A refinement of Alperin's Conjecture for blocks of the endomorphism algebra of the Sylow permutation module

Laurence Barker and İpek Tuvay

Abstract

We present a refinement of Alperin's Conjecture involving the blocks of the endomorphism algebra of the permutation module formed by the cosets of a p-subgroup. We prove the conjecture in two special cases where every weight module has a simple socle.

Mathematics Subject Classification. Primary 20C20.
Keywords. Weight module, Cyclic defect group, Connected module.

1. Statement of the Conjecture. Shortly after proposing his weight conjecture [2], Alperin suggested, in seminars, that one approach towards tackling the conjecture would be to examine the endomorphism algebra $\operatorname{End}_{k G}(k G / S)$ of the permutation $k G$-module $k G / S$. Here, k is an algebraically closed field of prime characteristic p and S is a Sylow p-subgroup of a finite group G. Naehrig [10] has supplied some empirical evidence to suggest that the simple socle constituents of the regular module of $\operatorname{End}_{k G}(k G / S)$ may serve as an intermediate tool to relate the simple $k G$-modules with the weight $k G$-modules.

Recall, a weight $k G$-module is defined to be an indecomposable $k G$-module W such that, letting P be a vertex of W, then the $k N_{G}(P)$-module in Green correspondence with W is the inflation of a simple projective $k N_{G}(P) / P$ module. The weak form of Alperin's Weight Conjecture [2] asserts that the number of isomorphism classes of simple $k G$-modules is equal to the number of isomorphism classes of weight $k G$-modules. The block form of Alperin's Conjecture asserts that, given a block b of $k G$, then the number of isomorphism classes of simple $k G b$-modules is equal to the number of isomorphism classes of weight $k G b$-modules.

[^0]By an easy application of Frobenius Reciprocity, every simple $k G$-module occurs in both the socle and the head of $k G / S$. The rationale for the study of $\operatorname{End}_{k G}(k G / S)$ arises from the following observation of Alperin [2, Lemma 1], which tells us that, in particular, every weight $k G$-module occurs in both the socle and the head of $k G / S$.

Lemma 1.1. (Alperin) Every weight $k G$-module occurs as a direct summand of the Sylow permutation $k G$-module $k G / S$.

We deem all $k G$-modules to be finite-dimensional. A $k G$-module L is said to be connected provided $\operatorname{End}_{k G}(L)$ has a unique block. It is easy to see that a direct summand L of a $k G$-module M is maximal among the connected direct summands of M if and only if $L=e M$ for some block e of $\operatorname{End}_{k G}(M)$. When these equivalent conditions hold, we call L a proper component of M. Plainly, any $k G$-module is the direct sum of its proper components.

We say that a $k G$-module L lies in a $k G$-module M, written $L \dashv M$, provided that L is isomorphic to the image of a $k G$-endomorphism of a direct sum of finitely many copies of M. This is equivalent to the condition that there exists a direct sum M^{\prime} of finitely many copies of M such that L is isomorphic to a submodule of M^{\prime} and L is isomorphic to a quotient module of M^{\prime}. We say that M is accordant provided the number of isomorphism classes of simple $k G$-modules lying in M is equal to the number of isomorphism classes of weight $k G$-modules lying in M.

Using Lemma 1.1, it is not hard to see that, for any p-subgroup P of G, the weak form of Alperin's Conjecture holds for $k G$ if and only if the permutation $k G$-module $k G / P$ is accordant.

Conjecture 1.2. For any p-subgroup P of G, every proper component of $k G / P$ is accordant.

The next three remarks are very easy and we omit the proofs.
Remark 1.3. Given a connected $k G$-module L lying in a $k G$-module M, then L lies in a unique proper component of M.

Remark 1.4. Let U and V be connected $k G$-modules lying in a $k G$-module M. Then U and V lie in the same proper component of M if and only if there exist connected $k G$-modules W_{0}, \ldots, W_{r} lying in M such that $W_{0} \cong U$ and $W_{r} \cong V$ and for each $1 \leq i \leq r$, there exists a non-zero $k G$-map $W_{i-1} \rightarrow W_{i}$ or $W_{i-1} \leftarrow W_{i}$.

