robert Boltje for contributing some of the ideas in
this paper.

2. Blocks of linear categories

An R-linear category (also called an R-preadditive category) is defined to be a cat-
egory whose morphism sets are R-modules and whose composition is R-bilinear. An
R-linear functor between R-linear categories is defined to be a functor which acts on
morphism sets as R-linear maps. We shall define the notion of a block of an R-linear
category, and we shall establish some of its fundamental properties. It will be necessary
to give a brief review of some material from [1] on quiver algebras and extended quiver
algebras of R-linear categories.

Let £ be a small R-linear category. Consider the direct product II =
[1r Geonjc) £(F,G) where Obj(L) denotes the set of objects of £ and L(F,G) de-
notes the R-module of morphisms F' < G in L. Given z € II, we write x = (pz¢g) where
rrg € L(F,G). Let 'L be the R-submodule of II consisting of those elements z such
that, for each F' € Obj(L), there exist only finitely many G € Obj(L) satisfying pxg # 0
or grr # 0. We make 'L become a unital algebra with multiplication operation such
that

Flzy)e = Z FXGYH
GeObj(L)
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where F, H € Obj(£) and x,y € "L and rreyr = rrc.cyr. The sum makes sense
because only finitely many of the terms are non-zero. We call 'L the extended quiver
algebra of L. The rationale for the term will become apparent later in this section.

A family (z; : i € I) of elements z; € 'L is said to be summable provided, for each
F € Obj(L), there are only finitely many ¢ € I and G € Obj(£) such that p(x;)¢ #
0 or g(zi)r # 0. In that case, we define the sum >, 2; € 'L to be such that its
(F,G)-coordinate is p(>, ;)a = >, r(z;)g. Any element x € 1L can be written as a
sum

xr = E FXqg -

F,GEObj(L)

The unity element of £ is the sum

1p = Z idg .

GEObj(L)

Proof of the next remark is straightforward.

Remark 2.1. Any element 2 of the centre Z(*L) can be expressed as a sum

z = Z zZqG

GEObj(L)

where zg € L(G,G). Conversely, given elements zg € L(G,G) defined for each G €
Obj(L), then we can form the sum z € £ as above, whereupon 2 € Z(*L) if and only
if, for all F,G € Obj(L) and = € L(F, G), we have zpzx = v25.

We define a block of a unital ring A to be a primitive idempotent of Z(A). Let blk(A)
denote the set of blocks of A. It is easy to see that Z(A) has finitely many idempotents if
and only if A has finitely many blocks and the sum of the blocks is the unity element 14.
In that case, we say that A has a finite block decomposition. We define a block of £ to
be a block of L.

Theorem 2.2. If the algebra L(G,G) = Endz(G) has a finite block decomposition for all
G € Obj(L), then

1y = Z b.

beblk(L)

Proof. We adapt the proof of Boltje-Kiilshammer [3, 5.4]. Let

e= |J bKLG.G).
GeObj(L)
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Let ~ be the reflexive symmetric relation on & such that, given F,G € Obj(L) and
d € blk(L(F,F)) and e € blk(L(G,G)), then d ~ e provided dL(F,G)e # {0} or
eL(G,F)f # {0}. Let = be the transitive closure of ~. We mean to say, = is the
equivalence relation such that d = e if and only if there exist elements fo,..., f, € £
such that fo = d and f, = e and each f;_; ~ f;. The hypothesis on the algebra £(G, G)
implies that every subset of £ is summable. Plainly, 1 = > o e. It suffices to show
that there is a bijective correspondence between the equivalence classes E under = and
the blocks b of £ such that E <> b provided b=} _e.

Let E be an equivalence class under = and let b = ) . e. We must show that b is
a block of £. Plainly, b is an idempotent of L. Given F,G € Obj(£) and x € L(F,G),
then

be:bel,c:(Z d)x( Z e): Z dxre = xbg

dEEp eeblk(L(G,G))  dEEr, e€Eq

where Er = ENblk(L(F, F)). So, by Remark 2.1, b € Z("'£). Suppose that b = by + by
as a sum of orthogonal idempotents of Z (L) with b; # 0. Since bb; # 0, there exist
F € Obj(£) and d € EFr such that db; # 0. We have db; = d(b;)r = d because (by)F is
a central idempotent of L(F, F). For all G € Obj(£) and e € Eg, we have

dL(F, G)bre = db L(F, G)e = dL(F, G)e .

So, if dL(F,G)e # {0}, then bje # 0, whereupon, by an argument above, bje = e.
Similarly, the condition eL(G, F')d # {0} implies that bje = e. We deduce that bje = e
for all e € E. Therefore, by = b and by = 0. We have shown that b is a block of L.

Conversely, given a block b of L, letting f € £ such that bf # 0 and letting E be the
equivalence class of f, then b ., e # 0, hence b coincides with the block 3, e. We
have established the bijective correspondence E <+ b, as required. O

As a subalgebra of 'L, we define

L= P o).

F,GEObj(L)

We call ®L the quiver algebra of £. When no ambiguity can arise, we write £ = ©L.
Plainly, the following three conditions are equivalent: Obj(L) is finite; the algebra £ is
unital; we have an equality of algebras £ = L.

We define an L-functor to be an R-linear functor £ — R-Mod. Given an L-functor
M, we can form a "L-module My = @, M(G) where an element z € L(F,G) acts
on My as M (z), annihilating M(G’) for all objects G’ distinct from G. By restriction,
we obtain an L-module Mg. Note that LM = My, in other words, LMg = Mg.
Given another L-functor M’, then each natural transformation M — M’ gives rise, in
an evident way, to a 'L-map My — M}y which is also an L-map Mg — M. Conversely,



L. Barker / Journal of Algebra 446 (2016) 34-57 39

the L-maps Mg — M, coincide with the HUL-maps My — M{; and give rise to natural
transformations M — M’. Putting the constructions in reverse, given an £-module Mg
such that LMg = Mg, we can extend Mg to a 'L-module My and we can also form
an L-functor M such that M(G) = idgMg = idg M. Henceforth, we shall neglect to
distinguish between M and My and Mg. That is to say, we identify the category of £
functors with the category of £-modules M satisfying LM = M and with the category
of L-modules M satisfying LM = M.

An L-functor M is said to belong to a block b of £ provided bM = M. In that case,
we also say that b owns M. Theorem 2.2 has the following immediate corollary.

Corollary 2.3. If L(G, Q) has a finite block decomposition for all G € Obj(L), then every
indecomposable L-functor belongs to a unique block of L.

Proof. Let M be an indecomposable L-functor. Choose an object G of £ such that
M(G) # 0. We have idg = Zbeblk(ﬁ) be as a sum with only finitely many non-zero
terms. So bg M (G) # 0 for some b. In particular, bM # 0. But M = bM & (1 —b)M and
M is indecomposable, so M =bM. 0O

The next three results describe how the simple L£-functors and the blocks of £ are
related to the simple functors and blocks of a full subcategory of L.

Proposition 2.4. Let IC be a full subcategory of L. Then there is a bijective correspondence
between the isomorphism classes of simple IC-functors S and the isomorphism classes of
simple L functors T such that 1T # 0. The correspondence is such that S < T provided
S = 1xT.

Proof. We have "KC = 1xc ML .1x. So the assertion is a special case of Green [6, 6.2]
which says that, given an idempotent 7 of a unital ring A, then the condition S =
1T characterizes a bijective correspondence between the isomorphism classes of simple
iAi-modules S and the isomorphism classes of simple A-modules T satisfying i7" # 0. O

Proposition 2.5. Suppose that L(G,G) has a finite block decomposition for all G €
Obj(L). Let K be a full subcategory of L and let S and S’ be simple K-functors. Let T and
T’ be the isomorphically unique simple L-functors such that S = 1xT and S’ = 1T If
S and S’ belong to the same block of KC, then T and T’ belong to the same block of L.

Proof. Let a and a’ be the blocks of K owning S and S’, respectively. Let b and b be
the blocks of £ owning T and 7", respectively. The central idempotent bl of K acts
as the identity on S, so ab = a. Similarly, a’b’ = o’. If a = o’ then abb’ = a # 0, hence
bb' # 0, which implies that b=1V'. O

Proposition 2.6. Suppose that L(G,G) has a finite block decomposition for all G €
Obj(L). Let T and T' be simple L-functors. Then T and T’ belong to the same block
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of L if and only if there exists a full R-linear subcategory K of L such that Obj(K) is
finite and the simple K-functors 1xT and 1T’ are non-zero and belong to the same
block of K.

Proof. In one direction, this is immediate from the previous proposition. Conversely,
suppose that T and T” belong to the same block b of L. Let G, G’ € Obj(L) such that
T(G) # 0 and T'(G") # 0. Let e € blk(L(G,G)) and ¢’ € blk(L(G',G’)) be such that
eT(G) # 0 and 'T'(G') # 0. Since ebT(G) = eT(G), we have eb # 0. Similarly, e’ # 0.
Therefore e = ¢’ where = is the equivalence relation in the proof of Theorem 2.2. So
there exist Gy,...,G, € Obj(L) and f; € blk(L(G;,G;)) such that Gy = G, fo = e,
G, =G, f, =€ and each f;_1 ~ f;. Let K be the full subcategory of £ such that
Obj(K) = {Go,...,Gr}. Then e and ¢’ are still equivalent under the equivalence relation
associated with /C. By the proof of Theorem 2.2, there exists a block a of I such that
ae = e and ae’ = ¢’. We have ealxT = elxT = eT(G) # 0, hence alxT # 0 and,
similarly, alxT” # 0. Therefore 1xT and 1xT” both belong to a. O

3. Mackey categories and their simple functors

We shall introduce the notions of a Mackey system and a Mackey category. We shall
also classify the simple functors of the R-linear extension of a given Mackey category.

First, let us briefly recall some features of the biset category C. Details can be found in
Bouc [4, Chapters 2, 3]. Let F', G, H be finite groups. The biset category C is a Z-linear
category whose class of objects is the class of finite groups. The Z-module of morphisms
F«+ GinCis

C(F,G)=B(FxG)= P ZI(FxG)/A]

A<gFxG

where B indicates the Burnside ring, the index A runs over representatives of the con-
jugacy classes of subgroups of F' X G and [(F x G)/A] denotes the isomorphism class
of the F-G-biset (F' x G)/A. The morphisms having the form [(F' x G)/A] are called
transitive morphisms. The composition operation for C is defined in [4, 2.3.11, 3.1.1].
A useful formula for the composition operation is

el R P

p2(A)gp1(B)CG

Here, the notation indicates that g runs over representatives of the double cosets of py(A)
and pp(B) in G. For an account of the formula and for specification of the rest of the
notation appearing in it, see [4, 2.3.24].

Given a group homomorphism « : F' < G, we define transitive morphisms

pindg = [(F < G)/{(alg),9) : g € G}] , gresg = [(G x F)/{(g,a(9)) : g € G}]
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called induction and restriction. The composite of two inductions is an induction and
the composite of two restrictions is a restriction. Indeed, using the above formula for the
composition operation, it is easy to see that, given a group homomorphism g3 : G < H
then,

pind&ind? = ,ind?/ | presoresy = yresy’
When « is injective, we call pind® an ordinary induction and we call ,res% an ordinary

restriction. When « is an inclusion F' <= G, we omit the symbol « from the notation,
just writing pind. and ,resp. When « is surjective, we write

rdefs = pindg oinfp = resh
which we call deflation and inflation. Note that, for arbitrary «, we have factorizations
pindg = Finda(G)def(Oj , cresy = ginfygyresp
When « is an isomorphism, we write
pisog = pindg = Fresgf1

which we call isogation. In C, the identity morphism on G is the isogation isog = Gisob.
Given g € G, we let ¢(g) denote left-conjugation by g. Let V,V’/ < G. Again using the
above formula for composition, we recover the familiar Mackey relation

L _ . . c(g) 3
yresqindy,, = E yindy, gy 150y 9~y T€Sy
VgV'CG

A transitive morphism 7 : F' + G is said to be left-free provided 7 is the isomor-
phism class of an F-free F—G-biset. The left-free transitive morphisms F < G are the
morphisms that can be expressed in the form

o . . Fx@G
Flndvl“eSG = Flnda(v)defv 1e5¢ = [m}

where V < G and o : F' <+ V and
S(a, V) ={(a),v) :veV}.