Remark 1.5. Let L and M be $k G$-modules such that $L \dashv M$. Let U and V be connected $k G$-modules lying in L. Then U and V lie in M. If U and V lie in the same proper component of L, then U and V lie in the same proper component of M.

In the special case where P is trivial, Conjecture 1.2 is equivalent to the block form of Alperin's Conjecture. So the next result can be interpreted as saying that Conjecture 1.2 is a refinement of Alperin's Conjecture.

Proposition 1.6. Let P and Q be p-subgroups of G with $P \leq Q$. If every proper component of $k G / Q$ is accordant, then every proper component of $k G / P$ is accordant.

Proof. By Frobenius Reciprocity, every simple $k G$-module lies in $k G / Q$. By Lemma 1.1, every weight $k G$-module lies in $k G / S$. But $k G / S \dashv k G / Q$, so every weight $k G$-module lies in $k G / Q$. Since $k G / Q \dashv k G / P$, the required conclusion now follows from Remark 1.5.

Therefore, if Conjecture 1.2 holds when $P=S$, then it holds for all p subgroups P of G and, in particular, the block form of Alperin's Conjecture holds for $k G$.

Let us point out a connection with Naehrig [10]. When two indecomposable direct summands U and V of $k G / S$ are equivalent in the sense of [10, 4.1(b)], the corresponding principal indecomposable modules of $\operatorname{End}_{k G}(k G / S)$ lie in the same block of $\operatorname{End}_{k G}(k G / S)$, hence U and V lie in the same connected component of $k G / S$.

In Sect. 2, we shall illustrate the conjecture with some examples. In Sect. 3, we shall deal with two special cases. We shall show that, when G has a split BN-pair of characteristic p, the Cabanes-Sawada Theorem immediately implies that the conjecture holds for the Sylow permutation $k G$-module. We shall also show that, letting T be a Sylow p-subgroup of the normalizer of a cyclic defect group of a block b of $k G$, then the conjecture holds for the proper components of $b k G / T$.

The conjecture originates in [3]. Though not mentioned in [4], it was one of the motives for the defect theory, in [4], for blocks of endomorphism algebras.
2. Some examples. In this section, to illustrate Conjecture 1.2, we present the structure of the Sylow permutation module in two particular cases.

First put $p=2$ and $G=A_{7}$. Using the MAGMA source code in Zimmermann's thesis [12], it can be shown that, over the field \mathbb{F}_{2} of order 2, the 2-Sylow permutation module has the depicted structure, where n denotes an n-dimensional simple $\mathbb{F}_{2} G$-module and n^{*} denotes its dual.

$$
\begin{aligned}
& (1) \oplus(14) \oplus\left(\begin{array}{cc}
14 & 20 \\
1 & 1 \\
14 & 20
\end{array}\right) \oplus 2\left(\begin{array}{c}
20 \\
1 \\
14 \\
1 \\
20
\end{array}\right) \oplus\left(\begin{array}{ccc}
14 & \\
14 & & 20 \\
1 & \\
14 &
\end{array}\right) \\
& \oplus(6) \oplus\left(\begin{array}{c}
4^{*} \\
6 \\
4
\end{array}\right) \oplus\left(\begin{array}{l}
4 \\
6 \\
4^{*}
\end{array}\right) \oplus\left(\begin{array}{ccc}
6 & \\
4 & & 4^{*} \\
6
\end{array}\right) .
\end{aligned}
$$

Using Zimmermann's MAGMA routines or, alternatively, using data in Benson [5 , Appendix], it can be shown that all 6 of the simple $\mathbb{F}_{2} G$-modules are absolutely simple.

Again using MAGMA or [5, Appendix], it can be shown that the indecomposable summands with Loewy length 5 are projective and therefore cannot be weight modules. The non-simple indecomposable summand with socle 6
has vertex V_{4} and has a 4-dimensional non-simple Green correspondent, so this summand is not a weight module. But the simple summand 6 and the indecomposable summands with socles 4 and 4^{*} all have vertex V_{4} and Green correspondents that are 2-dimensional, absolutely simple, and inflated from projective modules. So those three summands are weight modules. Similarly, the simple summands 1 and 14 and the indecomposable summand with socle $14+20$ are weight modules. Evidently, the proper components of the Sylow permutation module have dimensions $1,260,54$ with $1,2,3$ isomorphism classes of simple modules and $1,2,3$ isomorphism classes of weight modules lying in them.