Evidently, the left-free transitive morphisms are those transitive morphism which can
be expressed as the composite of an ordinary induction, a deflation and an ordinary
restriction. The right-free transitive morphisms, defined similarly, are those transitive
morphisms which can be expressed as the composite of an ordinary induction, an inflation
and an ordinary restriction.
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Proposition 3.1 (Mackey relation for left-free transitive morphisms). Let F and V < G
and W < H be finite groups. Let o : F' <V and 8 : G < W be group homomorphisms.
Then
Find?/rescindﬁ,res = Z Findgii((gv).f)g resy;
VgB(W)CG

where oy 2 F + VNIBW) and B, : VINB(W) « B~H(VI) are restrictions of o and f3.
Proof. Using the star-product notation of Bouc [4, 2.3.19],
{(v.0) 10 € V)= @US(B W) = &(c(9)8y, 571 (V) -

Hence VresGindeV: Z Vind;(,gf(ﬁ""/g)resw. |
VgB(W)

As in Section 1, let & be a set of finite groups that is closed under taking subgroups.
We define a Mackey system on £ to be a category F such that the objects of F are the
groups in K, every morphism in F is a group homomorphism, composition is the usual
composition of homomorphisms, and the following four axioms hold:

MS1: For all V < G € R, the inclusion G <= V is in F.

MS2: For all V < G € R and g € G, the conjugation map 9V 3 9v <-v € V isin F.
MS3: For any morphism « : F' + G in F, the associated homomorphism a(G) < G is
in F.

MS4: For any morphism « in F such that « is a group isomorphism, a~! is in F.

We call F an ordinary Mackey system provided all the morphisms in F are injective.
As an example, a fusion system on a finite p-group P is precisely the same thing as an
ordinary Mackey system on the set of subgroups of P.

Remark 3.2. Given a Mackey system F on £, then:

(1) There exists a linear subcategory M of C such that Obj(M%) = & and, for
F,G € R, the morphisms F' < G in M¥% are the linear combinations of the left-free
transitive morphisms pind{res, where V < G and « : F' < V' is a morphism in F.

(2) There exists a linear subcategory MZ of C such that Obj(MZ) = & and, for
F,G € {, the morphisms F' < G in M are the linear combinations of the right-free
transitive morphisms FindUresg where U < F and 8 : U — G is a morphism in F.

Proof. In the notation of Proposition 3.1, supposing that F,G, H € f and that o and
B are morphisms in F then, by axioms MS1 and MS3, each a4 and B, are in F and,
by axiom MS2, each c¢(g) is in F. Part (1) is established. Part (2) can be demonstrated
similarly or by considering duality. O

We call M- the deflation Mackey category of F. The rationale for the terminology
is that M is generated by inductions from subgroups, restrictions to subgroups and
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deflations coming from surjections in F. We call M7 the inflation Mackey category
of F.

Remark 3.3. Given an ordinary Mackey system G, then Mg = Mg’.
Proof. This follows from axiom MS4. O

The category Mg = Mg = Mg is called an ordinary Mackey category.

For the rest of this section, we focus on the deflation Mackey category M*% . Similar
constructions and arguments yield similar results for the inflation Mackey category MZ.
We shall need some notation for extension to coefficients in R. Given a Z-module A, we
write RA = R®yz A. Given a Z-map # : A — A’, we abuse notation, writing the R-linear
extension as 6 : RA — RA’. Given a Z-linear category £, we write RL to denote the
R-linear category such that (RL)(F,G) = R(L(F,G)) for F,G € Obj(L).

Remark 3.4. Given a Mackey system F on K and F,G € K, then the following three
conditions are equivalent: that F' and G are isomorphic in F; that F and G are isomorphic
in M%; that F' and G are isomorphic in RM%.

Proof. Given an isomorphism 7 : F' <= G in F, then piso/, : F' <= G is an isomorphism
in M. So the first condition implies the second. Trivially, the second condition implies
the third. Assume the third condition. Let 0 : F' < G and ¢ : G < F be mutually inverse
isomorphisms in RM. Writing 6 = >, \if; and ¢ = . n;¢; as linear combinations of
transitive morphisms ¢; and ¢;, then isop = 6¢ = Z” Aii0ip;. An argument in Bouc
[4, 4.3.2], making use of [4, 2.3.22], implies that 6, and ¢, are isogations for some ¢ and j.
We have deduced the first condition. O

For F,G € &, we write F(F,G) to denote the set of morphisms F + G in F. We
make F(F,G) become an F'x G-set such that

Voo =c(f)aclg™)
for (f,g9) € F x G and o € F(F,G). Since ac(g™!) = c(a(g™!)) a, the F x G-orbits of
F(F,G) coincide with the F-orbits. Let @ denote the F-orbit of a. We have @f = af3
for H € & and 8 € F(G, H). So we can form a quotient category F of F such that the
set of morphisms F «+ G in F is F(F,G) = {a: a € F(F,G)}. In F, the automorphism
group of G is

OUJU:(G) = Aut]r(G)/Inn(G)

where Inn(G) denotes the group of inner automorphisms of G.
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Remark 3.5. Let F be a Mackey system on &. Given F,G € R and o, o’ € F(F,G), then
the following three conditions are equivalent: that ,ind% = ,ind%; that oress = Gres%,;
that @ = o

Proof. Another equivalent condition is &(a, G) =pxg 6(¢/,G). O

Let PI{:G denote the set of pairs (a, V) where V < G and o € F(F, V). We allow
F x G to act on Pf]“:,G such that

(£.9) (av V) = ((f,g)O‘, gv)

for f € Fand g € G. Let 5;(; denote the set of F'xG-orbits in PZ, ;. Let [, V] denote
the F'x G-orbit of (a, V).