Let us give an example where the partitioning of simple modules and weight modules into blocks of $\operatorname{End}_{k G}(k G / S)$ is much finer than the partitioning into blocks of $k G$. Using MAGMA or [5, Appendix], it is not hard to show that, for $p=3$ and $G=M_{10}$, the 3-Sylow permutation module has the structure

$$
(1) \oplus\left(1_{-}\right) \oplus\left(\begin{array}{lll}
& 4 & \\
1 & & 1_{-} \\
& 4^{*}
\end{array}\right) \oplus\left(\begin{array}{lll}
& 4^{*} \\
1 & & 1_{-} \\
& 4 &
\end{array}\right) \oplus 2\left(\begin{array}{cc}
6 \\
4 & 4^{*} \\
6
\end{array}\right) \oplus\left(9_{1}\right) \oplus\left(9_{2}\right)
$$

In this case, the principal block of $k G$ contains 4 of the proper components.
The authors have also confirmed that Conjecture 1.2 holds for the groups $S_{6}, A_{7}, L_{2}(25), M_{11}, J_{1}$ in characteristic 2 , for $S_{6}, S_{7}, A_{8}, L_{3}(4), L_{2}(25), M_{11}$ in characteristic 3, and for McL in characteristic 5. Using data in LempkenStaszewski [9], it can be shown that, in the principal 5 -block of McL, three of the weight modules have socles of the form $2.250+896_{2}$ and $2.560+3038+$ $3245_{1}+3245_{2}$ and $896_{1}+3.3038$.
3. Proof in two special cases. Let us first show that the conjecture holds in the scenario of the Cabanes-Sawada Theorem.

Theorem 3.1. (Cabanes-Sawada) Suppose that G has a split BN-pair of characteristic p. Let S be a Sylow p-subgroup of G. Then:

1. Every indecomposable direct summand of $k G / S$ is a weight $k G$-module. Every weight $k G$-module occurs with multiplicity 1 in $k G / S$.
2. There is a bijective correspondence between the isomorphism classes of simple $k G$-modules U and the isomorphism classes of weight $k G$-modules W such that the isomorphism classes of U and W correspond provided $U \cong \operatorname{soc}(W)$.
In particular, every proper component of $k G / S$ is accordant.
Proof. This follows from Cabanes [6, Proposition 8], which says that the weak form of Alperin's Conjecture holds for $k G$, and Sawada [11, 2.8], which says that every simple $k G$-module has multiplicity 1 in $\operatorname{soc}(k G / S)$.

For another approach towards simultaneously refining Alperin's Conjecture and generalizing the Cabanes-Sawada Theorem, see [10, Section 3]. We now turn to the case of a block with a cyclic defect group.

Theorem 3.2. Let b be a block of $k G$ with a cyclic defect group D. Let T be a Sylow p-subgroup of $N_{G}(D)$. Then every proper component of bkG/T is accordant.

Proof. Erdmann's Theorem [7] asserts that, given a simple $k G$-module V with cyclic vertex Q, then Q is the defect group of the block of $k G$ containing V. Hence, using the compatibility of the Green correspondence and the Brauer correspondence, as recorded in Alperin [1, 14.4], it is easy to show that every simple $k G b$-module and every weight $k G b$-module has vertex D.

We may assume that D is non-trivial. Let E be the smallest non-trivial subgroup of D. Suppose that $E \unlhd G$. Given a subgroup L of G containing E, we write $\bar{L}=L / E$. Let \bar{b} be the image of b under the canonical epimorphism $k G \rightarrow k \bar{G}$. The simple $k G b$-modules, all of which have vertex D, are the inflations of the simple $k \bar{G}$-modules, all of which have vertex \bar{D}. Writing $\bar{b}=$ $\sum_{i} b_{i}$ as a sum of blocks b_{i} of $k \bar{G}$, then all the blocks b_{i} have defect group \bar{D}. Since \bar{T} is a Sylow p-subgroup of the group $N_{\bar{G}}(\bar{D})=\overline{N_{G}(D)}$, an inductive argument on $|D|$ allows us to assume that every proper component of $\bar{b} k \bar{G} / \bar{T}$ is accordant. Observing that $\bar{b} k \bar{G} / \bar{T}$ inflates to $b k G / T$, we deduce that $b k G / T$ is accordant in the case $E \unlhd G$.