Proposition 3.6. Let F be a Mackey system on K. Then, for F,G € K, the R-module of
morphisms F < G in RMY% is

RM% (F,G) = @ R. pindjres, .
[a,V]Gf;G

Proof. For V,V/ < G and @ € F(F,V) and o € F(F,V'), we have pind{res, =
Find?/',resG if and only if &(a, V) = &(/, V'), in other words, [a, V] = [/, V’']. O

We define a seed for F over R to be a pair (G,V) where G € & and V is a simple
ROut z(G)-module. Two seeds (F,U) and (G, V) for F over R are said to be equivalent
provided there exist an F-isomorphism v : F' <~ G and an R-isomorphism ¢ : U < V
such that, given 77 € Out£(G), then yny Lo = ¢ 7.

The next result is different in context but similar in form to the classifications of
simple functors in Thévenaz—Webb [9, Section 2], Bouc [4, 4.3.10], Diaz—Park [5, 3.2].
It can be proved by similar methods. It is also a special case of [1, 3.7]. Observe that,
given G € K and an RM % -functor M, then M (G) becomes an ROutr(G)-module such
that an element 77 € Outz(G) acts as ;iso/,. We call G a minimal group for M provided
M(G) # 0 and M(F) =0 for all F € R with |F| < |G|.

Theorem 3.7. Let F be a Mackey system on R and let M = My . Given a seed
(G,V) for F over R, then there is a simple RM-functor Sgﬁj‘ determined up to iso-
morphism by the condition that G is a minimal group for ng\‘}l and Sg’/“jl (G) 2V as
ROut z(G)-modules. The equivalence classes of seeds (G, V) for F over R are in a bi-
jective correspondence with the isomorphism classes of simple RM-functors S such that
(G,V) « S provided S = S’IGM‘f
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4. Ordinary Mackey categories and semisimplicity

Throughout this section, we let G be an ordinary Mackey system on K. We shall
consider the ordinary Mackey category N' = Mg. Recall, from Section 1, that K is a field
of characteristic zero. We shall prove that the K-linear category KN has a semisimplicity
property. As mentioned in Section 1, this conclusion was obtained by Webb [10, 9.5] in
a special case and by Thévenaz—Webb [8], [9, 3.5] in scenario involving a fixed finite
group. Another related result, with a different conclusion but in a similar scenario, is
Boltje-Danz [2, 5.8], which says that the algebra KN (G, G) is semisimple for all G € &.

Let us discuss, in abstract, the semisimplicity property that we shall be establishing.

Remark 4.1. Given an R-linear category L, then the following two conditions are equiv-
alent:

(a) For every full linear subcategory Ly of £ with only finitely many objects, the quiver
algebra Ly is semisimple.

(b) The algebra i¢Li is semisimple for every idempotent i of the quiver algebra L.

Proof. If each iLi is semisimple then, given Ly, we have Ly = 1.,.L.1,,, which is
semisimple. Conversely, suppose that each L is semisimple. Given i, let Ly be a subcat-
egory of £ such that Obj(Lo) is finite and 4 has the form i = 3~ copj(zy) pic With each
pig € L(F,G). Then 1,1 =i = ilz,. Since the algebra Lo = 1., .L. 1z, is semisimple,
the algebra iLi =ilg, . L.1z,% is semisimple. O

When the equivalent conditions in the remark hold, we say that L is locally semisimple.
In Theorem 4.6, we shall prove that the K-linear category KN is locally semisimple.

For G,H € &, let L(G, H) be the Z-module freely generated by the formal symbols
Gmﬁ, where 3 runs over the elements of G(G, H). It is to be understood that Gmﬁ =
oind/J if and only if B = . Thus

LG H)= P Zgindj.
BEG(G.H)

We define a Z-module

L= LG H).

G,HeR

We define a Z-epimorphism 7 : N' — L such that, given W < H and 3 € G(G, W), then

oindfy, it W =H,
W(Gind‘f,resH) =
0 it W < H.
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By Proposition 3.1, ker(7) is a left ideal of N. We make L become an N -module with
representation o : N — Endyz(L) such that o(m)n(z) = w(mz) for m,z € N. The next
lemma expresses the action of A/ more explicitly.

Lemma 4.2. For F,G,H € R, V<G, a € G(F,V), 8 € G(G,H), we have

U(Find{'}resG)Gfg = Z Fm;dg)ﬁ )
VgB(H)CG : V>9B(H)

Proof. This follows from Proposition 3.1. O

Let Z be the linear subcategory of N generated by the isogations. That is to say, the
quiver ring Z is the subring of M generated by the isogations. In fact, Z is the Z-span
of the isogations and

I(J,K) = P Z jisof
5

where J, K € R and ¢ runs over the G-isomorphisms J < K. Note that, via the corre-
spondence 5iso}; <> 7, we have an algebra isomorphism

I(H,H) = ZOutg(H) .
We make L become an Z-module with representation 7 : Z — Endz(L) such that

R -1
R oindif J=H,
T(giso))qindy =
0 otherwise.

Since the actions of N and Z commute with each other, o and 7 are ring homomorphisms
o : N — Endz(L), 7 : Z— Endp(L) .

As an NM-submodule of L, we define

L(- H) = 7(ison)L = @ L(G, H) .
GeRr

Each L(—, H) is an Z(H, H)-module and becomes a permutation ZOutg(H )-module via
the isomorphism Z(H, H) = ZOutg(H). The action of ZOutg(H) on L(—, H) is such that
an element 7 € Outg(H) sends the basis element Gﬁg to the basis element Gﬁfﬂil.

Let us recall the notion of a suborbit map on a permutation module. Let I" be a finite
group and  a finite I'-set. For wy,ws € Q, let €(wy,w2) be the Z-linear endomorphism
of Z{) such that, given w € €2, then
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€(wr, ws)w = wy  if w = wo,
DERET A 0 if w # wa.

The endomorphism ring Endzr(Z$2) has a Z-basis consisting of the maps

$(wi,we) = Z e(wy,ws)

(w],ws)€QXQ : (wi,wh)=r(w1,w2)

We call $(w;i,ws) a suborbit map on Z€. Since $(wi,ws) = $(wi,ws) if and only if
(w1, ws) =1 (w},w}), we have

EndZF(ZQ) = @ 7 $(w1 5 UJQ)
(wl,WQ)GFQXQ

where the notation indicates that (w;,ws) runs over representatives of the I'-orbits of
Q2 x Q.

Proposition 4.3. Let H € K. Then there is a bijective correspondence between:
(a) the transitive morphisms pindyresy in N such that V =g H,
(b) the suborbit maps $ on the permutation Outg(H )-module L(—, H).
The correspondence pind{sres, <+ $ is characterized by the condition that pindfres
acts on L(— H) as a positive integer multiple of $.

Proof. Fix F,G € K. Two transitive morphisms pind{ires, and Find“)‘,l,resG coincide
provided [, V] = [&/, V'], in other words, there exist f € F and g € G such that V' =
9V and o' = ¢(f)ac(g~!). Two suborbit maps $(pind%;, ;ind%) and $(Fm’g,cm’;})
coincide provided there exists 7 € Outg(H) such that ¢/ = puy~! and v/ = vy~1, in

other words, there exist f € F and g € G and v € Autg(H) such that p/ = c(f)uy?
—1

and v’ = c(g)vy

Given ¢ = ind{res,, we define a suborbit map $ = $(rind};, ind}) as follows. We
choose a G-isomorphism vy : V < H and extend vy to a homomorphism v : G < H by
composing with the inclusion G <= V. We define u = av. The suborbit map $ does not
depend on the choice of vy because, if we replace vy with voy~! for some v € Aut=(H),
then 7 and 7 are replaced by py—! and vy—!. To complete the demonstration that $
depends only on ¢, we must show independence from the choice of @ and V. Suppose
that ¢ = Find{'}/,resg. Let f and g be such that V' = 9V and o’ = c(f)ac(g™!). Let
v, = c(g)vp. Extending 1) to a homomorphism v’ : G < H and defining p/ = o/v/,
then v/ = ¢(g)v and p' = ¢(f)p. So $(Fmﬁl,cmﬁl) = §. We have established that $
depends only on /.

Conversely, given a suborbit map $ = $(pind};, 5ind};), we define a transitive mor-
phism ¢ = pind{res, as follows. Let V = v(H), let vy : V < H be the isomorphism
restricted from v and let o = pvg 1. F « V. We must show that ¢ depends only on $
and not on the choice of 1 and v. Suppose that $§ = $(Fmﬁ,,Gm}§/). Let f, g, 7 be
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such that p/ = ¢(f)uy~! and v/ = ¢(g)vy~!. Letting V' = v/(H), then V' = 9V. The
isomorphism V' < H restricted from v/ is v}, = ¢(g)voy~!. Defining o’ = p/v/j~1, then

o/ = c(fluy™ g telg™h) = e(fac(g™) -

So Find‘{‘,',resG = /. We have established that ¢ depends only on $.

It is easy to check that the above functions ¢ — $ and $ — £ are mutual inverses.
Now suppose that ¢ <> $. It remains only to show that the action of £ is a positive
integer multiple of $. Since the action of N" on L(—, H) commutes with the action of
ZOutg(H), the action of ¢ is a Z-linear combination of suborbit maps. By Lemma 4.2,
any suborbit map with non-zero coefficient has a positive integer coefficient. Let $; =
$(pindj', gindj') be a suborbit map with non-zero coefficient. We are to show that
$1 = $. Since o(f)5indjt # 0, Lemma 4.2 implies that V = “v;(H) for some z € G.
Replacing v1 with ¢(x)v; does not change ;ind;}', so we may assume that V = vy (H).
Then 11 = vy~! for some v € Outg(H). That is to say, 5indj' belongs to the same
Outg(H)-orbit as ,indf. So we may assume that ind;' = ,indy. By Lemma 4.2
again, pindj;! = Fﬂ,‘}c(g)” for some g € Ng(V). The proof of the well-definedness of
the function £ — $ now shows that £ — $;, in other words, $; =$. O

Proposition 4.4. The representation o : N'— Endz(L) is injective.

Proof. Let k € N. Recall that k = > F.G Fi 8s a sum with only finitely many non-zero
terms. Each term k. € N(F,G) acts on L as a map

o(prg) : €D L(F H) « @ LG, H) .

HeR HeR

Suppose that £ # 0. We must show that o(x) # 0. We may assume that k = pr for
some F,G € K. Write

n

_ %
K= Z Aj .Fdej res

j=1

as a Z-linear combination of distinct transitive morphisms in A with each A; # 0. Let
V be maximal among the V;. Replacing some of the V; with G-conjugates if necessary,
we can choose the enumeration such that V; = V for j < m and V; ¢ V for j > m.
Invoking Proposition 4.3, let $; be the suborbit map corresponding to Find?,j res for
j < m. Note that the $; are mutually distinct. By Lemma 4.2, O'(Fil’ld?/j res ;) annihilates
L(-,V) for 5 > m. So, by Proposition 4.3, there exist non-zero integers z1, ..., z,, such
that the restriction of o(k) to L(—, V) is 2;”21 X;jzj$;. Perforce, o(k) #0. O

Proposition 4.5. If & is finite then the representation o : KN — Endgz(KL) is bijective.
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Proof. By the previous proposition, the K-linear map o is injective. We argue by com-
parison of dimensions. Summing over representatives H of the G-isomorphism classes in
R, we have

KT = P KTy , KTy = P KI(H, H),
H Hi,Hy€R : H1¥gHy2gH

KL =KLy , KLy = P KL H).
H Hi€R: Hi®%gH

The subalgebra KZy is isomorphic to a full matrix algebra over KZ(H, H) = KOutg (H).
So

Endgz(KL) = Endgy | kout (#) EDKL(i H)) = @Endkoutg(H)(KL(i H)).
H H

The number of suborbit maps on the permutation ZOutg(H )-module L(-, H) is

dimg (Endgoutg () (KL(—, H))) = ng¢
F.GeER

where ng’G is the number of suborbit maps L(F, H) + L(G, H). By Proposition 4.3, the
number of transitive morphisms F + G in N is

dimg (KN (F,G)) = > nh .
H
So dimg (KN) = Z (anG) = Z( Z ngG) = dimg (Endgz(KL)). O
F,GeR H H F,GeRr

Theorem 4.6. The K-linear category KN is locally semisimple. In particular, if & is
finite, then the quiver algebra KN is semisimple.