Now suppose that E is not normal in G. Let $H=N_{G}(E)$. Since D is cyclic, $N_{G}(D) \leq H$. Let c be the block of $k H$ with defect group P such that c is in Brauer correspondence with b. By Erdmann's Theorem combined with the compatibility of the Green correspondence and the Brauer correspondence again, the Green correspondence, with respect to vertex D, restricts to a bijective correspondence between the isomorphism classes of weight $k H c$-modules and the isomorphism classes of weight $k G b$-modules. Green [8, Theorem 1(ii)] says that the isomorphism classes of simple $k H c$-modules V are in a bijective correspondence with the isomorphism classes of simple $k G b$-modules U whereby $V \leftrightarrow U$ provided U is isomorphic to the socle of the Green correspondent of V.

Let W be a weight $k H c$-module, and let V be a simple $k H c$-module. Let $\mathcal{G}(W)$ and $\mathcal{G}(V)$ denote the $k G b$-modules in Green correspondence with W and V, respectively. By the previous paragraph, $\mathcal{G}(W)$ is a weight $k G b$-module and $\mathcal{G}(V)$ is an indecomposable $k G b$-module with a unique simple submodule V_{G}. Supposing that W and V lie in the same proper component of the $k H$-module $k H / T$ then, by [4, Corollary $5.7(\mathrm{~b})], \mathcal{G}(W)$ and $\mathcal{G}(V)$ lie in the same proper component of the $k G$-module $k G / T \cong{ }_{G} \operatorname{Ind}_{H}(k H / T)$. Plainly, $\mathcal{G}(W)$ and V_{G} lie in the same proper component of $k G / T$. We have shown that, given a weight $k H c$-module and a simple $k H c$-module lying in the same proper component of $k H / T$, then the corresponding weight $k G b$-module and simple $k G b$-module lie in the same proper component of $k G / T$. The required conclusion for $b k G / T$ now follows because, by an inductive argument on $|G|$, we may assume that the required conclusion holds for $c k H / T$.

References

[1] J. L. Alperin, Local Representation Theory, (Cambridge Univ. Press, Cambridge, 1986).
[2] J. L. Alperin, Weights for finite groups, Symp. Pure Math. 47(1987) 369-379
[3] L. Barker, Blocks of endomorphism algebras of modules, PhD Thesis, University of Oxford, Oxford (1991).
[4] L. Barker, Blocks of endomorphism algebras, J. Alg. 168(1994), 728-740
[5] D. Benson, "Modular Representation Theory: New Trends and Methods", Springer Lecture Notes in Math. 1081, (Springer, Berlin, 1984).
[6] M. Cabanes, Brauer morphism between modular Hecke algebras, J. Alg. 115(1988), 1-31
[7] K. Erdmann, Blocks and simple modules with cyclic vertices, Bull. Lond. Math. Soc. 9(1977), 216-218
[8] J. A. Green, Walking around the Brauer tree, J. Austral. Math. Soc. 17(1974), 197-213
[9] W. Lempken, R. Staszewski, Some 5-modular representation theory for the simple group McL, Comm. Alg. 21(1993), 1611-1629
[10] N. Naehrig, Endomorphism rings of permutation modules, J. Alg. 324(2010), 1044-1075
[11] H. Sawada, A characterization of the modular representations of a finite group with split BN-pairs, Math. Zeit. 155(1977), 29-41
[12] R. Zimmermann, Vertizes einfacher Moduln Symmetrischer Gruppen, PhD Thesis, University of Jena, Jena (2004).

Laurence Barker

Department of Mathematics,
Bilkent University,
06800 Bilkent, Ankara,
Turkey
e-mail: barker@fen.bilkent.edu.tr
İpek Tuvay
Department of Mathematics, Mimar Sinan Fine Arts University, 34380 Bomonti, Şişli, İstanbul, Turkey
e-mail: ipektuvay@gmail.com

Received: 25 March 2015

[^0]: This work was completed with the support of Tübitak Scientific and Technological Research Funding Program 1001 with the grant number 114F078.