Proof. First suppose that £ is finite. As we saw in the proof of Proposition 4.5, each al-
gebra K7y is isomorphic to a full matrix algebra over the semisimple algebra KOutg(H).
So KZ is semisimple. Therefore, Endgz(KL) is semisimple. An appeal to Proposition 4.5
now completes the argument in this case.

Now let £ be arbitrary. Let 7 be an idempotent of KN. Let £y be a finite subset of
R such that Ky is closed under taking subgroups and ¢ can be expressed in the form
i = Y pges, rie With pig € KN(F,G). Let Ny be the full subcategory of N such
that Obj(Ny) = Ko. Since Ky is finite, the algebra 1y, . KN . 1y, = KN is semisimple.
Arguing as in the proof of Remark 4.1, we deduce that iKA is semisimple. O

Corollary 4.7. There is a bijective correspondence between the isomorphism classes of
simple KN -functors S and the blocks b of KN such that S <> b provided S belongs to b.
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Proof. We are to show that, given simple KN -functors S and S’ belonging to the same
block b of KN, then S = §’. By Theorem 4.6, this is already clear when £ is finite.
Generally, by Proposition 2.6, there exists a full subcategory K of KA such that Obj(K)
is finite and the K-functors 1xS and 1xS’ are non-zero and belong to the same block
of K. Let £ be the set of subgroups of elements of Obj(K). Let Ay be the full subcategory
of N with Obj(Ny) = Ko. Proposition 2.5, applied to the subcategory K of KNj, tells us
that 1, S and 1x;, S’ belong to the same block of KA. But Ky is finite, so 1x;,5 = 1p;, 5"
By Proposition 2.4, S =2 S'. O

5. Simple functors of deflation Mackey categories

Let F be a Mackey system on K. Let G be the ordinary Mackey system such that
the morphisms in G are the injective morphisms in F. Consider the deflation Mackey
category M = M% and the ordinary Mackey category N' = Mg. We shall show that
the simple KM-functors restrict to and are inflated from the simple KA -functors. By
similar arguments, a similar result holds for the K-linear extension KM7Z of the infla-
tion Mackey category MZ. A variant of this result, in a different scenario, appears in
Yaraneri [11, 3.10]. Another related result is Boltje-Danz [2, 6.5], which asserts that,
for G € R, the simple KM(G, G)-modules restrict to and are inflated from the simple
KN (G, G)-modules.

For F;G € R, let V < G and let « : F < V be a morphism in F. Following
Boltje-Danz (2, 4.2], we define a K-linear map

Pyt KM(F,G) - K
such that, given an F—G-biset X whose isomorphism class [X] belongs to M(F,G), then
.G «,
Pav [X] = [ XSV /|Ca(V))

where X®(®V) denotes the set of elements of X fixed by &(a, V). Let KJ(F,G) be
the K-submodule of KM (F,G) counsisting of those elements x € KM(F,G) such that
pZ‘G/ (z) = 0 whenever « is injective. As a K-submodule of KM, we define

KJ = @ KI(FG).

F,GeR

Proposition 5.1. We have KM = KN ® KJ, furthermore, KJ is an ideal of KM. If &
is finite, then KJ = J(KM), the Jacobson radical.

Proof. Following [2, Section 4], we shall construct an isomorphic copy KM of the algebra
KM. For F,G € &, we introduce a K-module KM(F, G) with a basis consisting of the
symbols (o, V) g e where (o, V) € PZJ:G. We make the direct sum
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KM= P KM(F,G)

F,GeR

become an algebra with multiplication given by

(@B, W)pu|Ca(V)|/IG| if G=G" and V = (W),
0 otherwise.

(@, V)rc (B, W)a u = {

The action of F' x G on P}E,G gives rise to a permutation action of F' x G on K//\\/I(F, G).
Let

KM(F,G) = KM(F,G)F*¢ .

As an element of ]I@/\/l(F7 G), let [a, V]J}S’G denote the sum of the F' x G-conjugates of
(o, V)p.g. The orbit sums [a, V]}L:,G comprise a basis for KT/\//I(F, G), indeed,

KM(F,G)= @ K.loV]}e.

[a,V]EfI}:—,G
As a subalgebra of K//\\/l, we define

KM= P KM(F,G).
F,GeRr

It is shown in [2, 4.7] that there is an algebra isomorphism p : KM — KM given by the
maps p¢ : KM(F,G) — KM(F, Q) such that, for € KM(F,G), we have

PP = > @ Vire= Y. i@l Ve -
(axv)epl-]*:,c [a,V]Gf;G

Let K7 be the ideal of KM spanned by those elements (o, V)p g such that « is
non-injective. Let H/{j = m N K_\Z which is an ideal of m Thus, ]K? is spanned by
those orbit sums [cuV]EG such that « is non-injective. By the definitions of KJ and
H/{j, we have H/{? = p(PKT). Therefore K7 is an ideal of KM.

Given (o, V) € Pﬁg with o non-injective then, for all (F,G)-bisets X such that
[X] € N(F,G), we have XS@V) =0, hence p/{/[X] = 0. So p& (KN (F, G)) = {0}. Tt
follows that p(KN(F,G)) N @(F, G) = {0}. By considering dimensions, KTM(F, G) =
p(KN(F,G)) & KT (F,G). So KM = p(KN) @ KT = p(KN) & p(KJ). Therefore,
KM =KN @ KJ.

Now suppose that £ is finite. Given a non-zero product (o1, Vi)r - - - (o, Vo) F, G0
of basis elements of K7, then each V; = a;41(Vj41), which is smaller than Vj4; be-
cause a;11 is non-injective. So n < |R|. In particular, H@ is nilpotent. It follows that
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E/{\j is nilpotent. Therefore K7 is nilpotent, in other words, K7 < J(KM). But The-
orem 4.6 implies that KA is semisimple. So KN N J(KM) = {0}. We deduce that
KJ = J(KM). O

Theorem 5.2. Let (G, V) be a seed for F over K. Then the simple KM-functor Sg{‘(} and
the simple KN -functor Sg/\‘// are related by

S% = KNRGSKM(SE,/\‘//[) ) Sg,j\‘//[ = KMIanJ\f(Sg{\‘//)
where the inflation is via the canonical algebra epimorphism KM — KN with kernel K7 .

Proof. By the latest proposition, the description of the inflation functor y , Infy,,
makes sense. The KM-functor S = KMIanN(Sg\\//) is simple and S(G) = SEN/(G)
V as FOutg(G)-modules. By Theorem 3.7, § = SEM. Tt follows that, SE{}C

rnvResg (). O

111

Theorem 5.3. Every idempotent of Z("KM) belongs to Z(MKN). In particular, every
block of KM s a central idempotent of TKN .

Proof. A lemma in Boltje—Kiilshammer [3, 5.2] asserts that, given a subring I of a ring A
such that A =T'@ J(A), then every idempotent of Z(A) belongs to Z(T"). This, together
with Proposition 5.1, immediately implies the required conclusion in the case where &
is finite. For arbitrary £, let e be an idempotent of Z('KM). Let G € & and let Rg
be the set of subgroups of G. Let Mg and Ng be the full subcategories of M and N,
respectively, such that Obj(Mg) = Obj(Ng) = Rg. Since K¢ is finite, the idempotent
Lymge of Z(MKMg) must belong to Z(MKANg). The (G, G)-coordinate e of e coincides
with the (G, G)-coordinate of 1pq.e. So eq € N(G,G). By Remark 2.1, e = Y . ¢ eq,
hence e € "KN. But e is central in "KM, so e is central in TKN. O

6. Multiple blocks

In Corollary 4.7, we found that, for an ordinary Mackey category A, each block of
KN owns a unique isomorphism class of simple KA/-functors. In this section, we shall
give an example of a non-ordinary Mackey category such that most of the blocks of the
K-linear extension still own a unique isomorphism class of simple functors.

Let F9(R) denote the Mackey system on £ such that the morphisms in F<(8) are the
homomorphisms between groups in f. The deflation Mackey category My = M}L( )
is called the complete deflation Mackey category on f&. Let F2(8) denote the ordinary
Mackey system on £ such that the morphisms in F<(RK) are the injective homomor-
phisms between groups in K. The ordinary Mackey category /\/lﬁ = Mzr<(g) is called
the complete ordinary Mackey category on K. We shall give an example of a complete
deflation Mackey category whose K-linear extension has p — 1 blocks and p isomorphism
classes of simple functors, where p is a given prime.
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Lemma 6.1. Consider the complete ordinary Mackey category Mﬁ = M{Al coy There are

exactly p isomorphism classes of simple (CMﬁ-functors. The category (C./\/lﬁ has ezactly
p blocks.

Proof. The first part follows from Theorem 3.7. The second part then follows from
Corollary 4.7. 0O

As a step towards finding the blocks of (CM;‘, we shall first find the blocks of (CMPA.
Write (¢) = C = Cp. For 1 < j < p—1, let 0; be the automorphism of C' such that
c— cd. Let

— ia — 3 — 5 L ien®d
o = 4isoy T = ¢ind, , p = iresq , aj = ~isod .

Observe that (C/\/lﬁ has a C-basis consisting of the elements o, 7, p, 7p, a1,...,05_1.
Let

e11=a+7p/p.

We identify Out(C) with Aut(C'). We also identify Out(C') with the unit group (Z/p)*
of the ring Z/p of integers modulo p. Let Irr(COut(C)) denote the set of irreducible
COut(C)-characters. For x € Irr(COut(C)), we define e ,, such that, writing 1 to denote
the trivial character,

1 =
€c,1 = —Tp/p+ ]?1 Zaj
j=1
and, when Y is non-trivial,
1 A
o =—=> xX(i ;.
2 et

Lemma 6.2. The blocks of (CM]DA are e1;1 and ec,, with x € Irr(COut(C)).

Proof. For G € {1,C}, let Ac(G) denote the character ring of CG. Since G is abelian,
the character algebra CAc(G) can be identified with the C-module of functions G — C.
Let e! be the element of CAg(1) such that e!(1) = 1. Let €f,...,eS | be the elements
of CA¢(C) such that e (') = 1 and ef vanishes off {c'}. Then {e'} and {ef,... eS|}
are bases for CAc¢(1) and CAc(C), respectively.

We shall make use of the representation CM? — Endc(CAc) of the (C/\/lﬁ—functor
CAc. The C-module CAc = CAc(1) ® CAc(C) has a basis consisting of the elements e
and elC for 0 <i<p-—1. We have

alel) =e', Tl =peg . pleg) =et, a(el) = ¢
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and «, 7, p, a;; annihilate the other basis elements of CAc. Letting

p—1
Scx = Z x(ief
=1

then a;(scy) = x(J)sc,y and p(scy) = 7(sc,y) = a(sc,y) = 0. It is now easy to check
that, as a direct sum of simple (C./\/lﬁ—functors7

CAc =511 @ SC,X
X EIrr(COut(C))

where S = spanc{el,e§'} and Sc, = spanc{sc,}. This is a direct sum of p mutu-
ally distinct simple (C/\/lﬁ—functors. (Tt is also easy to check that the notation here is
compatible with that which appeared in the classification of simple functors in Theo-
rem 3.7, but we shall not be making use of that fact.) By Lemma 6.1, every isomorphism
class of simple (CMPA—functor occurs exactly once in CAc¢. So the blocks of (C./\/lﬁ‘ are
precisely the elements of (CMpA that act as the projections to the simple summands. By
direct calculation, e; ; acts as the projection to S; 1, while ec, acts as the projection
to SC,x~ O

Proposition 6.3. The blocks of CM] are ey 1+ec,1 and ec,, with x € Irr(COut(C))—{1}.
The block e11 +ec,1 owns exactly 2 isomorphism classes of simple (C./\/l;‘ -functors. Each
of the other p — 1 blocks owns a unique isomorphism class of simple CM'-functors.

Proof. By Theorem 5.3, every central idempotent of the algebra CM = H(C/\/l;’ is a
central idempotent of the algebra (C/\/lﬁ = H(C/\/lﬁ. We have CM = (C/\/lﬁ @ CH where
§ = jdef,. So the central idempotents of CM' are precisely those central idempotents
of CMPA which commute with d. Using a formula for composition in Section 3, we obtain
the commutation relations

da=qa;0 =T7pd =0, ad =da; =0, oTp=rp.

We find that ¢ does not commute with e; ; nor with ec 1, but § does commute with
e1,1 +ec,1 and with ec , for x # 1. So the blocks of (C/\/l;' are as asserted.

By Theorem 5.2 and the proof of Lemma 6.2, there exist simple CM-functors ST
and Sé"x that restrict to the simple (CM? functors 51,1 and Sc,y, respectively, where
X € Irr(COut(C)). Furthermore, every simple CM-functor is isomorphic to Si'; or one
of the Sax' Since e11 + ec,1 acts as the identity on S;; and Sc¢ 1, the (CM;‘—functors
ST and S&, belong to e1,1 + ec,1. Similarly, S5 | belongs to ec,y for x # 1. O
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7. A unique block

Throughout this section, we shall assume that every finite group is isomorphic to a
group in K. We shall prove the following theorem.

Theorem 7.1. Consider the complete deflation Mackey category M = M. The K-linear
extension KM has a unique block.

We shall make use of the theorem of Hartley—Robinson [7], which implies that, given
a finite group G and a prime p not dividing |G|, then there exists a finite p-group P and
a semidirect product F' = G x P such that Out(F') = 1. In particular, every finite group
is a quotient of a finite group with a trivial outer automorphism group.

Let b be the block of KM owning the simple KM-functor Sf4"'. To prove Theorem 7.1,
we must show that b = 1. Consider the complete ordinary Mackey category N' = Mﬁ.
By Theorem 5.3, b € Z(""KN). By Remark 2.1, we can write b = >4 be with each
be € KN(G,G). Since b owns S{, the (1, 1)-coordinate of b is by = iso;.

Let Pé,c denote the set of pairs (o, V') such that V < G and o : F' < V is a homomor-
phism. Let P(%,G denote the subset of Pé,G consisting of those pairs («, V') such that «
is injective. In the notation of the proof of Proposition 5.1, p(bg) is a linear combination
of elements (o, V)g.q € K//\\/l(G, G) where (o, V) runs over the elements of Pg . As we
saw in the proof of Proposition 5.1, when « is non-injective, pi"cj(K/\/’(G, G))={0}.In

particular, when « is non-injective, pgg (bg) = 0. Therefore,

pba) = > paiv () (@, V) -
(,V)EPE &

Lemma 7.2. Let H, K € R and let m : H < K be a surjective homomorphism. Then, in
the notation of the proof of Proposition 5.1,

[ﬂ-:K]E,K - Z (C(h‘)ﬂ-aK)HJ( .
hZ(H)CH

Proof. Every H x K-conjugate of (7, K) has the form (¢(h)w, K) for some h € H. O

Lemma 7.3. For all G € &, we have pgg(b) =1.
acOut(G)

Proof. Let m be the homomorphism 1 + G. By Lemma 7.2, [W,G]iG = (m,G)1¢. In
particular, (7, G)1,¢ belongs to KM and commutes with p(b). Therefore

(m,G)1.c = pb1)(m,Ghrc = (1, G)raplbc) = Y. pSE0) (1. Ghe. O
acOut(G)
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1 ifa=1,

L 7.4. For all G da € Out(G), we have p3'é (b) =
emma or a € R and @ € Out(G), we have p,'; (bc) {0 otherwise.

Proof. By the theorem of Hartley and Robinson mentioned at the beginning of this
section, there exists a group F € 8 such that Out(F) = 1 and G is isomorphic to a
quotient of F. Let w : G < F be a surjective homomorphism. We have

[7T7F]E,F p(bF) = [7T7F]JCFJ,F p(b) = p(b)[ﬂ—ﬂF]JCr;,F = p(bG)[T‘—vF]JCrJ,F :
Using Lemma 7.2,

[, F1& 5 p(br) = 3 PEE (be)(clg)m, )k (B, W)k r
(BW)EPE 1, 9Z(G)CG

=pipbr) Y. (clg)m Flar -
9Z(G)CG

On the other hand, using Lemma 7.2 again,

p(ba)[m, FI = Z PS,’&(%)(% Via.c (c(g)m, Fa.r
(@, V)EPE ¢» 9Z(G)CG

= > S5 (be) aclg)T, F)e,r -
acOut(G), gZ(G)CG

Comparing coefficients, we deduce that paGCG; (bg) # 0 when @ # 1. Lemma 7.3 now yields
leXe ’
prg (be)=1. O

Lemma 7.5. For G € &, let KN (G, G) be the ideal of KN (G, G) spanned by the tran-

sitive morphisms that have the form Gindevresg with W < G. Then bg = 1 modulo

KN-(G,G).

Proof. By Proposition 3.1, KN (G, G) is indeed an ideal of KN (G, G). We can write

bg = ca + Z me . GiSO%
acOut(G)

where ¢ € KN (G, G) and each b, € K. Since pg’g(bg) = bq,@, the required conclu-
sion follows from Lemma 7.4. O

The latest lemma implies that, for every seed (G,V) of KM, the idempotent bg
acts as the identity on ng\&l. So b owns Sg/‘(}. By Theorem 3.7, b owns every simple
KM-functor. Therefore b = 1. The proof of Theorem 7.1 is complete.

We mention that, if we were to assume that the isomorphism classes in £ are those of
the finite solvable groups, then the conclusion of Theorem 7.1 would still hold because,
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in the proof of Lemma 7.4, we could take F' to be solvable. We do not know whether the
conclusion of the theorem still holds when the isomorphism classes in K are those of the
finite p-groups.
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